
ABSTRACT

Title of thesis: Applications of Factorization Theorem and Ontologies for Activity Modeling,
Recognition and Anomaly Detection

Umut Akdemir, Master of Science, 2005

Thesis directed by: Professor Rama Chellappa
Department of Electrical and Computer Engineering
Affiliate Professor in Department of Computer Science

In this thesis two approaches for activity modeling and suspicious activity detection are

examined. First is application of factorization theorem extension for deformable models in two

different contexts. First is human activity detection from joint position information, and second

is suspicious activity detection for tarmac security. It is shown that the first basis vector from

factorization theorem is good enough to differentiate activities for human data and to distinguish

suspicious activities for tarmac security data.

Second approach differentiates individual components of those activities using semantic methodol-

ogy. Although currently mainly used for improving search and information retrieval, we show that

ontologies are applicable to video surveillance. We evaluate the domain ontologies from Challenge

Project on Video Event Taxonomy sponsored by ARDA from the perspective of general ontology

design principles. We also focused on the effect of the domain on the granularity of the ontology

for suspicious activity detection.



Applications of Factorization Theorem and Ontologies for Activity Modeling,

Recognition and Anomaly Detection

by

Umut Akdemir

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Advisory Committee:

Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor Ramani Duraiswami



c© Copyright by

Umut Akdemir

2005



ACKNOWLEDGEMENTS

I owe my gratitude to Professor Rama Chellappa for his invaluable lead throughout my

graduate experience. He has always been supporting me with his suggestions and guidance not

only in my professional research life and publications, but also in terms of the conflicts a foreigner

graduate student far from home goes through. He definitely is the most considerate professor I

have ever met in my life. It was a great pleasure for me to decide on what I would like to do with

my professional life under his supervision. I would like to use this opportunity to express how

grateful I am for his trust and empathy.

I also would like to thank Monique Thonnat and her team for providing the bank scenario

videos I have worked on.

ii



TABLE OF CONTENTS

List of Figures iv

1 Event Representation Using 3D Deformable Shape Models 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Shape Based Activity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Estimation of Deformable Shape Models . . . . . . . . . . . . . . . . . . . . 9

1.4 Estimating Deformability of a Shape Sequence . . . . . . . . . . . . . . . . . . . . 11
1.4.1 An Intuitive Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Computation of Deformability Index . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Properties of the Deformability Index . . . . . . . . . . . . . . . . . . . . . 15

1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 Estimation of Deformability Index . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.2 Shape Models for Individual Activities . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Shape Models for Group Activities . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.4 Video Summarization in Shape Space . . . . . . . . . . . . . . . . . . . . . 25

1.6 Discussion: Are 3D Models Required? . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 ONTOLOGY DRIVEN ACTIVITY MODELLING AND RECOGNITION 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 What is Ontology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 What can ontology provide? . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Ontology Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Current usage and tools for ontology . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Systematic metadata in visual environments . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Image Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Video Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Video Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Video Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Ontology in video surveillance systems . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Clarity in Temporal Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Clarity of Negation Concept in Time . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Minimal Ontological Commitment . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 Unified Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Application example of ontology for two different complexity domains . . . . . . . 40
2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Bank Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 TSA Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Decision for ontology necessity in a given domain . . . . . . . . . . . . . . . . . . . 45
2.5.1 Event detection after ontology . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Conclusion and Future Work 56

Bibliography 58

iii



LIST OF FIGURES

1.1 The framework for activity inference. We start by computing trajectories from
a video sequence, then fit models to these trajectories (e.g. dynamic instants,
Kendall’s shape or 3D models as proposed here), and finally compute the similarity
between model parameters for inferring about the activity. . . . . . . . . . . . . . . 2

1.2 Two examples of activities: (a) the binary silhouette of a walking person, and (b) people

disembarking from an airplane. It is clear that both of these activites can be represented

by a deformable shape model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 (a): Examples of the simulated shape sequence. (b): Plot of the eigenvalues, in
decreasing order of magnitude, for a typical walking sequence in the USF database. 18

1.4 Plots of the first basis shape, S1 for walk, sit and broom sequences, (a)-(c), and for jog,

blind walk and crawl sequences, (d) - (f). . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 (a): The various angles used for computing the similarity of two models is shown in the

Figure. The text below describes the seven dimensional vector computed from each model

and whose correlation determines the similarity scores. (b): The similarity matrix for the

various activities, including ones with different viewing directions and multiple cameras.

The numbers correspond to the numbers in Table 1.1 for 1-16. 17 and 18 correspond

to sitting and walking, where the training and test data are from two different viewing

directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 (a) and (b) plot the basis shapes for jogging and brooming when the viewing direction is

different from the canonical one. (c) and (d) plot the rotated basis shapes. . . . . . . . . 22

1.7 (a): An example of an abnormal activity where the average trajectory is distorted to

simulate an abnormal behavior. (b): Projections of the abnormal activity and a normal

one on the rotated basis shapes for the first activity. . . . . . . . . . . . . . . . . . . . 25

1.8 (a) Plot of the centered shapes formed from the average trajectories of the two activities.

(b) Plot of the projections of the various instances of the two activities, as available in the

training data, onto the rotated basis shapes. . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9 Projections of the two activities on the rotated basis shapes for the first one are shown in

(a), while the projections on the rotated basis shapes for the second one are shown in (b). 26

1.10 (a): ROC plots for classification of the two normal activities and the abnormal one. (b):

A video summarization example: projections of all the motion trajectories in a three

minute segment of the video sequence onto the basis shapes. The red cluster contains

the projections of the passengers, the blue of the luggage cart and magenta of the airport

personnel whose motion was not modeled as part of the training examples. . . . . . . . . 27

1.11 Plot of the similarity matrix for activity classification using (a) AR models, (b) ARMA

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Bank attack scenario 1: Robber directly goes to counter zone, takes the employee
with him and enters safe zone. After collecting valuables inside the safe he leaves
the building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



2.2 Bank attack scenario 2: Robber directly goes to counter zone, takes the employee
with him and enters safe zone. After collecting valuables inside the safe he leaves
the building. This is exactly the same with attack scenario 1. Only difference is
that there is a customer who runs away as soon as they enter the safe. . . . . . . . 47

2.3 Bank attack scenario 3: 2 robbers enter the building. One of them takes the em-
ployee out of counter zone and directly goes to the vault. The other one stays inside
the building to watch. After collecting valuables inside the safe they both leaves
the building. Although now there are two robbers, still the robbery event itself is
realized by the robber who entered safe. If he was not there it would not be counted
as a robbery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Bank attack scenario 4: Two robbers and a customer. One robber waits inside the
building for watching and keeping the customer and the counter clerk inside the
building. The other one goes to management office, takes out the manager, and
uses his access to enter the safe. Still detection of unauthorized access to safe is
enough to judge that this is a robbery . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Bank no-attack scenario 1: One customer looks around to the brochures etc, while
the other one is having his job done by the clerk . . . . . . . . . . . . . . . . . . . 50

2.6 Bank no-attack scenario 2: Another no attack scenario. Very similar to the previous
one. In both of these scenarios, there is no unauthorized access to safe . . . . . . . 51

2.7 TSA scenario passengers getting on the plane: The expected procedure is exactly
followed, passengers come through entrance area, they approach the plane zone and
they get on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 TSA scenario passengers get off: Regular procedure of passengers getting off the
plane. Some of them take their luggages outside, yet it is not a basic component of
getting off activity as people can simply get off even when they don’t have luggage.
Yet clearly the overall procedure can simply be represented by ontological relations
shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



Chapter 1

Event Representation Using 3D Deformable Shape Models

1.1 Introduction

Activity modeling and recognition from video sequences has applications in video surveillance and

monitoring, human computer interaction, video transmission and analysis, medicine, computer

graphics and virtual reality. In order to recognize different activities, it is necessary to construct

an ontology of various events. Deviations from a pre-constructed dictionary can then be classified

as abnormal events. It is also necessary that the representation be invariant to the viewing direction

of the camera, and independent of the number of cameras (i.e. should be scalable to a video sensor

network). Trajectories, usually computed from 2D video data, are a natural starting point for

activity recognition systems. Trajectories contain a lot of information about the underlying event

that they represent. However, one must do more than track a set of points over a sequence of

images, and infer about the event from the set of tracks. Trajectories are ambiguous (different

events can have the same trajectory) and depend on the viewing direction. Also, identifying events

from trajectories requires the enunciation of a set of heuristics, which can vary from one instance

to another of the same event. Hence, it is important to have a proper intermediate step in the

leap from trajectories to event models (see Figure 1.1). In a recent paper, Rao, Yilmaz and Shah

[65] proposed a method of representing a trajectory in terms of dramatic changes in its speed and

direction. They represented a human activity in terms of action units called dynamic instants and

intervals, and their method was motivated by studies on human perception. In [84], the authors

proposed a shape model (along the lines of Kendall’s shape theory) on the set of points in each

image frame and described an activity by the dynamics of the shape.

In this paper, we propose a different approach to transition from the set of trajectories

with the class of activity models. The intermediate processing step of Figure 1.1 is a 3D non-

1



Similarity

Computation

Trajectory

Modeling

Activity

Inference

Model 

Parameters

Trajectories
Video

Processing

Low−levelSequence
Video

Figure 1.1: The framework for activity inference. We start by computing trajectories from a
video sequence, then fit models to these trajectories (e.g. dynamic instants, Kendall’s shape or
3D models as proposed here), and finally compute the similarity between model parameters for
inferring about the activity.

rigid representation of the activity. The underlying hypothesis in our approach is that activities

can be represented by deformable shape models, which we term as “3D event models”. The 3D

representation captures the 3D configuration and dynamics of the set of points taking part in

the activity and is independent of the viewing direction of the camera. Also, the method works

whether we have a single camera or a network of cameras looking at the scene. The 3D shape

estimation is done using the factorization theorem, modified for non-rigid shapes [79, 80]. In order

to properly estimate these event models, it is important to characterize the degree of non-rigidity,

as this will be different for different activities. Towards this end, we propose a method to estimate

the amount of deformation in a shape sequence, which we term as the “deformability index”. It is

obtained using spectral estimation techniques. Activities are recognized using distances between

3D models obtained from training and test sequences.

Three different kinds of experimental results are presented in order to test the efficacy of our

approach. The first set of experiments is done for various activities being carried out by a single

individual. We show that we are able to recognize each of those activities. We also demonstrate

the view-invariant and multi-camera features of our method. In the second experiment, a group

of people get off an airplane and are walking towards the terminal. We model this event and

detect any abnormalities that may occur. Finally, we show the application of this approach to the

problem of video summarization. Standard existing methods are used to perform low level tasks

like feature detection and tracking.

In the next section, we review existing work in human activity recognition. Section 1.3 pro-

vides a justification for our shape based activity modeling framework and describes the deformable
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shape estimation and activity classification methodologies. Section 1.4 presents the method for

estimating the deformability index for a shape sequence and its application to the problem of

computation of 3D event models. Detailed experiments are presented in Section 1.5. We would

like to point out that our method for representation of 3D deformanle shapes and computation of

deformability index is not specific to the event recognition problem.

1.2 Related Work

Event analysis from video sequences has a long history in the computer vision literature. We

provide a brief review of past work dealing with the general problem of event recognition as well

as the special situation of human activity analysis and inference.

Most of the early work on activity representation comes from the field of Artificial Intelli-

gence (AI). One of the earliest attempts at developing a general scheme for representing activities

and building a system based on it was reported by Tsuji, Morizono and Kuroda [83]. They applied

their principles to understanding the activities taking place in simple cartoon films. Neumann

and Novak [53] proposed a hierarchical representation of event models, with each model being a

template that can be matched with scene data. Natural language descriptions of activities can be

mapped on this hierarchical model. More recent work comes from the fields of image understanding

and visual surveillance. The formalisms that have been employed include hidden Markov models

(HMMs), logic programming and stochastic grammars. Nagel proposed [51] an early approach to

obtaining conceptual descriptions from image sequences, which could then be used for represent-

ing and recognizing activities. Dousson, Gabarit and Ghallab [23], Kuniyoshi and Inoue [43], and

Buxton and Gong [13] have presented models and algorithms for situation analysis from video

data. Davis and Bobick [22] have developed a scheme for characterizing human actions based on

the concept of ”temporal templates”. Bremond and Thonnat [12] have investigated the use of con-

textual information in activity recognition. The use of declarative models for activity recognition

from video sequences was described in [68]. Each activity was represented by a set of conditions

between different objects in the scene. This translated into a constraint satisfaction problem in

3



order to recognize the activity. A method for representing a scenario by a set of sub-scenarios and

constraints combining these sub-scenarios was proposed in [86]. Castel, Chaudron and Tessier [15]

developed a system for high-level interpretation of image sequences, in which they clearly separated

the numerical and symbolic levels of representation and reasoning. More recently, HMMs [74, 87]

have been used for recognizing American Sign Language and parametric gestures respectively. In

the domain of outdoor applications, a tracking and monitoring system using a “forest of sensors”

distributed around the site of interest was proposed in [28].

One of the requirements of any reliable recognition scheme is the ability to handle uncer-

tainty. Many uncertainty-reasoning models have been actively pursued in the AI and image un-

derstanding literature, including belief networks [56] and Dempster-Shafer theory [69]. A method

for inferring activities of humans and vehicles in airborne video using dynamic Bayesian networks

was proposed in [7]. Large belief Networks (BNs) have been used in several video interpreta-

tion applications. For example, Intille and Bobick [36] have used large BNs to classify football

plays. A system for classifying human motion and simple human interactions using small BNs

was developed by Remagnino et al. [67]. A method of generating high-level descriptions of traffic

scenes was implemented by Huang et al. using a dynamic Bayes’ network (DBN) [35]. In [34],

the authors proposed a method for recognizing events involving multiple objects using Bayesian

inference. Kendall’s shape theory was used to model the interactions of a group of people and

objects in [84].

A specific area of research within the broad domain of event recognition is human motion

modeling and analysis. The ability to recognize and track human activity using vision is one

of the key challenges that must be overcome before a machine is able to interact meaningfully

with a human inhabited environment. Traditionally, there has been a keen interest in studying

human motion in various disciplines. In psychology, Johansson conducted classic experiments

by attaching light displays to various body parts and showed that humans can identify motion

when presented with only a small set of these moving dots [38]. Muybridge captured the first

photographic recordings of humans and animals in motion in his famous publication on animal

4



locomotion towards the end of the 19-th century[50]. In kinesology the goal has been to develop

models of the human body that explain how it functions mechanically [33]. The challenge to the

computer vision community is to devise efficient methods to automatically track moving humans

in a video sequence, reconstruct non-rigid 3D models and infer about the various activities being

performed by the subjects. A survey of some of the earlier methods used in vision for tracking

human movement can be found in [25]. In a more recent work, an activity recognition algorithm

using dynamic instants was proposed in [65]. Kinematic chain models for human representing

human motion was proposed in [11]. In [55], each human action was represented by a set of 3D

curves which are quasi-invariant to the viewing direction.

The various methods listed above can be classified as either 2D or 3D approaches. 2D

approaches are effective for applications where precise pose recovery is not needed or possible

due to low image resolution (e.g. tracking pedestrians in a surveillance setting). However, it is

unlikely that they will perform well in applications which require a high level of discrimination

between various unconstrained and complex human movements (e.g. humans making gestures

while walking, social interactions, dancing etc.) In such applications, 3D approaches are preferred

because they can recover body pose which allows a better prediction and handling of occlusion

and collision. In this paper, we estimate explicit 3D models in order to recognize various activities

of an individual, as well as a group of them.

The early work on the analysis of human movement bypasses the pose recovery step alto-

gether and uses simple, low-level 2D features from a region of interest. Models for human action

are then described in statistical terms derived from these low-level features, or by simple heuristics

[61, 24, 21, 62]. Another line of research involves statistical shape models (called “Active Shape

Models”) to determine contours [18]. A reduced parameter space of example shapes is derived

using principal component analysis on feature locations used to describe those shapes. Baumberg

and Hogg [8] applied Active Shape Models to track pedestrians. Motion based segmentation and

tracking techniques have also been used for applications like people tracking [71]. Another class of

algorithms uses explicit a priori knowledge of how the human body appears in 2D, taking essen-
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tially a model-and-view based approach. These include curve-fitting with 2D ellipsoids, obtaining

stick figure models [30] and orderly recognition of different body parts [5]. The problem of occlu-

sion was considered in [44] which tracks the limbs of a silhouette by tracking anti-parallel lines.

A real-time person finder system, “Pfinder” [88], was developed at MIT that models and tracks a

human body using a set of “blobs”, each blob described in statistical terms by spatial (x, y) and

color (Y,U,V) Gaussian distribution over the pixels it consists of. Cai and Aggarwal [14] describe

a system with a simplified head-trunk model to track humans across multiple cameras. Kahn and

Swain [39] describe a system which uses multiple cues (intensity, edge, depth, motion) to detect

people pointing laterally. More recently, Vaswani, Roy Chowdhury and Chellappa proposed a

method for describing an activity of a group of people by the dynamics of the shape (defined in

Kendall’s sense) described on the set of moving points at each instant of time.

The general problem of 3D non-rigid shape and motion recovery from 2D images is quite

difficult. However, one can take advantage of the kinematic and shape properties of a human body

to make the problem tractable. One of the approaches to this problem is to solve the pose recovery

problem for sub-parts and verify whether they satisfy the necessary constraints [70]. Pentland and

Horowitz derived estimates of velocity and shape of a non-rigid objects from optical flow data and

constraints on what kind of non-rigid motions can occur [59]. Metaxas and Terzopoulos developed

a physics based framework for 3D shape and non-rigid motion estimation using dynamic models

to incorporate the mechanical properties of rigid and non-rigid bodies into conventional geometric

primitives [45]. The method was extended to incorporate multi-camera tracking in [40]. Another

well known technique is to update pose estimates using inverse kinematics (from robot control

theory) which involves inverting the mapping from the state space to the image space to obtain

changes in state parameters which minimize the residual between projected model and image

features [66]. Gavrila and Davis follow a different approach in which the measurement equation

is directly used to synthesize a model and a fitting measure between synthesized and observed

features is used for feedback [26]. Azarbayejani and Pentland recover 3D shape and orientation

from 2D “blob” features using non-linear estimation techniques [58]. In another work [57], Pentland

6



used deformable superquadrics to fit range data. Most explicit model based approaches assume

certain domain constraints like calibrated cameras, known background, initial pose and uncluttered

environments. In contrast, the methods which work purely from image data are very specialized to

given training data. Bregler proposed a combination of layered image representations with dynamic

models and Hidden Markov Models in a probabilistic framework in order to find the right balance

between structure estimation and learned parameters [10]. In [11], the authors used the twist and

product of exponential map formalism for kinematic chains [49] for modeling the motion of different

body parts attached by body joints. Ioffe and Forsyth introduce a “mixture of trees” formalism to

track a human body by identifying candidate primitives and then grouping them so as to satisfy

the constraints on the relative configuration of the parts [37]. A flow based tracking scheme was

introduced in [81, 80] which approximates a non-rigid object by a composition of known shapes,

thus limiting the rank of the measurement matrix (of the entire image sequence). Mori and Malik

[48] have recently proposed an algorithm to estimate body configuration and pose in 3D space from

a single image by matching a test shape against a database which stores a number of exemplar 2D

views of a human body by shape context matching and kinematic chain based deformation model.

An exemplar-based, probabilistic paradigm for visual tracking without estimating 3D pose was

proposed in [82]. A probabilistic 3D tracking algorithm using shape-encoded particle propagation

was presented in [47]. In [55], each human action was represented by a set of 3D curves which are

invariant to the viewing direction.

1.3 Shape Based Activity Models

1.3.1 Motivation

In this paper, we propose a framework for recognizing activities by first computing the trajectories

of the various points taking part in the activity, followed by a non-rigid 3D shape model, esti-

mated from the trajectories. It is based on the empirical observation that many activities have

an associated structure and a dynamical model. Consider, as an example, the set of images of a

walking person in Figure 1.2(a) (obtained from the USF database for the Gait Challenge problem

7



[60]). The binary representation is used to clearly show the change in shape of the body for one

complete walk cycle. The person in this figure is free to move his/her hands and feet any way

he/she likes. However, this random movement does not constitute the activity of walking. For

humans to perceive and appreciate the walk, the different parts of the body have to move in a

certain synchronized manner. In mathematical terms, this is equivalent to modeling the walk by

the deformations in the shape of the body of the person. Similar comments can be made for other

activities performed by a single human, e.g. dancing, jogging, sitting, etc. An analogous example

can be provided for an activity involving a group of people. Consider people getting off a plane

and walking to the terminal, where there is no jet-bridge to constrain the path of the passengers

(Figure 1.2(b)). Every person after disembarking, is free to move as he/she likes. However, this

does not constitute the activity of people getting off a plane and heading to the terminal. The

activity here is comprised of people walking along a path that leads to the terminal. Again, we see

that the activity can be modeled by the shape of the trajectories taken by the passengers. Using

deformable shape models is a higher level abstraction of the individual trajectories and provides a

method of analyzing all the points of interest together, thus modeling their interactions in a very

elegant way.

Not only is the activity represented by a deformable shape sequence, the amount of de-

formation is different for different activities. For example, it is reasonable to say that the shape

of the human body while dancing is usually more deformable than that when walking, which is

more deformable than when standing still. Since it is possible for the human observer to obtain

an idea of deformability based on the contents of the video sequence, the information about how

deformable a shape is must be contained in the sequence itself. We will use this intuitive notion

to quantify the deformability of a shape sequence from a set of tracked points on the object. In

our activity represententation model, a deformable shape is represented as a linear combination of

rigid basis shapes. The deformability index will provide a theoretical method for estimating the

number of basis shapes required.
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(a) (b)

Figure 1.2: Two examples of activities: (a) the binary silhouette of a walking person, and (b) people
disembarking from an airplane. It is clear that both of these activites can be represented by a deformable
shape model.

1.3.2 Estimation of Deformable Shape Models

We hypothesize that each shape sequence can be represented by a linear combination of 3D ba-

sis shapes. Mathematically, if we consider the trajectories of P points representing the shape

(e.g. landmark points), then the overall configuration of the P points is represented as a linear

combination of the basis shapes as

S =

K
∑

i=1

liSi, S, Si ∈ ℜ3×P , l ∈ ℜ. (1.1)

The choice of K is determined by quantifying the deformability of the shape sequence and will be

the studied in detail in Section 1.4. We will assume a weak perspective projection model for the

camera.

A number of methods exist in the computer vision literature for estimating the basis shapes.

In [79], the authors considered P points tracked across F frames in order to obtain two F × P

matrices U and V. Each row of U contains the x-displacements of all the P points for a specific

time frame, and each row of V contains the corresponding y-displacements. It was shown in [79],

that for 3D rigid motion under orthographic camera model, the rank, r, of

[

U
V

]

has an upper
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bound of 3. The rank constraint is derived from the fact that

[

U
V

]

can be factored into two

matrices M2F×r and Sr×P , corresponding to the pose and 3D structure of the scene, respectively.

In [80], it was shown that for non-rigid motion, the above method could be extended to obtain a

similar rank constraint, but one that is higher than the bound for the rigid case. We will adopt

the last mentioned method for computing the basis shapes. We will outline the basic steps of their

approach in order to clarify the notation for the remainder of the paper.

Given F frames of a video sequence with P moving points, we can obtain the trajectories of

all these points over the entire video sequence. These P points can be represented in a measurement

matrix as

W2F×P =

































u1,1 · · · u1,P

v1,1 · · · v1,P

...
...

...

uF,1 · · · uF,P

vF,1 · · · vF,P

































, (1.2)

where uf,p represents the x-position of the pth point in the fth frame and vm,p represents the

y-position of the same point. Under weak perspective projection, the P points of a configuration

in a frame f , are projected onto 2D image points (uf,i, vf,i) as









uf,1 · · · uf,P

vf,1 · · · vf,P









= Rf

(

K
∑

i=1

lf,iSi

)

+ Tf , (1.3)

where,

Rf =









rf1 rf2 rf3

rf4 rf5 rf6









∆
=









R
(1)
f

R
(2)
f









. (1.4)

Rf represents the first two rows of the full 3D camera rotation matrix and Tf is the camera

translation. The translation component can be eliminated by subtracting out the mean of all the

2D points, as in [79]. We now form the measurement matrix W, which was represented in (1.2),

with the means of each of the rows subtracted. The weak perspective scaling factor is implicitly
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coded in the configuration weights, {lf,i}.

Using (1.2) and (1.3), it is easy to show that

W =

























l1,1R1 · · · l1,KR1

l2,1R2 · · · l2,KR2

...
...

...

lF,1RF · · · lF,KRF

















































S1

S2

...

SK

























(1.5)

= Q2F×3K .B3K×P , (1.6)

which is of rank 3K. The matrix Q contains the pose for each frame of the video sequence and the

weights l1, ..., lK . The matrix B contains the basis shapes corresponding to each of the activities.

In [80], it was shown that Q and B can be obtained using singular value decomposition (SVD),

and retaining the top 3K singular values, as W2M×P = UDVT and Q = UD
1

2 and B = D
1

2 VT .

1.4 Estimating Deformability of a Shape Sequence

The above mentioned rank constraint requires knowledge of K in order to estimate the shape

and motion parameters. This is usually determined heuristically from the physics of the object

whose structure is being estimated. We now provide a theoretical method for estimating K by

reinterpreting the above equations in stochastic framework. Our method is non-iterative, does not

require determination of a threshold (as in other methods based on minimum error thresholding

[41]) and does not need an initial guess, which is usually based on heuristics. In turn, it leads to

a definition of deformability of a shape sequence.

1.4.1 An Intuitive Understanding

In modeling the dynamics of shape evolution, it is important to separate out the “global” motion

of the shape (i.e., the translation and rotation) from its “deformation”, an issue that was analyzed

in [73]. While there are well-defined measures for the global motion of an object, quantitative

measures of its deformations are less well known. We address this issue of quantifying the de-
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formation of a shape sequence by defining a “deformability index”. For a rigid shape (i.e., the

shape does not change from one image frame to the next), the deformability index is one. We

show how to derive this index in shape space using tools from spectral analysis. Experiments on

real-life data of human activities are carried out (see Section 1.5) and the results are in accordance

with our intuitive judgment of the deformation involved in those activities and corroborate certain

experimental findings in human gait analysis.

As a shape deforms, the position of the set of points defining the shape changes from one

image frame to the next. The change in the position of this sequence of points determines how

much the shape is changing, e.g. whether it is being squeezed or expanded or remaining the same.

Defining a deformability index depends on the ability to obtain a mathematical description of

this shape change. As explained before, we model a shape sequence that deforms over time as

a composition of a number of basis shapes, where the weight given to each basis shape changes

with time, thus leading to deformations in the original shape. It is usually the case that more

deformable a shape is, more is the number of basis shapes required to represent it. However, there

is no well-defined criterion for estimating the number of basis shapes. At a minimum, a rigid shape

would require only one basis shape, while there is no theoretical upper limit. Therefore we need a

method to estimate the number of basis shapes from the point sequence.

The theoretical derivation which follows does precisely this. It proceeds by using the trans-

formation of the point sequence to a shape space (as shown in Section 1.3) and estimating the

dimensionality of this shape space. Spectral analysis provides a method for achieving this pur-

pose. The dimensionality of the shape space will determine the deformability index. The noise

in the sequence of feature positions will be taken into account in order to correctly estimate the

deformability index. Since the noise can randomly alter the positions of the points, it can give

a false notion of increased variability in the shape sequence, leading to a higher dimensionality

of the shape space. Also, rigid 3D transformations of the shape can provide the impression of

deformation. This will be factored out in estimating the deformability index. However, estimation

of 3D structure will not be required for this purpose.
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1.4.2 Computation of Deformability Index

Consider the set of coordinates representing the shape of the deformable object in a particular frame

of a video sequence to be the realization of a random process. The sequence of frames depicts the

deformation of the shape, along with the effects of the 3D translation and rotation. Represent the

x and y coordinates of the sampled points in a single frame as a vector y = [u1, ..., uP , v1, ..., vP ]T .

Then, from (1.6), it is easy to show that for K basis shapes (K is unknown)

yT =
[

l1R
(1), ..., lKR(1), l1R

(2), ..., lKR(2)
]

∗
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






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




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...
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...
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






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



























+ ηT , (1.7)

i.e., y = (q1×6Kb6K×2P )T + η

= bTqT + η, (1.8)

where η represents the noise in the sequence of tracked points and is assumed to be a zero-mean

random process. The vector q is obtained by juxtaposing two consecutive rows of Q, corresponding

to the same image frame, in equation (1.6). The matrix b, which is constant across all the frames,

is obtained by duplicating B in equation (1.6), as shown in equation (7).

Assuming that the coordinates of the points representing the shape in all the F frames can

be considered to be realizations of the same random process (which is a reasonable assumption

since they represent the same shape), with possibly different noise statistics, we can compute the

correlation matrix of y. Let Ry = E[yyT ] be the correlation matrix of y and Cη the covariance

matrix of η. Hence,

Ry = bT E[qT q]b + Cη. (1.9)

The correlation matrix, Ry, is of size 2P × 2P and can be estimated from the sequence of points
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representing the shapes as Ry = 1
F

∑F

f=1 yfy
T
f , where yf is the vector y (defined above) in the

frame f . The expectation on the right hand side of equation (1.9) can be computed similarly as

E[qT q] = 1
F

∑F

f=1 qT
f qf , where qf is the vector q (defined above) for frame f and is obtained

from the matrix Q in equation (1.6).

The noise covariance matrix, Cη, represents the accuracy with which the feature points are

tracked and needs to be estimated from the image frames. Since η need not be an independent

and identically distributed (IID) noise process, Cη will not necessarily have a diagonal structure

(but it is symmetric and positive semi-definite). For the purposes of setting a precise threshold

(which will become clear soon), it is desirable that Cη be a diagonal matrix.

Consider the diagonalization of Cη = PΛPT , where Λ = diag[Λs, 0] and Λs is an L × L

matrix of non-zero singular values of Λ. Let Ps denote the orthonormal columns of P corresponding

to the non-zero singular values. Therefore,

Cη = PsΛsP
T
s . (1.10)

Premultiplying equation (1.8) by (PsΛ
1

2

s )−1, we see that (1.8) becomes

ỹ = b̃TqT + η̃, (1.11)

where ỹ = Λ
−

1

2

s PT
s y is a L × 1 vector, b̃T = Λ

−
1

2

s PT
s bT is a L × 6K matrix and η̃ = Λ

−
1

2

s PT
s η.

It can be easily verified that the covariance of η̃ is an identity matrix IL×L. This is known as the

process of “whitening”, whereby the noise process is transformed to be IID [75].

Representing by Rỹ the correlation matrix of ỹ, it can be seen that

Rỹ = b̃T E[qT q]b̃ + I = ∆ + I, (1.12)

where, for simplicity, ∆
∆
=b̃T E[qT q]b̃. Now, Rỹ is of dimension L × L, b̃T is of rank L × 6K

and E[qT q] is of rank 6K × 6K. Thus, ∆ has maximum rank 6K, where K is the number of
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basis shapes (assuming L > 6K). This is based on the fact that if Am×n = Fm×rGr×n, then the

Rank(A) ≤ r. For a general 3D scene undergoing translation and rotation, the rank will be 6K,

which is the case we will consider below. Representing by µi(A) the ith eigenvalue of the matrix

A, we see that

µi(Rỹ) = µi(∆) + 1, for i = 1, ..., 6K, and

µi(Rỹ) = 1, for i = 6K + 1, ..., L. (1.13)

Hence, there are 6K eigenvalues above 1. By counting the number of eigenvalues that are greater

than 1 and dividing it by 6, we can obtain an estimate of K, which is the dimensionality of the

shape space represented by the sequence of deforming points. Since K denotes the number of basis

shapes that can model the feature point sequence, it provides a measure of the deformability of

the shape sequence. The more the number of basis shapes required to model a shape sequence,

the more deformable it is. Thus, for a general 3D scene undergoing translation and rotation, we

have

Deformability Index =
#eigenvalues of Rỹ > 1

6
. (1.14)

1.4.3 Properties of the Deformability Index

• For the case of a 3D rigid body, the deformability index is 1. In this case, the only variation

in the values of the vector y from one image frame to the next is due to the global rigid

translation and rotation of the object. The rank of the matrix ∆ will be 6 [80, 79] and the

deformability index will be 1.

• For the special case of a planar scene, the corresponding rank of ∆ would be 4K, and thus

the deformability index should be calculated by dividing the number of eigenvalues over 1

by 4.

• Estimation of the deformability index does not require explicit computation of the 3D struc-

ture and motion in equation (1.6), since we need to compute the eigenvalues of the covariance
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matrix of the 2D feature positions. In fact, for estimating the shape and rotation matrices

in equation (1.6) it is essential to know the value of K. Thus the method outlined in Section

1.4.2 should precede computation of the shape in Section 1.3. Using our method, it is possible

to obtain an algorithm for deformable shape estimation without having to guess the value of

K.

• The computation of the deformability index takes into account any rigid 3D translation and

rotation of the object (as recoverable under a scaled orthographic camera projection model),

even though it has the simplicity of working only with the covariance matrix of the 2D

projections. Thus it is more general than a method that considers purely 2D image plane

motion.

• The “whitening” procedure described above enables us to choose a fixed threshold of one for

comparing the eigenvalues.

1.5 Experimental Results

We applied our method for two very different types of events. In the first, we recognize the activities

performed by an individual, e.g. walking, running, sitting, crawling, etc. We show that the use

of 3D models as the intermediate step allows us to recognize these activities independent of the

viewing direction. We also show how activity recognition can be done in a multi-camera framework.

In the second set of experiments, we show the effect of our method in recognizing the activities of a

group of people, represented as point objects. We show that we can identify abnormal behavior in

this group. The application of this method to the problem of video summarization and discovering

new activities is also discussed.

Our activity recognition algorithms are based on the computed 3D models and consist of a

learning/training phase and a testing one. During the training phase, the 3D models for various

activities are computed. Given a test sequence, the 3D model estimated from this sequence is

compared with that learned before and a similarity score is computed based on a measure of the

difference of the two 3D models. The exact method for computing this difference is based on the
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particular application and is explained in detail later. However, before it is possible to compute the

3D models, we need to estimate the number of basis shapes required to represent the deformable

shape sequence. For this reason, we first present our results on the deformability index.

1.5.1 Estimation of Deformability Index

Experimental evaluation of the theory for estimation of the deformability index was carried out on

simulation data and real life imagery.Next, we applied our theory to walking sequences of humans

as available in the USF Gait Challenge Database [60]. Here we found that our deformability

estimates are in accordance with some of the results on shape representation reported in the gait

recognition literature. In both the experiments, the shapes were centered in the image frames,

scaled and aligned so as to make the human body upright.

Experiments With Simulation Data The first set of experiments was conducted by simulating a

deforming shape as a combination of rigid shapes. The aim was to test the validity of the theory in

predicting the deformability index, when the number of basis shapes is known. We simulated a se-

quence of deformable shapes as a combination of two rigid shapes. Examples of the shape sequence,

projected to the 2D image plane, are shown in Figure 1.3(a). The shape was sampled uniformly

around its boundary starting at a fixed point, thereby maintaining correspondence between the

different frames. Noise of known variance was added to the feature positions. We estimated the

deformability index using the theory described in Section 1.4.2. When the noise variance was low

(about 10 pixel variance), the number of basis shapes (i.e. the deformability index) was correctly

estimated to be 2. As the noise was increased, the error in the estimate of the deformability index

was higher, but the estimate was never more than 3 (for a standard deviation of about 7 pixels).

This simple experiment serves as the initial validation of the estimate of the deformability index.

Experiments With Motion Capture Data In this experiment, we computed the deformability

index of the human body for a large number of activities, and found them to be very consistent

with what would be expected intuitively by a human observer. We used the motion-capture data
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Figure 1.3: (a): Examples of the simulated shape sequence. (b): Plot of the eigenvalues, in
decreasing order of magnitude, for a typical walking sequence in the USF database.

available from Credo Interactive Inc. and Carnegie Mellon University in the BioVision Hierarchy

and Acclaim formats. It has a number of examples of different activities and is thus a rich dataset

for studying shape sequences. 1 The combined dataset included a number of subjects performing

various activities, like walking, jogging, sitting, crawling, brooming, etc. For each of these activities,

we had multiple video sequences. Also, many of the activities contained video from different

viewpoints.

Using the video sequences and the theory outlined in Section 1.3, we computed the 3D basis

shapes and their combination coefficients (see equation (1.1)). The first basis shapes are shown in

Figure 1.4 for six different activities.

For the different activities in this database, we computed the deformability index from

equation (1.14). The deformability index, computed for each of these sequences, is shown in Table

1. Since this value denotes the number of basis shapes required to represent the video sequences, we

resynthesized the original sequences using the basis shapes and combination coefficients obtained

from equation (1.6). Equation (1.3) was used for the synthesis and the value of K was determined

by the procedure in Section 1.4.2. In all the cases, the error at none of the feature points was more

than 1 pixel.

From Table 1.1, a number of interesting observations can be made. For the walk sequences,

the deformability index was between 5 and 6. This matches the hypotheses in papers on gait

recognition where it is mentioned that about five exemplars are necessary to represent a full cycle

1While there are a number of standard datasets for shapes, we could not find any large datable for the study of
shape sequences.
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Table 1.1: Deformability Index for Human Activities Using Motion Capture Data

Activity Deformability Index Activity Deformability Index

1 Walk (Seq. 1) 5.8 10 Broom (Seq. 2) 8.8
2 Walk (Seq. 2) 4.7 11 Jog 5.0
3 Fast Walk 8.0 12 Blind walk 8.8
4 Walk while throwing hands around 6.8 13 Crawl 8.0
5 Walk with drooping head 8.8 14 Jog while taking U-turn (Seq. 1) 4.8
6 Sit (Seq. 1) 8.0 15 Jog while taking U-turn (Seq. 1) 5.0
7 Sit (Seq. 2) 8.2 16 Broom in a circle 9.0
8 Sit (Seq. 3) 8.2 17 Female Walk 7.0
9 Broom (Seq. 1) 7.5 18 Slow Dance 8.0

of gait [41]. The number of basis shapes increases for fast walk, as expected from some of the

results in [78]. When the person walks doing some other things (like moving head or hands or

a blind person’s walk), the number of basis shapes needed to represent it (i.e. the deformability

index) increases from that of normal walk. The result that might seem surprising initially is

the high deformability index for sitting sequences. On closer examination though, it was found

that the person, while sitting, was making all kinds of random gestures as in talking to someone

else. That increased the deformability index for these sequences. Also, the deformability index is

insensitive to changes in viewpoint (azimuth angle variation only), as can be seen by comparing the

jog sequences (14 and 15 with 11) and broom sequences (16 with 9 and 10). This is not surprising

since we do not expect the deformation of the human body to change due to rotation about the

vertical axis. The deformability index, thus calculated, is used to estimate the 3D shape, some of

which are shown in Figure 1.4 and which will be used later for activity recognition experiments.

Experiments on Gait Dataset The USF Gait Challenge Dataset [60] was used for our experiments

because of two reasons. It has a number of examples of different people walking under different

conditions. Thus it would allow us to test the consistency of the estimates for the deformability

index. Secondly, a number of researchers have reported results in this dataset and thus we would

be able to corroborate our conclusions with their results.

We used the background subtracted images of the walking person, when the person is

presenting a side view to the camera, as shown in Figure 1.2(a). The outer boundary of the person
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was sampled in order to obtain the shape vector. The method described in [76] was adopted to

estimate the variance of the noise in the feature positions from the original images. The method

uses the inverse of the Hessian matrix of the second-order partial derivatives of the intensity along

the horizontal and vertical axes. By using the same number of sample points in each frame, an

approximate correspondence was maintained between the feature points in the different frames.

We experimented with 10 subjects walking on grass and concrete surfaces and wearing different

types of shoes. For all the cases, the deformability index ranged from 3.8 to 5.2. Figure 1.3(b)

shows a typical plot of the eigenvalues arranged in descending order of magnitude along with the

threshold of one. It has been noted in [41] that four to five exemplars are needed to represent

a complete cycle of gait, using a minimum error thresholding method. Our analysis provides a

theoretical justification for the choice of the number of exemplars.

1.5.2 Shape Models for Individual Activities

We classify the various activities performed by an individual using the motion capture data de-

scribed in the previous section. Using the video sequences and the theory outlined in Sections

1.3 and 1.4, we compute the basis shapes and their combination coefficients (see equation (1.1)).

We found that the first basis shape, S1, contained most of the information. The estimated first

basis shapes are shown in Figure 1.4 for six different activities. Since the values of li are small for

i > 1, we used only the first basis shape to compute the similarity between the various activities.

In order to compute the similarity, we considered the various joint angles between the different

parts of the estimated 3D models. The angles considered are shown in Figure 1.5(a). The idea of

considering joint angles for activity modeling has been used before, e.g. in gait recognition [77].

We considered the seven dimensional vector obtained from the angles as shown in Figure 1.5(a).

The correlation between two such angle vectors was used as the measure of similarity.

The similarity matrix is shown in Figure 1.5(b). For the moment, consider the upper 13 x

13 block of this matrix. We find that the different walk sequences are close to each other. Similarly

for the sitting and brooming sequences. The jog sequence, besides being closest to itself, is also
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Figure 1.4: Plots of the first basis shape, S1 for walk, sit and broom sequences, (a)-(c), and for jog, blind
walk and crawl sequences, (d) - (f).

(a) (b)

Figure 1.5: (a): The various angles used for computing the similarity of two models is shown in the Figure.
The text below describes the seven dimensional vector computed from each model and whose correlation
determines the similarity scores. (b): The similarity matrix for the various activities, including ones with
different viewing directions and multiple cameras. The numbers correspond to the numbers in Table 1.1
for 1-16. 17 and 18 correspond to sitting and walking, where the training and test data are from two
different viewing directions.

close to the walk sequences. Blind walk is close to jogging and walking. The crawl sequence does

not match any of the rest and this is clear from Row 13 of the matrix. Thus, the results obtained

using our method are reasonably close to what we would expect from a human observer.

Next, we consider the situation where we try to recognize activities when the input video

sequences are from different viewpoints. This is the most interesting part of the method, as it
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Figure 1.6: (a) and (b) plot the basis shapes for jogging and brooming when the viewing direction is
different from the canonical one. (c) and (d) plot the rotated basis shapes.

demonstrates the strength of using 3D models for activity recognition. In our dataset, we had

three sequences where the motion is not parallel to the image plane, two for jogging in a circle and

one for brooming in a circle. We considered a portion of these sequences where the person is not

parallel to the camera. From each such video sequence, we computed the basis shapes. This basis

shape is rotated, based on an estimate of its pose, and transformed to the canonical plane (i.e.

parallel to the image plane). The basis shapes before and after rotation are shown in Figure 1.6.

This rotated basis shape is used to compute the similarity of this sequence with the others, exactly

as described above. Rows 14-18 of the similarity matrix shows the recognition performance for this

case. The jogging sequences are close to the jogging in the canonical plane (Column 11), followed

by walking along the canonical plane (Columns 1-6). For the broom sequence, it is closest to the

brooming in the canonical plane (Column 9 and 10). The sitting and walking sequences (columns

17 and 18) are close to the other sitting and walking sequences, even though they are captured

from different viewing directions.

1.5.3 Shape Models for Group Activities

In this section, we consider a very different kind of activity. A group of people get off an airplane

and walk to the terminal. Also, there are other moving objects like vehicles, airport personnel,

etc. The goal is to classify the activities of the different groups of objects (people vs. vehicles)

and to identify an abnormal behavior (e.g. a passenger straying from the normal path), using the

information available in the trajectories.

Given a video sequence with each moving point representing the motion of a different object,
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we can obtain the trajectories of all these points over the entire video sequence. The trajectory

defines the particular activity. For the case of people getting off an airplane, each person is

represented by a point. An average trajectory over all the people represents the activity of people

getting of the plane. If we have M different training video sequences with different instances of

the same activity, we can obtain many such example trajectories. Each of the example trajectories

can be sampled uniformly to produce a set of P points, each represented as a pair of x and y

co-ordinates. Note that the number of rows in the matrix W in (1.2) depends on the number of

training sequences, i.e. F = M .

During training, we compute the rotation matrix and the average shapes as explained

above. For the mth video sequence, consider the rows (2m − 1) and 2m of the matrix W, and

represent it by Wm. It represents the average trajectory of the activities in the mth training

sequence. From (1.3), we see that lm,i can be computed by taking the inner product of Wm with

RmSi, i.e.

lm,i =< Wm,RmSi > (1.15)

for each activity i = 1, ..., N and for each training video sequence m = 1, ..., M . Thus for each

activity i, we have M values of li. These multiple values of li represent a significant part of the

range of values that can be taken by different instances of these activities. Since a fixed camera is

looking at the same set of activities, the rotation matrices will not be very different between the

different instances of the same activity. Hence, all the li for each activity cluster together and can

be used for recognition.

During testing, we consider the trajectory of each object in the video sequence. The

procedure described above can be re-applied to the set of tracked points in the sequence in order

to obtain the configuration weights by projecting onto the rotated basis shapes, as in (1.15). The

cluster to which the computed li belong can be used to identify the activity. The intuitive idea

is that the set of weights learned from the training examples cover most of the possible ones for

normal activities. Thus, if projections for the test activity lie within a cluster for one of the

activities, then we can claim to have recognized that particular activity. In practice, we can set a
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threshold, T < M , for the number of projections that need to lie within a cluster for the activity

to be recognized as such. By this method, the activity of each object is individually detected and

verified in this 3D shape space. One of the advantages of our method is that it is computationally

very inexpensive, since all that it does for classification and verification is to compute projections

of tracked features onto basis shapes learned a-priori.

In the airport surveillance situation, the trajectories of the main objects are obtained using

a motion detection and tracking algorithm. In Figure (1.8)(a), we plot the average centered shapes

(i.e. after the mean of every row of W is subtracted out) for the two major activities, passengers

disembarking and the path of the luggage cart or fuel tank. The airport personnel are identified

a-priori and their motion is neglected for the purposes of this analysis. It is clear from the plot

that the shapes are very different, and successfully exploiting them can lead to a good classification

algorithm for the various activities. Also, when an abnormal event occurs (Figure (1.7)(a)), the

trajectory, as represented by the shape, is significantly deformed and can be identified.

The plot of the various values of lm,1 and lm,2 for all m, learned from the training sequences,

is shown in Figure 1.8(b), thus showing the clear demarcation between the two activities. In Figure

(1.9)(a), we show the plots of the projections of the activity of passengers deplaning on the two sets

of rotated basis shapes, learned during the training phase, i.e. RmS1 and RmS2, for m = 1, ..., 150.

Another test case is the motion of the luggage cart. Its projections on the two sets of rotated basis

shapes is shown in Figure (1.9)(b). The plots in Figure (1.9) can be used to distinguish between

the two activities, given just their motion trajectories by setting an appropriate threshold and

declaring an activity to be either one or two, depending on the number of points on either side of

the threshold. We can thus automatically verify whether each of the different tasks, like passengers

boarding a plane or luggage loaded into the cargo hold and the cart departing, were completed

successfully or not.

The next task is to determine any abnormalities. By this we mean the detection of the

case shown in Figure (1.7)(a). Since the testing is done for each object at a time, the process

can identify the concerned individual or object. As we do not have real video sequences of such
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Figure 1.7: (a): An example of an abnormal activity where the average trajectory is distorted to simulate
an abnormal behavior. (b): Projections of the abnormal activity and a normal one on the rotated basis
shapes for the first activity.

behavior, we simulated it by pulling a passenger away from the normal path. Figures (1.7)(b)

plots the projections for the abnormal activity and a normal one on the set of rotated basis shapes.

The clear difference in the projections shows the difference in the two activities, which can help to

identify the abnormal one.

The Receiver Operating Characteristic (ROC) of the activity detection algorithm, is shown

in Figure 1.10(a). The plots are obtained through simulations by varying the threshold of detection

for the two normal activities, as well as the abnormal one. For classification between the two

activities, a detection occurs when a test activity, say A, is recognized correctly from the projections

onto the set of rotated basis shapes of A, while a false alarm is defined as the case when the

projections onto the rotated basis shapes of A of the trajectory obtained from some other activity

exceeds the detection threshold. For an abnormal activity, a detection occurs when it is correctly

identified as abnormal, while a false alarm occurs when a normal activity is flagged as abnormal.

1.5.4 Video Summarization in Shape Space

We performed an experiment to summarize a three minute segment of video obtained for the airport

surveillance example in the activity shape space using the subspace analysis method. The motion

trajectories of all moving objects were considered. They included the passengers, a luggage cart
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Figure 1.8: (a) Plot of the centered shapes formed from the average trajectories of the two activities. (b)
Plot of the projections of the various instances of the two activities, as available in the training data, onto
the rotated basis shapes.
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Figure 1.9: Projections of the two activities on the rotated basis shapes for the first one are shown in (a),
while the projections on the rotated basis shapes for the second one are shown in (b).

and an airport personnel (whose motion has not been modeled as part of the training procedure,

but who can be seen at the bottom of Figure 1.2(b)). The motion trajectory of each individual

object was projected onto the set of rotated basis shapes RmSi, for m = 1, ..., 150, i = 1, 2, learned

from the training examples, as explained before. Figure 1.10(b) shows the projections form three

clusters, corresponding to the motion trajectories of 10 passengers, the luggage cart and an airport

personnel. These three clusters contain information about all the moving objects in the three-

minute segment of the video. The clusters can also be useful for identifying an abnormal activity,
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Figure 1.10: (a): ROC plots for classification of the two normal activities and the abnormal one. (b): A
video summarization example: projections of all the motion trajectories in a three minute segment of the
video sequence onto the basis shapes. The red cluster contains the projections of the passengers, the blue
of the luggage cart and magenta of the airport personnel whose motion was not modeled as part of the
training examples.

which does not lie in any of the clusters learned for the set of normal activities. Hence we see that

it is possible to summarize the motion of all objects in the scene in the shape space.

1.6 Discussion: Are 3D Models Required?

A valid question that can be raised is the following: Do we need to build 3D models of shape,

which are often not easy to obtain, is order to perform activity classification accurately? We have

performed extensive experiments to understand the role of shape and dynamics in human activity

inference. A separate paper on this issue is available [85]. We will quote two results from that

paper in order to experimentally justify the use of 3D models.

Consider the vector of points representing the activity in each frame to be α(t), t = 1, ..., F .

First we consider an autoregressive (AR) model on these points, i.e. α(t) = Aα(t − 1) + w(t), w

is a zero mean white Gaussian noise process and A is the transition matrix. If Aj and Bj (for

j = 1, 2, ...N) represent the transition matrices for two sequences representing two activities, then

the distance between models is defined as D(A, B)

D(A, B) =

j=N
∑

j=1

||Aj − Bj ||F (1.16)
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Figure 1.11: Plot of the similarity matrix for activity classification using (a) AR models, (b) ARMA
model.

where ||.||F denotes the Frobenius norm. The model in the gallery that is closest to the model of

the given probe is chosen as the identity of the person.

Next an autoregressive moving average (ARMA) model on the points is used. This linear

dynamical model can be represented as

α(t) = Cx(t) + w(t); w(t) ∼ N(0, R) (1.17)

x(t + 1) = Ax(t) + v(t); v(t) ∼ N(0, Q). (1.18)

Let the cross correlation between the observation and system noise, w and v, be given by S.

The parameters of the model are given by the transition matrix A and the state matrix C. We

note that the choice of matrices A, C, R, Q, S is not unique. But, we also know [54] that we can

transform this model to the “innovation representation”. The model parameters in the innovation

representation are unique. The model parameters are learned using the algorithm is described in

[54] and [72]. The distance between two ARMA models, ([A1, C1] and [A2, C2], is computed using

subspace angles [27] and as described in [17]. More information on this process can be found in

[85].

The plots of the similarity matrices for the activities in the MOCAP data using the AR
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and ARMA models are shown in Figure 1.11. Note that the AR model uses purely dynamical

information, while the ARMA model encodes 2D shape information also in the C matrix. Com-

paring these two figures leads to the following conclusion: A pure dynamical model (AR) has

less discriminating power than an ARMA model. For example, all the walk sequences in Figure

1.11(a) are not grouped together, as they should be. However, comparison of these two figures

with Figure 1.5(b) shows that the use of the 3D model increases the recognition performance even

when there is no change in viewing direction. For example, the similarities between jogging and

walking are clearer than when using an ARMA model. Also, crawling is clearly distinct from the

rest in Figure 1.5(b). Hence there is a clear advantage in using 3D models over 2D models for

activity classification. In addition, 3D models allow view invariant recognition and multi-camera

use, as we have explained before.
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Chapter 2

ONTOLOGY DRIVEN ACTIVITY MODELLING AND RECOGNITION

2.1 Introduction

2.1.1 What is Ontology?

Thomas Gruber defines ontology in artificial intelligence as an explicit specification of a conceptu-

alization [29]. The term ”ontology” has its roots in philosophy, in which it is defined as the study

of being, a system in which the nature and relations of being are explored. We can say that it is

a systematic representation of our knowledge about the particular system we are expressing.

It is important to distinguish ontology and taxonomy, which are commonly confused with each

other. Taxonomy, having biological origin, is categorization of concepts, in which each component

in the tree is placed on a hierarchical tree. In ontology many distinct relations can be defined in

order to represent the relations between concepts in the real world more effectively. For instance

a car can have a ”driven by” relationship with human beings. At the same time the same car can

have a ”built by” relationship with a company, which is run by human beings.

2.1.2 What can ontology provide?

Ontology provides detailed reasoning among its components. There are various terms used in

systematization of concepts. The most common term is lexicon, which is simply a list of con-

cepts, without any explicit specification of relationships between its elements. In taxonomy these

relationships are hierarchical relationships, hence limited reasoning can be applied which mainly

verifies whether an ancestral relation exists between given 2 elements. For instance we can say

that mouse is an animal as it is a mammal and mammals are animals. On the other hand ontology

can have as many relations as necessary to effectively model the concepts necessary, hence the

relations are not limited to hierarchical ones. Also ontology can be used to put constraints over
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its elements. Human beings have the ability to run and walk but do not have the ability to fly

without help of an additional device. Hence ontology can be used to build a consistent knowledge

base with logical restrictions.

2.1.3 Ontology Evaluation

Gruber defines 5 important criteria for ontology design as clarity, coherence, extendibility, minimal

encoding bias and minimal ontological commitment [29]. Jones et al define 4 different metrics

for ontology evaluation, namely syntactic quality, semantic quality, pragmatic quality, and social

quality. Each metric has individual attributes. Consistency and clarity are included as attributes

of semantic quality. Pragmatic quality has attributes for amount, accuracy of information and its

relevance for a given task. After scoring for individual definitions they calculate the overall quality

by a weighted average (depending on application) of these metrics [6].

2.1.4 Current usage and tools for ontology

Ontology research has been a concern for AI community, which recently became much more popular

with the concept of semantic web for increased search efficiency on the web with usage of meta-

data. Recently OWL Web Ontology Language (an XML based language on editing ontologies)

is recommended by W3C consortium. There are several ontology editors for OWL, particularly

Protege is a well-supported one among others [1].

2.2 Systematic metadata in visual environments

Systematic metadata can be used in various steps of automation for reliable detection and efficient

search of visual data.

2.2.1 Image Search

One fundamental usage is on image search. For instance in google, image search is based solely on

textual search the path and filename for the image file, which causes all irrelevant poses of street

fighters and wrestlers when we are looking for fighter planes in 2nd world war and type in keyword
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”fighter”. It depends on the users ability and luck to guess the naming scheme to have quality

results.

In library of congress, images are annotated by hand, and they use a system called TGM (Thesaurus

for graphic material) for retrieval on their searches [2]. Although they called it thesaurus, their

structure is taxonomy of words with a hierarchy having links to a broader ancestor and narrower

subcategories, and an additional list of links to other related words in a separate part. However

the relations of the word to the ones on the related list are not classified. Rada et al [64] assigned

weights to different relationships in the thesaurus trying to imitate human assessment in order

to improve the search quality. Kim and Kim [42] improved on their work to use the hierarchical

structure of the thesaurus more effectively. Haase and Tam worked on ways to search through

concepts rather than keywords themselves [31]. The system they built outputs users concepts that

are related to their keywords, and then the user can manually narrow down to the concept he is

interested. Yet for this to be of practical use, there should be a fine granularity large hand built

database of concepts with corresponding images which is too costly to be done for a field like search

with infinite possibilities.

2.2.2 Video Search

Another important usage for metadata is in video search, mainly used by news broadcasters like

CNN for broadcasting and documentaries; and intelligence agencies. For CNN, annotation is done

by hand and they have a huge dictionary with 400.000 words that expands with each annotation

that contains a word not added before. Yet this kind of a search is only capable of retrieving what

individual annotator sees and agreement of the terms of user with that of annotator while doing

the search.

2.2.3 Video Markup

As search becomes increasingly important, also annotation of multimedia becomes vital. There is

a high need for robust reliable automated annotation systems, and having a metadata structure

is important in order to have a unique basis on research for automated video markup. Currently,
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individual reporters do video annotation by hand for the broadcasting firms. Automation of the

video markup could provide much use, yet it is very hard without any limitation on the context.

This is why there has been extensive research on annotation tools that would assist user better,

models that would enhance consistency between annotators and the end users, and systems that

would enhance annotation with combining information/annotations from various annotators [4, 20,

19, 52, 89].However within a predefined context there has been work on automated annotations.

Bertini et al[9] provided an examplary usage of automated annotation in soccer videos, and used

this to more effectively compress the videos with higher loss rates in the parts that would be

of less importance for the audience. The decision for the importance is decided by the results

of automated annotation, which uses an ontology structure and ranks zones of important events

like playfield or zone around the goal box. Also Vetro et al worked on object-based transcoding

framework that uses relevant information for archival of long term video surveillance data[3].

2.2.4 Video Surveillance

An important aspect of security is usage of video surveillance. Security cameras are located in

places that are of strategic interest for crime, vandalism and terrorist activities. However it is

costly to assign human labor for each camera placed in these locations. Usage of automated sus-

picious event detection systems could greatly reduce the cost for security of these areas. Although

there are currently no known commercially available automated detection systems to the best of

our knowledge, continuous research is going on in this field. Here metadata is essential for for-

malizing the way to detect suspicious activities and uniting the research going on for automation

of the activity recognition in the given contexts. However usage of taxonomy will not be effec-

tive in activity recognition and event detection. Because detection of sub-events is necessary to

detect a composite event, and there are complex relations within those sub-events with different

constraints. For instance if someone is tailgating, his entrance should follow an entry of another

person authorized to enter the area (temporal constraint), and he should be hiding from the person

entering before him (spatial constraint). Because of these complex relations, if there is need for a
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systematic metadata to detect suspicious events, an ontology structure is more suitable.

As the research in automation of video surveillance matures, the need for uniting the research

for detection of components needed for larger events is accentuated. Without an agreement, pub-

lished papers will be results taken with different videos and different contexts which lack coherence.

Hence research towards complete automated surveillance systems could be much improved with

introduction of a standardization. ”Ontologies provide a way to establish common vocabularies

and capture domain knowledge for organizing the domain with a community wide agreement or

with the context of agreement between leading domain experts.”[46].

2.3 Ontology in video surveillance systems

Ontology has been recently used in different contexts for video surveillance. Chen et al used on-

tology for analysing social interaction in nursing homes[16], Hakeem and Shah used ontology for

classification of meeting videos [32].

Ontology examples given in the thesis are from the outcome of ARDA Video Event Challenge

Workshop in La Jolla, CA, at December 2003. During the workshop ontology is produced for 6

domains of video surveillance: Perimeter and Internal Security, Railroad Crossing Surveillance,

Visual Bank Monitoring, Visual Metro Monitoring, Store Security and Airport-Tarmac Security.

As output of that workshop two formal languages were developed. First one is VERL(Video event

representation language) which is an ontological representation of complex events in terms of sim-

pler subevents. The second one is VEML (Video Event Markup Language), which is used to

annotate VERL events in the videos[63].

In this section we want to examine ARDA workshop output, evaluate the ontology for different

domains in terms of ontology principles, show their strengths and weaknesses, and give examples

about how these weaknesses can be improved. Let’s first give the exact definitions for those con-

cepts:

Clarity: An ontology should effectively communicate the intended meaning of defined terms with
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complete formalism.

Coherence: An ontology should have inferences that are consistent with the definitions. At the

least, the defining axioms should be logically consistent.

Extendibility: An ontology should offer a conceptual foundation for a range of anticipated tasks,so

that one can extend and specialize the ontology monotonically.

Minimal encoding bias: The conceptualization should be specified at the knowledge level without

depending on a particular symbol-level encoding.

Minimal ontological commitment:An ontology should make as few claims as possible about the

world being modeled, allowing the parties committed to the ontology freedom to specialize and

instantiate the ontology as needed.

For more detailed definitions of clarity, coherence, minimal ontological commitment, minimal en-

coding bias, and extendibility reader is again referred to [29].

2.3.1 Clarity in Temporal Relations

In Perimeter and Internal Security Ontology, tailgating is defined as:

SINGLE-THREAD(tailgate(ent x, ent y, facility f),

AND(portal-of(entrance, f)),

Sequence(AND(approach(x, y), behind(x,y))

tail-behind(x, y),

get-access(y, entrance),

enter(y, facility),

NOT(get-access(x, entrance)),

enter(x, facility))))
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Here we see multiple problems. First problem is that this sequence is not necessary for a

tailgating event. ”tail-behind” sub-event does not need to be before get-access ”sub-event”. We

will focus on this more in the minimal commitment section. Now let’s examine another impor-

tant problem. There is no concept of time in this domain other than sequentiality. For some

events sequentiality is enough to represent the varieties that the event can have, yet there are

some events that need more complex temporal relations for coherent and complete conceptualiza-

tion. Throughout Perimeter and Internal Security ontology, and also ”Event Ontology for Store

Security” temporal relations are limited to prefix ”sequence”. Here the ”tail-behind” activity

should be an event that is occurring before ”enter” sub-event for entity x, and enter event for x

should be between the time y gets access to the entrance and the portal f for the entrance is closed

back.

Of course for all this we need the definitions for before and between in temporal relations. For

these definitions and others that are common and important in the concept of time, we can use

Ontology of time created by Hobbs et al[?]. This well documented ontology helps us get rid of

problems like synchronization and unification in temporal relationships.

A good example for application of this principle in terms of temporal coupling is seen in TSA

Tarmac security ontology, in fueling event:

Fueling

physical objects:

((v1: fuel carrier vehicle),(z1: airplane),(eq1:fuel tank opening of plane), (eq2:fuel pump

of carrier))

components:

((c1:approach(v1,z1))

(c2:open(eq1))

(c3:inside of(eq2,eq1))

(c4:together(v1,z1))
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(c5:close(eq1))

(c6:leave(v1,z1)))

constraints:

(sequence(c1,c4,c6)

(c2,c3,c5 during c4)

sequence(c2,c3,c5))

We see that here, the event c4 that corresponds to the fact of fuel vehicle being near the

plane, can not be put in any order with activities c2,c3 and c5 as it is concurrent with those

processes.

2.3.2 Clarity of Negation Concept in Time

In the tailgating event 2.3.1 we see two types of prefixes. Most prefixes like get-access, enter, tail-

behind,... are prefixes with temporal correctness. Entering event is only true for a given period

of time while the entity is entering the zone, but not in other time periods. Also there are time-

independent prefixes like portal-of, which represents that the entrance to the facility f is defined

by entrance. This is an assertion that is true independent of the time. And for that prefix we

do not need to give a time interval for it to be meaningful. This situation is accentuated more

causing an ambiguity that needs to be solved when negation is used. For example let’s have a look

at shoplifting event from Store Security ontology.

SINGLE-THREAD(shop-lift (person x, employee y, ent o),

AND(counter(area),

merchandise(o),

Close(area)

NOT present(y,area)
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Sequence(move(x,area),

Open(area)

Pick-up(x,y));

Here is an ambiguity about the negation as the employee y not being present in the area is only

true for a temporal period. It is not a truth that is independent of time. Hence for this negation

there should also be a definition for a time interval. And the time-dependent definition for not

should be introduced for time dependent prefixes. We can define it as:

NOT IN INTERVAL(prefix (entity list),time interval)

meaning that the prefix (entity list) event is never true for any sub-interval in the given time

interval. By separating time-dependent negation from negations expressing falseness of a concept,

we deal with ambiguity caused by negations that are only true for an assumed period. There is an

interesting combination that is possible here. If we try to understand meaning of time-independent

NOT of a NOT IN INTERVAL,i.e.:

NOT(NOT IN INTERVAL(prefix (entity list),time interval))

, we see that it corresponds to negation of the prefix event not being true in any sub-interval in

the given time interval. In other words, it means that the prefix event is true in at least one

sub-interval in the time interval, hence the prefix is realized in a subset of the time interval. Once

that is clear, the negation concept will not damage the clarity of the ontology anymore. This is a

common mistake that is repeated in each ontology in this workshop that uses negation.

2.3.3 Minimal Ontological Commitment

Minimal ontological commitment is another ontological principle that is violated in ontology for

most of the domains. A detailed examination for dense violation of this principle in banking sce-

nario is explained in 2.4.2, we will examine other less severe violations of this principle in this

section.

One example from perimeter security is:
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SINGLE-THREAD(suspicious-load(vehicle v, person p, ent obj, facility fac),

AND(zone(loading-area),

near(loading-area, facility),

portable(obj),

Sequence(approach(v, fac),

AND(stop(v), near(v, fac), NOT(inside(v, loading-area))),

AND(approach(p, v), carry(p, obj)),

AND(stop(p), near(p, v)),

cause(p, open(portal-of(v))),

enter(obj, v),

cause(p, close(portal-of(v))),

leave(v, facility))))

For instance minimal ontological commitment is not preserved in suspicious load. First of all,

according to this definition, for it to be a suspicious load, portal of the vehicle has to be opened in

order to load the object. Yet this will cause missing of some of suspicious loads as opening of the

portal is not a basic component that is necessary for this event. The suspicious load can be placed

onto the trailer of a truck which is open from the top, hence not using any portal, or it can even

be a bomb that is placed under the body of the vehicle. Moreover, it is not necessary that the

vehicle stops if we want to take it a little bit towards the extremes. somebody inside the vehicle

can fastly grab a bag from other suspicious person through the window or even from hand to hand

while in a motorcycle. Hence minimized ontology should only include the object being outside of

the vehicle, and then being transferred to inside of the vehicle while it is in an undesignated zone.

And this is minimal to characterize all suspicious load events, as these are the basic components

that form this event.

Another less serious violation example can be given from both perimeter security and TSA tarmac
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security, in the definiton of process approach:

PROCESS(approach(ent x, ent y),

cause(x, change(far(x, y), near(x, y))))

According to definition of approach, the event ends with entity x being near entity y. However

in the TSA and perimeter ontology, usages of approach(x,y) is followed by near(x,y), which will

not introduce any problems in terms of detection with vision systems but rather will form an

unnecessary repetition in ontology.

2.3.4 Unified Representation

Another main problem is with the representation of the ontology for these 6 domains. It is directly

seen that they have very different formats from each other. It is important to have the same for-

mat for representation of events in order to be able to examine and compare ontology for different

domains better. We suggest usage of format from TSA scenario and the banking scenario as they

both have labels for individual subcomponents of events, and hence it is easier (and more impor-

tantly uniquely possible) to represent the temporal relations between different subcomponents of

an individual event.

2.4 Application example of ontology for two different complexity domains

2.4.1 Overview

In this chapter of the thesis we will focus on the role of the context in determination of the necessity

for the ontology and required ontology complexity. 2 different domains, namely bank monitoring

and TSA (Airport and Tarmac security) are examined with a comparison done for reasoning of

ontology usage.
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2.4.2 Bank Scenario

In the bank scenario, if we examine the ontology output of the ARDA workshop, we see that

there are many safe attack scenarios having only slight differences between each other. In the

single threaded ones there are safe attacks with a single person, in which the path of the attacker

changes slightly; or a gate is open or not and these are all resulting in different activities. And

also there are multi-threaded activities that include two robbers and various combinations of slight

changes for each robber and the gate. The problem with such an approach is that, if we define

all these to be separate activities, then we should also consider activities with 3 or more robbers

as separate, and finally we will end up having infinite number of possibilities even only for a safe

attack. And though this is not complete for the safe attack itself. Because there may be many

different cases, to give example, some of the robbers may wait outside the safe and check for people

around when the others enter the safe, or even weird scenarios. They may try to enter the safe area

they are not successful; they kill the employee and runaway. Moreover there are many different

suspicious activities that has to be detected inside a bank. They may not even be robbers yet

they may be there for an assassination or terrorist activity, killing everybody not taking a single

dollar bill and running away. They may even argue with each other after or before taking money

and kill each other reservoir dogs style. To sum up there is a problem with going overly deep and

granularity issues. This also conflicts with the minimal ontological commitment criterion from the

ontology evaluation part. If we examine all these suspicious scenarios a little bit more carefully, in

all those scenarios there is at least one of 2 common behaviors.

i. Either someone is killed

ii. Or there is an unauthorized access to safe (Someone other than the employee)

And these are enough to formulate the suspicious activities in a bank (We may also include stealing

from the counter itself for a rather small scale robbery, in this case an additional behavior of taking

out a gun will be enough for handling these extra situations). Hence in this situation usage of

ontology for different types of safe attack scenarios seems like overkill. The same detection capacity

of suspicious events can simply be achieved by using at least one of the behaviors listed that are
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possible subcomponents of the overall safe attack scenario.

We implemented a simple usage of an examplary ontology for detection of suspicious events in

a bank scenario. As we explained the reasons that Arda Bank Ontology conflicts with minimal

ontological commitment, we decided to build a simple small ontology that can be used to determine

whether there is a safe attack scenario or not. The application we built using that ontological

reasoning is a simple example that is able to distinguish between safe attack scenario and an

ordinary ”no attack scenario”, in which customers deal with their transactions, wander around

and leave the bank. The simple ontology for safe attack scenario is:

safe attack: usage: safe attack(mo1,z1) physical objects:

((mo1:mobile object, ),(z1:zone))

components:

((c1:approach(mo1,z1))

(c2:inside zone(mo1,z1)))

(c3:leave(mo1,z1)))

(c4:NOT(employee((mo1))))

temporal constraints:

(sequence(c1,c2,c3))

2.4.3 TSA Scenario

Another domain for the usage of ontology in video surveillance is Tarmac and Airport Security.

Again some samples for the video frame and the background-extracted motion-tracking image are

given. In this scenario though, when we look at the ontology output for the ARDA video challenge,

we see that the ontology is minimal in the sense that only necessary and sufficient activities for

each event is written down. For instance for passenger getting on, all needed is for a passenger to

approach the airplane, and then go inside. Additional granularity details like whether passenger

has some hand luggage and leaves it to the airport employees or takes it with him are ignored,

as they are irrelevant with the getting on event of the passenger. And here we cannot also define
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suspicious activity in a minimized manner like we did in the banking scenario. In banking scenario

unauthorized safe access and/or killing of somebody was enough to decide that it is a suspicious

activity. But for an aircraft stakes are much higher, security is a much more important issue for

the safety of passengers and possible victims of a terrorist attack if the aircraft is hijacked. It

is why everything should be exactly done according to the procedures in airports. If there is at

least something not going in exact coherence with the procedure at least a closer look is vital. For

instance a passenger might approach the aircraft zone, and then leave in another direction without

entering the aircraft. Or he might enter the aircraft and then suddenly leave out of the aircraft and

go at some direction. Although this can be because of a simple reason like forgetting something

in the terminal, it is an unexpected event. And even if it seems paranoid it has at least a very

slight probability that the passenger was a terrorist placing an explosive in the plane or playing

with the controls of the plane and leaving the scenery, hence it should be dealt with increased

care than regular flight scenarios. Hence in a TARMAC security scenario everything should be in

complete consistence with the nature of events occurring normally. Any inconsistency should at

least form a warning for the security authorities of the airport. Usage of ontology for detection

of suspicious events in this case makes more sense. And the necessity for events occurring in a

specific order in spatial and temporal space means that we need constraints for the sub-events for

forming composite ones. Thus the usage of ontology for detection of such events in airport security

is not only sufficient, but also necessary.

We also implemented a simple scenario for passengers getting in and out of plane with airport

tarmac video surveillance data, in order to give an examplary usage of ontology for procedural

event detection. We used the ontology from ARDA workshop output for detecting those simple

events.

2.4.4 Experimental Results

In the following pages we give out the experimental results for the application of our ontology

models in recognition of the activities in real life. On each page we added 6 main frames summa-
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rizing the video in terms of the ontological principles each with explanations. There are 4 videos

in bank attack scenario in which a bank is being robbed in different ways. After that there are 2

more videos in bank scenario which do not contain any suspicious activity, they are mainly just

customers looking at the brochures and getting their work done at the bank. All of those activities

were correctly identified as ”safe attack”, and ”no safe attack” situations by the detections in which

ontology model was used. We want to thank Monique Thonnat for providing us different bank

scenario videos. After that there are 2 more TSA videos that contain passengers getting on to a

plane and getting off the plane. Also in both of these videos the activities were correctly detected

as passengers getting on the plane and passengers getting off the plane.
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2.5 Decision for ontology necessity in a given domain

After all this discussion with examples in a top-down strategy for determining where ontology

would be useful in different cases, we should also go bottom-up and define properties of cases

where usage of ontology would be essential.

We will put some assertions here followed by further clarification of the meaning and implications

of these assertions.

a. The power of ontology over taxonomy is effective representation of various kinds of relationships

within a group of subcomponents forming the main component.

Then this means that unless we need further relationships rather than categorization usage of

ontology is not necessary. The simplest example for this can be given as military detection of

weaponry in large amount of videos. If all we need to detect is simply a tank or anti-aircraft

machine gun, then all we need is a lexicon. If we want to generalize all them as a subgroup of

weapons and detect them altogether, then taxonomy would be enough.

b. For detection of events usage of ontology is not only sufficient but also necessary.

As events are composed of subcomponents with temporal and spatial constraints relative to each

other, usage of taxonomy would not be enough for efficient, complete and robust representation of

events.

c. For event detection, the necessary granularity for the ontology is dependent on the context

(domain).

Given the example of banking scenario, we were able to specify attack scenarios with a smaller

subset of its subcomponents, hence a more specific ontology for these 2 small subcomponents was

enough to decide that there was an attack or not.

However for the TSA data, although still unauthorized access to restricted zones has to be and is

detected with the ontology, higher level activity recognition for suspicious activities like loitering,

unplanned abandoning of the plane by one or more of the passengers during getting on process,

etc. have to be also clearly identified with the appropriate constraints. Hence usage of robust

ontology here is effective for detection of more complex events.
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(a) Robber enters and takes out a gun (b) Robber comes to counter zone to threaten
employee

(c) Employee follows order of the robber to open
the safe

(d) They both enter the safe zone

(e) They spend some time enough to take the
valuables out

(f) Robber leaves the building

Figure 2.1: Bank attack scenario 1: Robber directly goes to counter zone, takes the employee with
him and enters safe zone. After collecting valuables inside the safe he leaves the building.46



(a) Customer enters building (b) Robber comes and pushes the customer away

(c) Employee comes out of counter zone to pro-
vide access to safe

(d) Employee opens the safe

(e) Customer runs away while robber enters the
safe zone

(f) Robber leaves the building

Figure 2.2: Bank attack scenario 2: Robber directly goes to counter zone, takes the employee with
him and enters safe zone. After collecting valuables inside the safe he leaves the building. This
is exactly the same with attack scenario 1. Only difference is that there is a customer who runs
away as soon as they enter the safe.
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(a) Robbers enter the building (b) Employee moves out

(c) Employee and one of the robbers enter the
safe

(d) They get out of the safe, in the mean time,
other robber is watching

(e) Robbers get ready for the escape (f) Robbers leave the building

Figure 2.3: Bank attack scenario 3: 2 robbers enter the building. One of them takes the employee
out of counter zone and directly goes to the vault. The other one stays inside the building to watch.
After collecting valuables inside the safe they both leaves the building. Although now there are
two robbers, still the robbery event itself is realized by the robber who entered safe. If he was not
there it would not be counted as a robbery.
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(a) Customer waits in counter zone (b) Robbers enter the building

(c) One robber watchs. The other goes to man-
agement zone

(d) Robber uses manager to access management
zone

(e) They are out of safe, getting ready to escape (f) Robbers leave the building

Figure 2.4: Bank attack scenario 4: Two robbers and a customer. One robber waits inside the
building for watching and keeping the customer and the counter clerk inside the building. The
other one goes to management office, takes out the manager, and uses his access to enter the safe.
Still detection of unauthorized access to safe is enough to judge that this is a robbery
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Bank no-attack scenario 1: One customer looks around to the brochures etc, while the
other one is having his job done by the clerk
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Bank no-attack scenario 2: Another no attack scenario. Very similar to the previous
one. In both of these scenarios, there is no unauthorized access to safe
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(a) First passenger appears in entry zone (b) Passenger leaves the entry zone and ap-
proaches plane zone

(c) Other passengers start flowing through the
route while first one enters plane zone

(d) Passenger get on activity detected, other pas-
sengers are on their ways to get on the plane

(e) Last passenger moves to get on the plane (f) Last passenger gets on the plane

Figure 2.7: TSA scenario passengers getting on the plane: The expected procedure is exactly
followed, passengers come through entrance area, they approach the plane zone and they get on.
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(a) First passenger appears out of plane zone (b) Others start following the first passenger

(c) Get off activity continues while some pack
luggages they got from the chart

(d) Get off detection is complete, as already a
few passengers got off. The other passengers are
in different stages of get off activity

(e) Last passenger is also out of the plane on his
way towards exit

(f) All of the remaining passengers are approach-
ing exit zone

Figure 2.8: TSA scenario passengers get off: Regular procedure of passengers getting off the plane.
Some of them take their luggages outside, yet it is not a basic component of getting off activity
as people can simply get off even when they don’t have luggage. Yet clearly the overall procedure
can simply be represented by ontological relations shown here.
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d. Ontology should have minimal commitment and be optimized for the specific task given.

These are both highlighted also in ontology evaluation before in this thesis. However, here opti-

mization is much more important than other aspects. Because the main problem in automated

detection systems is detection and tracking of components. There already are enough problems in

these systems like noise, intensity changes, occlusion, etc. If we try to use a generic ontology for

tracking everything in various video surveillance systems like railroads and airports, we would have

more choices of detection for a vehicle to be a small train or a luggage truck. Of course each one

makes much more sense in their respective domains. As the video surveillance system is a stable

system regarding the fact that it is theoretically built to stay in its original position forever, there

is no fault in optimizing the system for its own view. Still there should be some common activities

in both domains like people walking, running, etc. Yet these are already grouped under video

surveillance common activities section for these 6 domains in ARDA video challenge workshop

anyway. The importance of ontology is on agreement, definition and clarification of the concepts.

Once these concepts are agreed on, it would be much easier to produce specific automated sys-

tems for individual domains and increase their effectiveness with ongoing research over a common

ground.

2.5.1 Event detection after ontology

After the ontology is designed, then there comes the necessity of detecting events using the model

we have. Individual sub-parts of the ontology with spatial constraints (like being close to safe zone,

or being inside the tarmac zone) can be detected in the video simply by tracking and background

extraction. Once those individual sub-parts are determined, the event with temporal constraints

is formed by a sequential order of those sub-parts within a time interval. Regular expressions

are enough to describe such relationships and DFAs can be used to detect those events. As

multithreading is possible (combination of different events simultaneously), a state for each DFA

should be kept every moment. If one of the detected sub events is the beginning transition for
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one of the activities, then corresponding state can be changed. Here, also the importance of

ontology minimalism is accentuated, as the DFAs for a non-minimal ontology would result in

missed detections and ambiguities for separate events, damaging the robustness of the overall

system.
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Chapter 3

Conclusion and Future Work

In this study, we proposed two different methodologies for activity modeling and recognition.

In the first part we have proposed a method for activity modeling and inference using 3D deformable

shape models representing the configuration of points taking part in the activity. The 3D shape

is estimated from the motion trajectories of the points under the assumption of weak perspective

projection. The approach fits into the general framework of inferring high level information about

different activities starting from the trajectories. Our approach is independent of the viewing

direction of the camera and can be extended to the situation of a video sensor network looking

at the scene. We have also proposed a method for estimating the amount of deformation in a

shape sequence, terming it as the “deformability index”. This is used in the estimation of the 3D

shape models. Experimental results are shown for classifying between various human activities

like walking, jogging, sitting, etc., as well as for the activities of a group of people in an airport

surveillance scenario.

In the second part, ontology is examined as a structure of metadata. Usage of metadata for different

fields of vision are discussed, and then it is decided that the usage of ontology is not needed for

image search without subjective reasoning necessity, and it may be an overkill for applications that

do not need an event detection scheme. For instance in video search if the objective is to detect

a particular type of object (tank, weaponry, particular background, etc.) throughout videos, than

taxonomy should be enough to model the metadata essential for the search. Then the usage of

ontology in video surveillance is focused on. It is explained that it is necessary to use ontology

whenever there is a need to effectively detect events. It is shown that whether the granularity of

the ontology in a video surveillance system is dependent on the context of surveillance data. 2

different contexts are examined to give a better example, bank monitoring and tarmac security. It

is shown that the necessity of higher-level ontology for detection of suspicious activities is highly
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dependent on the procedural nature of the events occurring in the given domain. Hence although

it is not necessary to use higher-level granularity ontology for bank monitoring, for tarmac security

it is an important and necessary idea for correctly modeling suspicious event detection. As soon

as the ontology for individual domains are finalized and some standardization is provided then

individual research areas for automated surveillance detection will have a common ground to work

on, so that isolation and improvement can be done in a synchronized and growing fashion. Once

the requirements are absolutely clarified, it would also be much more convenient to effectively

evaluate and compare the efficiency of various systems for a standardized purpose. It is important

to have a unified direction for the research with a common ground, otherwise all we will end up

is a bunch of random walks that add up to only slightly further than where we stand for a large

amount of effort.
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