169 research outputs found

    3D reconstruction of ribcage geometry from biplanar radiographs using a statistical parametric model approach

    Get PDF
    Rib cage 3D reconstruction is an important prerequisite for thoracic spine modelling, particularly for studies of the deformed thorax in adolescent idiopathic scoliosis. This study proposes a new method for rib cage 3D reconstruction from biplanar radiographs, using a statistical parametric model approach. Simplified parametric models were defined at the hierarchical levels of rib cage surface, rib midline and rib surface, and applied on a database of 86 trunks. The resulting parameter database served to statistical models learning which were used to quickly provide a first estimate of the reconstruction from identifications on both radiographs. This solution was then refined by manual adjustments in order to improve the matching between model and image. Accuracy was assessed by comparison with 29 rib cages from CT scans in terms of geometrical parameter differences and in terms of line-to-line error distance between the rib midlines. Intra and inter-observer reproducibility were determined regarding 20 scoliotic patients. The first estimate (mean reconstruction time of 2’30) was sufficient to extract the main rib cage global parameters with a 95% confidence interval lower than 7%, 8%, 2% and 4° for rib cage volume, antero-posterior and lateral maximal diameters and maximal rib hump, respectively. The mean error distance was 5.4 mm (max 35mm) down to 3.6 mm (max 24 mm) after the manual adjustment step (+3’30). The proposed method will improve developments of rib cage finite element modeling and evaluation of clinical outcomes.This work was funded by Paris Tech BiomecAM chair on subject specific muscular skeletal modeling, and we express our acknowledgments to the chair founders: Cotrel foundation, Société générale, Protéor Company and COVEA consortium. We extend your acknowledgements to Alina Badina for medical imaging data, Alexandre Journé for his advices, and Thomas Joubert for his technical support

    Multimodal image fusion of anatomical structures for diagnosis, therapy planning and assistance

    Get PDF
    This paper provides an overview of work done in recent years by our research group to fuse multimodal images of the trunk of patients with Adolescent Idiopathic Scoliosis (AIS) treated at Sainte-Justine University Hospital Center (CHU). We first describe our surface acquisition system and introduce a set of clinical measurements (indices) based on the trunk's external shape, to quantify its degree of asymmetry. We then describe our 3D reconstruction system of the spine and rib cage from biplanar radiographs and present our methodology for multimodal fusion of MRI, X-ray and external surface images of the trunk We finally present a physical model of the human trunk including bone and soft tissue for the simulation of the surgical outcome on the external trunk shape in AIS.CIHR / IRS

    Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy

    Get PDF
    Backgrounds: Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). An alternative method using 2D lateral fluoroscopy was developed. Materials and methods: A technique was developed to reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model of the lumbar vertebrae. Four cadaveric lumbar spine segments and two statistical shape models were used for testing. Reconstruction accuracy was determined by comparison of the surface models reconstructed from the single lateral fluoroscopic images to the ground truth data from 3D CT segmentation. For each case, two different surface-based registration techniques were used to recover the unknown scale factor, and the rigid transformation between the reconstructed surface model and the ground truth model before the differences between the two discrete surface models were computed. Results: Successful reconstruction of scaled surface models was achieved for all test lumbar vertebrae based on single lateral fluoroscopic images. The mean reconstruction error was between 0.7 and 1.6mm. Conclusions: A scaled, patient-specific surface model of the lumbar vertebra from a single lateral fluoroscopic image can be synthesized using the present approach. This new method for patient-specific 3D modeling has potential applications in spine kinematics analysis, surgical planning, and navigatio

    Computational modelling of the scoliotic spine: A literature review

    Get PDF
    Scoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed

    Reconstruction 3D personnalisée de la colonne vertébrale à partir d'images radiographiques non-calibrées

    Get PDF
    Les systèmes de reconstruction stéréo-radiographique 3D -- La colonne vertébrale -- La scoliose idiopathique adolescente -- Évolution des systèmes de reconstruction 3D -- Filtres de rehaussement d'images -- Techniques de segmentation -- Les méthodes de calibrage -- Les méthodes de reconstruction 3D -- Problématique, hypothèses, objectifs et méthode générale -- Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images -- A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities -- Simulation experiments -- Clinical validation -- A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis -- Auto-calibrage d'un système à rayons-X à partir de primitives de haut niveau -- Segmentation de la colonne vertébrale -- Approche hiérarchique d'auto-calibrage d'un système d'acquisition à rayons-X -- Personalized 3D reconstruction of the scoliotic spine from hybrid statistical and X-ray image-based models -- Validation protocol

    3D registration of MR and X-ray spine images using an articulated model

    Get PDF
    Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.Abstract This paper presents a magnetic resonance image (MRI)/X-ray spine registration method that compensates for the change in the curvature of the spine between standing and prone positions for scoliotic patients. MRIs in prone position and X-rays in standing position are acquired for 14 patients with scoliosis. The 3D reconstructions of the spine are then aligned using an articulated model which calculates intervertebral transformations. Results show significant decrease in regis- tration error when the proposed articulated model is compared with rigid registration. The method can be used as a basis for full body MRI/X-ray registration incorporating soft tissues for surgical simulation.Canadian Institute of Health Research (CIHR

    A physically based trunk soft tissue modeling for scoliosis surgery planning systems

    Get PDF
    One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.IRSC / CIH

    Computational modelling of the scoliotic spine: A literature review

    Get PDF
    open4siScoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed.Marco Viceconti and Giorgio Davico were supported by the EU funded project Mobilise-D. The charity Reuse-WithLove is gratefully acknowledged for the financial support to this research.openGould, Samuele L; Cristofolini, Luca; Davico, Giorgio; Viceconti, MarcoGould, Samuele L; Cristofolini, Luca; Davico, Giorgio; Viceconti, Marc

    Three-Dimensional Biplanar Reconstruction of the Scoliotic Spine for Standard Clinical Setup

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Developing a 3D multi-body simulation tool to study dynamic behaviour of human scoliosis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore