1,002 research outputs found

    Fast Power and Energy Efficiency Analysis of FPGA-based Wireless Base-band Processing

    Full text link
    Nowadays, demands for high performance keep on increasing in the wireless communication domain. This leads to a consistent rise of the complexity and designing such systems has become a challenging task. In this context, energy efficiency is considered as a key topic, especially for embedded systems in which design space is often very constrained. In this paper, a fast and accurate power estimation approach for FPGA-based hardware systems is applied to a typical wireless communication system. It aims at providing power estimates of complete systems prior to their implementations. This is made possible by using a dedicated library of high-level models that are representative of hardware IPs. Based on high-level simulations, design space exploration is made a lot faster and easier. The definition of a scenario and the monitoring of IP's time-activities facilitate the comparison of several domain-specific systems. The proposed approach and its benefits are demonstrated through a typical use case in the wireless communication domain.Comment: Presented at HIP3ES, 201

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Functional Validation of AADL Models via Model Transformation to SystemC with ATL

    No full text
    6 pagesInternational audienceIn this paper, we put into action an ATL model transformation in order to automatically generate SystemC models from AADL models. The AADL models represent electronic systems to be embedded into FPGAs. Our contribution allows for an early analytical estimation of energetic needs and a rapid SystemC simulation before implementation. The transformation has been tested to simulate an existing video image processing system embedded into a Xilinx Virtex5 FPGA

    Methodologies for Designing Power-Aware Smart Card Systems

    Get PDF
    Smart cards are some of the smallest computing platforms in use today. They have limited resources, but a huge number of functional requirements. The requirement for multi-application cards increases the demand for high performance and security even more, whereas the limits given by size and energy consumption remain constant. We describe new methodologies for designing and implementing entire systems with regard to power awareness and required performance. To make use of this power-saving potential, also the higher layers of the system - the operating system layer and the application domain layer - are required to be designed together with the rest of the system. HW/SW co-design methodologies enable the gain of system-level optimization. The first part presents the abstraction of smart cards to optimize system architecture and memory system. Both functional and transactional-level models are presented and discussed. The proposed design flow and preliminary results of the evaluation are depicted. Another central part of this methodology is a cycle-accurate instruction-set simulator for secure software development. The underlaying energy model is designed to decouple instruction and data dependent energy dissipation, which leads to an independent characterization process and allows stepwise model refinement to increase estimation accuracy. The model has been evaluated for a high-performance smart card CPU and an use-case for secure software is given

    Modeling Power Consumption and Temperature in TLM Models

    No full text
    International audienceMany techniques and tools exist to estimate the power consumption and the temperature map of a chip. These tools help the hardware designers develop power efficient chips in the presence of temperature constraints. For this task, the application can be ignored or at least abstracted by some high level scenarios; at this stage, the actual embedded software is generally not available yet. However, after the hardware is defined, the embedded software can still have a significant influence on the power consumption; i.e., two implementations of the same application can consume more or less power. Moreover, the actual software powe

    Dynamic Power Evaluation of LTE Wireless Baseband Processing on FPGA

    Get PDF
    International audienceMobile networks and user equipments continuously evolve to circumvent the data traffic growth and the increasing number of users. However, the complexity and heterogeneity of such systems (3G, LTE, LTE-A, etc.) makes power one of the most critical metric. In this context, power estimation has become an unavoidable task in the design process. In this paper, a dynamic power estimation methodology for FPGA-based systems is presented. It aims at providing accurate and fast power estimations of an entire system prior to its implementation. It also aims at making design space exploration easier. We introduce an innovative scenario-level in order to facilitate the comparison of domain-specific systems. We show the effectiveness of our approach on several LTE baseband configurations which leads to a low absolute error, compared to classic estimations. It also exhibits a high speed-up factor which is determinant during design space exploration. I. INTRODUCTION Today, the data traffic that is generated on mobile networks continues to grow rapidly. According to [1], global mobile data increases of 69% in 2014 and it will have a compound annual growth rate of 57% from 2014 to 2019. To deal with these issues, mobile networks and user equipments tend to constantly adapt their processing capabilities. Among all possible solutions, a popular example is the LTE standard. The complexity of systems like LTE makes their design and development a challenging task, especially when they are implemented in embedded systems in which specific constraints have to be taken into account (power, size, performance , etc.). The number of parameters that can have an impact over power consumption makes the power estimation even more difficult. As the new technologies clearly enhance the performance in terms of throughput, QoS, it also implies a higher power consumption and more heat dissipation. One of the most popular families of digital circuits in embedded systems are the Field Programmable Gate Arrays (FPGA). These devices represent an attractive technology and make it possible to implement complex systems due to their high density of gates and heterogeneous resources. As compare to ASIC that can achieve better performance [2], FPGAs offer more flexibility. FPGA-based systems can be made of IP (Intellectual Property) which are hardware cores that facilitate design reuse and speed up development time. Their power consumption is generally divided into static and dynamic power. Static power comes from leakage currents whereas dynamic power is generated by the transistors switching activity as soon as the circuit is active
    corecore