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CHAPITRE 4

ARTICLE 1: A PHYSICALLY BASED TRUNK SOFT TISSUE MODELING

FOR SCOLIOSIS SURGERY PLANNING SYSTEMS

K. C. Assi1,2, S. Grenier1,2, S. Parent2, H. Labelle2, and F. Cheriet1,2

(1) École Polytechnique de Montréal, P.O. Box 6097, Succursale Centre-ville,

Montréal, Québec, Canada H3C 3A7

(2) Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine,

Montréal, Québec, Canada H3T 1C5

4.1 Abstract

One of the major concerns of scoliotic patients undergoing spinal correction surgery is the

trunk’s external appearance after the surgery. This paper presents a novel incremental ap-

proach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postop-

erative trunk shapes data were obtained using three-dimensional medical imaging techniques

for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantita-

tive evaluations, based on the comparison of the simulated and actual postoperative trunk

surfaces, showed an adequate accuracy of the method. Our approach provides a candidate

simulation tool to be used in a clinical environment for the surgery planning process.

4.2 Introduction

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformation of the trunk.

In severe cases, a spine surgery treatment is required. Most of the surgical procedures use

specialized instrumentation attached to the spine to correct the deformities (Fig. 4.1). One

Figure 4.1 Surgical instrumentation of a scoliotic spine for the correction of spinal deformities.
A. Preoperative radiograph. B. Postoperative radiograph.
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of the concerns of the patient (and, in fact, a major factor of satisfaction) is the trunk’s

appearance after the surgery. In addition to the surgeon’s priorities in the surgery planning

process, a tool for simulating the trunk’s postoperative appearance is of importance to take

into account the patient’s concerns in the treatment planning.

Aubin et al. [4] have developed a spinal surgery simulation system in the context of

the optimal planning of surgical procedures to correct scoliotic deformities. The overall goal

of this biomechanical engineering research project is to develop a user-oriented simulator

for virtual prototyping of spinal deformities surgeries: a fully operational, safe and reliable

patient-specific tool that will permit advanced planning of surgery with predictable outcomes,

and rationalized design of surgical instrumentation [3, 4]. It addresses the problems faced

by orthopedic surgeons treating spinal deformities when making surgical planning decisions.

The developed system is, however, only concerned with the configuration of the spine, and

does not furnish any estimate of the effects of the surgical treatment on the external appear-

ance of the trunk. A desirable complement to this spine simulator would be to develop a full

trunk model that would allow the propagation of the surgical correction on the spine toward

the external trunk surface through the soft tissue deformation.

Physics-based models of deformable objects have been studied since the early 80’s and

are common in animation where physical laws are applied to an object to simulate realistic

movements. Deformable physics-based models are also used in biomedical applications, in

particular for surgery simulation [30]. These applications require visual and physical real-

ism, but the real biomechanical properties involved are not always well known. The two

most popular approaches to physically modeling soft tissues are the Finite Element Method

(FEM) and Mass-Spring Model (MSM). Commonly used in engineering to accurately analyze

structures and continua, the conventional FEM still has a large memory cost and compu-

tation times that limit interactive applications. Variants of FEM-based methods have thus

been introduced to solve these issues [36, 38, 37]. However most of them are applicable

only to linear deformations valid for small displacements. Improvements have been made to

include large deformations in real-time [39] but a small number of elements must be consid-

ered in order to attain interactivity due to the increased computational cost. Application

examples are the simulation of plastic and maxillofacial surgeries [31, 40, 2] and breast re-

constructive surgery [41]. The MSM approach is less physically accurate than continuum

biomechanical models. Nonetheless, with different stiffness springs, Terzopoulos and Waters

[33] animated a face composed of several layers of springs representing the epidermis, dermis,

sub-cutaneous connective tissue, fascia and muscles. A generic model was adapted to real

digitized faces by an optimization of the masses’ positions using facial features [80]. Koch et

al. [31] used a finite element surface connected to the skull by springs to simulate a facial
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plastic surgery. The MSM approach has also been used to model hip joint replacement [81].

In general, mass-spring methods have many advantages: simple implementation, intuitive-

ness, efficiency, good first interactive impression and easy parallelization. On the other hand,

classical MSM present some disadvantages: (i) since no volume behavior of the tetrahedra is

incorporated into the model, flip-over of springs may possibly occur; (ii) there is no way to

control the volume conservation during simulation.

In general, large deformations of soft tissue are dealt with by introducing nonlinearities in

the formulation of the tissue properties. Nonlinear elasticity has been proven to yield better

results as compared to linear elasticity in the case of large deformations [37, 39]. However,

the complexity of the computation is increased with this solution. In this paper, we pro-

pose a novel incremental approach for simulating the trunk shape correction that takes into

account the large deformations involved in the preoperative-to-postoperative changes, while

maintaining the linear approximation. The main idea consists in reducing the nonlinear de-

formation process into a sequence of small deformations for which the linear elastic behavior

holds, so that one can keep the initial linear formalism in the course of the simulation. The

method is then applied to a set of real data of scoliotic patients (n = 7) who have undergone

spine surgery and for whom preoperative and postoperative data are available.

4.3 Methodology

4.3.1 The scoliotic patients sample

Consenting AIS patients (n = 7) with thoracic (spinal) curve having undergone corrective

spine surgery at Sainte-Justine University Hospital Center in Montréal, Canada were con-

sidered. The hospital’s Research Ethics Committee has approved the study protocol. The

average patient age at the time of surgery was 13.9± 1.5 (mean ± standard deviation) years

old, and Cobb angles before surgery averaged 65.3◦ (standard deviation: 1.5◦).

4.3.2 Data acquisition and construction of patient-specific trunk geometric model

A non-invasive active vision system and a calibrated biplanar X-ray imaging system are used

respectively to acquire the trunk surface topography and to reconstruct the 3D geometry

of the trunk’s bone structures (spine, rib cage and pelvis). The surface geometry of the

trunk is acquired using a calibrated system composed of four 3D optical digitizers (Creaform

Inc., Levis, Canada), each one comprising a CCD camera and a structured light projector,

placed around the patient (Fig. 5.1). The acquisition process, identical for each scanner,

consists in projecting and capturing four fringe patterns deformed by the trunk’s external

shape. The system then computes, by triangulation, the depth of each surface point relative
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to the reference plane of the digitizer. A fifth image, captured without fringes, defines the

texture data mapped on the surface. The entire trunk geometry is obtained by registering and

merging the partial surfaces obtained by each digitizer. This process takes 4-6 seconds with

the patient standing still in the upright position, arms slightly abducted to prevent occluded

areas in the field of view of the lateral scanners. The resulting surface mesh (containing 50k-

Figure 4.2 Trunk topography measurement and reconstruction. (A) Experimental set-up at
Sainte-Justine Hospital of four Creaform optical digitizers. (B) Example of a Capturor II LF
3D optical digitizer, consisting of a CCD camera coupled with a structured light projector.
(C) Set of four fringe images, each offset by 1

4
phase, projected by a digitizer onto the back of

a mannequin; the fifth image provided the surface texture. (D) Resulting phase image from
the four fringe images; surface reconstruction uses the interferometry principle combined with
active triangulation. (E) The process of registering and merging the partial surfaces from the
different digitizers produces the complete trunk surface.

90k vertices, depending on the patient’s height) was proven to have a reconstruction accuracy

of 1.4mm over the whole torso (when applied to a mannequin). The 3D reconstruction of the

bone structures (Fig. 5.2) has an accuracy evaluated at 2.1±1.5 mm over a set of 3D positions

of identified landmarks [20]. A detailed surface mesh of the patient’s skeletal structures is then

obtained by fitting a high-resolution atlas of 3D generic bone structures to the personalized

data of the patient using dual kriging. The atlas was created using computed tomography

scans of a dry cadaveric specimen and the accuracy of the resulting geometrical model was

evaluated at 3.5±4.1 mm [82]. The external trunk surface is then closed and registered with

the bone structure data, and a tetrahedral mesh of the whole trunk is thereafter generated

using Tetgen [83], a public domain tetrahedral mesh generator based on Shewchuk’s Delaunay

refinement algorithm [84].
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Figure 4.3 Graphical user interface of the system for 3D reconstruction of the bone structures.
This view shows the identification of anatomical landmarks on the vertebrae and ribs in the
coronal and sagittal radiographs (left and middle), and a simplified 3D reconstruction (right)
[1].

4.3.3 Numerical simulation of postoperative trunk shapes

We introduce a novel incremental approach for simulating the trunk deformation. Fig. 4.4

represents a flow chart of our postoperative trunk appearance simulation system, where

Figure 4.4 Flow chart of the postoperative trunk shape simulation.

only the key components of the simulation engine are indicated. The process starts with

the preoperative data (the bone structures and the trunk surface). From these data, a

patient-specific trunk geometry model is built. The resulting model along with the target

postoperative internal configuration are then input into the trunk deformation simulator.

The simulator outputs a new trunk shape which can then be further evaluated.

4.3.4 Modeling the trunk soft tissue deformation

The surgery of the scoliotic spine consists in attaching one or more metallic rods to the spine

and performing certain maneuvers to correct its curvature. As a result of the change in the
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spine configuration, one expects the whole trunk (and particularly the external surface) to

change accordingly. We consider the human trunk as a deformable continuum occupying

a bounded domain Ω ∈ R3, with a continuous boundary ΓΩ. A two-material body model

(consisting in a bone structures region in Ωb and a soft tissue region in Ωs = Ω�Ωb) is con-

sidered. In the following, spatial domains related to the preoperative trunk will be indicated

by the superscript 0, while domains related to the postoperative trunk will be indicated by

the superscript 1. One may view the trunk shape changes as follow: an arbitrary point in

the trunk at x0 ∈ Ω0 is moved to a new position x1 ∈ Ω1, and the overall process induces a

change from shape state Ω0 to shape state Ω1.

Incremental approach to simulate the postoperative trunk external surface

From now on, we denote by C (Ω) the space of smooth mappings from Ω to R3, and B(Ω)

the subspace of C (Ω) corresponding to small deformations on Ω. Let E(ω,Ω0; f) denote the

deformation energy required to deform Ω0 into ω through a deformation f ∈ F , where F
denotes the space of (smooth) mappings such that

F =
{
f ∈ C (Ω)|f(Ω0

b) ≈ Ω1
b

}
.

Let us represent the deformation of a scoliotic trunk from the preoperative to the postop-

erative configurations by φ(x) for x = (x, y, z) ∈ Ω0. By considering the principle of least

action, the state of equilibrium of the postoperative trunk shape model is reached when the

deformation energy is a minimum: Ω1 = φ(Ω0),

φ = argmin
f∈F

{
E(ω,Ω0; f) : ω = f(Ω0)

}
,

(4.1)

for an energy functional E(ω,Ω0; f) to be discussed later (Section 4.3.4). Eq. (4.1) may be

rewritten as
Ω1 = argmin

ω
ω=f(Ω0)

{
E(ω,Ω0; f) : f ∈ F

}
.

(4.2)

While Eq. (4.1) is primarily concerned with the search for the deformation φ in the space of

smooth mappings F , Eq. (4.2) processes admissible shapes and selects the optimal one which

is the deformed trunk shape at equilibrium. We define the space of mappings U as

U =
{
f̃ ∈ C (Ω)| f̃|Ωb = Id

}
,
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where Id is the identity map. Let ω = ωs ∪ ωb be a trunk shape variable. Let us define the

mapping ϕ̃ (relaxation), ϕ̃(x) for x ∈ ω, as follows:

ϕ̃ ∈ U ,
ϕ̃(ω) = ω̃s ∪ ωb,

ω̃s = argmin
ω+
s

ω+
s =ω+�ωb

{
E(ω+,Ω0; f̃) :

ω+ = f̃(ω), f̃ ∈ U
}
,

(4.3)

where E(ω,Ω0; f) is the deformation energy model.

We now introduce a novel incremental approach for the simulation of postoperative trunk

shape. Let (tk)k=0,1,2,...,N be a sequence of real numbers such that tk ∈ [0, 1], tk+1 > tk

for k ∈ {0, 1, 2, . . . , N − 1}, t0 = 0 and tN = 1. Let L0 = {l0i ∈ Ω0
b , i = 1, . . . , n} and

L1 = {l1i ∈ Ω1
b , i = 1, . . . , n} be, respectively, a collection of landmarks on the preoperative

bone structures and the collection of corresponding anatomical landmarks on the target

postoperative bone configuration. Let S denote the space of smooth transformations, defined

as

S =
{
f ∈ C (Ω)| f(l0i ) ≈ l1i , i = 1, . . . , n

}
.

We have S ⊂ F . Let G0 denote the collection of sequences of transformations Φ =
(
φtk
)
k=0,...,m

,

with small increments (See definition in 4.6, Definition 1), such that

G0 =
{(
φtk
)
k=0,...,m

∈ G, m ∈ N | φt0 = IdR3 ,

φtm ◦ φtm−1 ◦ ... ◦ φt1 ◦ φt0 ∈ S
}
.

(4.4)

Our incremental approach defines a sequence of trunk shapes (Ωtk)k=0,1,...,m, m ∈ N, moving

from the undeformed state Ω0 to the deformed state Ω1 based on a sequence of mappings

Φ ∈ G0. Let Ωtk
b and Ωtk

s be, respectively, the bone and soft tissue configurations of the

trunk shape Ωtk (Ωtk = Ωtk
s ∪ Ωtk

b ) at increment step k, within the sequence starting at Ω0

under successive deformations. Our method computes Ω1 as the final shape of the sequence
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(Ωtk)k=0,1,2,...,N as follows:

Ω0 = Ω0
s ∪ Ω0

b ,

Ωtk = Ωtk
s ∪ Ωtk

b , k = 0, 1, ..., N,

Ωtk+1 = ϕ̃ ◦ φtk+1
(Ωtk), (φτ )0≤τ≤1 ∈ G0.

(4.5)

In Algorithm (4.5), the first equation refers to the initial state of the trunk, the second one

refers to the the indexed trunk shape state at increment step tk, and the third one states the

transition rule from step k to step k+ 1. Our first analytical result deals with the properties

of independence of the final equilibrium state from the chosen sequence Φ ∈ G0. These

properties are established by Theorem 1 and Theorem 2 (See 4.6). Our second analytical

result establishes that Algorithm (4.5) gives the solution to the problem stated in Eq. 4.2

(See 4.6, Theorem 3). In this paper, we consider a family of thin plate spline mappings,(
φtk
)
k=0,1,...,N

∈ G0, associated with the matching of the bone structure landmarks.

The incremental approach proposed in this section is usable for any appropriate deforma-

tion energy functional of the trunk. In the next section, we address a specific energy model

to be used in the present work.

Deformation energy model

Let us assume that we have a conformal tetrahedral mesh describing the geometry of the

anatomical structures of the trunk. We denote the mesh at its rest position as M0 and

the initial position of each vertex as P0
i . We denote the vertex position of a deformed

mesh M1 as Pi. Let us represent the deformation by a displacement vector field U(x) for

x = (x, y, z) ∈M0, and we write f = Id + U, where Id is the identity transformation. Given

a deformed modelM1, let us define the displacement vector for each point of the domain by

linearly interpolating the displacement Ui ≡ Pi−P0
i of the vertices inside each tetrahedron.

If Ti represents the tetrahedron defined by the four vertices P0
j , j = 1, · · · , 4, in their rest

position, then the displacement vector at a given point x = (x, y, z) is defined as:

UTi(x) =
4∑
j=1

aTij (x)Uj,

where aTij (x) are the barycentric coordinates of the point x inside Ti. The deformation energy

WTi(U) of a tetrahedron Ti can be expressed as an expansion over its features (characterized
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by {PTi(j), j = 0, . . . , 3}, its vertices coordinates) as:

WTi =
∑
j

W Ti
j +

∑
j,k

W Ti
jk +

∑
j,k,l

W Ti
jkl +W Ti

jklm,

where the terms W Ti
j , W Ti

jk , W Ti
jkl, and W Ti

jklm, are the energy contributions from the nodes,

edges, faces (triangles) and volume, respectively. The total deformation energy E required to

deform M0 into M1 is the sum of the energies associated with each tetrahedron:

E(M,M0; f) =
∑
Ti∈M

WTi .

Incompressible Tetrahedral Mass System Model The incompressible tetrahedral mass

system model (ITMSM), in its original form, was introduced by Teschner et al. [85]. The

model has some similarities with the FEM and MSM approaches, in that it is based on a

tetrahedral discretization of the deformed domain. We adapt the original deformable model

[85] to take into account the contribution of gravity. The energy WT of a tetrahedron T in

the soft tissue mesh is given by:

WT = αẼG + ẼD + εẼA + θẼV (4.6)

with α = 2gM0H0

kD
, ε = kA

kD
and θ = kV

kD
. The energy terms ẼG, ẼD, ẼA and ẼV are given by:

ẼG =
∑
i∈T

W̃i (4.7)

ẼD =
∑
i 6=j∈T

1

|Kij|
W̃ij (4.8)

ẼA =
∑

i 6=j 6=k∈T

1

|Kijk|
W̃ijk (4.9)

ẼV = W̃ijkl (4.10)

where Kij and Kijk are the collections of tetrahedra in the soft tissue mesh containing edge

ij and face ijk, respectively (|Kij| and |Kijk| represent the cardinality of these collections).
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W̃i, W̃ij, W̃ijk and W̃ijkl are given by:

W̃i = −
(
mi

M0

)(
Pi · z
H0

)
(4.11)

W̃ij =

(
‖Pji‖ −D0

D0

)2

(4.12)

W̃ijk =

( 1
2
‖Pji ×Pki‖ − A0

A0

)2

(4.13)

W̃ijkl =

( 1
6
Pji · (Pki ×Pli)− V0

V0

)2

(4.14)

where Pji = Pj−Pi, z is the vertical upward oriented unit vector and mi is the partial mass

associated to mass point xi, defined as:

mi =
1

4
ρTVT , (4.15)

with ρT representing the local density of the tissue and VT the volume of tetrahedron T .

The initial distance or rest length of the edge is denoted by D0, A0 is the initial area of the

triangle and V0 is the initial volume of the tetrahedron. The mean tetrahedral mass and the

trunk height are respectively M0 and H0, while kD is the stiffness associated to tetrahedra

edges (considered uniform throughout the soft tissue). The coefficients θ and ε introduced in

Eq. (4.6) are the weights of the different potential energy contributions: θ is the stiffness ratio

between volume- and distance-preserving energies, while ε is the stiffness ratio between area-

and distance-preserving energies. The coefficients α, ε and θ are empirically determined. See

the properties of the energy model in 4.6 (Lemma 3 and Theorem 4). We coined the name

ITMSM for our model due to the tetrahedron volume energy term appearing in the model,

which acts as an incompressibility constraint.

4.3.5 Evaluation of the simulation

Evaluations are conducted using the preoperative and postoperative data of scoliotic patients

(3D reconstructions of the bone structures and trunk surface geometry acquisitions). First,

a 3D visualization allows for a qualitative comparison of the simulated and the real postop-

erative trunk shapes. Then, the simulation accuracy is evaluated based on the measurement

of the back surface rotation (BSR) on the simulated trunk and on the actual postoperative

trunk, at thoracic vertebral levels between T4 (4th thoracic vertebra) and T12 (12th thoracic

vertebra). The BSR index is measured in a series of horizontal cross-sections of the external

trunk surface. It is defined as the angle formed between the dual tangent to the posterior
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side of a given cross-section and the axis passing through the patient’s anterior superior iliac

spines (ASIS), projected onto the axial plane. This trunk asymmetry index is widely con-

sidered to be clinically relevant in the study of the scoliotic trunk shape [86]. We exploit

Figure 4.5 Graphical user interface of the software tool used to compute the BSR indices
from cross-sections at various vertebral levels

the BSR index for our quantitative evaluation as follows. First, by exploiting a common set

of radio-opaque markers purposely placed on the skin surface, an elastic registration of the

trunk surface geometry with the internal bone structures is performed [87]. Trunk surface

cross-sections are then extracted by computing the intersections of the surface topography

(mesh) with a set of horizontal planes passing through the centroids of the vertebrae. Finally,

the BSR index at each vertebral level is measured from the associated trunk horizontal cross

section (Fig. 4.5).

4.4 Results

Simulation results for a patient are presented in Fig. 4.6, where a qualitative comparison of

the preoperative trunk surface (Fig. 4.6-A), the simulated postoperative surface (Fig. 4.6-B)

and the actual postoperative trunk shape (Fig. 4.6-C) is shown. A visual inspection of the

Figure 4.6 Example of simulation results. (A) Preoperative patient trunk, (B) simulated
trunk shape, (C) real postoperative trunk.
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results for all the patients in our test set shows a qualitative similarity between the simulated

postoperative trunk shape and the real postoperative trunk shape. The overall appearance

of the postoperative trunk is qualitatively well reproduced. The region of the back along the

spine (back valley) is satisfactorily well reproduced. However, a rib hump is still observable on

the simulated trunk surface when compared to the actual postoperative trunk, and the actual

shape is less well reproduced in the lumbar region of the back. As well, some discrepancies

are noticeable in the upper region of the back around the scapulae.

For the present study, the thoracic region was considered as the main region of interest of

the scoliotic trunk, since the rib humps are located in that part of the body. The BSR indices

measured at different vertebral levels on the simulated postoperative trunks are compared

with those measured on the actual postoperative and preoperative trunks of six patients

(Fig. 4.7). For these case studies, which are all characterized by a thoracic spinal curve, the

simulated trunks are quantitatively close to the actual postoperative trunk surfaces. This

is consistent with the results of the qualitative comparison. The mean absolute error of the

BSR index measured on the simulated trunks ranges from 1.20◦(±0.73◦) to 3.2◦(±0.83◦) in

the thoracic region.

The seventh case study is a patient characterized by a double major spinal curve. It is

presented separately in Fig. 4.8 since it exhibits a relatively high discrepancy between the

simulated and actual trunk shapes, compared to the other cases. The mean absolute error of

the BSR index on the simulated trunks, for double major and thoraco-lumbar curves patients,

range from 3.1◦(±1.45◦) to 5.23◦(±1.44◦), in the thoracic region.

4.5 Discussion

In the present work, the BSR index has been considered as an evaluation metric for the

postoperative trunk simulation outcomes. This choice is appropriate since the patient’s first

concern is for their trunk asymmetry and the BSR quantity has been proven to capture the

information related to the rotation of the trunk and the rib hump [86, 87, 88].

A smallest detectable difference of 2.5◦ for the maximum BSR index was reported by

Pazos et al.[88] and therefore it is considered here as a threshold value to judge the accuracy

of the simulation with regard to trunk asymmetry. The method proposed in the present work

produced simulated postoperative trunks that are not only qualitatively similar to their real

counterparts but that also quantitatively fall within the acceptable error range for the BSR

index in the thoracic region, as given by the threshold value.

One source of discrepancy in the simulated trunk shapes may be the effect of posture, i.e.

differences in standing posture between the pre- and post-operative trunk acquisitions. Simi-



33

Figure 4.7 BSR indices (in degrees), measured at different vertebral levels from T4 to T12, for
six patients. Blue: actual postoperative trunk, green: simulated trunk, yellow: preoperative
trunk. Note that the horizontal scales are not the same on all the graphs.
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Figure 4.8 Left: Double major curve scoliotic patient (preoperative geometry). Right: BSR
indices measured on the actual postoperative trunk, the simulated trunk and the preoperative
trunk surface. Blue: actual postoperative trunk, green: simulated trunk, yellow: preoperative
trunk.

larly, another factor is possible weight change (i.e loss or gain) between the preoperative and

postoperative acquisitions. Of course, such factors would be difficult to remove totally. How-

ever, other sources of discrepancy may be attributed to certain limitations of our approach.

Firstly, we considered uniform tissue materials properties throughout the trunk instead of

more realistic nonuniform physical properties. Indeed, the soft tissues were approximated by

a uniform volumetric mesh and no differentiation was made between actual soft tissue layers

(i.e. skin, fat, muscles). This may have affected the accuracy of the simulation. Secondly,

materials property coefficients were tuned manually since we have not yet implemented a

rigorous method to provide them to the simulator. Finally, a monolithic/non-articulated or-

ganization of the bone structures was used, and this does not reflect the exact configuration

of the spine.

In future work, some of the present limitations will be addressed. In particular, a per-

sonalized tetrahedral mesh can be obtained from MRI images of the trunk, from which the

thickness of each tissue layer (skin, fat, muscle) can be extracted. This clinical data will

be incorporated into the model and will allow us to simulate the propagation of the spinal

correction to the external surface through a mesh composed of three personalized layers.

Additionally, we believe that the accuracy of the simulation will be improved by using rigid-

ity constants calibrated from real data of a representative cohort of scoliotic patients with

different types of spinal curvature.

In addition, our team is currently developing a non invasive tool to assess the reducibility

of the trunk deformity by using the acquisition of the external trunk surface in voluntary

lateral bending position. This could lead to new constraints that will be incorporated into

our model to simulate the propagation of the spinal correction through the tetrahedral mesh
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composed of three personalized layers.

4.6 Conclusion

Spinal correction surgery treats deformities of the trunk bone structures. Since the external

appearance of the trunk is one of the main concerns of the patient and one of the factors of

his/her satisfaction, a surgery planning strategy that takes into account the outcome for the

external 3D shape of the trunk would be a significant contribution.

In this paper, we presented an incremental approach to the soft tissue deformation problem

for the simulation of the postoperative trunk shape of scoliotic patients. The evaluation of

the method was based on the preoperative and postoperative clinical data of scoliotic patients

who underwent spine correction surgery. Although the soft tissues of the human trunk were

approximated by a uniform volumetric mesh, our method achieves promising results in the

simulation of the postoperative trunk surface.
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APPENDIX: Modeling the trunk soft tissue deformation

Our first analytical result deals with the properties of independence of the final equilibrium

state from the chosen sequence of small incremental mappings. First, we introduce the

following definition of a sequence of mappings of small increments.

Definition 1. We say that a sequence of mappings Φ = (φtk)k∈{0,...,m} is of small increments

if δΦk,k−1 ∈ B(Ω) for all k ∈ {1, ...,m}, where δΦk,k−1 ≡ φtk ◦φtk−1
−φtk−1

. We write: Φ ∈ G.

For small deformations of the trunk, we then have:
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Theorem 1. Let Ω0 and Ω1 be preoperative and postoperative trunks where Ω1 resulted from

a small deformation of Ω0 and let H = {h ∈ C (Ω0)|h(Ω0
b) = Ω1

b}. Then Ω̃∗ = ϕ̃ ◦ g(Ω0) is

independent of g for g ∈ H.

Proof. Let g1, g2 ∈ B(Ω) be two arbitrary smooth and small deformations on Ω. Let ω∗1 =

ϕ̃ ◦ g1(ω0). Then, by definition, ω∗1 = ω̃∗s ∪ g1(ω0
b ), with

ω̃∗s = argmin
ω+
s

ω+
s =ω+�g1(ω0

b
)

{
E(ω+,Ω0; f̃) :

ω+ = f̃(ω), f̃ ∈ U
}
,

Let ω∗2 = ϕ̃ ◦ g2(ω0). Then ω∗2 = ω̃∗∗s ∪ g2(ω0
b ), with

ω̃∗∗s = argmin
ω+
s

ω+
s =ω+�g2(ω0

b
)

{
E(ω+,Ω0; f̃) :

ω+ = f̃(ω), f̃ ∈ U
}
,

Since g1, g2 ∈ B(Ω), we have g1(ω0
b ) = g2(ω0

b ) = ω1
b . Thus,

ω̃∗∗s = argmin
ω+
s

ω+
s =ω+�ω1

b

{
E(ω+,Ω0; f̃) : ω+ = f̃(ω), f̃ ∈ U

}
= ω̃∗s

and

ω∗1 = ω̃∗s ∪ ω1
b = ω̃∗∗s ∪ ω1

b = ω∗2.

This establishes the conclusion of Theorem 1.

For large deformations of the trunk, we have:

Theorem 2. Let N1 and N2 be two positive integers, and let G(1) =
(
g

(1)
tk1

)
k1=0,...,N1

, G(2) =(
g

(1)
tk2

)
k2=0,...,N2

, be two sequences of mappings, with G1,G2 ∈ G0. Let g(1) = (ϕ̃ ◦ g(1)
tN1

) ◦ · · · ◦
(ϕ̃ ◦ g(1)

t0 ) and g(2) = (ϕ̃ ◦ g(2)
tN2

) ◦ · · · ◦ (ϕ̃ ◦ g(2)
t0 ), where ϕ̃ is defined in section 4.3.4. Then

g(2)(ω0) = g(1)(ω0).

Proof. Let γ(i) = g
(i)
tNi
◦ (ϕ̃ ◦ g(i)

tNi−1
) ◦ · · · ◦ (ϕ̃ ◦ g(i)

t0 ), i = 1, 2. Then g(i) = ϕ̃ ◦ γ(i) , i = 1, 2. By

the definition of G0 and ϕ̃, we have ω
∗(1)
b = γ(1)(ω0

b ) = γ(2)(ω0
b ) = ω

∗(2)
b , and g(i)(ω0) = ω∗(i) =
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ω̃
∗(i)
s ∪ ω∗(i)b = ω̃

∗(i)
s ∪ γ(i)(ω0

b ), with

ω̃∗(i)s = argmin
ω+
s

ω+
s =ω+�ω∗(i)

b

{
E(ω+,Ω0; f̃) :

ω+ = f̃(γ(i)(ω0)), f̃ ∈ U
}
, i = 1, 2.

Thus, ω
∗(1)
s = ω

∗(2)
s . It follows that g(1)(ω0) = g(2)(ω0).

Our second analytical result deals with the solution of the problem stated in Eq. 4.2. We

have the following:

Theorem 3. For any F = (ftj)j=0,1,...,m ∈ G0, if Ω̃∗ is the final deformed shape of the sequence

(Ωtj)j=0,1,...,m produced by Algorithm (4.5), then Ω̃∗ satisfies Eq. (4.2), that is,

E(Ω̃∗) = min
ω

ω=f(Ω0)

{
E(ω,Ω0; f) : f ∈ F

}
.

In order to prove Theorem 3, we need the following lemmas:

Lemma 1. Let F =
(
ftj
)
j=0,...,m

∈ G0 be a fixed sequence. Let φ̂m, φ̂m−1, . . . , φ̂0 ∈ U . Then

(φ̂m ◦ ftm) ◦ · · · ◦ (φ̂0 ◦ ft0) ∈ F .

Proof. Let h = (φ̂m ◦ ftm) ◦ · · · ◦ (φ̂0 ◦ ft0). Then h is smooth since the composition of

smooth functions is smooth. Furthermore, h ∈ F since φ̂j|ω0
b

= Id, and we have h(Ω0
b) =

(φ̂m ◦ ftm) ◦ · · · ◦ (φ̂0 ◦ ft0)(Ω0
b) = ftm ◦ · · · ◦ ft0(Ω0

b) = Ω1
b .

The next lemma states that any smooth function can be expressed as the composition of

a sequence of small deformations.

Lemma 2. Suppose F =
(
ftj
)
j=0,...,m

∈ G0 is given. For any f ∈ F , there exists φ̂m, φ̂m−1, . . . , φ̂0 ∈
U such that f = (φ̂m ◦ ftm) ◦ · · · ◦ (φ̂0 ◦ ft0).

Proof. Let us consider an arbitrary φ̂m−1, . . . , φ̂0 ∈ U (for example, one can consider φ̂m−1 =

· · · = φ̂0 = φ̃ where φ̃ is defined in section 4.3.4). Let us define fm = ftm ◦ (φ̂m−1 ◦ ftm−1) ◦
· · · ◦ (φ̂0 ◦ ft0). Then ¯̄φm = f − fm ∈ U (small deformation and ¯̄φm|Ωb = Id), and we have

f = ¯̄φm ◦ fm which has the desired form.

Finally, let us prove that Ω∗ produced by Algorithm (4.5) satisfies Eq. (4.2). Let us write

φ∗ = (ϕ̃◦ftm)◦· · ·◦(ϕ̃◦ft0). Then, from Algorithm (4.5), we have Ω̃∗ = φ∗(Ω0). By Lemma 2,

for any f ∈ F , there exists φ̂m, φ̂m−1, . . . , φ̂0 ∈ U such that f = (φ̂m◦ftm)◦· · ·◦(φ̂0◦ft0). The

mapping φ∗ produces the sequence of shapes (Ω̃tj)j=0,...,m to which is associated the sequence
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of energies E∗0 , E∗1 , ..., E∗m. On the other hand, f (through its expansion) produces the sequence

of shapes (Ω̄tj)j=0,...,m to which is associated the sequence of energies Ē∗0 , Ē∗1 , ..., Ē∗m. From the

definition of ϕ̃, we have E∗j ≤ Ē∗j , j = 0, ...,m. Thus, it follows that

E(Ω̃∗) = E(Ω̃tm) ≤ E{ω : ω = f(Ω0), f ∈ F}.

This establishes the conclusion of Theorem 3 �.

The energy model presented in the paper has the following property:

Lemma 3. The energy functional E(Ω,Ω0; f), given by Eq. (4.6), is (strictly) convex.

Proof. The energy E is a superposition of convexe functions. It follows that E is convexe.

It follows that the trunk shape obtained by solving the optimization problem has the

following property, stated as a theorem:

Theorem 4. The optimal shape from Eq. (4.2), associated with the energy functional from

Eq. (4.6), is unique.

Proof. Since the energy functional is convex, a local minimum is also a global minimum.

The conclusion of Theorem 4 follows, since the global minimum of a convex functional is

unique.
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