1,808 research outputs found

    Do organisms have an ontological status?

    Get PDF
    The category of ‘organism’ has an ambiguous status: is it scientific or is it philosophical? Or, if one looks at it from within the relatively recent field or sub-field of philosophy of biology, is it a central, or at least legitimate category therein, or should it be dispensed with? In any case, it has long served as a kind of scientific “bolstering” for a philosophical train of argument which seeks to refute the “mechanistic” or “reductionist” trend, which has been perceived as dominant since the 17th century, whether in the case of Stahlian animism, Leibnizian monadology, the neo-vitalism of Hans Driesch, or, lastly, of the “phenomenology of organic life” in the 20th century, with authors such as Kurt Goldstein, Maurice Merleau-Ponty, and Georges Canguilhem. In this paper I try to reconstruct some of the main interpretive ‘stages’ or ‘layers’ of the concept of organism in order to critically evaluate it. How might ‘organism’ be a useful concept if one rules out the excesses of ‘organismic’ biology and metaphysics? Varieties of instrumentalism and what I call the ‘projective’ concept of organism are appealing, but perhaps ultimately unsatisfying

    Post-place branding as nomadic experiencing

    Get PDF
    This paper introduces post-place branding in the context of the post-representationalist turn in marketing research by drawing on Deleuze and Guattari’s (A thousand plateaus: capitalism and schizophrenia, University of Minnesota Press, Minneapolis, 1987) theory of nomadology. By engaging critically with fundamental concepts in the place and destination branding literature, post-place branding offers an alternative perspective to entrenched definitions of subjectivity, place, and event experiencing, by effecting a paradigmatic shift from processing monad to nomad, from event as symbolic structure to micro-events, from pre-constituted place to spacing in the process of deand reterritorializations. Post-place branding is illustrated by re-imagining the brand architectural components of the experiential events of 70,000 Tons of Metal and The Boiler Room. The analysis culminates in a metaphorical modeling exercise that draws nomadological guidelines for brandcomms’ message strategy

    PMK : a knowledge processing framework for autonomous robotics perception and manipulation

    Get PDF
    Autonomous indoor service robots are supposed to accomplish tasks, like serve a cup, which involve manipulation actions. Particularly, for complex manipulation tasks which are subject to geometric constraints, spatial information and a rich semantic knowledge about objects, types, and functionality are required, together with the way in which these objects can be manipulated. In this line, this paper presents an ontological-based reasoning framework called Perception and Manipulation Knowledge (PMK) that includes: (1) the modeling of the environment in a standardized way to provide common vocabularies for information exchange in human-robot or robot-robot collaboration, (2) a sensory module to perceive the objects in the environment and assert the ontological knowledge, (3) an evaluation-based analysis of the situation of the objects in the environment, in order to enhance the planning of manipulation tasks. The paper describes the concepts and the implementation of PMK, and presents an example demonstrating the range of information the framework can provide for autonomous robots.Peer ReviewedPostprint (published version

    Physics-based motion planning for grasping and manipulation

    Get PDF
    This thesis develops a series of knowledge-oriented physics-based motion planning algorithms for grasping and manipulation in cluttered an uncertain environments. The main idea is to use high-level knowledge-based reasoning to define the manipulation constraints that define the way how robot should interact with the objects in the environment. These interactions are modeled by incorporating the physics-based model of rigid body dynamics in planning. The first part of the thesis is focused on the techniques to integrate the knowledge with physics-based motion planning. The knowledge is represented in terms of ontologies, a prologbased knowledge inference process is introduced that defines the manipulation constraints. These constraints are used in the state validation procedure of sampling-based kinodynamic motion planners. The state propagator of the motion planner is replaced by a physics-engine that takes care of the kinodynamic and physics-based constraints. To make the interaction humanlike, a low-level physics-based reasoning process is introduced that dynamically varies the control bounds by evaluating the physical properties of the objects. As a result, power efficient motion plans are obtained. Furthermore, a framework has been presented to incorporate linear temporal logic within physics-based motion planning to handle complex temporal goals. The second part of this thesis develops physics-based motion planning approaches to plan in cluttered and uncertain environments. The uncertainty is considered in 1) objects’ poses due to sensing and due to complex robot-object or object-object interactions; 2) uncertainty in the contact dynamics (such as friction coefficient); 3) uncertainty in robot controls. The solution is framed with sampling-based kinodynamic motion planners that solve the problem in open-loop, i.e., it considers uncertainty while planning and computes the solution in such a way that it successfully moves the robot from the start to the goal configuration even if there is uncertainty in the system. To implement the above stated approaches, a knowledge-oriented physics-based motion planning tool is presented. It is developed by extending The Kautham Project, a C++ based tool for sampling-based motion planning. Finally, the current research challenges and future research directions to extend the above stated approaches are discussedEsta tesis desarrolla una serie de algoritmos de planificación del movimientos para la aprehensión y la manipulación de objetos en entornos desordenados e inciertos, basados en la física y el conocimiento. La idea principal es utilizar el razonamiento de alto nivel basado en el conocimiento para definir las restricciones de manipulación que definen la forma en que el robot debería interactuar con los objetos en el entorno. Estas interacciones se modelan incorporando en la planificación el modelo dinámico de los sólidos rígidos. La primera parte de la tesis se centra en las técnicas para integrar el conocimiento con la planificación del movimientos basada en la física. Para ello, se representa el conocimiento mediante ontologías y se introduce un proceso de razonamiento basado en Prolog para definir las restricciones de manipulación. Estas restricciones se usan en los procedimientos de validación del estado de los algoritmos de planificación basados en muestreo, cuyo propagador de estado se susituye por un motor basado en la física que tiene en cuenta las restricciones físicas y kinodinámicas. Además se ha implementado un proceso de razonamiento de bajo nivel que permite adaptar los límites de los controles aplicados a las propiedades físicas de los objetos. Complementariamente, se introduce un marco de desarrollo para la inclusión de la lógica temporal lineal en la planificación de movimientos basada en la física. La segunda parte de esta tesis extiende el enfoque a planificación del movimiento basados en la física en entornos desordenados e inciertos. La incertidumbre se considera en 1) las poses de los objetos debido a la medición y a las interacciones complejas robot-objeto y objeto-objeto; 2) incertidumbre en la dinámica de los contactos (como el coeficiente de fricción); 3) incertidumbre en los controles del robot. La solución se enmarca en planificadores kinodinámicos basados en muestro que solucionan el problema en lazo abierto, es decir que consideran la incertidumbre en la planificación para calcular una solución robusta que permita mover al robot de la configuración inicial a la final a pesar de la incertidumbre. Para implementar los enfoques mencionados anteriormente, se presenta una herramienta de planificación del movimientos basada en la física y guiada por el conocimiento, desarrollada extendiendo The Kautham Project, una herramienta implementada en C++ para la planificación de movimientos basada en muestreo. Finalmente, de discute los retos actuales y las futuras lineas de investigación a seguir para extender los enfoques presentados

    Documenting acousmatic music interpretation : profiles of discourse across multiple dimensions

    Full text link
    Purpose : Extending documentation and analysis frameworks for acousmatic music to performance/interpretation, from an information science point of view, will benefit the transmission and preservation of a repertoire with an idiosyncratic relation to performance and technology. This paper presents the outcome of a qualitative research aiming at providing a conceptual model theorizing the intricate relationships between the multiple dimensions of acousmatic music interpretation. • Design/methodology/approach : The methodology relies on grounded theory. 12 Interviews were conducted over a period of 3 years in France, Québec and Belgium, grounded in theoretical sampling. • Findings : The analysis outcome describes eight dimensions in acousmatic performance, namely: musical; technical; anthropological; psychological; social; cultural; linguistic; and ontological. Discourse profiles are provided in relation to each participant. Theory development led to the distinction between documentation of interpretation as an expertise and as a profession. • Research limitations/implications : Data collection is limited to French-speaking experts, for historical and methodological reasons. • Practical implications : The model stemming from the analysis provides a framework for documentation which will benefit practitioners and organizations dedicated to the dissemination of acousmatic music. The model also provides this community with a tool for characterizing expert discourses about acousmatic performance and identifying content areas to further investigate. From a research point of view, the theorization leads to the specification of new directions and the identification of relevant epistemological frameworks. • Originality/value : This research brings a new vision of acousmatic interpretation, extending the literature on this repertoire’s performance with a more holistic perspective

    Applications of Factorization Theorem and Ontologies for Activity ModelingRecognition and Anomaly Detection

    Get PDF
    In this thesis two approaches for activity modeling and suspicious activity detection are examined. First is application of factorization theorem extension for deformable models in two dierent contexts. First is human activity detection from joint position information, and second is suspicious activity detection for tarmac security. It is shown that the first basis vector from factorization theorem is good enough to dierentiate activities for human data and to distinguish suspicious activities for tarmac security data. Second approach dierentiates individual components of those activities using semantic methodol- ogy. Although currently mainly used for improving search and information retrieval, we show that ontologies are applicable to video surveillance. We evaluate the domain ontologies from Challenge Project on Video Event Taxonomy sponsored by ARDA from the perspective of general ontology design principles. We also focused on the eect of the domain on the granularity of the ontology for suspicious activity detection

    Can Science Explain Consciousness?

    Get PDF
    For diverse reasons, the problem of phenomenal consciousness is persistently challenging. Mental terms are characteristically ambiguous, researchers have philosophical biases, secondary qualities are excluded from objective description, and philosophers love to argue. Adhering to a regime of efficient causes and third-person descriptions, science as it has been defined has no place for subjectivity or teleology. A solution to the “hard problem” of consciousness will require a radical approach: to take the point of view of the cognitive system itself. To facilitate this approach, a concept of agency is introduced along with a different understanding of intentionality. Following this approach reveals that the autopoietic cognitive system constructs phenomenality through acts of fiat, which underlie perceptual completion effects and “filling in”—and, by implication, phenomenology in general. It creates phenomenality much as we create meaning in language, through the use of symbols that it assigns meaning in the context of an embodied evolutionary history that is the source of valuation upon which meaning depends. Phenomenality is a virtual representation to itself by an executive agent (the conscious self) tasked with monitoring the state of the organism and its environment, planning future action, and coordinating various sub- agencies. Consciousness is not epiphenomenal, but serves a function for higher organisms that is distinct from that of unconscious processing. While a strictly scientific solution to the hard problem is not possible for a science that excludes the subjectivity it seeks to explain, there is hope to at least psychologically bridge the explanatory gulf between mind and matter, and perhaps hope for a broader definition of science

    The Strange Nature of Quantum Perception: To See a Photon, One Must _Be_ a Photon

    Get PDF
    This paper takes as its point of departure recent research into the possibility that human beings can perceive single photons. In order to appreciate what quantum perception may entail, we first explore several of the leading interpretations of quantum mechanics, then consider an alternative view based on the ontological phenomenology of Maurice Merleau-Ponty and Martin Heidegger. Next, the philosophical analysis is brought into sharper focus by employing a perceptual model, the Necker cube, augmented by the topology of the Klein bottle. This paves the way for addressing in greater depth the paper’s central question: Just what would it take to observe the quantum reality of the photon? In formulating an answer, we examine the nature of scientific objectivity itself, along with the paradoxical properties of light. The conclusion reached is that quantum perception requires a new kind of observation, one in which the observer of the photon adopts a concretely self-reflexive observational posture that brings her into close ontological relationship with the observed
    corecore