277 research outputs found

    Computational modeling of improvisation in Turkish folk music using Variable-Length Markov Models

    Get PDF
    The thesis describes a new database of uzun havas, a non-metered structured improvisation form in Turkish folk music, and a system, which uses Variable-Length Markov Models (VLMMs) to predict the melody in the uzun hava form. The database consists of 77 songs, encompassing 10849 notes, and it is used to train multiple viewpoints, where each event in a musical sequence are represented by parallel descriptors such as Durations and Notes. The thesis also introduces pitch-related viewpoints that are specifically aimed to model the unique melodic properties of makam music. The predictability of the system is quantitatively evaluated by an entropy based scheme. In the experiments, the results from the pitch-related viewpoints mapping 12-tone-scale of Western classical theory and 17 tone-scale of Turkish folk music are compared. It is shown that VLMMs are highly predictive in the note progressions of the transcriptions of uzun havas. This suggests that VLMMs may be applied to makam-based and non-metered musical forms, in addition to Western musical styles. To the best of knowledge, the work presents the first symbolic, machine-readable database and the first application of computational modeling in Turkish folk music.MSCommittee Chair: Parag Chordia; Committee Member: Gil Weinberg; Committee Member: Jason Freema

    A computational analysis of Turkish makam music based on a probabilistic characterization of segmented phrases

    Get PDF
    This study targets automatic analysis of Turkish makam music pieces on the phrase level. While makam is most simply defined as an organization of melodic phrases, there has been very little effort to computationally study melodic structure in makam music pieces. In this work, we propose an automatic analysis algorithm that takes as input symbolic data in the form of machine-readable scores that are segmented into phrases. Using a measure of makam membership for phrases, our method outputs for each phrase the most likely makam the phrase comes from. The proposed makam membership definition is based on Bayesian classification and the algorithm is specifically designed to process the data with overlapping classes. The proposed analysis system is trained and tested on a large data set of phrases obtained by transferring phrase boundaries manually written by experts of makam music on printed scores, to machine-readable data. For the task of classifying all phrases, or only the beginning phrases to come from the main makam of the piece, the corresponding F-measures are.52 and.60 respectively.Scientific and Technological Research Council of Turkey, TUBITAK (112E162

    Proceedings of the 6th International Workshop on Folk Music Analysis, 15-17 June, 2016

    Get PDF
    The Folk Music Analysis Workshop brings together computational music analysis and ethnomusicology. Both symbolic and audio representations of music are considered, with a broad range of scientific approaches being applied (signal processing, graph theory, deep learning). The workshop features a range of interesting talks from international researchers in areas such as Indian classical music, Iranian singing, Ottoman-Turkish Makam music scores, Flamenco singing, Irish traditional music, Georgian traditional music and Dutch folk songs. Invited guest speakers were Anja Volk, Utrecht University and Peter Browne, Technological University Dublin

    Computational Analysis of Greek folk music of the Aegean islands

    Get PDF
    Αν και έχουν αναπτυχθεί νεότερα και πιο ανεπτυγμένα μοντέλα υπολογιστικής μουσικής ανάλυσης με στόχο την αύξηση διαθέσιμης πληροφορίας στον κλάδο της μουσικολογίας, υπάρχει πολύ λίγη έρευνα στην υπολογιστική ανάλυση δημοτικής μουσικής γενικότερα και ελληνικής δημοτικής μουσικής ειδικότερα. Στόχος της παρούσας εργασίας είναι η διερεύνηση ποικίλων τύπων μουσικών χαρακτηριστικών και προτύπων στη δημοτική μουσική των νησιών του Αιγαίου και η παροχή χρήσιμης πληροφορίας σχετικά με τη δομή και το περιεχόμενο του εν λόγω είδους. Επιπρόσθετα, με στόχο τη σύγκριση μουσικών αποσπασμάτων χορών Συρτού και Μπάλου, αλλά και γεωγραφικών περιοχών από τις οποίες προέρχονται, 73 αποσπάσματα συγκεντρώθηκαν συνολικά σε μια βάση δεδομένων και αναλύθηκαν. Η εξαγωγή χαρακτηριστικών και η ανάλυση προτύπων ανέδειξαν μελωδικές και ρυθμικές διαφορές τόσο ανάμεσα στα δύο είδη χορών όσο και στις διάφορες νησιωτικές περιοχές, ενώ υπήρξαν επίσης ποικίλες ομοιότητες σε όλο το σύνολο των δεδομένων.While newer, advanced computational music analysis models have been developed with the intentions of increasing available information in this field, very little research exists on the computational analysis of folk music in general and Greek folk music in specific. The aim of this study was to examine various types of musical features and patterns in the folk music of the Aegean islands and provide useful information about the structure and the content of this music style. In addition, to compare the tunes of Syrtos and Mpalos dances, but also the various island regions from which they originate, a total of 73 tunes were included in the constructed dataset and the analyses. Feature extraction and pattern analysis revealed that there are indeed melodic and temporal differences both between the two dance types and between the island regions, while there were also various important similarities throughout the whole dataset

    A Computational Approach to the Detection and Prediction of (Ir)Regularity in Children's Folk Songs

    Get PDF
    We examine (ir)regularity in the musical structure of 736 monophonic children's folk songs from 22 European countries, by simulating and detecting (ir)regularity with the computational model, IDyOM, and our own algorithm, Ir_Reg, which classifies melodies according to regularity of their musical structure. IDyOM offers a range of viewpoints which allow observation and prediction of various musical features. We used five viewpoints to measure the information content and entropy of musical events in songs. Analysis across the data shows absence of irregular musical structure in children's folk songs from Croatia, Serbia, Turkey, Portugal, Hungary, and Romania. Conversely, absence of regular structure in children's folk songs was found in Great Britain, Norway and Switzerland. Further analysis of (ir)regularity, by individual country, revealed the importance of patterns repeated at pitch in regular songs, and a higher occurrence of transposed repeated patterns in irregular songs. Principal component analysis (PCA) shows the salience of pitch and pitch intervals in the perception of (ir)regular structure. Neither rhythm nor contour affects the perception of regularity. Recurring pulse/meter and arch-like melodic structure were found in the majority of children's folk songs. The study shows that irregularity exists in children's folk songs, and that this genre can be complex

    Kompozicionalni hierarhični model za pridobivanje informacij iz glasbe

    Full text link
    In recent years, deep architectures, most commonly based on neural networks, have advanced the state of the art in many research areas. Due to the popularity and the success of deep neural-networks, other deep architectures, including compositional models, have been put aside from mainstream research. This dissertation presents the compositional hierarchical model as a novel deep architecture for music processing. Our main motivation was to develop and explore an alternative non-neural deep architecture for music processing which would be transparent, meaning that the encoded knowledge would be interpretable, trained in an unsupervised manner and on small datasets, and useful as a feature extractor for classification tasks, as well as a transparent model for unsupervised pattern discovery. We base our work on compositional models, as compositionality is inherent in music. The proposed compositional hierarchical model learns a multi-layer hierarchical representation of the analyzed music signals in an unsupervised manner. It provides transparent insights into the learned concepts and their structure. It can be used as a feature extractor---its output can be used for classification tasks using existing machine learning techniques. Moreover, the model\u27s transparency enables an interpretation of the learned concepts, so the model can be used for analysis (exploration of the learned hierarchy) or discovery-oriented (inferring the hierarchy) tasks, which is difficult with most neural network based architectures. The proposed model uses relative coding of the learned concepts, which eliminates the need for large annotated training datasets that are essential in deep architectures with a large number of parameters. Relative coding contributes to slim models, which are fast to execute and have low memory requirements. The model also incorporates several biologically-inspired mechanisms that are modeled according to the mechanisms that exists at the lower levels of human perception (eg~ lateral inhibition in the human ear) and that significantly affect perception. The proposed model is evaluated on several music information retrieval tasks and its results are compared to the current state of the art. The dissertation is structured as follows. In the first chapter we present the motivation for the development of the new model. In the second chapter we elaborate on the related work in music information retrieval and review other compositional and transparent models. Chapter three introduces a thorough description of the proposed model. The model structure, its learning and inference methods are explained, as well as the incorporated biologically-inspired mechanisms. The model is then applied to several different music domains, which are divided according to the type of input data. In this we follow the timeline of the development and the implementation of the model. In chapter four, we present the model\u27s application to audio recordings, specifically for two tasks: automatic chord estimation and multiple fundamental frequency estimation. In chapter five, we present the model\u27s application to symbolic music representations. We concentrate on pattern discovery, emphasizing the model\u27s ability to tackle such problems. We also evaluate the model as a feature generator for tune family classification. Finally, in chapter six, we show the latest progress in developing the model for representing rhythm and show that it exhibits a high degree of robustness in extracting high-level rhythmic structures from music signals. We conclude the dissertation by summarizing our work and the results, elaborating on forthcoming work in the development of the model and its future applications.S porastom globokih arhitektur, ki temeljijo na nevronskih mrežah, so se v zadnjem času bistveno izboljšali rezultati pri reševanju problemov na več področjih. Zaradi popularnosti in uspešnosti teh globokih pristopov, temelječih na nevronskih mrežah, so bili drugi, predvsem kompozicionalni pristopi, odmaknjeni od središča pozornosti raziskav. V pričujoči disertaciji se posvečamo vprašanju, ali je mogoče razviti globoko arhitekturo, ki bo presegla obstoječe probleme globokih arhitektur. S tem namenom se vračamo h kompozicionalnim modelom in predstavimo kompozicionalni hierarhični model kot alternativno globoko arhitekturo, ki bo imela naslednje značilnosti: transparentnost, ki omogoča enostavno razlago naučenih konceptov, nenadzorovano učenje in zmožnost učenja na majhnih podatkovnih bazah, uporabnost modela kot izluščevalca značilk, kot tudi zmožnost uporabe transparentnosti modela za odkrivanje vzorcev. Naše delo temelji na kompozicionalnih modelih, ki so v glasbi intuitivni. Predlagani kompozicionalni hierarhični model je zmožen nenadzorovanega učenja večnivojske predstavitve glasbenega vhoda. Model omogoča pregled naučenih konceptov skozi transparentne strukture. Lahko ga uporabimo kot generator značilk -- izhod modela lahko uporabimo za klasifikacijo z drugimi pristopi strojnega učenja. Hkrati pa lahko transparentnost predlaganega modela uporabimo za analizo (raziskovanje naučene hierarhije) pri odkrivanju vzorcev, kar je težko izvedljivo z ostalimi pristopi, ki temeljijo na nevronskih mrežah. Relativno kodiranje konceptov v samem modelu pripomore k precej manjšim modelom in posledično zmanjšuje potrebo po velikih podatkovnih zbirkah, potrebnih za učenje modela. Z vpeljavo biološko navdahnjenih mehanizmov želimo model še bolj približati človeškemu načinu zaznave. Za nekatere mehanizme, na primer inhibicijo, vemo, da so v človeški percepciji prisotni na nižjih nivojih v ušesu in bistveno vplivajo na način zaznave. V modelu uvedemo prve korake k takšnemu načinu procesiranja proti končnemu cilju izdelave modela, ki popolnoma odraža človeško percepcijo. V prvem poglavju disertacije predstavimo motivacijo za razvoj novega modela. V drugem poglavju se posvetimo dosedanjim objavljenim dosežkom na tem področju. V nadaljnjih poglavjih se osredotočimo na sam model. Sprva opišemo teoretično zasnovo modela in način učenja ter delovanje biološko-navdahnjenih mehanizmov. V naslednjem koraku model apliciramo na več različnih glasbenih domen, ki so razdeljene glede na tip vhodnih podatkov. Pri tem sledimo časovnici razvoja in implementacijam modela tekom doktorskega študija. Najprej predstavimo aplikacijo modela za časovno-frekvenčne signale, na katerem model preizkusimo za dve opravili: avtomatsko ocenjevanje harmonij in avtomatsko transkripcijo osnovnih frekvenc. V petem poglavju predstavimo drug način aplikacije modela, tokrat na simbolne vhodne podatke, ki predstavljajo glasbeni zapis. Pri tem pristopu se osredotočamo na odkrivanje vzorcev, s čimer poudarimo zmožnost modela za reševanje tovrstnih problemov, ki je ostalim pristopom še nedosegljivo. Model prav tako evalviramo v vlogi generatorja značilk. Pri tem ga evalviramo na problemu melodične podobnosti pesmi in razvrščanja v variantne tipe. Nazadnje, v šestem poglavju, pokažemo zadnji dosežek razvoja modela, ki ga apliciramo na problem razumevanja ritma v glasbi. Prilagojeni model analiziramo in pokažemo njegovo zmožnost učenja različnih ritmičnih oblik in visoko stopnjo robustnosti pri izluščevanju visokonivojskih struktur v ritmu. V zaključkih disertacije povzamemo vloženo delo in rezultate ter nakažemo nadaljnje korake za razvoj modela v prihodnosti

    Compositional hierarchical model for music information retrieval

    Get PDF
    In recent years, deep architectures, most commonly based on neural networks, have advanced the state of the art in many research areas. Due to the popularity and the success of deep neural-networks, other deep architectures, including compositional models, have been put aside from mainstream research. This dissertation presents the compositional hierarchical model as a novel deep architecture for music processing. Our main motivation was to develop and explore an alternative non-neural deep architecture for music processing which would be transparent, meaning that the encoded knowledge would be interpretable, trained in an unsupervised manner and on small datasets, and useful as a feature extractor for classification tasks, as well as a transparent model for unsupervised pattern discovery. We base our work on compositional models, as compositionality is inherent in music. The proposed compositional hierarchical model learns a multi-layer hierarchical representation of the analyzed music signals in an unsupervised manner. It provides transparent insights into the learned concepts and their structure. It can be used as a feature extractor—its output can be used for classification tasks using existing machine learning techniques. Moreover, the model’s transparency enables an interpretation of the learned concepts, so the model can be used for analysis (exploration of the learned hierarchy) or discovery-oriented (inferring the hierarchy) tasks, which is difficult with most neural network based architectures. The proposed model uses relative coding of the learned concepts, which eliminates the need for large annotated training datasets that are essential in deep architectures with a large number of parameters. Relative coding contributes to slim models, which are fast to execute and have low memory requirements. The model also incorporates several biologically-inspired mechanisms that are modeled according to the mechanisms that exists at the lower levels of human perception (e.g. lateral inhibition in the human ear) and that significantly affect perception. The proposed model is evaluated on several music information retrieval tasks and its results are compared to the current state of the art. The dissertation is structured as follows. In the first chapter we present the motivation for the development of the new model. In the second chapter we elaborate on the related work in music information retrieval and review other compositional and transparent models. Chapter three introduces a thorough description of the proposed model. The model structure, its learning and inference methods are explained, as well as the incorporated biologically-inspired mechanisms. The model is then applied to several different music domains, which are divided according to the type of input data. In this we follow the timeline of the development and the implementation of the model. In chapter four, we present the model’s application to audio recordings, specifically for two tasks: automatic chord estimation and multiple fundamental frequency estimation. In chapter five, we present the model’s application to symbolic music representations. We concentrate on pattern discovery, emphasizing the model’s ability to tackle such problems. We also evaluate the model as a feature generator for tune family classification. Finally, in chapter six, we show the latest progress in developing the model for representing rhythm and show that it exhibits a high degree of robustness in extracting high-level rhythmic structures from music signals. We conclude the dissertation by summarizing our work and the results, elaborating on forthcoming work in the development of the model and its future applications

    Compositional hierarchical model for music information retrieval

    Get PDF
    In recent years, deep architectures, most commonly based on neural networks, have advanced the state of the art in many research areas. Due to the popularity and the success of deep neural-networks, other deep architectures, including compositional models, have been put aside from mainstream research. This dissertation presents the compositional hierarchical model as a novel deep architecture for music processing. Our main motivation was to develop and explore an alternative non-neural deep architecture for music processing which would be transparent, meaning that the encoded knowledge would be interpretable, trained in an unsupervised manner and on small datasets, and useful as a feature extractor for classification tasks, as well as a transparent model for unsupervised pattern discovery. We base our work on compositional models, as compositionality is inherent in music. The proposed compositional hierarchical model learns a multi-layer hierarchical representation of the analyzed music signals in an unsupervised manner. It provides transparent insights into the learned concepts and their structure. It can be used as a feature extractor—its output can be used for classification tasks using existing machine learning techniques. Moreover, the model’s transparency enables an interpretation of the learned concepts, so the model can be used for analysis (exploration of the learned hierarchy) or discovery-oriented (inferring the hierarchy) tasks, which is difficult with most neural network based architectures. The proposed model uses relative coding of the learned concepts, which eliminates the need for large annotated training datasets that are essential in deep architectures with a large number of parameters. Relative coding contributes to slim models, which are fast to execute and have low memory requirements. The model also incorporates several biologically-inspired mechanisms that are modeled according to the mechanisms that exists at the lower levels of human perception (e.g. lateral inhibition in the human ear) and that significantly affect perception. The proposed model is evaluated on several music information retrieval tasks and its results are compared to the current state of the art. The dissertation is structured as follows. In the first chapter we present the motivation for the development of the new model. In the second chapter we elaborate on the related work in music information retrieval and review other compositional and transparent models. Chapter three introduces a thorough description of the proposed model. The model structure, its learning and inference methods are explained, as well as the incorporated biologically-inspired mechanisms. The model is then applied to several different music domains, which are divided according to the type of input data. In this we follow the timeline of the development and the implementation of the model. In chapter four, we present the model’s application to audio recordings, specifically for two tasks: automatic chord estimation and multiple fundamental frequency estimation. In chapter five, we present the model’s application to symbolic music representations. We concentrate on pattern discovery, emphasizing the model’s ability to tackle such problems. We also evaluate the model as a feature generator for tune family classification. Finally, in chapter six, we show the latest progress in developing the model for representing rhythm and show that it exhibits a high degree of robustness in extracting high-level rhythmic structures from music signals. We conclude the dissertation by summarizing our work and the results, elaborating on forthcoming work in the development of the model and its future applications
    corecore