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Abstract 

Dielectric elastomer actuators (DEAs) are an emerging type of soft actuator that show many 

advantages including large actuation strains, high energy density and high theoretical efficiency. 

Due to the inherent elasticity, such actuators can also be used as soft oscillators and, when at 

resonance, the dielectric elastomer oscillators (DEOs) can exhibit a peak oscillation amplitude and 

power output with an improved energy efficiency in comparison to non-resonant behaviour. 

However, most existing DEOs have a fixed pre-defined morphology and demonstrate a single stable 

equilibrium, which limits their versatility. In this work, a conical DEO is proposed which may 

exhibit either monostability (i.e. one stable equilibrium point) or bistability (two equilibria). The 

system demonstrates a transition between two regimes using a voltage control. Such a feature allows 

the DEO system to have multiple oscillation modes with different equilibrium points and the 

transition between equilibria is controlled by an effective control strategy proposed in this work. A 

mathematical model based on the Euler-Lagrange method is developed to investigate the stability 

of this system and its complex nonlinear dynamic response in unforced and parametrically forced 

cases. This design has potential in more advanced and versatile DEO applications such as active 

vibrational controllers/ shakers, active morphing structures, smart energy harvesting and highly 

programmable robotic locomotion. 
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1. Introduction 

Dielectric elastomer actuators (DEAs) are one type of electro-active polymer that show advantages 

over conventional actuators in terms of large actuation strain, high theoretical efficiency, inherent 

compliance and low cost [1]. An idealized DEA consists of a piece of dielectric elastomer 

sandwiched between two compliant electrodes. When a voltage is applied across the electrodes, the 

electric field generates electrostatic pressure that causes the membrane to contract in thickness and 

expand in area. Many configurations of DEAs have been proposed, such as the stacked DEAs [2] 

[3] [4], conical DEAs [5] [6] [7], rolled DEAs [8] [9] [10] and the DE minimum energy structures 



(DEMES) [11] [12] [13] [14]. 

 

Due to the inherent elasticity, when stimulated by an alternating current (AC) voltage signal, the 

DEAs can generate oscillatory motions, which can be termed as DE oscillators (DEOs). As the 

excitation frequency approaches the natural frequency of the DEO system, it can exhibit a dramatic 

increase in its oscillation amplitude. This soft oscillation technology can have advantages over other 

conventional rigid mechanical oscillators in terms of inherent compliance, which can be readily 

integrated with soft robotic systems to allow safer human-robot interaction, morphological 

computation and other advanced applications [15]. 

 

Several studies have investigated the dynamic response of DEOs with different configurations either 

theoretically or experimentally (see, e.g. [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] 

[28] [29] [30] [31]). One of the earliest works on the dynamics of DEOs was conducted by Fox & 

Goulbourne, (2008 & 2009), in their works, the dynamics of a DE balloon was investigated with 

different resonant modes of the membrane captured [16] [17]. This configuration was then 

investigated further using a thermodynamics framework [18] [19]. Based on this framework, many 

other configurations of DEOs have also been studied. For example, Zhang et al. conducted a series 

of works on the idealized rectangular DEOs in which the strong coupling of the oscillation response 

in the two in-plane directions was exposed [20] and the geometrical effects on its dynamics were 

investigated [21]. Pure-shear DEOs were studied extensively with the focus on the effects of biasing 

elements [23], strain-stiffing in the DE membranes [24], the viscosity-induced drifting in the 

equilibrium states [25] and the safe actuation voltage ranges [22]. Zhao et al. [32] and Wang et al. 

[33] have demonstrated experimentally that, by applying a voltage impulse, a bistable DEMES can 

transit between two stable states. Many dynamic applications based on DEOs have been developed 

in soft robotic locomotion [27] [34] [35] [36] [37] [38] [39], a pneumatic pump [40], grippers [33] 

[41], a loudspeaker [42], noise cancellation [43] [44] and vibrational control [45] [46]. 

 

It is worth noting that, most previous DEO designs incorporate only the compliant DE membranes 

as the mean of generating oscillatory motions and have a fixed pre-defined morphology. These 

designs are restricted to a predetermined number of stable equilibrium states (either one or two 

equilibria), which, to some extent limits their versatility. For instance, in soft vibrational locomotion 

applications, DEOs are commonly adopted as the vibrational source. However, due the fixed 

stability of the DEOs, such vibrational robots can only move in one direction if no additional 

steering control system is added [38]. A DEO design that has multiple stable states could potentially 

reduce such design complexity, in robotic systems, by taking advantage of its multiple oscillation 

modes (oscillations around different equilibria with various amplitudes) as means for steering / 

velocity controls [27]. To the best of the authors’ knowledge, no work has focused on the 

development of a DEO configuration with multiple controllable stable states, nor has investigated 

the nonlinear dynamic behaviour they may exhibit. 

 

In this paper, we propose a novel DEO system that incorporates a rigid-compliant interaction 

between the biasing mechanism and the DE membrane. The rigid-compliant interaction allows this 

DEO design to switch between monostable (i.e. one stable equilibrium point) and bistable (two 

equilibria) modes by active voltage control and design parameter tuning. The bistablility 



demonstrated by this design allows a rapid yet safe switch between two stable states. In comparison, 

conventional bistable DEA systems commonly adopt a snap-through mechanism induced by the 

electro-mechanical instability, which can have the potential risk of electric breakdown and 

unpredictable responses [47] [48]. The controllability of this novel DEO design also allows a 

programmable oscillation mode around the targeted equilibrium, which can potentially lead to more 

advanced and versatile DEO applications such as active vibrational control, active morphing 

structures, smart energy harvesting and highly programmable robotic locomotion. A mathematical 

model is also developed in this work to investigate the stability of this system and its complex 

nonlinear dynamic response.  

 

The rest of this paper is structured as follows. In Section 2, the oscillator configuration and working 

principle is introduced. In Section 3, a theoretical model is derived using the Euler-Lagrange method. 

Based on this model, its static equilibrium states and small perturbations around these equilibrium 

states are investigated in Section 4. In Section 5, the free oscillation as a conservative system and 

the effects of damping and static biasing voltage are analysed systematically. Section 6 focuses on 

the parametric excitation of this DEO system and Section 7 presents an effective control strategy 

for the bistable mode DEO that allows a robust transition between the two equilibria. Finally, 

conclusions are drawn in Section 8 and potential applications of this system are discussed.  

 

2. DEO design and working principle 

This section describes the design concept of the proposed DEO and its fundamental working 

principle. The DEO structure consists of a circular DEA coupled with a bistable spring mechanism, 

as illustrated in Figure 1 (a), where Fs is the spring force and FDEA is the tensile force of DEA in 

the x axis. The circular DEA shares the same design as in previous works [5] [6] [30] [31] [49] [50] 

[51] [52] [53], where a pre-stretched DE membrane is bonded to a rigid circular frame with a disk 

attached to the centre. The biasing mechanism consists of two linear springs with the distance 

between the fixed ends smaller than the total length of the two springs. In this design, the motion of 

the DEA and the biasing mechanism is restricted to one degree-of-freedom (DOF) horizontal 

translation. The curve on the right of each component in Figure 1 (a) shows the force-displacement 

function along the horizontal axis. This bistable biasing mechanism differs from the previous 

bistable buckling beam mechanisms used in DEAs [54] [55] [56] [57] [58] as it allows a continuum 

deformation post bucking of the springs. This opens the potential for high amplitude oscillations 

that cannot be achieved in previous bistable DEA designs. The DEO system can exhibit three 

possible static equilibrium states, in which two are stable (Equilibria (i) and (ii)) and one is unstable 

(Equilibrium (iii)), as illustrated in Figure 1 (b). However, it is worth noting that, depending on the 

specific parameter values, monostability can also exist in this system, i.e. Equilibrium (iii) in Figure 

1 (b) becomes the only stable solution. Detailed study of the static equilibrium states is conducted 

in Section 3.  

 

The quasi-static actuation principle of this system can be explained by the force balance between 

the tension-induced force of the DE membrane and the restoring force of the bistable mechanism. 

When in passive equilibrium (no applied voltage), the tension of the membrane is balanced by the 

compressed springs in the horizontal axis. As a voltage is applied across the DE membrane, the 

electrostatic pressure, induced by the electric field, reduces the tension on the membrane, which 



results in a force imbalance. The membrane is then deformed out-of-plane further until another force 

equilibrium state is achieved, as illustrated in Figure 1 (c). When the voltage is removed, the 

membrane will return to its passive equilibrium. If an AC voltage is applied instead of a direct 

current (DC) voltage, the DEO will oscillate around its equilibrium point and the amplitude of this 

oscillation is a function of the voltage amplitude and frequency. 

 

3. Mathematical modelling 

In this section, a numerical model is developed to characterize the responses of the DEO system. 

The following assumptions are made in this model, following [5] [31] [49] [53] [59] [60]. (i) This 

is a single DOF system, i.e. this model restricts itself in a translation along the horizontal axis; (ii) 

force due to gravity is neglected; (iii) the out-of-plane deformation is approximated as being conical; 

(iv) the strain distribution on the membrane is homogenous; (v) the circumferential deformation of 

the membrane does not vary. 

 

In its resting state, the DE membrane has an initial thickness of H0. It is first pre-stretched in biaxial 

directions by a ratio of λp and then bonded to a central disk, with the outer radius a, and a rigid ring, 

with the inner radius b. When coupled with the biasing mechanism, the membrane is deformed out-

of-plane, by a distance d0. The horizontal deformation of the biasing mechanism (i.e. the distance 

between the free moving end and the fixed ends) also has the distance, d0 (as shown in Figure 1 

(b)). A voltage, Φ, is applied across the compliant electrodes of the membrane and, a charge, Q, is 

built on the electrodes. The membrane is deformed from its passive equilibrium by Δd (Figure 1 

(c)) and the total out-of-plane deformation of the membrane is d = d0 +Δd.  

 

The radial stretch of the membrane, λ1, can be estimated based on the geometrical relationship, 

𝜆ଵ ൌ
ඥௗమାሺ௕ି௔ሻమ

ሺ௕ି௔ሻ
𝜆௣ . Eq. (1) 

Based on assumption (v), the circumferential stretch, λ2, is simply λ2 = λp. 

 

The charge accumulated on the electrodes can be expressed as 

𝑄 ൌ 𝜋ሺ𝑎 ൅ 𝑏ሻ𝐷ඥ𝑑ଶ ൅ ሺ𝑏 െ 𝑎ሻଶ,  Eq. (2) 
where D is the electric displacement. 

 

The DEO system is assumed to deform under an isothermal condition and the fixed temperature 

will not be considered explicitly. The DEO is a thermodynamic system with two independent 

variables: d and D. Viscosity in the dielectric elastomer is considered in this system as the only 

dissipative factor. In this work, the Euler-Lagrange method is adopted to derive the governing 

equations of the DEO system (following [61] [62] [63] [64] [65]) and the Euler-Lagrange equations 

can be written as 

ୢ

ୢ௧
ቀ

డ௅

డ௤ഢሶ
ቁ െ

డ௅

డ௤೔
ൌ 𝐹ே஼_௜,  Eq. (3) 

where L = T – V is the Lagrangian, T is the kinetic energy of the system and V is the total potential 

energy of the system, qi = (d, D), FNC_i are the nonconversative forces. 

 

Assuming that the moving mass, m, is sufficiently larger than the mass of the springs and the DE 



membrane, then the kinetic energy of the system, T, can be expressed as 

𝑇 ൌ
ଵ

ଶ
𝑚 ቀ

ୢௗ

ୢ௧
ቁ

ଶ
.  Eq. (4) 

 

The potential energy of this system, V, consists of the Helmholtz free energy of the dielectric 

elastomer membrane, the elastic potential energy of the springs and the potential energy of the 

external circuit, and is given as 

𝑉 ൌ 𝜋ሺ𝑏ଶ െ 𝑎ଶሻ ுబ

ఒ೛
మ 𝑊 ൅ 𝐾ሺ𝑙 െ 𝑙଴ሻଶ െ Φ𝑄,  Eq. (5) 

where W is the Helmholtz free energy density of the DE membrane, K is the stiffness of the linear 

springs, l0 is the initial length and 𝑙 ൌ  √𝑑ଶ ൅ ℎଶ is the current length of the springs under the 

deformation, d, and h is the vertical distance from the fixed end of each spring to the axis of 

symmetry (as shown in Figure 1 (a)). 

 

By assuming an ideal elastomer, and that the polarization behaviour is liquid-like and independent 

of the state of deformation [66], the Helmholtz free energy density can be expressed as  

𝑊ሺ𝜆, 𝐷ሻ ൌ 𝑊௦௧௥௘௧௖௛ሺ𝜆ሻ ൅
஽మ

ଶఌ
 ,  Eq. (6) 

where ε is the permittivity, the first part on the right side is the free energy associated with the elastic 

energy of the membrane due to stretch and the second part is related to the electrostatic energy. 

 

A Gent model [67] is adopted in this work to describe the hyper-elastic DE material and its 

Helmholtz free energy density is given as  

𝑊௦௧௥௘௧௖௛ሺ𝜆ሻ ൌ െ
ఓ௃

ଶ
log ቀ1 െ

ఒభ
మାఒమ

మାఒభ
షమఒమ

షమିଷ

௃
ቁ,  Eq. (7) 

where μ is the shear modulus of the material and J is the constant relating to the limiting stretch. 

 

The generalized force in the Euler-Lagrange equation for variable D equals zero as no electrical 

dissipation is considered in this work (e.g. leakage current). The generalized force for variable d can 

be obtained by the virtual work principle. For a virtual displacement δd, the virtual work done by 

the viscosity of the DEO is (following [61] [68]) 

δ𝑊ே஼_ௗ ൌ െ
ଵ

ଶ
𝑐𝜆௣

ଶ ௗమ

ௗమା௥మ

ୢௗ

ୢ௧
𝛿𝑑,  Eq. (8) 

where c is the damping coefficient of the DE membrane and r = b - a. 

 

Note that the viscoelastic behaviour of the DE membrane is simplified as a hyperelastic spring and 

a viscous damper in parallel, which is equivalent to the Kelvin-Voigt model. The Kelvin-Voigt 

model has been proven to be valid in characterizing the viscoelasticity of silicone elastomers (which 

is intended for this work) due to the significantly reduced stress relaxation and creep in comparison 

with the widely used VHB materials from 3M [31] [69] [70]. 

 

The virtual work can also be written as the product of the generalized force and the virtual 

displacement, 

δ𝑊ே஼_ௗ ൌ 𝐹ே஼_ௗ𝛿𝑑,  Eq. (9) 



where FNC_d is the nonconservative generalized force for the variable d.  

 

Substituting Eq. (9) into (8) yields  

𝐹ே஼_ௗ ൌ െ
ଵ

ଶ
c𝜆௣

ଶ ௗమ

ௗమା௥మ

ୢௗ

ୢ௧
.  Eq. (10) 

 

The Euler-Lagrange equation for the variable d can be written as 

m𝑑ሷ ൅ 𝜋𝜇ሺ𝑎 ൅ 𝑏ሻ𝐻଴ቀ𝑑 𝑟ൗ ቁ

ଵି
భ

ഊ೛
ల ቆቀ೏ ೝൗ ቁ

మ
శభቇ

మ

ଵି൮ఒ೛
మ ቀ൫ௗ ௥ൗ ൯

మ
ାଵቁାఒ೛

మ ା భ

ഊ೛
ర ቆቀ೏ ೝൗ ቁ

మ
శభቇ

ିଷ൲ ௃൘

െ 𝜋ሺ𝑎 ൅ 𝑏ሻΦ𝐷
ௗ

√ௗమା௥మ ൅

2𝐾𝑑 ቀ1 െ
௟బ

√ௗమା௛మቁ ൌ െ
ଵ

ଶ
c𝜆௣

ଶ ௗమ

ௗమା௥మ 𝑑ሶ .  Eq. (11) 

 

The Euler-Lagrange equation for the variable D is 

െ
ுబ

ఒ೛
మ

஽

ఌ
൅ Φ

√ௗమା௥మ

௥
ൌ 0.   Eq. (12) 

 

Substituting Eq. (12) to (11), and Eq. (11) can be nondimensionalized as 

ୢమ௫

ୢఛమ ൅
௫൭ଵି

భ

ഊ೛
ల ൫ೣమశభ൯

మ൱

ଵିቆఒ೛
మ ሺ௫మାଶሻା భ

ഊ೛
ర ൫ೣమశభ൯

ିଷቇ ௃ൗ
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௟బ
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௫మ

௫మାଵ

ୢ௫
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ൌ 0,  Eq. (13) 

where  

𝜏 ൌ 𝑡ටగఓሺ௔ା௕ሻுబ

௠௥
, 𝑥 ൌ

ௗ

௥
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ுబ
ට
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ଶ௥

గఓሺ௔ା௕ሻுబ
, �̃� ൌ 𝑐

ఒ೛
మ

ଶ ට
௥

గఓሺ௔ା௕ሻுబ௠
 . 

 

Eq. (13) can be rewritten as 

ୢమ௫

ୢఛమ ൅ 𝑓൫𝑥, 𝜆௣, 𝜙෨, 𝑘෨൯ ൅ �̃�
௫మ

௫మାଵ

ୢ௫

ୢఛ
ൌ 0,  Eq. (14) 

where 

𝑓൫𝑥, 𝜆௣, 𝜙෨, 𝑘෨൯ ൌ
௫൭ଵି

భ

ഊ೛
ల ൫ೣమశభ൯

మ൱

ଵିቆఒ೛
మ ሺ௫మାଶሻା భ

ഊ೛
ర ൫ೣమశభ൯

ିଷቇ ௃ൗ
െ 𝑥𝜙෨ଶ ൅ �̃�𝑥 ቀ1 െ

௟బ

√௫మ௥మା௛మቁ .  Eq. (15) 

 

In this work, the values of the Gent model parameters are determined based on the authors’ previous 

ELASTOSIL silicone (Wacker Chemie AG) conical DEA studies [30] [31] [52]. The choice of using 

the material properties of silicone elastomers over common polyacrylate very-high-bond (VHB) 

tapes by 3M is due to the significantly lower viscosity of the silicone elastomers, which can generate 

much larger resonant stroke compared to VHB materials. For example, by using the same circular 

configuration, a silicone DEO [52] shows a nominal resonant stroke over five times higher than 

VHB counterparts [26]. The material parameters in this work are set as μ = 415.5 kPa and J = 16, 

which are adopted from the authors’ previous works [30] [31] [52]. The initial thickness of the 

elastomer, H0, is 100 μm. The radius a is set as 7.5 mm while b is 15 mm. The permittivity, ε, is a 

product of the absolute permittivity of a vacuum and the relative permittivity of the dielectric 



elastomer and is given as 𝜀 ൌ 2.48 ൈ 10ିଵଵ F/m. The mass is set as m = 5 g, the initial length of 

the spring, l0, is 10 mm and h = 8 mm. 

 

By solving the nondimensionalized equation-of-motion Eq. (14) numerically in MATLAB 

(MathWorks), the dynamic performance of the DEO system under small perturbation, high 

amplitude free oscillation and parametric mechanisms of excitation are investigated systemically in 

the following sections. 

 

4. Stability of the static equilibrium states 

This section focuses on the effects of pre-stretch ratios of the DE membranes, biasing DC voltages 

applied to the system and the stiffness of the biasing springs on the static equilibrium positions of 

the system and its natural frequency. 

 

At the static equilibria, the static forces are balanced such that 

𝑓൫𝑥଴, 𝜆௣, 𝜙෨, 𝑘෨൯ ൌ 0,  Eq. (16) 

where x0 is the non-dimensional equilibrium position of the system. 

 

By solving the Eq. (16) numerically, the non-dimensional equilibrium position, x0, can be estimated 

with the known λp, 𝜙෨, 𝑘෨ . The static stability of the equilibrium can be evaluated using the sign of 
the second derivative of Eq. (15) with respect to x, i.e. 𝜕ଶ𝑓 𝜕𝑥ଶ⁄ |௫బ

. A positive sign indicates a 

stable equilibrium whereas a negative sign indicates an unstable one.  

 

For low amplitude vibration around the equilibrium states, the time-dependent displacement can be 

written as 

𝑥ሺ𝜏ሻ ൌ 𝑥଴ ൅ ∆ሺ𝜏ሻ,  Eq. (17) 

where Δ(τ) is the amplitude of the small perturbation. 

 

Substituting Eq. (17) into (14) (neglecting the damping term) and, expanding f(x) as a power series 

in Δ around x0 yields 

ୢమ∆

ୢఛమ ൅ ∆
డ௙൫௫,ఒ೛,థ෩ ,௞෨ ൯

డ௫
ൌ 0.  Eq. (18) 

Note that the partial derivative in Eq. (18) is to be evaluated at the equilibrium x0. 

 

Hence the natural frequency of the DEA system is given as 

𝜔෥௡
ଶ ൌ

డ௙൫௫,ఒ೛,థ෩ ,௞෨ ൯

డ௫
ฬ

௫ୀ௫బ

,  Eq. (19) 
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௞෨ ௟బ௛మ

൫௫బ
మ௥మା௛మ൯ට௫బ

మ௥మା௛మ
,  Eq. (20) 

where 𝜔෥௡ ൌ 𝜔௡ට
௠௥

గఓሺ௔ା௕ሻுబ
 is the non-dimensional natural angular frequency, and A1-4 are written 

as 
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ଶ ൯,   Eq. (21 a) 

𝐴ଶ ൌ 5𝐽𝜆௣
଺ 𝑥଴

ସ ൅ 6𝐽𝜆௣
଺ 𝑥଴

ଶ ൅ 𝐽൫𝜆௣
଺ െ 1൯,  Eq. (21 b) 
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ହ ൅ 2𝐽𝜆௣
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଺ െ 1൯𝑥଴,  Eq. (21 c) 
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Figure 2 (a) shows the stable equilibrium states of this system as a function of 𝑘෨  with the pre-

stretch ratios λp = 1.0, 1.2 and 1.4. The biasing DC voltage is set as zero in this study. A clear 

supercritical pitchfork bifurcation with respect to 𝑘෨  can be observed in Figure 2 (a). For λp = 1.0, 

regardless of the value of 𝑘෨ , two stable equilibria exist whereas, for the pre-stretch ratios of 1.2 and 

1.4, only a single equilibrium point on the origin exists for small 𝑘෨  values. As the 𝑘෨  value 

increases, this stable equilibrium curve bifurcates with two symmetrical stable equilibria emerging, 

whilst the origin becomes an unstable equilibrium (dashed line in Figure 2 (a)). As the pre-stretch 

ratio increases, the bifurcation also occurs at a higher 𝑘෨  value. Figure 2 (b) shows the relationship 

between the natural frequency of the DEO and the non-dimensional stiffness 𝑘෨  for different pre-

stretch ratios. For λp = 1.0, the natural frequency increases continuously with the increasing 𝑘෨  while, 

for λp = 1.2 and 1.4, the natural frequency decreases to zero as the 𝑘෨  value approaches the 

corresponding bifurcation point, and then increases gradually.  

 

The effect of the biasing DC voltage on the static equilibrium positions and natural frequencies was 

also investigated, with 𝑘෨  set as 2.5. Figure 2 (c) and (d) shows the stable equilibria and natural 

frequencies of the DEO system respectively with λp = 1.0, 1.2 and 1.4. It can be noted that, for λp = 

1.0 which has a bistability, as the biasing voltage increases, the absolute values of the two 

symmetrical stable equilibria, and the corresponding natural frequencies, increase. Both the λp = 1.2 

and 1.4 cases exhibit a monostability at low 𝜙෨  values; however, a supercritical pitchfork 

bifurcation occurs in the λp = 1.2 case as 𝜙෨  increases beyond 0.235 while λp = 1.4 remains 

monostable even when 𝜙෨ approaches its maximum. The natural frequency of the system in the λp 

= 1.2 case drops to its minimum at the bifurcation point before rising. As the system remains 

monostable, the natural frequency for the λp = 1.4 case decreases gradually with the increasing 

biasing voltage.  

 

The studies in this section illustrate a transition between a monostability and a bistability in the 

system by a biasing voltage control and tuning the design parameters (𝑘෨ , λp). They demonstrate that, 

with the correct choice of parameters values (e.g. λp = 1.2, 𝑘෨ ൌ 2.5), the system can exhibit a planar 

configuration (x = 0) in passive (no voltage) and a conical geometry when a biasing voltage is 

applied. In quasi-static applications, this novel DEO system can have potential advantages in 

changing active morphology and in compliant linear actuators with programmable stroke ranges.  

 

5. Free oscillation of the DEO 

In the previous section, the static equilibrium states and the natural frequencies for low amplitude 

oscillations, due to small perturbations around the static equilibria, were analysed. In this section, 

the dynamics of the DEO system under a high amplitude free oscillation is investigated. The 

conservative case, i.e. no forcing or viscous damping, is considered first, then the nonconservative 

effects of damping on the dynamics are analysed. 

 



5.1 Conservative case 

In the first study, a conservative system is considered by neglecting the damping term in Eq. (14) 

and applying only a constant DC biasing voltage to the DEO (no periodic forcing). This system 

becomes autonomous, i.e. time-independent. In the last section, the case λp = 1.2, 𝑘෨  = 2.5 showed 

that a supercritical pitchfork bifurcation in the static equilibria can be controlled by the DC voltage. 

By adopting the parameters from that study, free oscillations of the DEO under different amplitudes 

of biasing voltages are analysed.  

 

Figure 3 (a-c) plots the potential energy of this system and the phase portraits with 𝜙෨ = 0, 0.25 

and 0.5 respectively. It can be seen that, when 𝜙෨ = 0, only one minimum exists in the potential 

energy function, and x = 0 represents the only centre of the system. For this conservative system, 

depending on the level of the total mechanical energy, 𝐸෨௠ ൌ 𝑉෨ ൅ 𝑇෨ , oscillations occur on different 

orbits around the single fixed point (0, 0), as demonstrated in Figure 3 (a). As 𝜙෨ is increased to 

0.25, which is slightly above the bifurcation point of 𝜙෨ ൌ 0.235, the potential energy function 

forms a symmetrical twin-well curve. It can be noted that two symmetrical minima of the potential 

energy function occur near the origin (green dots in Figure 3 (b)), and the origin becomes a local 

maximum (red dot in Figure 3 (b)). The two minima represent the stable equilibrium points (centres) 

and the local maximum indicates an unstable equilibrium (saddle). Two symmetric homoclinic 

orbits can be observed in the phase portraits in Figure 3 (b), which separate the low amplitude intra-

well orbits around each of the stable equilibrium points from the high amplitude inter-well orbits 

that enclose both. As the non-dimensional voltage value increases, the two stable equilibrium points 

separate further, the homoclinic orbits grow and a higher energy is required to escape from one 

potential well to the other, as is shown in Figure 3 (c). 

 

The time series of the DEO system with different total mechanical energy levels for 𝜙෨ ൌ 0.5 are 

plotted in Figure 4 (a-c), where the blue dotted lines represent the two stable equilibria (centres, xc+ 

and xc-) and the red dotted line illustrates the unstable solution (saddle, xs). As the total energy is 

below zero (initial condition: 𝑥 ൌ  0.2, 𝑥ሶ ൌ 0), the system demonstrates a low amplitude intra-

well oscillation around the corresponding equilibrium (depending on the initial position). When the 

total energy is close to zero, the system transits from an intra-well oscillation (𝐸෨௠ ൏ 0, solid curve 

in Figure 4 (b)) to an inter-well oscillation (𝐸෨௠ ൐ 0, dashed curve in Figure 4 (b)). As the total 

mechanical energy increases further, the response of the system shows a high amplitude inter-well 

oscillation, as illustrated in Figure 4 (c). 

 

5.2 Nonconservative case 

When the damping term in Eq. (14) is considered, this system is no longer conservative, i.e. as the 

system oscillates, the total mechanical energy dissipates and the system eventually settles on the 

positions with the minimum potential energy. This can be seen from the phase portraits in Figure 5 

where, with the presence of damping, the system response in a free oscillation no longer has a closed 

orbit around the centres, but rather is attracted to the stable equilibria, which are also called 

attractors. Also note from Figure 5 (a) that, in the case of 𝜙෨ ൌ 0, where the system is monostable, 

only a single attractor exists and different initial conditions are drawn to the same equilibrium point 

(marked as black dot in Figure 5 (a)). However, in the 𝜙෨ ൌ 0.5 case, where the system is bistable, 



a small variation in the initial condition can lead to a different equilibrium point (marked as black 

dots in Figure 5 (b)).  

 

To map the initial conditions that are attracted to the two equilibrium points in the 𝜙෨ ൌ 0.5 case, a 

cell-to-cell mapping technique [71] is adopted by dividing the initial condition region of interest 

into grids and numerically computing the final equilibrium point that each initial condition lands on. 

Basins of attraction, that characterize the eventual, steady state behaviour of this oscillator, can be 

obtained using this technique. In this study, the initial displacement and velocity are varied from -1 

to 1 over 200 points with a fixed step, which lead to a total of 200 ൈ 200 cells. The effects of 

damping on the basins of attraction are also investigated in this study. The basins of attraction for 

the two attractors in the cases of �̃� = 0.1, 0.5 and 1.0 are shown in Figure 6 (a-c) respectively. The 

black and white regions indicate the initial conditions that asymptotically tend to the equilibrium 

point on the left side (x = -0.31) and right side (x = 0.31) respectively. It can be noted that the basins 

of attraction plotted in Figure 6 follow a spiral pattern and, as the damping in the system increases, 

the basins of attraction concentrate more and become wider, indicating that broader neighbouring 

initial conditions can settle on the same equilibrium point. 

 

6. Effects of parametric excitation 

In the previous sections, the voltage excitation term in Eq. (14) contained only a fixed biasing DC 

voltage. In this section, we focus on the nonlinear dynamics of the DEO system when subjected to 

a time varying voltage signal. Note that the forcing term of this system is a function of the 

displacement (Eq. (14)), hence this system is excited parametrically [18] [19]. It is noteworthy that 

the forcing term is also a function of the square of the voltage input (Eq. (14)). Therefore, for a 

voltage signal given as 𝜙෨ ൌ 𝜙෨஽஼ ൅ 𝜙෨஺஼ cos൫Ω෩𝜏൯ , where 𝜙෨஽஼  and 𝜙෨஺஼  are the DC and AC 

voltage amplitudes respectively, and Ω෩ ൌ Ωට
௠௥

గఓሺ௔ା௕ሻுబ
 is the non-dimensional angular excitation 

frequency, the force experienced by the moving mass is proportional to 

𝜙෨ଶ ൌ 𝐸௔ ൅ 𝐸௕ cos൫Ω෩𝜏൯ ൅ 𝐸௖ cos൫2Ω෩𝜏൯ ,  Eq. (22) 

where 

𝐸௔ ൌ 𝜙෨஽஼
ଶ ൅

ம෩ಲ಴
మ

ଶ
 , 

𝐸௕ ൌ 2𝜙෨஽஼𝜙෨஺஼ , 

𝐸௖ ൌ
థ෩ಲ಴

మ

ଶ
 . 

 

From Eq. (22) it can be noted that the forcing term contains one constant biasing component and 

two time-varying components: one at the input excitation frequency and the second is at twice of 

the input frequency. However, it should be noted that, for low AC-to-DC ratio, i.e. 𝐴𝐷𝑅 ൌ

𝜙෨஺஼ 𝜙෨஽஼⁄  values (e.g. < 0.25), the amplitude of the frequency-doubled forcing component, Ec, is 

over one order of magnitude smaller than the primary forcing component, Eb, hence can be neglected. 

It is worth noting that both the DC and AC voltage amplitudes contribute to the biasing forcing 

component, Ea. In previous DEA dynamic studies, the effects of ADR in the voltage signal on the 

dynamic responses was investigated via varying 𝜙෨஺஼ while fixing the biasing voltage 𝜙෨஽஼  [23] 

[52] [62] [72]. However, as shown in Eq. (22), despite the control in the biasing voltage, such a 



method can still cause a change in the biasing excitation component, which leads to a shift in the 

equilibrium point, and hence the resonant behaviour. To overcome this drawback, in this work, the 

effects of ADR are investigated by fixing the biasing excitation term (i.e. Ea = const) while tuning 

the ADR value. 

 

6.1 Small ADR values 

In the last section, the transition from monostability to bistability in the DEO system via a biasing 

voltage control was demonstrated. The same design parameters are adopted here (λp = 1.2, 𝑘෨  = 2.5) 

and the damping coefficient �̃� is set as 0.25. As shown in Figure 3, the transition in stability occurs 

at a biasing voltage 𝜙෨஽஼ ൌ 0.235, which corresponds to a biasing forcing component 𝐸௔ ൌ 𝜙෨஽஼
ଶ ൌ

0.235ଶ (note that in Section 5 the biasing forcing component is only a function of 𝜙෨஽஼  as 𝜙෨஺஼ ൌ
0). In the first study, we investigate the response of the DEO with different ADR values in two cases. 

In the case i, the biasing forcing component 𝐸௔ ൌ 𝜙෨஽஼
ଶ ൅ 𝜙෨஺஼

ଶ 2⁄ ൌ 0.2ଶ (where the system has a 

single stable equilibrium point) and in case ii, 𝐸௔ ൌ 0.5ଶ  (where the system has two stable 

symmetrical equilibrium points). The ADR value in this study is restricted to a very small value 

(ADR < 0.04), which ensures an intra-well oscillation for case ii, while the high amplitude inter-

well oscillation is analysed in the next subsection. 

 

The frequency response of the DEO system is shown in Figure 7 (a) and (b) for the Ea = 0.22 and 

Ea = 0.52 cases respectively. The amplitude, |Xr|, is defined as |𝑋௥| ൌ |𝑋௠௔௫ െ 𝑋௠௜௡| 2⁄ , where Xmax 

and Xmin are the maximum and minimum displacement in one complete cycle respectively. Note that 

the frequency response curves are obtained using the MATLAB-based continuation package 

Computational Continuation Core (COCO) (a more detailed introduction to this software package 

can be found in [73]). A clear resonant peak can be observed for both cases, where the response 

curve for case i is shifted to the right, representing a hardening system (the stiffness of the system 

increases with the increasing displacement). On the contrary, the response curve for case ii exhibits 

a leftwards shift, suggesting a softening system.  

 

It is worth noting that, in case i, the system exhibits a zero-amplitude response away from resonance. 

As the excitation frequency approaches the resonant frequency, a Hopf bifurcation occurs (as 

indicated by the stars in Figure 7 (a)) and the response transitions from no motion to large-amplitude 

periodic oscillation. At this Hopf bifurcation, the zero-amplitude solution loses stability, hence the 

only stable solutions between the two Hopf bifurcations are periodic oscillations. If the excitation 

frequency is increased gradually from below resonance (e.g. Ω෩ ൏ 0.2), the response will follow the 

solid upper branch and, as it reaches the fold point (circles in Figure 7 (a)), the response loses its 

stability and drops down to zero. Multiple solutions can exist across a wide range of the frequency 

response in Figure 7 (a), where the solid upper branch represents a stable solution while the dashed 

curve indicates an unstable one. As the ADR value increases, the peak amplitude and the peak 

frequency (corresponding frequency of the circle in Figure 7 (a)) also increase.  

 

The frequency response for case ii (Ea = 0.52) shows a completely different behaviour to case I (Ea 

= 0.22). In case ii, the system demonstrates non-zero-amplitude periodic responses away from 

resonance. By increasing the excitation frequency in a quasi-static manner from below resonance 

(e.g. Ω෩ ൏ 0.2), the response will follow the solid lower branch and, as it reaches the first fold point 



(circles in Figure 7 (b)), the response will jump up to the upper branch. Decreasing the excitation 

frequency from above the resonance will cause the system response to follow the upper solid branch 

with higher amplitudes and then drop down at the fold point. Note from Figure 7 (b) that an increase 

in the ADR value causes the peak amplitude to increase, but decreases the peak frequency. It is 

noteworthy that period-doubling, which potentially leads to chaos, was predicted for ADR = 0.02 

and 0.03 cases. However, due to the complex nature of these behaviours, detailed study of the 

period-doubling bifurcations and the roots to chaos are beyond the scope of this paper. Additionally, 

as demonstrated later in Figure 9, the chaotic region is relatively small and the system may be 

operated on either side of this region without needing to take it into account. 

 

The time histories of the voltage input and displacement output for both cases at Ω෩ ൌ 0.45 and 

ADR = 0.02 are illustrated in Figure 8 (a) and (c) respectively. In both cases, the system experiences 

resonances at Ω෩ ൌ 0.45  with a comparable amplitude. However, the two cases demonstrate 

different forcing-to-response period ratios. For case i, the response period is twice that of the forcing 

period (Figure 8 (a)) while case ii shows a 1:1 relationship between the periods (Figure 8 (c)). The 

phase portraits and Poincaré maps for case i are shown in Figure 8 (b) and are plotted based on the 

state space data in 100 forcing cycles. Note that the phase paths and Poincaré maps overlap with 

each other, showing a periodic response. The two Poincaré sections also suggest that the response 

repeats itself every two forcing periods. The overlap in the phase path and Poincaré section for case 

ii in Figure 8 (d) also indicates that this system undergoes a periodic response.  

 

6.2 Large ADR values 

In the previous study, the frequency response of the DEO system under a parametric excitation with 

low ADR value was investigated. By increasing the ADR value, the monostable system is expected 

to exhibit a continuously increasing resonant amplitude, as has been demonstrated in previous work 

[52]. However, for a bistable system with twin potential wells, the increase in ADR value results in 

a higher periodic forcing amplitude which means a higher energy input to the system. The higher 

energy input could then lead to an increase in the total mechanical energy of the DEO, especially 

near resonance. Once the total mechanical energy is greater than the depth of the potential wells, 

the intra-well response can transit to a high amplitude inter-well oscillation. Hence, in this study, 

we focus on the bistable case (Ea = 0.52).  

 

A frequency sweep from Ω෩ ൌ 0 to Ω෩ ൌ 1.6 with an ADR = 0.2 was conducted and the time 

histories are shown in Figure 9. It can be noted that, at low frequencies, the DEO system experiences 

intra-well oscillations with a small peak at point a. As the frequency increases, the oscillation 

amplitude also increases, as the amplitude passes the threshold of the depth of the well (red dash 

line in Figure 9), the system transitions to inter-well oscillation, but first in a chaotic manner (point 

b) then settles to steady periodic oscillations (point c). The time series, phase portraits and Poincaré 

maps for each point are also included in Figure 9. It is noteworthy that the Poincaré maps for point 

b are disordered, indicating an aperiodic response, while the Poincaré maps for the other two points 

are overlapped, which shows a periodic behaviour. Also note that the response period for point c is 

twice of the forcing period, demonstrating a period-doubling response.  

 



7. Oscillation control of the DEO system 

In the previous section, both intra- and inter-well oscillations of the DEO system in a bistable mode 

have been demonstrated when it is subjected to different excitation signals. In practical applications, 

it is desirable to have the oscillation controllable - in particular, to be capable of switching between 

oscillations around different equilibria via a simple voltage control. Such active control could lead 

to more advanced vibrational control and dynamic shape morphing. In this section, a simple active 

control strategy for this DEO system based on the basins of attraction is proposed and an example 

demonstrating the effectiveness of this control strategy is presented. 

 

The same design parameters are adopted from the previous section (λp = 1.2, 𝑘෨  = 2.5, �̃� = 0.25). 

A biasing forcing component of Ea = 0.52 is kept which ensures the system stays in a bistable mode. 

One of the control difficulties for this DEO system lies in the transition from inter-well to intra-well 

oscillation as there is an equal possibility for the system to be attracted to the two symmetrical 

equilibria. In this work, the voltage is controlled to ensure that the response reliably reaches a target 

equilibrium point. This uses the concept of basins of attraction, illustrated in Figure 6 - i.e. that 

particular initial conditions cause the system to settle on particular equilibrium points. If the 

excitation is “switched off” mid-way through an orbit, the states at that point will then represent the 

initial conditions for the decay. This allows specific initial conditions to be reached, and thus allows 

the individual equilibrium points to be targeted.  

 

If a periodic inter-well orbit (avoiding the chaotic region) is used as the initial response, only the 

states in one response cycle are required to reach either of the equilibria (rather than computing the 

entire map, as in Figure 6). Such a map, for the DEO at ADR = 0.25 and Ω෩ ൌ 0.9 is shown in 

Figure 10 (a) where the orbit formed by alternating red and blue dots represents the periodic inter-

well response of the system and blue and red sections correspond to a final steady state response on 

attractor (equilibrium point) xA+ and xA- respectively. Examples of the phase portraits and time 

histories of the DEO exhibiting a controlled behaviour, settling on each of the attractors, are plotted 

in Figure 10 (a-b) and (c-d) respectively. The large black arrows in the phase portraits in Figure 10 

(a & c) depict the start point of the oscillation control. The white regions in Figure 10 (b & d) 

represent the parametrically excited periodic oscillations of the DEO while the shaded regions 

indicate the voltage regulation (setting ADR to 0 while keeping Ea = 0.52) to allow the responses to 

reach the targeted equilibrium. It can be noted from Figure 10 (a & c) that the system which has its 

states in the blue (red) section on the orbit is successfully attracted to the equilibrium in blue (red) 

by using this control strategy. Once the system has settled on the desired equilibrium, an AC voltage 

with a lower ADR (to ensure an intra-well oscillation) can be applied to the DEO to perform intra-

well oscillations. It is worth noting that, in practical applications, this control strategy may require 

a set of high sampling rate devices to track its states (displacement and velocity) and to perform 

voltage regulation. For the case with Ω෩ ൌ 0.9, the dimensional excitation frequency is 45 Hz, which 

may require a sampling rate in the order of 104 Hz, which is believed to be realistic for practical 

applications. 

 

To demonstrate the use of this strategy for DEO oscillation control, an example is developed where 

the system has the following desired oscillation sequences: i. intra-well oscillation around xA+; ii. 

high amplitude inter-well oscillation; iii. intra-well oscillation around xA-; iv. inter-well oscillation 



and, finally, v. land on xA+. In this example, the ADR ratio of 0.02 and Ω෩ ൌ 0.5 are used for intra-

well oscillation and ADR ratio of 0.25 and Ω෩ ൌ 0.9 are adopted for inter-well oscillation. The time 

histories of the actuation voltage parameters and the corresponding DEO responses are plotted in 

Figure 11. The dark shaded areas represent the triggering of the position control strategy developed 

in this section. It can be noted that the system response follows the desired oscillation sequence 

successfully with a short transient period after the change of actuation voltage parameters each time. 

Note that, in this example, all parameters are demonstrated in their non-dimensional form. To give 

a direct overview of such system, these parameters are now converted to the ones with dimensions, 

as listed below. For the DEO with H0 = 100 μm, a = 7.5 mm, b = 15 mm, λp = 1.2. The excitation 

frequency for intra-well oscillations is f = 25 Hz, and is f = 45 Hz for inter-well oscillations. The 

excitation frequencies are well within the output range of the state-of-the-art high voltage power 

electronics, which demonstrates the feasibility of using this DEO design in practical applications 

such as vibrational robot locomotion. 

 

8. Conclusion 

In this work, a novel conical dielectric elastomer oscillator with a bistable biasing mechanism was 

developed. This DEO configuration breaks the restriction of fixed stability of previous DEO designs, 

as this system can switch from a monostability to a bistability via a simple voltage control. A 

theoretical model was derived using the Euler-Lagrange method to characterize the responses of 

this DEO system. Using this model the static equilibrium states, and their stability, were investigated. 

Additionally, the free oscillation responses, the effects of damping and parametric excitation were 

explored. A simple control strategy was proposed to allow an accurate transitions between 

oscillations about different equilibria. The key findings of this work are summarized as follows: 

 

i. This DEO system can exhibit either a monostability or a bistability, which can be 

controlled by a biasing voltage and tuning of the design parameters. 

ii. In monostable mode, the DEO system exhibits zero displacement for excitation away from 

resonant frequencies but high amplitude oscillations near resonance with a double-period 

response. 

iii. In bistable mode, two symmetrical stable equilibrium points are observed in the DEO 

system. Low amplitude intra-well orbits, around each of the equilibrium points, and high 

amplitude inter-well orbits that enclose both, are observed in undamped free oscillations. 

iv. The basins of attraction of the bistable DEO system demonstrate that different initial 

conditions cause the system to settle on different equilibrium points. 

v. When the bistable DEO system is excited, it exhibits only intra-well oscillations at low 

ADR with a 1:1 period response. Chaotic and period-doubling inter-well responses are 

observed as the ADR increases. 

vi. The transition from periodic inter-well to intra-well oscillations around the target 

equilibrium in the bistable DEO system can be achieved with the use of the attractor map 

and a voltage control. 

 

In quasi-static cases, this DEO design can morph from a planar configuration to a three-dimensional 

conical geometrical profile using a simple static voltage control. This morphing behaviour can have 

applications such as active morphing wings on aircraft or working as a compliant linear actuator 



with a programmable working range. In dynamic applications, the controllability of this DEO design 

allows a programmable oscillation around the targeted equilibrium, which could lead to more 

advanced and versatile DEO applications such as active vibrational control, smart energy harvesting 

and highly programmable robotic locomotion. The transition from one equilibrium to the other, as 

demonstrated in Section 7, also offers a new solution for bridging the energy gap to transition 

between two equilibria in a bistable system by using vibration, rather than the requirement for a 

large force.  
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Figures 

 

 
Figure 1. Design concept and working principle of the DEO. (a) The DEO consists of a bistable 

mechanism and a circular DEA. (b) Three possible static equilibrium states of the DEO. (c) Quasi-

static actuation principle of the DEO. 

 

 
Figure 2. (a) Equilibrium points of the DEO and (b) the natural frequency as a function of non-

dimensional stiffness 𝑘෨  with the pre-stretch ratio of 1.0, 1.2 and 1.4. Stable solutions are plotted 

with solid lines in (a) while the unstable ones are represented by a dashed line. (c) Equilibrium 

points of the DEO and (d) the natural frequency as a function of non-dimensional biasing voltage 

𝜙෨ with the pre-stretch ratio of 1.0, 1.2 and 1.4. 

 



 

Figure 3. The potential energy function of the system and the phase portraits for (a) 𝜙෨ ൌ 0, (b) 

𝜙෨ ൌ 0.25 and (c) 𝜙෨ ൌ 0.5. Thick red curves in the phase portraits in (b) and (c) denote the 

homoclinic orbits. 

 

 

 

 

 



 
Figure 4. Time series of the free oscillation with total mechanical energy (a) 𝐸෨௠ ൏ 0, the response 

oscillates intra-well; (b) 𝐸෨௠ ≅ 0, the response transits from intra- (𝐸෨௠ ൏ 0) to inter-well (𝐸෨௠ ൐ 0) 

and; (c) 𝐸෨௠ ൐ 0, the system undergoes high amplitude inter-well oscillation. The DC voltage is 

𝜙෨ ൌ 0.5 in all cases. 

 

 

Figure 5. Examples of nonconservative phase portraits. (a) 𝜙෨ ൌ 0, the DEO system has a single 

attractor in the origin. (b) 𝜙෨ ൌ 0.5, the DEO system has two symmetrical attractors at x = -0.31 and 

x = 0.31. Two points with close initial conditions are attracted to two different equilibrium points. 

�̃� ൌ 0.5. 

 



 
Figure 6. Basins of attraction for the DEO system with (a) �̃� ൌ 0.1, (b) �̃� ൌ 0.5 and, (c) �̃� ൌ 1.0. 

The black and white regions indicate a landing on the equilibrium point of x = -0.31 and x = 0.31 

respectively. 

 



 
Figure 7. Frequency response of the DEO system under low ADR ratio parametric excitation with 

(a) case i: Ea = 0.22 and (b) case ii: Ea = 0.52. Circular markers indicate fold bifurcations and dashed 

curves represent unstable solutions.  

 



 

Figure 8. Examples of the steady state response of the DEO system under parametric excitation 

with ADR = 0.02. (a) Time series and (b) phase portrait and Poincaré map for the steady-state 

response at Ω෩ ൌ 0.45 and Ea = 0.22. (c) Time series and (d) phase portrait and Poincaré map for 

the steady-state response at Ω෩ ൌ 0.45 and Ea = 0.52.  

 



 

Figure 9. Frequency sweep of the DEO system showing the transition from low amplitude intra-

well oscillation to high amplitude inter-well oscillations. A chaotic response is found during the 

transition. 

 



 

Figure 10. Attractor map for a steady periodic response of the DEO system at ADR = 0.25 and Ω෩ ൌ
0.9 and oscillation control examples using the attractors map. (a) Phase portraits of the controlled 

targeting equilibrium xA+. (b) Time histories of the example in (a), the actuation voltage is regulated 

when the states satisfy the desired initial conditions. (c) Phase portraits and (d) time histories control 

targeting the initial conditions in red landing to the equilibrium xA-. 

 

 

Figure 11. Examples showing the DEO system can be actively controlled to oscillate around the 

desired equilibrium points. 

 


