689 research outputs found

    Modeling of Utility Distribution Feeder in OpenDSS with Steady State Impact Analysis of Distributed Generation

    Get PDF
    With the deregulation of the electric power industry and the advancement of new technologies, the attention of the utilities has been drawn towards adopting Distributed Generation (DG) into their existing infrastructure. The deployment of DG brings ample technological and environmental benefits to the traditional distribution networks. The appropriate sizing and placement of DGs which generate power locally to fulfill consumer demands, helps to reduce power losses and avoid transmission and distribution system expansion.;The primary objective of this thesis is to model a utility distribution feeder in OpenDSS. Studies are conducted on the data obtained from American Electric Power utility. This thesis develops models for 12.47 kV (medium voltage) distribution feeders in OpenDSS by utilizing the existing models in CYMDIST. The model conversion is achieved by a detailed one-to-one component matching approach for multi phased lines, conductors, underground cables, loads, regulators and capacitor banks. The power flow results of OpenDSS and CYMDIST are compared to derive important conclusions.;The second major objective is to analyze the impacts of DG on distribution systems and two focus areas are chosen, namely: effect on voltage profiles and losses of the system and the effects on power market operation. To analyze the impacts of DG on the distribution systems, Photovoltaic (PV) system with varying penetration levels are integrated at different locations along the developed feeder model. PV systems are one of the fastest growing DG technologies, with a lot of utilities in North America expressing interest in its implementation. Many utilities either receive incentives or are mandated by green-generation portfolio regulations to install solar PV systems on their feeders. The large number of PV interconnection requests to the utilities has led to typical studies in the areas of power quality, protection and operation of distribution feeders. The high penetration of PV into the system throws up some interesting implications for the utilities. Bidirectional power flow into a distribution system, (which is designed for one way power flow) may impact system voltage profiles and losses. In this thesis, the effects of voltage unbalance and the losses of the feeder are analyzed for different PV location and penetration scenarios.;Further, this thesis tries to assess the impact of DG on power market operations. In a deregulated competitive market, Generation companies (Genco) sell electricity to the Power exchange (PX) from which large customers such as distribution companies (Disco) and aggregators may purchase electricity to meet their needs through a double sided bidding system. The reliable and efficient operation of this new market structure is ensured by an independent body known as the Independent System Operator (ISO). Under such a market structure, a particular type of unit commitment, called the Price Based Unit Commitment (PBUC) is used by the Genco to determine optimal bids in order to maximize its profit. However, the inclusion of intermittent DG resources such as wind farms by the Gencos causes uncertainty in PBUC schedules. In this research, the effects of intermittency in the DG resource availability on the PBUC schedule of a Genco owning a distribution side wind farm are analyzed

    Novel Modeling and Simulation Concepts for Power Distribution Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Evaluation of Single Phase Smart PV Inverter Functions in Unbalanced Residential Distribution Systems

    Get PDF
    In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, voltage regulators and on load tap changers. Furthermore, the standard basis is that when implementing Unbalanced Residential Distribution Systems into the grid, centralized control is a well-known choice, however, decentralized control provides a strong case for usage when using smart PV inverters in residential distribution systems. The objective of this thesis is to provide a better understanding of Unbalanced Residential Distribution Systems tied into the distribution side of the power grid when using control functions. Furthermore, better understand and prove the theory of using decentralize control for smart PV inverters in a residential distribution system. The future work will be analyzing the role of restoration practices and islanded mode with control algorithms that are used in grid connected mode. The specific areas below will be discussed in this thesi

    Coordinated Voltage and Reactive Power Control of Power Distribution Systems with Distributed Generation

    Get PDF
    Distribution system voltage and VAR control (VVC) is a technique that combines conservation voltage reduction and reactive power compensation to operate a distribution system at its optimal conditions. Coordinated VVC can provide major economic benefits for distribution utilities. Incorporating distributed generation (DG) to VVC can improve the system efficiency and reliability. The first part of this dissertation introduces a direct optimization formulation for VVC with DG. The control is formulated as a mixed integer non-linear programming (MINLP) problem. The formulation is based on a three-phase power flow with accurate component models. The VVC problem is solved with a state of the art open-source academic solver utilizing an outer approximation algorithm. Applying the approach to several test feeders, including IEEE 13-node and 37-node radial test feeders, with variable load demand and DG generation, validates the proposed control. Incorporating renewable energy can provide major benefits for efficient operation of the distribution systems. However, when the number of renewables increases the system control becomes more complex. Renewable resources, particularly wind and solar, are often highly intermittent. The varying power output can cause significant fluctuations in feeder voltages. Traditional feeder controls are often too slow to react to these fast fluctuations. DG units providing reactive power compensation they can be utilized in supplying voltage support when fluctuations in generation occur. The second part of this dissertation focuses on two new approaches for dual-layer VVC. In these approaches the VVC is divided into two control layers, slow and fast. The slow control obtains optimal voltage profile and set points for the distribution control. The fast control layer is utilized to maintain the optimal voltage profile when the generation or loading suddenly changes. The MINLP based VVC formulation is utilized as the slow control. Both local reactive power control of DG and coordinated quadratic programming (QP) based reactive power control is considered as the fast control approaches. The effectiveness of these approaches is studied with test feeders, utility load data, and fast-varying solar irradiance data. The simulation results indicate that both methods achieve good results for VVC with DG

    Accurate Assessment of Decoupled OLTC Transformers to Optimize the Operation of Low-Voltage Networks

    Get PDF
    Voltage control in active distribution networks must adapt to the unbalanced nature of most of these systems, and this requirement becomes even more apparent at low voltage levels. The use of transformers with on-load tap changers is gaining popularity, and those that allow different tap positions for each of the three phases of the transformer are the most promising. This work tackles the exact approach to the voltage optimization problem of active low-voltage networks when transformers with on-load tap changers are available. A very rigorous approach to the electrical model of all the involved components is used, and common approaches proposed in the literature are avoided. The main aim of the paper is twofold: to demonstrate the importance of being very rigorous in the electrical modeling of all the components to operate in a secure and effective way and to show the greater effectiveness of the decoupled on-load tap changer over the usual on-load tap changer in the voltage regulation problem. A low-voltage benchmark network under different load and distributed generation scenarios is tested with the proposed exact optimal solution to demonstrate its feasibility.Ministerio de Economía y Competitividad ENE2014-54115-RMinisterio de Economía y Competitividad ENE2017-84813-RUnión Europea (FEDER Interconecta) CDTI PASTORAITC- 2018110

    Modeling and Protection Scheme for IEEE 34 Radial Distribution Feeder with and Without Distributed Generation

    Get PDF
    The existing power system was not designed with distribution generation (DG) in mind. As DG penetration is being considered by many distribution utilities, there is a rising need to address many incompatibility issues which puts a big emphasis on the need to review and implement suitable protection scheme. The usual practice for existing distribution feeders is the Overcurrent scheme which includes coordination between fuses and reclosers. But when DG is added to the distribution feeder, the configuration is no more radial as there is contribution of fault currents from the DG\u27s and if the existing protection scheme is applied then this could lead to various issues like fuse misoperation or nuisance tripping considering temporary and permanent fault conditions. This thesis presents a study on the modeling of existing IEEE 34 radial distribution feeder and scaling of the system from 24.9kV to 12.47kV keeping in mind the existing conditions and also proposes a protection scheme with and without the addition of DG\u27s to the feeder nodes. The protection scheme involves providing appropriate relaying with suitable fuse selection and Current transformer settings. Considerations for proper transformer grounding and capacitor bank fusing protection is also simulated and reviewed. When DG\u27s added, the results show increase in fault contribution and hence causing misoperations which needs to avoided. Relaying considerations are also provided when an islanded mode occurs. The entire analysis has been simulated by a combination of various tools like Aspen One liner, CYMDist and Wavewin with occasional simulations and calculations performed in MATLAB environment

    A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing

    Get PDF
    Many distribution system studies require long-term evaluations (e.g. for one year or more): Energy loss minimization, reliability assessment, or optimal rating of distributed energy resources should be based on long-term simulations of the distribution system. This paper summarizes the work carried out by the authors to perform long-term studies of large distribution systems using an OpenDSS-MATLAB environment and parallel computing. The paper details the tools, models, and procedures used by the authors in optimal allocation of distributed resources, reliability assessment of distribution systems with and without distributed generation, optimal rating of energy storage systems, or impact analysis of the solid state transformer. Since in most cases, the developed procedures were implemented for application in a multicore installation, a summary of capabilities required for parallel computing applications is also included. The approaches chosen for carrying out those studies used the traditional Monte Carlo method, clustering techniques or genetic algorithms. Custom-made models for application with OpenDSS were required in some studies: A summary of the characteristics of those models and their implementation are also included.Peer ReviewedPostprint (published version
    corecore