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Folk Music Analysis 2016

The Folk Music Analysis workshop brings together computational music analysis and ethnomu-
sicology. Both symbolic and audio representations of music are considered, with a broad range of
scientific approaches being applied (signal processing, graph theory, deep learning). The workshop
features a range of interesting talks from international researchers in areas such as Indian classical
music, Iranian Singing, Ottoman-Turkish Makam music scores, Flamenco singing, Irish traditional
music, Georgian traditional music and Dutch folk songs.

The 6th International Workshop on Folk Music Analysis, FMA 2016, is organised by a team of
researchers from the School of Computing of the Dublin Institute of Technology (DIT) and hosted
in the new DIT Grangegorman campus from 15th to 17th June 2016.

Some members of our committee have been involved in FMA from the very start whilst others
are new to this community. Hence we have a continuity with previous workshops while also gaining
new insights.

This year we established a collaboration between FMA and the AAWM (Analytical Approaches
to World Music) journal. Our shared scientific interests led us to the following arrangement: a best
paper will be elected and announced at the end of the FMA workshop, and its author(s) will be
guaranteed to publish a revised and extended version of the paper in a forthcoming edition of the
AAWM journal.

We want to thank the DIT School of Computing and School of Media for the financial support,
as well as the Grangegorman campus who provided us with a great venue. Thank you also to the
DIT Conservatory of Music and Drama, and to the Zurmukhti choir for their musical performances
during the workshop. Thank you to all committee members and authors for the very interesting
and diverse scientific program we had this year. Finally, thank you to everyone who participated in
some way to this edition of FMA!

Pierre Beauguitte, Bryan Duggan and John Kelleher
http://fma-2016.sciencesconf.org

Cover illustration by Olivier Chéné, 2016
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Keynote: Anja Volk, Computational pattern search in folk music:
challenges and opportunities

Abstract

In this talk I address current challenges and opportunities of computational analysis of folk
music, by taking the specific ankle on how automatic pattern search enables us to scrutinize what
it is that we really know about a specific folk music style, if we consider ourselves to be musical
experts. I elaborate my hypothesis that musical knowledge is often implicit, while computation
enables us to make part of this knowledge explicit and evaluate it on a data set. Specifically,
I address the questions as to when we perceive two folk melodies to be variants of each other,
and how to unravel style characteristics. With examples from my research on patterns in Dutch
folk songs, Irish folk songs and Rags, I demonstrate what both experts and non-experts gain from
developing computational methods for analysing folk music.
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Keynote: Peter Browne, Tuning the radio

Abstract

Irish state radio broadcasting began with the creation of the station 2RN and its first evening’s
programming broadcast from Dublin on Jan 1st 1926 - 90 years ago this year.

From a simple 3 hour programme on that first night in 1926, comprised entirely of music (to all
intents and purposes a broadcast concert), there has been an ongoing relationship between traditional
Irish music/song and radio broadcasting; each could undoubtedly have had its own amply fulfilled
existence without the other and each has experienced ever-present change and development over the
years in their own separate spheres of activity. Yet there are many connections and influences and
the purpose of the paper is to trace and attempt to enumerate and assess at least some of these.

There were determining factors on both sides of the relationship: on the radio side, technical
issues such as transmission, staffing, audience reach, sound quality and also questions of awareness
and judgement by the 2RN (later Raidió Éireann and RTÉ Radio) authorities of what might con-
stitute good taste or competence in the playing and appreciation of traditional music and indeed
this at times extended as far as knowing what would or would not be included in a definition of
traditional music and song. On the traditional music side, there was a lack of engagement for various
reasons, geographical, cultural and even class-based and the absence of a widespread language of
criticism. Traditional music had (and continues to have) different forms such as solo instrumental
expression, singing in both Irish and English, ensemble and orchestral playing and debates about
authenticity have never been far away.

Among the historical points of interest considered here are: the early years of 2RN with only
live broadcasting, auditions, the coming of the céiĺı band, orchestration, outside broadcasts and
the M.R.U. (Mobile Recording Unit), Seán Ó Riada and Ceoltóiŕı Chualann, the pre- and post-
television era, The Long Note, The Brendan Voyage, the change from RTÉ Radio as a sole player to
a proliferation of radio stations and finally the present day and the era of literally instant worldwide
digital access.

The presentation will include references from published sources, unpublished written archive
material, transmitted radio programmes and other illustrative music audio as well as some personal
communications and unedited interviews.
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A REVALUATION OF LEARNING PRACTICES IN INDIAN 
CLASSICAL MUSIC USING TECHNOLOGICAL TOOLS 

Julien Debove Dorian Cazau Olivier Adam 
EHESS Paris – CAMS 
(UMR CNRS 8557),  
Paris, France 
juliendebove@hotmail.fr 

ENSTA Bretagne - Lab-STICC  
(UMR CNRS 6285),  
Brest, France 

UPMC Univ. Paris 06, 
CNRS UMR 7190, Insti-
tut Jean Le Rond 
d’Alembert, F-75005, 
Paris, France 
 

ABSTRACT 
 
Each khyāl performance of Indian classical music is unique and 
unreproducible because it is mainly based on improvisation. As 
for most orally transmitted musical repertoires, learning practic-
es are essential as they guarantee that the musical codes are 
properly reproduced from one generation to another. In Indian 
classical music, practice, tightly imbricated in the pupil – teach-
er relation, favors clearly the imitation. Students tend to 
reproduce more or less successfully their master’s style. That’s 
why in order to be creative, it is necessary that each musician  
develops his own skills of understanding, experimentation and 
invention.  
 
 Today, technological tools have considerably transformed our 
way of learning. From now on, it is possible to have access  to 
considerable data for the understanding of traditional music, and 
to listen, record and analyse them via numerous audio soft-
wares. Indeed, works by visualization allows reporting know-
how common to all these musics (fingering, musical process, 
improvisation, patterns…). Through various softwares and prac-
tice examples from Rajam’s dynasty (hindustani violinist play-
ers), hindustani violin lessons and rāg performances, we will 
present a “toolbox” useful for all musicians and musicologist to 
improve their self-study. 
 
If the pedagogy and teaching can give us comprehension 
keys, the apprenticeship, such as it is practiced in North 
India and in the long master to pupil’s tradition, favors 
clearly the imitation at the expanse of the assimilation. 
The pupil learns above all by imitation and by impregna-
tion, without taking the time to understand or to write. 
He learns to know a number of ingredients, but does not 
inevitably learn how to use it. In this way, the pupil tends 
inexorably to reproduce with varying degrees of acute-
ness the master’s style. His space of creativity is extreme-
ly reduced even non-existent. The musician will feel dif-
ficulties finding his own style. For that purpose, it is nec-
essary to him to be able to stand back, to be able to exper-
iment, invent and understand. 

The technological tools really transformed our 
way of learning in our daily practice.  So the analysis via 
a number of IT data and software allows to understand 
and to learn musical processes, specific ornamentations, 
rarely taught. In addition, it is possible to question the 
relationship between what is taught by the master and 
what is produced on stage. Through the comparison of 
different performances, different performers and different 
learning lessons, one can clearly dissociates the stored 
material from the improvised material, i.e. the fixed com-
ponents from the modular elements. This current work 

aims to study this question, focusing on different rāg ac-
cording to the vocal tradition of khyāl within the Rajam’s 
Dynasty, violinist descendants. 

In this communication, we investigate the possibility 
of using modern computer-based technologies as a teach-
ing assistance system for Indian classical music. Due to 
its improvisation nature, a comparative approach is nec-
essary to analyse it. For example, by comparing record-
ings between Hindustani violin lessons at the Hubli-
Gurukul (India, August 2010-2012) and Hindustani rāg 
performances, it is possible to show up the way(s) Rajam 
Dynasty musicians transform the structural and structur-
ing1 elements of a rāg. At a larger scale of analysis, by 
multiplying the interpreters on a same rāg, we could 
quantitatively compare their different improvisation strat-
egies, and better understanding the fundamental elements 
of a rāg that need to be properly taught to every musi-
cian. 

1. LINKS BETWEEN PERFORMANCES AND 
APPRENTICESHIP 

We notice that it exists a correlation between Rajam’s 
lessons (Gangubai Gurukul, Hubli, India, August 2010-
2012) and musical performances. Indeed, we can observe 
that a number of formulas, that Julien Debove learned in 
Gangubai Gurukul, are repeated in the musical perfor-
mances. It means that during the performance, the musi-
cians dig into his memory bank and add it formulas 
transposed from another rāg or improvised formulas.  

As we can observe on the figure 1, the cycle is 
structured in the following way : 
• establishment of a formula -red oval-  
• suite of variations -oval yellow if it is played by one 

musician and orange rectangle if it is played by two 
different musicians- 

• resolution on C medium -fuchsia rectangle- and 
chorus2 -light pink rectangle-. 

The chorus serves as a link from one cycle to another.  
 
 

                                                             
1 The structuring elements are useful elements for the continuity of the 
structure. These elements are generally signals allowing the passage 
from a subsection to another or from one part to another. The structural 
elements are the elements forming part of the structure. 
2 Sometimes, the chorus can be substitute by a melodic phrase repeated 
three times (tihāī). 

FMA 2016 Workshop

8



  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1. Scores of the 6th rhytmic cycle of vilambit ektāl 
(slow 12 beat cycle), rāg Yaman, N. Rajam lessons, Au-
gust 2013 realized with ianalyse. 

 

2. TYPE OF IMPROVISATION AND SOUND 
REPRESENTATIONS  

2.1 Thematic variations 
If learning topics are strictly teached from master to 
student, during the performance, some rhytmic and 
timespan variations can be made. Thus, we perceive a 
slight difference in thenotion of composition, that can be 

used to talk about music of oral transmission or western 
music. The difference lies mainly in the medium used: 
· external memory for music written 
· internal memory for music of oral transmission. 
Indeed, when we use the term composition to describe 
melodies laid down by oral transmission from individuals 
to individuals, internal memory to internal memory, 
whatever audio message’s quality of memorization or 
assimilation, we can not imagine that the audio message 
will be transmitted from one generation to another 
without a slight modification, even if the references to 
earlier records can avoid excessive transformation. 

So we can perceive within the various examples 
below duration or rhythmic’s variations within theme’s 
modules (transmitted orally in a strictest way). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Vilambit Ektāl (slow 12 beat cycle),  theme, rāg 
Yaman, N. Rajam, 2012, Hubli 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Vilambit Ektāl (slow 12 beat cycle), theme, rāg 
Yaman, Ragini Shankar, 04/06/13, Lille 
 

 
 

Introductive  
formula 

 Variation 
play  
- by one  
musician 

 
 

Conclusive 
formula 

 
 

Chorus  - by two  
musicians 

Musicians N. Rajam, 
2012 

R. Shankar, 
04/06/13 

J. Debove 
08/16/13 

Formulas 
&  
variations 

1,5,6,9 1,2,4,7,11,13 1,3,4,5,6,9, 
10,11,12,13 

Thematic modules   
 

Chorus  
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11 

10 9
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4 

3 

12 

13 

FMA 2016 Workshop

9



  
 

 
 

2.2 Structural improvisation 
As underlined by Nettl (1974), we consider a musical 
repertoire, composed or improvised, as the realization of 
a system. One of the approaches to describe such a sys-
tem is to divide it into theoretical component units. These 
units are, so to speak, blocks of construction accumulated 
by tradition and of which the musicians (within the tradi-
tion) make use, by choosing, combining, recombining 
and rearranging them. These blocks of construction are, 
even in a single directory, of various types. 
 
This type of improvisation is seen in action in North Indi-
an classical music. So, in the drut tintāl (fast cycle of 16 
beat), whatever performances, we find in each perfor-
mance the same ingredients placed in a certain order and 
transposed according to the rāg. We notice also some 
fundamental processes of development defined by Wid-
dess (2006) as melodic expansion & rhythmic intensifica-
tion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Structural evolution of drut tintāl (fast 16 beat 
cycle), rāg Mālkauns  & Yaman (with Excel). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Melodic variations 
Combined together, Sonic visualizer4 and Acousmogra-
phe5 can build genuine listening guides, associating music 

                                                             
3 Fast improvised melodic lines 
4 Sonic Visualiser, developed by Queen Mary University (London) is an 
application for viewing and analysing the contents of music audio files. 
5 Acousmographe, developed by G.R.M (Paris) is a software of listening 
and visual representation of the music. He allows location, annotation 
and thorough description of any music or any sound document.  

Progressiv 
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   Specific bowing 	
  

Trembling 
ascent 

	
   Changing octave 	
  

Specific 
descent 

	
   Simple and complex Tān 	
  

High Alāp 	
   High rhythmic variation 	
  
Theme  Musical phrases repeted 

three times (tihāī) 
 

First part of 
the theme 

 

Thematic 
variations 

 Low rhythmic variation  

Suite of tān3  
 

Inflexion  
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playback, sound visualization and precise and fine analy-
sis of various extract. They allow to perceive melodic in-
flections difficult to hear, to highlight the notes and or-
namentation and understand the overall shape of the dif-
ferent musical passages. 
 
The only drawback is that the implementation of these 
tools requires a lot of time and work because all additions 
(image, text, scope, notes, ornaments) are done manually. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. N. Rajam, fast melodic line, rāg Bāgeśrī 
Kānadā, 1991  
 
Here, we perceive thanks to the visualization and annota-
tion, the particular fingering of a fast melodic line feature. 
If they are played frequently with ornamentations from 
the bottom upward, in this case, it is inverted, what gives 
a particular effect. 
 
 
 
 
 
 
 
 
 
 
Figure 6. H. Chaurasia, improvised introduction (ālāp), 
rāg Bāgeśrī, 1994 
 
In this example, it is possible to perceive an inflection of 
an almost inaudible sound upward played at the begin-
ning or at the end of musical sentences 

3. COMPREHENSION & THEORIZATION 
 
3.1 Monika6 & Carnet de Notes 
(http://carnetdenotes.paris-sorbonne.fr/ 
So, it is possible to perceive some inflections of an al-
most inaudible sound upward played at the beginning or 
at the end of musical sentences 

                                                             
6 Monika is a software of description of monodies drafted in VBA for 
Excel. Developed by N. Méeus, professor at the University Paris Sor-
bonne 

For the needs of intelligent practice respectful of tradi-
tions, it is advisable to set out fixed recordings7 and di-
verse analyses to allow, by the empirical practice, access 
to many data. From file XML, the Monika software al-
lows to do numerous statistics that are very useful for 
musical analysis (as for example, upper or lower melodic 
peaks, number of occurrences of each note, intervals most 
used, internal finales8 etc.). 
 
Here are some of these diagrams drafted thanks to Moni-
ka software: 

 
Figure 7. H. Chaurasia, rāg Mālkauns, interval, Live in 
Stuttgart, 1988 
 

 
Figure 8. H. Chaurasia, rāg Mālkauns, high melodic 
peaks, Live in Stuttgart, 1988 
 
The first diagram allows to show clearly the linearity of 
the musical way because the intervals superior to the fifth 
are almost non-existent. Furthermore, the musical way is 
mainly made by joint intervals. In a practical way, the 
analysis of the superior melodic peaks is very important 
for understanding the hierarchical organization of notes. 
So, F, although it is not strongly present in the rāg 
Mālkauns, is an important melodic pole because notes go 
there. All these data are in free access on the site “Carnet 
de notes”. 

                                                             
7 These recordings are obviously a version among many others and 
don’t represent models. It is thus that by the depth and comparative 
analysis we can have a minimum of objectivity. 
8 Monika software considers internal finals in its widest release. These 
are the notes preceding silence. 
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3.2 Musical strategy on rajam’s style in ālāp 
Melodic analysis of various ālāp9 via a synoptic view can 
distinguish different melodic phases and better 
understand the way of improvising (see figure 9). By list-
ing all internal finales in order chronological the first time 
when they appear (defined here as notes finishing a me-
lodic sentence of a duration upper at three seconds) as 
well as the set of the internal finales on C, it is possible to 
distinguish four essentials phases. (symbolized by the 
grey sinusoidal curve). 

 These phases correspond to the various possibil-
ities which offer themselves to the musician. None of the-
se phases is compulsory, but the phases 1 and 2, 3 and 4 
are consecutive (Gorakh Kalyān, Māru Bihāg, Mālkauns, 
Jog 1 & Bāgeśrī). 

We also notice that the musicians can play sole-
ly phases 3 and 4 (Yaman & Jayjayvantī) or 1 and 2 (Jog 
2 et Bāgeśrī Kānadā) or none of these phases when the 
ālāp is very short (Desī) by stressing only the tonic (C). 

3.3 OpenMusic10 
New technological tools like OpenMusic allow us to 
create musical processes modeling. So I have create a fast 
melodic line of synthesis. (see figure 10) 

It consists of groups of 4 ratings whose first note 
is accentuated (represented by the sub-patch 
"segmentation 4") groups of 3 notes that the first note is 
accentuated (represented by the sub-patch "segmentation 
3") , groups of 2 ratings whose 1st note is accentuated 
(represented by the sub-patch "segmentation 2").  

These modules are played consecutively. Notes 
within these modules are played randomly, but linearly. 
Tān begins with an onset formula and ends with fixed 
phrases repeted three times (tihāī) on the right side of the 
diagram. The scale of the tān is fixed on the left side of 
the diagram. Each time the object is revalued, music 
notation and music changes.  

What is very interesting is that it corresponds 
perfectly to a tān as could play musicians in the 
performance. 

4. PERSPECTIVES TOWARDS AUTOMATIC 
MUSIC TRANSCRIPTION 

In this paper, we presented the use of audio software for 
the analysis of improvisation styles in Indian classical 
music. These software could be more efficient by 
implementing new methods from automatic music 
transcription (AMT). However, despite a large 
enthusiasm for AMT challenges, and several audio-to-
MIDI converters available commercially, perfect 
polyphonic AMT systems are out of reach of today's 
algorithms. This lecture will be started from our previous 
works (Cazau et al., 2013 ; Cazau et al., 2015) to present 

                                                             
9 Slow intoduction where we discover the rāg and all its features. Ālāp 
also refers by extension slow improvised melodic phrases. 
10 OpenMusic (OM), developed by IRCAM Music representation re-
search group (Paris) is a visual programming language based on Lisp. 
Visual programs are created by assembling and connecting icons repre-
senting functions and data structures. 

a new multichannel capturing sensory systems of 
traditional acoustic plucked string instruments, including 
the following traditional African zithers: the marovany 
zither (Madagascar), the Mvet lute (Cameroon), the 
N'Goni harp (Mali). These systems use multiple string-
dependent sensors to retrieve discriminatingly some 
physical features of their vibrations. For the AMT task, 
such a system has an obvious advantage in this 
application, as it allows breaking down a polyphonic 
musical signal into the sum of monophonic signals 
respective to each string. The development of this 
technology has already allowed the constitution of a new 
sound dataset dedicated to AMT evaluation for plucked-
string instrument repertoires, used in Cazau et al. (2015), 
and including audio recordings, MIDI-like transcripts and 
sound samples over the instrument pitch ranges. This 
technology is very convenient to develop extensive sound 
corpus for repertoires without written supports, including 
orally transmitted repertoires, as well as improvisation. 
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Figure 9. Melodic ways of ālāp, N. Rajam & R. Shankar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Creation of a synthesis « tān »  
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ABSTRACT

The spontaneous expressive interpretation of melodic templates
is a fundamental concept in flamenco music. Consequently, the
automatic detection of such patterns in music collections sets the
basis for a number of challenging analysis and retrieval tasks. We
present a novel algorithm for the automatic detection of manually
defined melodies within a corpus of automatic transcriptions of
flamenco recordings. We evaluate the performance on the exam-
ple of five characteristic patterns from the fandango de Valverde
style and demonstrate that the algorithm is capable of retrieving
ornamented instances of query patterns. Furthermore, we discuss
limitations, possible extensions and applications of the proposed
system.

1. INTRODUCTION

Flamenco is a rich music tradition from the southern Span-
ish province of Andalucıa. Having evolved from a singing
tradition, the vocal melody remains the main musical ele-
ment, accompanied by the guitar, rhythmical hand-clapping
and dance. Gómez et al. (2016) mention, among others,
the frequent appearance of glides and protamenti, sudden
dynamic changes in volume and a small pitch range of
less than an octave, as key characteristics of the flamenco
singing voice. For a more detailed description of the genre,
we refer to Gómez et al. (2014) and Gómez et al. (2016).

Flamenco singing is largely improvisational, in particu-
lar with respect to melody: during a performance, a melodic
skeleton or a set of prototypical patterns are subject to spon-
taneous ornamentation and variation. Consequently, the
automatic detection of modified instances of a given me-
lodic sequence is a crucial step to a number of music in-
formation retrieval tasks. For example, most characteristic
melodies are uniquely bound to a particular singing style.
Consequently, detected melodic patterns provide impor-
tant indications towards the style of an unknown record-
ing. Furthermore, flamenco recordings often contain vari-
ous songs and the location of pattern occurrences can assist
the structural segmentation of a song. Moreover, the occur-
rence of common melodic patterns across tracks is crucial
to characterising similarity among melodies which exhibit
structural differences (Volk & van Kranenburg, 2012).

Given the absence of musical scores, related approaches
in the context of flamenco (Pikrakis et al., 2012) but also
in other non-Western oral music traditions (Gulati et al.,
2014) have focused on the retrieval of melodic patterns
from the fundamental frequency (f0) contour. The high
degree of detail of this representation does not only in-
crease computational complexity but is also prone to errors

arising from micro-tonal ornamentations. In this study, we
present a novel approach which operates on symbolic rep-
resentations obtained from an automatic transcription sys-
tem (Kroher & Gómez, 2016).

We provide a detailed technical description of the me-
thod in Section 2. The experimental setup is described in
Section 3 and results are given in Section 4. We conclude
the paper in Section 5.

2. METHODOLOGY

The core of our method is a modification of the well known
Needleman-Wunsch (NW) algorithm (Needleman & Wun-
sch, 1970) from the area of bioinformatics. The NW al-
gorithm was proposed as a global alignment method of
molecular sequences. The term global alignment refers to
the fact that when two sequences of discrete symbols are
being matched, the objective is to align them from the be-
ginning to the end, without omitting parts around the end-
points. During the alignment procedure, gaps are allowed
to be formed. In the original NW formulation gaps are
not penalized. Given two sequences of discrete symbols,
the original NW algorithm can be formulated as a dynamic
programming method that creates a dot matrix and finds
the best path of dots on it, i.e., a path of dots (nodes) of in-
creasing index that accumulates the largest score (number
of dots). The dot matrix (also known as similarity grid) is
formed by placing one pattern on the x-axis and the other
one on the y-axis. An element of the dot grid is set equal
to “1” if the symbols corresponding to its coordinates co-
incide.

The problem that we are dealing with in this paper can-
not be treated as a global alignment task because our goal
is to detect occurrences of a pattern in a significantly longer
stream of notes. We are therefore proposing a modification
of the NW algorithm, that preserves its fundamental char-
acteristics and adds the capability to retrieve a ranked list
of subsequences from an automatic transcription. Each re-
trieved result aligns, in some optimal sense, with the given
prototype pattern. The novelty of our aprroach lies in the
fact that it introduces a systematic way to: (a) extract itera-
tively occurrences of the reference pattern, ranked with re-
spect to similarity score, (b) embed endpoint constraints in
the NW method, (c) ensure invariance to key changes be-
cause the alignment takes place on the sequences of inter-
vals derived from the pitch sequences that are being matched,
and, (d) formulate transition costs between nodes of the
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similarity grid as a function of intervalic differences. At
a first stage, the proposed method operates on pitch se-
quences only, ignoring note durations. At a second stage,
the results are refined by removing alignments that corre-
spond to excessive local time-stretching. In the rest of this
paper, we will use the abbreviation mNW for the proposed
method.

In order to describe mNW, let A = {ai; i = 1, 2, . . . , I}
and P = {pj ; j = 1, 2, . . . , J} be the pitch sequences
of the automatic transcription and the search pattern, re-
spectively, where the ai’s and pi’s are pitch values in some
symbolic (MIDI-like) format. We therefore ignore note du-
rations at this stage. Sequence P is manually defined and
reflects our musicological knowledge of the pattern to be
detected. For example, pattern “A” of our experimental
setup (Section 3) is represented by the following sequence
of MIDI values:

{64, 67, 65, 64, 67, 65, 65, 64, 62, 60, 58, 57}

We now define that,

δP (j2, j1) = pj2 − pj1 , j2 > j1,

is the music interval formed between the j1-th and j2-th
note (pitch value) of the prototype pattern, which are not
necessarily adjacent, and, similarly

δA(i2, i1) = ai2 − ai1 , i2 > i1,

is the music interval formed between the i1-th and i2-th
note (pitch value) of the automatically generated transcrip-
tion. Therefore, the proposed mNW algorithm seeks a sub-
sequence (chain) of ai ’s, of increasing index (not neces-
sarily adjacent), such that the resulting sequence of inter-
vals matches in some optimal scoring sense, a sequence of
intervals formed by a subsequence of pi ’s of increasing
index (also not necessarily adjacent).

To solve this problem from a dynamic programming
perspective, A is placed on the vertical axis and P on the
horizontal one, forming a scoring grid, S. Let

(i, j), i = 1, 2, . . . , I, j = 1, 2, . . . , J

be a node on this grid, which aligns the i-th note of A with
the j-th note of P , and let S(i, j) be the respective accu-
mulated alignment score. The grid is initialized by setting
the elements of the last row and column of the grid equal
to zero, i.e., S(I, j) = 0, j = 1, 2, . . . , J and S(i, J) =
0, i = 1, 2, . . . , I .

We then proceed row-wise, decreasing the row index
and examining the nodes of each row at decreasing col-
umn index, which stands for a standard zig-zag scanning
procedure. The accumulated score, S(i, j), at node (i, j),
where i < I and j < J is computed as follows:

h = max{S(i+ 1, k) + γ(δA(i+ 1, i), δP (k, j));

k = j + 1, . . . , j +Gh}, (1)

v = max{S(m, j + 1) + γ(δA(m, i), δP (j + 1, j));

m = i+ 1, . . . , i+Gv}, (2)

S(i, j) = max{h, v}, (3)

where parameters Gh and Gv are positive integers that de-
fine the search radius for successors on the horizontal and
vertical axis, respectively, and function γ(.) is defined as:

γ(x, y) =





1, if x = y,

−1, if | x− y |= 1,

−∞, if | x− y |> 1,

The first two equations impose that the best successor of
node (i, j) resides either on the next row (the (i + 1)-
th row) or on the next column (the (j + 1)-th column).
Parameters Gh and Gv control the horizontal and verti-
cal gap length, respectively. In other words, they control
how many pitch values can be skipped horizontally or ver-
tically when searching for the best successor of the node.
Function γ rewards equal intervals with a score equal to
+1, penalizes with −1 any pair of intervals that differ by
one semitone and forbids intervalic differences larger than
a semitone to take place, hence the −∞ penalty. After a
node has been processed, the coordinates, (iB , jB), of its
best successor, are stored in a separate matrix, Ψ, where
Ψ = {ψ(i, j) = (iB , jB); i = 1, . . . , I, j = 1, . . . , J}.

After the whole grid has been scanned, the highest ac-
cumulated score on the first E1 columns is selected and
forward tracking on matrix Ψ reveals the best alignment
path. However, this path will be rejected if it does not
end in one of the last E2 columns of the grid. Therefore,
parameters E1 and E2 stand for the endpoint constraints
of the alignment procedure, i.e., we permit that at most
E1−1 and E2−1 notes are omitted from the left and right
endpoints of the prototype pattern, respectively. If a path
is rejected, we repeat from the second highest score until
a valid path is detected or until all nodes of the first E1

columns have been processed as candidate starting points
of the best path. Obviously, if we want the algorithm to
return two pattern occurrences, the procedure will be re-
peated until a second path is revealed, and, of course, this
can be readily extended to address any number of desired
occurrences.

Table 1 presents the best alignment result between pat-
tern A of the experimental setup and a Valverde transcrip-
tion. In this example, two notes are skipped from the auto-
matically generated transcription (5th and 10th note from
the first column) and this is shown with one inserted gap
(symbol “-”) per deleted note in the second column, in the
respective rows. It is also worth observing that the matched
subsequences are performed in different keys.

The example is further illustrated in Figure 1, where
the dotted lines connect aligned notes and the two black
notes are the ones that have been skipped on the automatic
transcription sequence.

After the first processing stage has been completed, the
obtained results are subsequently filtered at a second stage.
More specifically, in order to restrain note duration vari-
ability, we compute the sequence of inter-onset differences
of the notes of a formed path on both axes and discard any
path for which at least two ratios of aligned inter-onset du-
rations exceed a predefined stretching threshold (equal to
3 or 1/3 in our study). This is equivalent to imposing, at a
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Table 1: Best alignment result of pattern A against an au-
tomatically generated Valverde transcription: symbol “-”
marks a skipped note (gap insertion).

transcription query pattern (A)

pitch duration pitch duration

60 0.28 64 0.50
63 0.32 67 0.50
61 0.15 65 0.50
60 0.32 64 0.50
59 0.13 - -
63 0.25 67 0.48
61 0.18 65 0.50
61 0.68 65 1.00
60 0.22 64 0.50
60 0.62 - -
58 0.16 62 0.12
56 0.17 60 0.15
54 0.17 58 0.14
53 0.19 57 0.61

time [seconds]
0 0.5 1 1.5 2 2.5 3 3.5 4
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query pattern

Figure 1: Illustration of the alignment shown in Table 1.

post-preocessing stage, a local time-warping threshold.

3. EXPERIMENTAL SETUP

We demonstrate the performance of the proposed algorithm
in a query-by-example task. We aim at detecting occur-
rences of manually annotated MIDI sequences in a corpus
of automatic transcriptions of polyphonic flamenco record-
ings. In this study, we focus on fandangos de Valverde
(FV), a singing style belonging to the family of the fan-
dangos (Kroher et al., 2016).

Like most fandangos, the fandangos de Valverde are bi-
modal in a structural sense (Fernández-Marı́n, 2011): solo
guitar sections are set in flamenco mode, a scale with the
diatonic structure of the Phrygian scale but with the dom-
inant and sub-dominant located on the second and third
scale degree, respectively (Figure 2). Singing voice sec-
tions are set in major mode and modulate only in the last
verse back to flamenco mode.

Having evolved from Spanish folk tunes, songs belong-
ing to this style are based on a particular melodic skele-
ton which, during interpretation, is subject to melodic and
rhythmic modifications in terms of an expressive perfor-

Figure 2: The flamenco mode: The tonic is located on the
first, the dominant on the second and the sub-dominant on
the third scale degree.

mance. The skeleton is composed of five distinct patterns
(Figure 3) which occur in the form A-B-A’-C-A-D (where
A’ refers to a variant of A).

In this study, we use as query patterns manual tran-
scriptions of the five phrases constituting the fandango de
Valverde skeleton (Figure 3) and aim to retrieve their orna-
mented and modified occurrences in automatic transcrip-
tions of real performances. To this end, we gathered a
collection of 20 fandangos de Valverde taken from com-
mercial recordings. The cante100 dataset (Kroher et al.,
2016) was added as noise to the collection: The contained
100 accompanied flamenco recordings cover a variety of
singing styles and serve as a representative sample of fla-
menco music. None of the tracks contained in the cante100
dataset belong to the fandangos de Valverde style. For each
of the 120 tracks of the resulting collection we generated
an automatic note-level transcription of the vocal melody
using the algorithm described by Kroher & Gómez (2016).

The retrieved results are evaluated by means of the pre-
cision of the top 5 (P@5) and top 10 (P@10) ranking. A
query result is considered relevant if its origin is a fan-
dangos de Valverde recording and the detected melodic se-
quence corresponds to the query phrase.

pattern�A

pattern�A'

pattern�B

pattern�C

pattern�D

Figure 3: MIDI representations of the query patterns.

4. RESULTS

Table 2 gives the quantitative evaluation of all five query
patterns and the top 5 results for pattern A are shown in
Figure 4. It can be seen that the percentage of relevant
melodic sequences in the top ranked results is significantly
higher for patterns A, A’ and B compared to patterns C and
D. In particular, for patterns A’ and B, all of the 5 highest
ranked results are relevant with respect to the query, while
for pattern D only one relevant result is retrieved.

A reasonable explanation for this behaviour is related
to the amount of variation a pattern is subjected to during
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performance: Pattern D, referred to as caı́da in flamenco
terminology, constitutes the end phrase and, at the same
time, the musical ”highlight” of the interpretation. Dur-
ing this phrase, the melody modulates from major mode
to flamenco mode and resolves in the Andalusian cadence.
Consequently, singers tend to apply more expressive re-
sources, which result in a higher performance variance.
Within a lesser extent, the same applies to pattern C, where
a high degree of ornamentation, in particular prolongation
through a sequence of grace notes, tends to appear during
the last two bars. Four examples of manual MIDI tran-
scriptions of caı́das are shown in Figure 5 in order to high-
light observed performance variation, free of possible tran-
scription errors. Furthermore, automatic transcriptions are
particularly prone to errors in the end of the singing voice
section, since the guitar accompaniment tends to signifi-
cantly increase in volume. As a result, notes belonging to
the singing voice melody might be missed and guitar notes
might be transcribed instead.

Nevertheless, it can be seen from Figure 4 that the al-
gorithm is capable of detecting ornamented and modified
occurrences of a query pattern. It is also interesting to
note that the obtained results contain a similar melodic se-
quence that was found in a recording of a different style
(Figure 4 (b)), a Bulerı́a. Despite this result being rated as
not relevant in this task, it nevertheless demonstrates the
potential of this tool for uncovering hidden structures and
similarities in the context of large mining studies.

Table 2: P@5 and P@10 measures among queries.

query P@5 P@10

A 80% 60%
A’ 100% 70%
B 100% 70%
C 40% 40%
D 20% 10%

(a) rank 1 (FV) (b) rank 2 (Bulería)

(c) rank 3 (FV) (d) rank 4 (FV)

(e) rank 5 (FV)

Figure 4: MIDI representations of the top 5 results for
query pattern A.

5. CONCLUSIONS

We presented an algorithm for melodic pattern retrieval
based on automatic transcriptions and demonstrated ex-

(a) Raya

(c) Toronjo

(b) Melvez

Figure 5: Manual transcriptions of pattern D for three
singers: (a) A. Raya, (b) M. Vélez and (c) P. Toronjo.

amples of the capabilities and limitations of the system.
Future applications are expected to include the incorpora-
tion of the algorithm in a framework for unsupervised pat-
tern detection, the retrieval of typical ornamentations from
music recordings and the detection of short melodic guitar
fragments (falsetas) in the melody of the singing voice.
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ABSTRACT 
 
The paper gives a description of an important mid-
nineteenth-century manuscript Irish music collection. It 
outlines the history of the edition and the work involved. 
The use of modern technology in the editorial process is 
considered. Undoubtedly these technological advances 
have been very helpful. However, they have also enlarged 
the scope of the project, creating new kinds of work 
which are seen as adding value to the product.  

1. INTRODUCTION 

This paper gives an overview of the James Goodman 
collection of Irish traditional music and the work 
undertaken by its editors in bringing about its publication, 
in print and on line, by the Irish Traditional Music 
Archive. The main focus of this paper is to consider to 
what extent the advent of new technology aided and 
expanded the task of the editors, and made the fruits of 
their work more accessible to the public. 

2. CANON JAMES GOODMAN (1828–1896) 

James Goodman was a native of Dingle, Co. Kerry, who 
spoke Irish from childhood. He was also a Church of 
Ireland clergyman who, towards the end of his life, was 
Professor of Irish at Trinity College Dublin (TCD). He 
was a proficient performer on the uilleann pipes. 

Goodman collected a large number of local 
traditional piping tunes and songs in Irish. In the 1860s 
he compiled a very large manuscript collection of these 
tunes and song airs, much of it directly from live 
performances.  

3. THE MANUSCRIPTS 

The manuscripts (containing 2,300 tunes in four volumes) 
were donated after his death to the TCD Library, where 
they lay unpublished until 1998. As well as the tunes 
Goodman collected directly ‘from Munster pipers’ the 
manuscript also contains copies from borrowed 
manuscripts and pieces deriving directly or indirectly 
from printed sources.  

4. THE WORK OF THE EDITORS 

An edition was envisaged which would comprise those 
tunes that Goodman took from oral tradition or from lost 
manuscripts, reset in staff notation, with errors corrected 
and tunes evidently taken from printed sources 

eliminated. The edition was also to provide indexes, 
background material and information about the individual 
tunes—including those not selected.  

5. HISTORY OF THE EDITION 

The piper and music scholar Breandán Breathnach carried 
out some preparatory work for the edition, but this was 
interrupted by his death in 1985. After his death the song 
collector and music scholar Hugh Shields took over the 
editing. He compiled a database of the whole collection, 
with eight fields containing information about the sources 
and structure of each tune, notes and the numerical codes 
devised by Breathnach (Breathnach 1982).1 This database 
(written specially in Fortran) served as a tool for tune 
analysis, generating indexes and eliminating duplicates 
by means of Breathnach codes. It also formed the basis 
for the eventual online annotated index. It had a Boolean 
search facility which retrieved items using search terms 
from a combination of fields.  

The Irish Traditional Music Archive (ITMA) 
published the first volume of the two-volume edition in 
1998, edited by Hugh Shields (Shields 1998). This 
consisted of a selection of 516 tunes, all of which were in 
Goodman’s own settings from local musicians, identified 
by Goodman himself with the letter ‘K’. (His main 
informant seems to have been the piper Thomas 
Kennedy.) The volume had a biographical introduction, 
description of editorial procedures, musical scores and an 
index of the tunes.  

Hugh Shields had done much preliminary work 
towards a second volume, and after his death in 2008 his 
wife Lisa undertook the editing of the second volume 
(Shields & Shields 2013). This was to include a further 
selection of over 500 tunes, an introduction about the 
sources, description of the manuscripts, bibliography, 
title index of the tunes in the edition and a further title 
index of all the 2,300 tunes in the manuscripts.  

5.1 Electronic Supplements 

A free supplemental index, based on the database, is 
available from ITMA on line as searchable PDF and 

                                                 
1 These codes provide a method of identifying tunes by assigning the 
numbers 1–7 to represent degrees of the musical scale to the stressed 
notes in the first couple of bars. The tonic note, usually the final, is 
given the number 1. Upper and lower octaves are indicated by a rule 
above or below the number. Anacruses and ornamentation are ignored. 
See Figure 1. 
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HTML downloads.2 This gives information about the 
structure and provenance of each of the tunes in the 
whole manuscript collection, briefly indicating parallels 
in printed sources and modern practice of session 
musicians. To have printed this in the edition would have 
added another 70 or so pages to the book, making it 
unwieldy and expensive. Also there would have been no 
way to enter corrections or add further information to the 
entries. 

Since the edition included a printed list of the 
sources referenced by abbreviations in the online index it 
was found necessary to put on line a free electronic 
version of this bibliography. This was enhanced by 
including some 150 live links leading directly to those 
publications which are publicly available in electronic 
format—a laborious task, but worth the extra trouble. 
Permanence of these online supplements is ensured by 
their being hosted on a stable archival website. 

6. HOW MODERN TECHNOLOGY HELPED THE 
EDITORS 

A cooperative publishing venture requires constant 
communication between the various people involved. 
Obviously email and the possibility of sending large files 
electronically via Dropbox has made the proofing and 
correction of text and music scores much more efficient. 

6.1 Resources used for Recognizing Tunes from Print 
in order to Eliminate them 
One major problem in preparing the second volume of the 
edition was how to identify items taken from print 
(including print-derived tunes copied from manuscripts 
Goodman had on loan). Goodman acknowledged a good 
few of his printed sources but on the whole he is reticent 
about the provenance of his tunes.  

Formerly, in order to identify tunes suspected as 
being from print the editors would have had to travel to 
libraries near and far to consult rare early volumes. 
Between the publication of the first and second ITMA 
volumes (a fifteen-year gap) facsimiles of a multitude of 
these early music collections have became available on 
and freely downloadable on the Internet. Goodman has 
many tunes of Scottish origin, and the collections of the 
National Library of Scotland3 have been particularly 
useful. The interactive online Irish collections hosted by 
ITMA4 and Na Píobairí Uilleann (Irish pipers’ 
organization)5 are also very valuable.  

6.1.1 Advantages and Limitations of Breathnach Codes 
The starting point in identifying tunes from print is 
normally the title. However, titles are notoriously variable 
and the same tune may have several titles. Various aids 
were available to the editors. Initially the editors mostly 
used the Breathnach codes mentioned above. These were 
used in Breathnach’s own card index of tunes (now 
housed in ITMA), also by James Gore’s Scottish Fiddle 
                                                 
2 http://www.itma.ie/digitallibrary/print-collection/tunes-of-the-munster-
pipers-vol-2 
3 Music at the NLS. https://archive.org/details/nlsmusic 
4 http://www.itma.ie/digitallibrary/interactivescores-all 
5 Irish Music Collections Online. http://pipers.ie/imco/ 

Index (Gore et al. 1994) and by the very large online 
databases of EAMES (Colonial Music Institute 2002). 
The codes had the great merit in being simple and also 
independent of written pitch, but they had serious 
limitations. They took into account merely the first few 
bars of the first part of the tune. Problems arose too when 
it was not easy to discern the correct tonic for the tune, or 
when reels and hornpipes had been written in 2:4 rather 
than 4:4 or common time. Nevertheless the codes were 
considered useful enough to be included in the online 
index to the edition, with alternatives suggested in 
doubtful cases.  

The editors found them of practical use in many 
ways. Being armed with a print-out of doubtful tune titles 
with their codes, they were able easily to recognize 
similar tunes in library collections being consulted. They 
were also able quickly to answer queries as to whether a 
particular melody (which might be nameless) existed in 
the Goodman collection. Breathnach’s system predates 
the digital era but, if the computer could be taught to 
recognize the tonic reliably, the codes would (if stripped 
of the indications of octave position) lend themselves 
readily to computerized retrieval techniques. 

6.1.2 Electronic Tune-finding and Tune-recognizing 
Methods 

More sophisticated web-based tune-finding strategies 
have recently been developed, mainly based on large 
internet collections of traditional dance music in ABC 
format6 (such as the mainly Irish ones by Norbek (1996–
2016) and The Session7). Bryan Duggan’s query-by-
playing Tunepal program8 proved extremely useful in 
providing clues as to alternative titles and related tunes. It 
can recognize similarities from a short sample played 
instrumentally into the program from any part of the tune, 
with the limitation (at present) that it is dependent on the 
written pitch of the ABC files. An innovative newcomer 
not available to the editors at the time is Chris Walshaw’s 
TuneGraph (like Breathnach’s system this is pitch-
independent, and relies mainly on the stressed notes). It is 
integrated into his TuneSearch9 site (Walshaw 2015).  

There are some other very good tune-finding sites 
based on ABC notation, a notably informative one being 
Andrew Kuntz’s Fiddler’s Companion (Kuntz 2003–
2012). A reliable and well-organized site, but confined 
mainly to the era of recorded sound, is Alan Ng’s Irish 
Traditional Music Tune Index (Ng 2000–2015). It is 
unusual in presenting results not as ABC or midi files, 
but as short samples of actual recorded music. It is likely 
that great advances will be continue to be made in the 
area of tune-similarity recognition (perhaps by applying 
some of the machine-learning techniques employed by 
scientists in recognizing patterns in gene sequences). 

                                                 
6 ABC is a convenient text-based format using the actual letters of 
music notes, which can be quickly displayed in staff notation. It has 
become the most popular file-sharing medium for music scores of 
traditional instrumental music. See Figure 1. 
7 The Session. https://thesession.org/ 
8 Tunepal: a Query-by-Playing Search Engine for Traditional Tunes. 
https://tunepal.org/ 
9 TuneSearch. http://abcnotation.com/search 
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Sample of Breandán Breathnach’s index card with  

references to tunes with the same code. 
Unstressed notes are disregarded. 

The tune shown above (four stresses per bar)  
ends in D and its tonic is D. 

The number 1 (in the musical scale 1–7) 
is here assigned to D. 

 

 
Two tunes with the same code 5361 • 5362 

 

‘The humours of Fermoy’ (Goodman MSS vol. 1, p. 237): 
tune no 230 in the edition – Shields (1998)  

    

‘The miller’s maid’:  
tune no 528 in O’Neill (1907)  

 
       Part of the ABC notation of the second tune: 

T:The miller’s maid [title] 
R:Reel   [type of tune] 
M:C|   [time signature] 
L:1/8      [default note length] 
K:D   [key] 
B|A2(FA) BcdB|A2(FA) BEEB||... 

Figure 1. Examples illlustrating Breathnach code and ABC format 

6.2 How Technology has Extended the Scope of 
Publications and Enabled them to Reach a Wider 
Audience 
ITMA has included the musical content of the edition 
(1,051 Goodman tunes) in its free online collection of 
over 6,000 interactive scores produced by Jackie Small. 
These have now been integrated into ITMA’s remarkable 
new PORT10 program being developed by Piaras Hoban. 
This enables interactive scores to be searched simul-
taneously across many early Irish printed and manuscript 
music collections.  

It is hoped that the annotated online index of the 
Goodman collection that emerged from the editing of 
Volume Two will be found valuable as a research tool. It 
is periodically updated so that, as new search tools are 
developed and existing ones improved, its usefulness will 
continue into the future.  

7. CONCLUSION AND FUTURE DEVELOPMENT 

The project was initiated in the pre-digital era. The recent 
electronic tune-finding and tune-recognition techniques 
would not have been particularly useful in the production 
of the first volume of the edition. That is because the 
selection of tunes was ready-made—confined to those 
516 items from local Munster musicians (marked ‘K’ by 
Goodman). 

Volume Two was another matter, because of the 
need to identify and exclude music deriving from print. In 
this case and in other ways modern technological 
conveniences have definitely been of great assistance to 
the editors. On the other hand, they have actually 
increased the work-load by making it possible to extend 
the scope of the publication in ways not previously 
possible. The labour involved in the publication and 

                                                 
10 Port: An ITMA Tune Resource. http://port.itma.ie/ 

maintenance of the online supplements and the posting of 
the music by ITMA on its website was felt to be justified 
as these enhancements add value to the production and 
reach a world-wide audience via the internet.  

It has been gratifying to learn that ITMA has 
initiated a collaborative project with TCD to make 
facsimile digitizations of the whole Goodman manuscript 
music collection publicly available on the ITMA website 
itma.ie. For an example of a facsimile page see Figure 2 
on the next page. The digital collection will be launched 
at an ITMA Goodman Symposium in October 2016. 

 
 

              

Canon James Goodman 
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Figure 2. The airs of three lyric songs in Irish on the first page of the collection: ‘The bright dawn of day’, 

‘The smooth hill where the dark woman lives’, ‘Breens Fort’ 
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ABSTRACT 

This paper investigates the construction of proximity 
graphs in order to allow users to explore similarities in 
melodic datasets. A key part of this investigation is the 
use of a multilevel framework for measuring similarity in 
symbolic musical representations. The basis of the 
framework is straightforward: initially each tune is nor-
malised and then recursively coarsened, typically by re-
moving weaker off-beats, until the tune is reduced to a 
skeleton representation with just one note per bar. Melod-
ic matching can then take place at every level: the multi-
level matching implemented here uses recursive variants 
of local alignment algorithms, but in principle a variety of 
similarity measures could be used. The multilevel frame-
work is also exploited with the use of early termination 
heuristics at coarser levels, both to reduce computational 
complexity and, potentially, to enhance the matching 
qualitatively. The results of the matching algorithm are 
then used to construct proximity graphs which are dis-
played as part of an online interface for users to explore 
melodic similarities within a corpus of tunes. 

1. INTRODUCTION 

1.1 Background 
This paper presents an investigation into constructing 
proximity graphs using a multilevel melodic similarity 
metric. The resulting graphs are displayed as part of an 
online interface for users to identify related tunes, in par-
ticular, those found within the abc notation music corpus. 

Abc notation is a text-based music notation system 
popular for transcribing, publishing and sharing music, 
particularly online. It was formalised and named by the 
author in 1993 and since its inception he has maintained a 
website, now at abcnotation.com, with links to resources 
such as tutorials, software and tune collections. 

In 2009 the functionality of the site was significantly 
improved with an online tune search engine which cur-
rently indexes over 500,000 abc transcriptions, mostly 
folk and traditional music, from across the web. Users of 
the tune search are able to view, listen to and download 
the staff notation, MusicXML, MIDI representation and 
abc code for each tune, and the site currently attracts 
around half a million visitors a year. 

In 2014 the search was enhanced with the introduction 
of TuneGraph, an online visual tool for exploring melodic 
similarity, [1]. TuneGraph uses a similarity measure to 
derive a proximity graph representing similarities within 
the abc notation corpus backing the search engine. From 
this a local graph is extracted for each vertex, aimed at 
indicating close variants of the underlying tune represent-

ed by the vertex. Finally an interactive user interface dis-
plays each local graph on that tune’s webpage, allowing 
the user to explore melodic similarities.  

A typical page display, is shown in Fig. 1, with the 
tune in standard notation, the MIDI player, the abc nota-
tion and the TuneGraph of close variants (top right). One 
of the close variants has been selected by the user (the 
vertex is enlarged) and is displayed below by the 
TuneGraph viewer (bottom right).  

Figure 1. An example of a tune page. 
A problem with the initial version of TuneGraph is that 
the similarity measure used to assess the proximity of 
variants is based on the incipit only (first three bars, ne-
glecting any anacrusis). Of course not all closely related 
incipits result from closely related tunes, so this paper 
considers a different similarity measure which uses a 
multilevel representation of each tune in its entirety.  

The introduction of this new representation has led to 
an investigation into the construction process for these 
graphs and a much better understanding of the parameters 
involved. That investigation is presented here. 

1.2 Organisation 
The rest of the paper is organised as follows. The multi-
level paradigm is not (yet!) accepted as a valuable tool in 
the symbolic music analysis toolkit so section 2 presents 
a rationale. In section 3 the multilevel matching imple-
mentation, and its use in the construction of the proximity 
graphs, is discussed: this includes two recursive variants 
of local alignment algorithms and a similarity measure 
adapted to handle their globalised nature. Experimenta-
tion and results follow in section 4 and finally, in section 
5, conclusions are presented. 
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Figure 2. Two tune variants for Speed the Plough. 

2. MULTILEVEL MATCHING: RATIONALE 

Fig. 2 shows two versions of the first 4 bars of Speed the 
Plough, a tune well-known across the British Isles (at the 
time of writing the abcnotation.com tune search has  277 
tunes with a title which includes the phrase “Speed the 
Plough”, of which 157 are exact electronic duplicates. 
The first version in Fig. 1 is drawn from an English col-
lection and the second, with the title “God Speed the 
Plough”, from an Irish collection. Clearly these tunes are 
related but with distinct differences, particularly in the 
second and fourth bars. 

It is typical in tunes like this that the emphasis is 
placed on the odd numbered notes, and in particular the 
first note of each beam. The strongest notes of the bar are 
thus 1 and 5, followed by 3 and 7. 

To capture this emphasis when matching tune variants 
it might be possible to use some sort of similarity metric 
which weights stress (so that matching 1st notes carry 
more importance than, say, 2nd notes, e.g. [2]). However, 
in this paper the approach is to build a multilevel (hierar-
chical) representation of the tunes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Multilevel coarsening of Speed the Plough 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Multilevel coarsening of God Speed the Plough 
 

Figs. 3 & 4 show multilevel coarsened versions of the 
original tunes, where the weakest notes are recursively 
replaced by removing them and extending the length of 
the previous note by doubling it.  

At level 0, i.e. the original, the tunes are quantised to 
show every note as a sixteenth note, thus simplifying the 
coarsening process. In addition the triplet in bar 3 of 
“God Speed the Plough” is simplified by representing it 
as two eighth notes, the first and last notes of the triplet. 

To generate level 1, the 2nd, 4th, 6th and 8th notes are 
removed from each bar; for level 2, the original 3rd and 
7th notes (which are now the 2nd and 4th) are removed; 
for level 3, the original 5th note (now the 2nd) is re-
moved. As can be seen, as the coarsening progresses the 
two versions become increasingly similar and thus pro-
vide a good scope for melodic comparisons which ignore 
the finer details of the tunes. 

3. IMPLEMENTATION 

This section discusses in detail the construction of the 
proximity graphs. The implementation is mostly straight-
forward. Each tune is initially normalised & quantised 
(section 3.1) and then recursively coarsened down to a 
skeleton representation with just one note per bar (section 
3.2). Melodic matching can then take place at every level 
(section 3.3) using a melodic similarity measure. A prox-
imity graph is induced by the similarity measure (section 
3.4) which is then sparsified (section 3.5). Finally section 
3.6 discusses how the multilevel framework is used. 

3.1 Normalisation 
As part of the normalisation process, each tune is cleaned 
of grace notes, chords and other ornaments. Generally 
most tunes under consideration from the abc corpus are 
single-voiced, [1], but if not, only the first voice is used 
for the matching. 

Next, each tune is quantised so that longer notes are 
replaced with repeated notes (e.g. a half note is replaced 
with 4 eighth notes); more details can be found in [1]. 

3.2 Coarsening 
The coarsening works by recursively removing “weaker” 
notes from each tune to give increasingly sparse represen-
tations of the melody. In the current implementation the 
coarsening strategy considers that the weaker notes are 
the off-beats or every other note and it is these which are 
removed (see Figs. 3 & 4). However, it should be stressed 
that the multilevel framework is not tied to a particular 
coarsening strategy and any algorithm that can be used 
(preferably recursively) to reduce the detail in the melody 
could be used in principle. For example, it should even be 
possible to use something as complex as a Schenkerian 
reduction, [3]; conversely many multilevel algorithms in 
other fields successfully use randomised coarsenings, [4]. 

Coarsening progresses until there is one note remain-
ing in each bar; it would be possible to take it further, 
coarsening down to one single note for a tune, but exper-
imentation suggests that the bar is a good place to stop. 

Exceptions to the “remove every other note” rule are 
handled with heuristics, typically for tunes in compound 
time. Thus for jigs in 6/8, 9/8 & 12/8, which are normally 
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written in triplets of eighth notes, the weakest notes are 
generally the second of each triplet. The same applies for 
waltzes, mazurkas and polskas in 3/4, so that for 3 quarter 
notes in a bar, the weakest is generally the second. The 
heuristics for dealing with these, and other less common 
time signatures, are discussed in [1]. 

3.3 Similarity Measure 
Once the multilevel representation is constructed a varie-
ty of methods could be used to compare tunes at each 
level. This is a strength of the multilevel paradigm which 
is not reliant on a particular local search strategy, [4]. 

In a recent comparison study Janssen et al., [5], sug-
gest that one of the best similarity measures for finding 
melodic segments in a corpus of folk songs is local 
alignment. Meanwhile in previous work the longest cur-
rent substring (LCSS) was used successfully within a 
multilevel context for melodic search, [6] (in fact, LCSS 
is just a special case of local alignment – see section 
3.3.2). Therefore, in this paper recursive versions of both 
local alignment and LCSS are compared (although unlike 
Janssen et al. local alignment is applied to intervals rather 
than pitches, making it transposition invariant). 

3.3.1 Local alignment (LA) 
Local alignment is a well-known technique originating 
from molecular biology. Given two strings it finds the 
optimal alignment for two sub-sequences of the originals. 
The algorithm does not require the aligned sub-sequences 
to match exactly and makes allowances for gaps and sub-
stitutions. For example the strings ***abcde** and 
*acfe**** (where the asterisks represent non-
matching entries) could potentially be aligned between a 
and e with a gap at the b and the substitution of d for f. 
Gaps, otherwise known as insertions and deletions, and 
substitutions are penalised with weights. 

The algorithm is known as local alignment (LA) be-
cause, unlike the global alignment algorithms which pre-
ceded it, mismatching sub-strings from either side of the 
alignment are not penalised (i.e. in the example the string 
of non-matching entries, indicated by asterisks, could be 
arbitrarily long without changing the alignment score). 

To compute the optimal local alignment for two strings 
of length m & n, an (m+1) x (n+1) score matrix A is con-
structed with the top row and left hand column initialised 
to zero. The remainder of the matrix is then filled using  

���, �� = max
��

����� − 1, � − 1� + ���� , ������, � − 1� + �gap��� − 1, �� + �gap0

 

 

���� , ��� = 	 ��match									if		�� = ���substitution	if		�� ≠ �� 
 

where Wmatch, Wsubstitution and Wgap represent the weights 
for a matching or substituted entry or a gap in the aligned 
sequences. The implementation discussed here follows 
Janssen et al. and uses Wmatch = 1, Wsubstitution = –1 and 
Wgap = –0.5. 

This algorithm was introduced by Smith & Waterman, 
[7]. In fact their original scheme is a little more computa-
tionally involved but the scheme above is widely used 
and is the variant tested by Janssen et al.  

To calculate the alignment score, and hence the quali-
tative similarity, the above scheme suffices. However to 
determine the aligned sub-sequences a traceback proce-
dure is required. The traceback is implemented by record-
ing a matrix of DIAG, UP or LEFT pointers for every en-
try of the score matrix indicating where the maximum 
value originated. If the maximum value is zero an END 
pointer is stored. 

The traceback starts at the pointer matrix entry corre-
sponding to the maximum score found and then tracks 
back through the pointers, terminating when it reaches an 
END. Diagonal moves indicate contiguous values in the 
two aligned sub-sequences whilst left or up moves indi-
cate gap in one of them. 

3.3.2  Longest Common SubString (LCSS) 
The longest common substring algorithm operates in a 
similar fashion to local alignment filling in an (m+1) x 
(n+1) matrix of alignment values. However, because 
there is no need to allow for gaps, no traceback is re-
quired: the position of the maximum score in the matrix 
indicates the end of the longest common substring and 
the value of this entry gives its length.  

In fact it is easy to see that, if the local alignment 
weights Wsubstitution and Wgap are sufficiently large, so that 
gaps and substitutions can never occur in an optimal 
alignment, then the LCSS algorithm is just a special case 
of local alignment. 

From here on, therefore, both algorithms, LA and 
LCSS, will be referred to collectively as local alignment, 
the main distinction between the two being that LCSS 
produces exact matching aligned substrings, is faster to 
compute and requires less memory (there is no need to 
use a full matrix and a memory efficient version exists 
which just repeatedly swaps a pair of arrays, one contain-
ing the row under calculation and one containing the pre-
vious row). Conversely, LA is more computationally 
complex and more memory intensive (if the traceback is 
required to identify the sub-sequences), but will generally 
match longer sub-sequences. Using Wmatch = 1, the simi-
larity measures or alignment scores that either algorithm 
produces represent the length of the sub-sequences 
aligned, although in the case of LA there may also be 
penalty weights for gaps and substitutions so that, for ex-
ample, the matching of abcde with acfe has a score of 
1 – ½ + 1 – 1 + 1 = 1½. 

3.3.3 Recursive local alignment = global alignment  
A problem with using LCSS, and to a lesser extent LA, is 
that they are local. For example, using LCSS, ab**ba 
has exactly the same alignment score (of 2) when 
matched with **ab and with ab**ba, even though the 
latter seems a far better match. This is because the second 
match (ba) is not accounted for. 

This was less of an issue in the predecessor to this pa-
per, [1], where LCSS was used in a multilevel melodic 
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search algorithm, since search algorithms are typically 
trying to find the best matches of a short phrase in a da-
taset of complete melodies. However for matching it is 
crucial to distinguish between tunes which match well 
across their entire length and those which perhaps only 
match for a short segment. 

Interestingly Smith & Waterman touch on this in their 
original paper where they say “the pair of segments with 
the next best similarity is found by applying the traceback 
procedure to the second largest element of [the matrix] 
not associated with the first traceback”, [7]  

Unfortunately, just working from the existing matrix 
may lead to overlapping local alignments, but instead lo-
cal alignment may be applied recursively as follows: 
when applied to two strings, S1 and S2, local alignment 
splits both into three substrings S1 = L1 + A1 + R1 and 
S2 = L2 + A2 + R2, where A1 and A2 are the aligned 
substrings (exact matches for LCSS or potentially with 
gaps and substitutions for LA), L1 and L2 are the left 
hand side unmatched substrings and R1 and R2 are the 
right hand side unmatched substrings (where any of the 
these unmatched substrings may be of length 0). Thus, 
having found A1 & A2 and split S1 & S2, local align-
ment can then be applied to L1 & L2 and to R1 & R2.  

This procedure continues recursively, terminating 
when no alignment is found, or one or both lengths of the 
substrings being aligned are 0. For example, if the start of 
S1 is aligned with the end of S2 no further recursion is 
possible as the lengths of L1 and R2 are 0. 

This recursion effectively turns the local alignment al-
gorithms LCSS or LA into a globalised similarity meas-
ure, giving an alignment score along the length of both 
strings being compared. Henceforth these Recursive algo-
rithms will be referred to as RLCSS and RLA. 

3.3.4 Biased recursive local alignment 
An issue that became apparent when using recursive 
alignment, is that the algorithm makes no distinction be-
tween one long aligned sequence and several shorter 
ones. For example (using RLCSS) abcd**** has the 
same alignment score (of 4) when compared with 
abcd**** and with **a**b**c**d**, even though 
the former seems a good match and the matching with the 
latter is essentially noise. 

To address this, the similarity measure is biased to-
wards longer aligned sub-sequences by taking the 2-norm 
(square root of the sum of squares) of the alignment 
scores found by the recursive local alignment. In the 
above example this means that the biased recursive local 
alignment score is √4, = 4 when matching abcd**** 
with abcd****, whereas when matching with 

**a**b**c**d** it is √1, + 1, + 1, + 1, = 2 . 
Space precludes detailed empirical evidence of the effect 
of this biasing but it made a huge difference to the accu-
racy of the matching in terms of removing false positives 
from the results (see also section 3.4 for typical impact). 

This biased recursive local alignment thus gives a 
measure, SXY, expressing the similarity two arrays of in-
tervals X and Y, each representing a tune. 

3.4 Constructing the fundamental proximity graph 
Neglecting the multilevel framework for now, this simi-
larity measure, SXY, induces a complete weighted graph 
on the dataset, where the edge weight between each pair 
of melodies is given by the similarity. Subsequently, 
when the graphs are displayed, edge thickness is shown 
in proportion to the weight with similar vertices joined by 
thick edges and dissimilar ones by thin edges. 

However, most edges in the graph will have very small 
weights as most melodies in the dataset are only similar 
to a few others. At this point, therefore, it makes sense to 
restrict the graph to include only edges for tunes which 
are reasonably close matches. This graph is referred to 
henceforth as the fundamental proximity graph  (FPG). 
(The FPG has an analogue in search: rather than present-
ing the whole dataset, ordered by increasing distance, 
typically search results will be restricted to a subset of 
“reasonably similar” results with some cut-off after which 
more dissimilar results are not shown.) 

This restriction could be achieved in a variety of ways 
but here it is assessed by a fundamental matching 
threshold, T, and edges between melodies are only in-
cluded in the FPG if they match across at least some pro-
portion T of their length. More specifically an edge be-
tween vertices Vx and Vy is excluded if   

SXY < max(length(X), length(Y)) * T. 
As an aside, when calculating using this threshold it is 

also possible to use the minimum length but this results in 
very short tunes (such as fragments, included in the da-
taset as examples) matching with many other tunes and 
their corresponding vertices having very high degree. 

Typical values for T in the experiments are 1/2 (very 
restrictive, excludes almost all edges), 1/3, 1/4, 1/6 and 
1/8 (fairly inclusive, allows a lot of false positives). Note 
that there is no reason for this to be a simple fraction and 
T could just as easily be set to, say, 0.40 or 0.317; frac-
tions are simply used as they tend to be more expressive. 

Note it is not the intention in this paper to determine a 
definitive value for T (even if such a value exists). In an 
ideal world this would be a user chosen parameter and in 
principle it should be possible to set some range of val-
ues, e.g. T in the interval [0.125, 0.5], which the user 
could adjust according to their needs (provided that the 
lower value is not too small to make the calculation in-
tractable – if set to 0, every edge is included and the fun-
damental proximity graph is a complete graph).  

Note it is not the intention in this paper to determine a 
definitive value for T (even if such a value exists). In an 
ideal world this would be a user chosen parameter and in 
principle it should be possible to set some range of val-
ues, e.g. T in the interval [0.125, 0.5], which the user 
could adjust according to their needs (provided that the 
lower value is not too small to make the calculation in-
tractable – if set to 0, every edge is included and the fun-
damental proximity graph is a complete graph).  

The use of biased recursive local alignment does ob-
scure what these fractions imply exactly, as it is no longer 
a case of adding up all the recursively aligned scores. To 
analyse this further consider that a large proportion of 
melodies in the dataset are 32 bar tunes in an AABB for-
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mat. This is very typical in western European folk music 
and usually means that the tune is written as 16 bars, AB, 
with repeat markers at the end of each section. For a reel 
in common time this would be quantised as 8 eighth notes 
per bar or a total of 16 x 8 = 128 notes (strictly speaking 
127 intervals).  

So if T is set to 0.5 then, when using RLCSS, to be in-
cluded two tunes would need to match exactly across at 
least half the tune (8 bars or 64 notes). 

If T is set to 0.25 then they would need to match exact-
ly across one a quarter of the tune (4 bars or 32 notes). 
Alternatively, again with T set to 0.25, they could match 
across four segments, each two bars (16 notes) long (in 
this case SXY = √16, + 16, + 16, + 16, = √1,024 =32); in other words a total of 64 notes or half the tune.  

A similar analysis for T = 0.125 shows that the edge 
can be included if the tunes match exactly over at least: 

• a single 2 bar segment (16 notes or an eighth of 
the tune); or 

• four segments, each 1 bar long (so a total of 32 
notes or a quarter of the tune); or 

• sixteen segments, each ½ a bar long (so a total of 
64 notes, or half the tune). 

and obviously many other combinations are possible.  
This gives a sense of the impact of the biased recursive 

local alignment: the matching can occur over a single 
long phrase or several shorter phrases, but for the latter 
the total length of the matching substrings will be longer. 

Using RLA the picture is more difficult to analyse: for 
any pair of tunes, the aligned sub-sequences will typically 
be longer than RLCSS (because of the inclusion of gaps 
and substitutions) but similarity scores will be lower, be-
cause of the penalties. In practice, it seems possible to use 
higher values of T (e.g. 1/2, 1/3 and 1/4) to generate the 
fundamental proximity graph (see section 4.1.1). 

3.5 Constructing proximity graphs for users 
In fact the fundamental proximity graph is never actually 
constructed, although a sparsified version is. Ultimately 
the aim is to create a local proximity graph for each tune 
showing the closest matching variants. There are practical 
restrictions on the sizes of graphs that can be easily dis-
played by the website and assimilated by the user,  lead-
ing the earlier work on TuneGraph to focus on the 
size/density of the local graphs and to favour those with 
no more than 40 vertices, [1].  

The use of the FPG does help a great deal towards that 
end but, as will be seen (later, in Table 1), for some set-
tings of T, it can still result in some vertices with a large 
number of neighbours (vertex degree) and consequently 
some very large local graphs. 

To reduce some of these (and simplify the construction 
algorithm as compared with the previous TuneGraph pa-
per which uses iterative bisection), each vertex is com-
pared with every other vertex and only a fixed number of 
the closest neighbours which also pass the matching 
threshold are used to create edges in the sparsified prox-
imity graph  (SPG). The parameter controlling this is D, 
the maximum included degree, so that each vertex adds 
a maximum of D edges into the graph. 

For many vertices there will be no neighbours which 
pass the matching threshold (i.e. no sufficiently similar 
tunes) but some will end up with significantly higher de-
gree than D (since, although a vertex V may only match 
with a maximum of D neighbours, many other vertices 
could match with V). Therefore a further sparsification 
step takes place (as described in [1]) traversing the list of 
SPG edges (sorted in decreasing order by combined de-
gree of the incident vertices) and removing any edge if 
both of its incident vertices have degree greater than a 
pre-specified minimum sparsification degree, S.  

The previous TuneGraph paper focussed heavily on 
the choice of D and S putting the emphasis on the 
size/density of the local graphs probably at the expense of 
the data that they contain: potentially the local graphs can 
be made very rich in structure by matching tunes that are 
not very similar. Here, instead, by ensuring that the edges 
of the sparsified proximity graph are a subset of those 
from the fundamental proximity graph, the aim is to cre-
ate local graphs that are both visually manageable (by 
sparsifying those which are not) and which do not contain 
a lot of spurious edges representing dissimilar tunes. 
Therefore, although considerable experimentation has 
been carried out with D and S (especially since the intro-
duction of the simplified sparsification algorithm), none 
of that experimentation is presented here and for all the 
results they are set to D = 6 and S = 4. 

Finally note that the construction of the SPG is essen-
tially a post-processing cleanup operation which aims to 
eliminate any vertices of high degree so that the graphs 
are easy for users to assimilate and understand. In fact, 
experimentation in section 4.1.1 shows that for the more 
restrictive settings of T the FPG could be used in place of 
the SPG with no cleanup necessary (for example for RLA 
with T = 1/2 the maximum degree of vertices in the SPG 
is 37 and for RLCSS with T = 1/4 it is just 16). 

3.6 Using the multilevel framework 
It should be clear by now that constructing the sparsified / 
fundamental proximity graph is a vast computation. Even 
for the small test dataset used in the experiments with N 
= ~5,000 tunes, it potentially involves ~12,500,000 pair-
wise comparisons, i.e. ½ N(N-1) and, if every tune were 
16 bars long (128 eighth notes), each comparison in-
volves filling in a 128 x 128 matrix (16,384). So in total 
3,200,000,000 calculations and that is without using re-
cursion for the local alignment, which could easily double 
the total. For the full dataset, which currently has N = 
~187,000 tunes, the complexity is astronomical. 

As previously, [1], a straightforward way to cut this 
down pragmatically is to segment the dataset according to 
meter, so that tunes are only compared with others in the 
same meter. In the small test dataset the largest group 
(which dominates the calculation) then contains ~1,500 
tunes in 6/8 resulting in 1,125,000 pairwise comparisons. 
For the full dataset the largest group contains ~56,000 
tunes in 4/4 which is close to being intractable, but fortu-
nately the multilevel framework can assist here by com-
puting similarity scores at all levels of the multilevel rep-
resentation, coarse to fine. 
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At first sight this might seem to increase the computa-
tional complexity but the interval arrays are much smaller 
at the coarsest level than the original. For a typical 16 bar 
score of a 32 bar tune the arrays will be 16 entries long at 
the coarsest level rather than the 128 in the original. If the 
coarse level matching can detect that a pair of tunes does 
not match, that edge can be excluded from the SPG at the 
cost of filling in a 16 x 16 matrix (256 entries) as opposed 
to the 128 x 128 matrix (16,384 entries), a 64-fold saving. 

To that end the multilevel similarity calculation uses 
level matching threshold, Tl, and the multilevel match-
ing is terminated at any level if 

Sl
XY < max(length(Xl), length(Yl)) * T l 

where Xl / Yl are the interval arrays for tunes X and Y at 
level l of the multilevel representation and Sl

XY is the bi-
ased recursive local alignment measured between them. 

Obviously some matches which should actually be in-
cluded in the FPG may be filtered out at a coarse level 
(i.e. those comparisons which fail the level matching 
threshold at one or more levels but pass the fundamental 
matching threshold). Therefore the level matching 
threshold, Tl, needs to be used with caution and should be 
more conservative than T (obviously there is no point 
making Tl larger than T as it would then take precedence 
at the finest level). Section 4.1.2 conducts some experi-
ments into how these parameters interact. 

This approach is referred to as multilevel filtering 
(MLF) : the multilevel similarity scores, Sl

XY, are com-
puted and (as timings show in section 4.1.2) are used ex-
tensively to filter out dissimilar matches. However, the 
Sl

XY are discarded for l > 0 (i.e. all but the finest level) 
and the similarity between a pair of tunes is just the score, 
SXY (= S0

XY), from the original representation. 
Another way to use the multilevel framework, along-

side the filtering, is to sum the similarity scores, Sl
XY, at 

each level to give a multilevel similarity score, Σl Sl
XY, 

and to use this when weighting edges. This approach was 
used successfully for searching the dataset, [6], and is re-
ferred to here as multilevel weighting (MLW) . No em-
pirical evidence is presented here that this approach is 
successful – it is rather a matter of opinion as to whether 
the multilevel representation is a meaningful reduction of 
the tune (although the effective use of the technique in 
search results, [6], and the success of the multilevel filter-
ing in section 4.1.2 suggest that it may be). 

Finally, if the multilevel representations are not used 
the matching framework is referred to as single level 
(SL). 

4. EXPERIMENTATION 

4.1 Results – Test Dataset 
The initial experimentation uses a small subset of the full 
abc corpus consisting of the 5,638 abc transcriptions tak-
en from the Village Music Project1, a collection of Eng-
lish social dance music mostly transcribed from hand-
written manuscript books in museums and library ar-
chives. Of these 30 are removed due to implementation 
limitations (see [1]) leaving 5,608. 

                                                           
1 See http://village-music-project.org.uk/  

4.1.1 Fundamental Proximity Graph 
The first experiments are to determine the characteristics 
of the fundamental proximity graph (FPG). Recall from 
section 3.4 that the FPG only includes edges between two 
vertices (tunes), VX and VY, if the similarity score for the 
interval arrays which represent them, X and Y, is greater 
than some fraction, T, of the length the larger array. 

Local    
alignment 

Matching 
Threshold, 

T 

Non-
isolated 
vertices 

Degree 

Avg. Max. 

RLA 
 

1/4 3,907 63.89 738 
1/3 3,206 18.49 441 
1/2 1,923 1.06 37 

RLCSS 
 

1/8 4,436 17.26 253 
1/6 2,812 1.8 23 
1/4 1,800 0.86 16 

Table 1. Characteristics of the fundamental proximity 
graph for the test dataset. 

Table 1 shows the results for different values of T and 
both local alignment algorithms, RLA and RLCSS, in 
terms of the number of non-isolated vertices (those with 
at least one edge), and the average and maximum degree. 
Obviously the smaller the value of T, the more edges are 
included and so the more dense the graph (i.e. the higher 
the average degree). As mentioned in section 3.4, ideally 
the user would be allowed to control the value of T to de-
termine dynamically the restrictiveness of matching and 
consequently the size/shape of the local graphs. 

No direct comparison between RLA and RLCSS is 
possible but one feature that is immediately apparent 
from the table is that they induce somewhat different 
structures on the dataset. Compare, for example, RLA 
with T = 1/3 against RLCSS with T = 1/8: both have sim-
ilar average degree values (18.49 versus 17.26) and hence 
a similar number of edges but RLA has fewer non-
isolated vertices (3,206 versus 4,436) and consequently a 
much higher maximum degree (441 versus 253). The 
same features can be observed for RLA with T = 1/2 as 
compared with RLCSS with T = 1/4 (both have an aver-
age degree close to 1). 

This proves nothing but does suggest that at a specific 
graph density, RLCSS connects up more of the vertices. 

Finally the previous work on TuneGraph, [1], suggest-
ed that, subjectively, the ideal size for the local graphs 
displayed to users is a maximum of ~40 vertices with a 
preferred size of ~20. Local graphs typically include two 
levels of separation so if the average degree of vertices is 
20, say, there could potentially be 20 x 20 = 400 vertices 
in the average local graph. On the other hand, in reality 
many vertices in the local graphs are connected (for ex-
ample, if a vertex of degree 20 is part of a clique then its 
20 neighbours will all be connected to each other and so 
its local graph will only contain 21 vertices). However, 
this does suggest that the minimum values for the match-
ing threshold should be no less that T = 1/3 for RLA and 
no less than T = 1/8 for RLCSS, so that the average de-
gree does not rise above 20. 
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At the opposite end of the scale, the maximum values 
for T should not be so large that the FPG contains no 
edges. If the average degree is around 1 and there are 
around 2,000 non-isolated vertices then the average de-
gree of non-isolated vertices is ~5,000 x 1 / 2,000 = ~2.5 
(more accurately 2.79 for RLA with T = 1/2 and 2.42 for 
RLCSS with T = 1/4), leading to average local graphs 
with 5 – 10 vertices. 

In summary, this suggests that a reasonable range of 
values of T for the user to control is [0.333, 0.5] for RLA 
and [0.125, 0.25] for RLCSS. 

4.1.2 Multilevel filtering 
For small or medium sized datasets, such as the test da-
taset, computational complexity is not a major issue. 
However, for the entire corpus it is not practical to run 
the graph construction process in full, hence the devel-
opment of the multilevel filtering scheme which aims to 
filter out dissimilar tunes at coarse representations (when 
the interval arrays are much shorter and the local align-
ment much faster). The downside is that the multilevel 
scheme may mistakenly filter out similar tunes. 

Tables 2 and 3 explore this with filtering results for the 
RLA and RLCSS algorithms and for various combina-
tions of T   and Tl. For the single level (SL) variants no 
filtering takes place but, as discussed in section 3.6, for 
the multilevel filtering variants (MLF), the larger the val-
ue of Tl the more edges will be filtered at coarse levels. 
Most of these edges would not be included in the funda-
mental proximity graph (FPG) as the underlying tunes are 
too dissimilar and so the multilevel filtering speeds up the 
matching. However, as Tl increases towards T the ten-
dency is for it to filter out more FPG edges in error. The 
aim therefore is to find a suitable value of Tl which min-
imises both the runtime and the percentage of FPG edges 
filtered (although the filtered FPG edges are likely to 
arise from the weakest matches and might subsequently 
be removed anyway during sparsification). 

 
  

T Tl 
#edges 
in FPG 

#edges in 
FPG fil-

tered 
%age 

filtered ru
n

tim
e 

(s
) 

SL 

1/3 

n/a 

51,854 

n/a   1,188 

MLF 1/16 1,734 3.34% 1,415 

MLF 1/12 13,451 25.94% 714 

MLF 1/8 35,293 68.06% 235 

MLF 1/6 47,790 92.16% 84 

SL 

1/2 

n/a 

2,970 

n/a   1,001 

MLF 1/8 294 9.90% 229 

MLF 1/6 597 20.10% 75 

MLF 1/4 687 23.13% 52 

MLF 1/2 1,347 45.35% 50 

Table 2. Filtering results for the RLA algorithm. 

 

T Tl 
#edges 
in FPG 

#edges in 
FPG fil-

tered 
%age 

filtered ru
n

tim
e 

(s
) 

SL 

1/8 

n/a 

48,405 

n/a   900 

MLF 1/16 913 1.89% 740 

MLF 1/12 7,119 14.71% 316 

MLF 1/8 26,593 54.94% 94 

SL 

1/6 

n/a 

5,039 

n/a   880 

MLF 1/12 153 3.04% 328 

MLF 1/8 269 5.34% 96 

MLF 1/6 1,304 25.88% 35 

SL 

1/4 

n/a 

2,410 

n/a   842 

MLF 1/8 4 0.17% 90 

MLF 1/6 8 0.33% 33 

MLF 1/4 90 3.73% 25 

Table 3. Filtering results for the RLCSS algorithm. 

Taking the data as a whole first of all, it can be seen 
that when the FPG is sparse the filtering is more success-
ful. For example, for RLA with T = Tl = 1/2, the maxi-
mum filtration is 45.35% as compared with 92.16% when 
T = Tl = 1/3. Similarly for RLCSS with T = Tl = 1/4 the 
maximum filtration is just 3.73% as compared with 
54.94% when T = Tl = 1/8. 

Comparing RLA with RLCSS, however, it is clear that 
RLCSS is much more successful at not filtering out FPG 
edges although it may still filter a lot (say more than 
10%) if the FPG is not particularly sparse and Tl is close 
to T (for example when T = Tl = 1/8 or T = Tl = 1/4).  

It is possible to reduce filtering for RLA down to less 
than 10% but only for the smallest values of Tl, specifi-
cally Tl = 1/16 for T = 1/3 and Tl = 1/8 for T = 1/2. This 
is not so useful as the multilevel filtering doesn’t improve 
the runtime so much: for example MLF actually increases 
the runtime from 1,188 seconds to 1,415 for Tl = 1/16 and 
T = 1/3. The runtime results are better for Tl = 1/8 for T = 
1/2 and MLF is over 4 times faster than SL (229 seconds 
as compared with 1,001) with 9.90% filtering – however, 
this is at the upper end of the range suggested above for T. 

Conversely for RLCSS there are combinations of T 
and Tl which achieve significantly less than 10% filtering 
and where Tl is large enough to dramatically improve 
runtime. The best example is T = 1/6 and Tl = 1/8 where 
the MLF runtime is 96 seconds as compared with 880 for 
SL at the expense of only 5.34% filtering. Fortunately, 
this is in the middle of the range of values of T that might 
be appropriate for a user to control (i.e. [0.125, 0.25] – 
see above). Even at the bottom end of the range, T = 1/8 
= 0.125, it is possible to use Tl = 1/12 and achieve sub-
stantial time savings (316 seconds for MLF as compared 
with 900 for SL) with only 14.71% filtering. At the top 
end of the range, where the FPG is very sparse it is possi-
ble to use T = Tl = 1/4 and see a huge time saving (25 
seconds for MLF as compared with 842 for SL) at the ex-
pense of only 3.73% filtering. 

FMA 2016 Workshop

28



  
 

It is not totally clear why multilevel filtering does not 
combine so well with RLA as it does with RLCSS but the 
likelihood is that the sub-sequences found by RLA at the 
coarse levels do not necessarily match those found at fin-
er levels. Conversely, provided the coarsening algorithm 
removes the same entries in both strings, then a longest 
common substring at a finer level will result in corre-
sponding longest common substrings at coarser levels 
(for example, if ****abcdefgh**** is coarsened to 
**aceg** and subsequently to *ae*). 

Note also that this is not an unknown occurrence when 
using the multilevel paradigm in other fields, [4]. Some-
times the more sophisticated local refinement algorithms 
interact less well with multilevel coarsening and in fact 
the best combination is often a smart coarsening algo-
rithm with a relatively simple local refinement scheme. 

4.1.3 Sample local graph results 
Table 4 shows the characteristics of the local graphs pro-
duced for three T / Tl configurations using the three dif-
ferent frameworks (SL, MLF & MLW) and RLCSS as 
the similarity measure. The characteristics are given in 
terms of the number of local graphs produced (essentially 
the number of non-isolated vertices for that value of T, 
potentially reduced by filtering and sparsification) plus 
average and maximum values for the number of vertices 
and edges in each local graph.  

There are not many conclusions that can be drawn 
from this table but it does indicate that for each value of 
T the characteristics are similar for all three frameworks 
(provided a suitable value of Tl is chosen). 

 

  T Tl #
g

ra
ph

s #vertices #edges 

avg.  max. avg.  max.  

SL 

1/8 

n/a 4,436 13.5 32 13.9 36 

MLF 1/12 4,381 13.2 29 13.5 32 

MLW 1/12 4,381 12.6 26 12.9 32 

SL 

1/6 

n/a 2,812 6.0 20 6.4 26 

MLF 1/8 2,745 5.8 22 6.1 28 

MLW 1/8 2,745 5.8 22 6.2 28 

SL 

1/4 

n/a 1,800 4.0 15 4.1 26 

MLF 1/4 1,742 4.0 15 4.1 26 

MLW 1/4 1,742 4.0 13 4.0 24 

 Table 4. Local graph results for the RLCSS algorithm. 

4.2 Results – entire abc corpus 
The second data set is the entire abc corpus which cur-
rently consists of around 509,000 tunes from across the 
web. Of these 273,000 are exact electronic duplicates 
which are excluded and another 41,500 are potentially 
copyright and also ignored. A further 7,500 (3.8% of the 
remainder) are excluded because of implementation limi-
tations (see [1]), leaving a total of 186,847. 

Taking into account the various observations above, it 
seems that a good configuration is RLCSS as the local 
matching scheme with T = 1/6 and Tl = 1/8.  

Table 5 shows local graph characteristics for MLF and 
MLW both of which took around 24 hours to run. In con-
trast the runtime prediction for SL was 2 years! (Indeed if 
sparser local graphs are acceptable, the multilevel frame-
works take only around 8 hours for T = Tl = 1/4.) 

  #graphs 
#vertices #edges 

avg.  max. avg.  max.  

MLF 160,157 9.6 44 12.0 120 

MLW 160,157 9.3 40 11.6 116 

Table 5. Local graph results for the entire corpus. 

Again, not many conclusions can be draw from this ta-
ble other than the similar characteristics of MLF and 
MLW. However, the resulting local graphs for MLF can 
be explored at abcnotation.com. 

5. CONCLUSIONS 

This has paper presented an investigation into construct-
ing proximity graphs using a multilevel melodic similari-
ty metric. It also discussed the use of two recursive vari-
ants of local alignment algorithms (RLA & RLCSS) and 
a similarity measure adapted to handle their global nature. 

The results suggest that multilevel filtering, coupled 
with RLCSS, works well at building proximity graphs 
from a corpus of tunes significantly speeding up the 
runtime without filtering out too many matches. 

Although further work remains to eliminate some of 
the minor limitations in the multilevel matching, the re-
sults can be explored at abcnotation.com. 
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ABSTRACT

This paper addresses the topic of note, cut and strike detection in
Irish traditional music (ITM). In order to do this we first evalu-
ate state of the art onset detection methods for identifying note
boundaries. Our method utilises the results from manually and
automatically segmented flute recordings. We then demonstrate
how this information may be utilised for the detection of notes
and single note articulations idiomatic of this genre for the pur-
poses of player style identification. Results for manually anno-
tated onsets achieve 86%, 70% and 74% accuracies for note, cut
and strike classification respectively. Results for automatically
segmented recordings are considerably, lower therefore we per-
form an analysis of the onset detection results per event class to
establish which musical patterns contain the most errors.

1. INTRODUCTION

1.1 Background

Irish Traditional Music (ITM) is a form of dance music
played on a variety of traditional instruments including
the flute. Within the tradition of ITM, players from dif-
ferent backgrounds are individuated based on their use of
techniques such as ornamentation, a key factor alongside
melodic and rhythmic variation, phrasing and articulation
in determining individual player style (McCullough, 1977;
Hast & Scott, 2004).

To automatically detect a player’s style in audio signals,
a critical first step is to detect these notes and ornamenta-
tion types. In this paper we evaluate both notes and single
note ornaments known as cuts and strikes. Both ornaments
generate a pitch deviation: a cut is performed by quickly
lifting a finger from a tonehole then replacing it; a strike in-
volves momentarily covering the tonehole below the note
being played. We also analyse the cut and strike elements
of multi-note ornaments known as short roll and long roll.

Figure 1 shows the pitch deviation for cuts and strikes.
Long and short rolls are also displayed, showing the in-
clusion of cut and strike figures. A long roll occupies the
same duration as three eighth notes whereas a short roll is
equivalent to two eighth notes. In practice, ITM follows a
swing rhythm—while there is a regular beat, swing follows
an irregular rhythm and therefore each eighth-note section
may not be of equal duration in normal playing (Schuller,
1991).
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Figure 1: Frequency over time of cut and strike artic-
ulations showing change of pitch. Long and short rolls
are also shown with pitch deviations (eighth note lengths
shown for reference).

1.2 Related work

The approach undertaken in this paper utilises onset detec-
tion as a crucial first step in the identification of notes and
ornaments. There are relatively few studies in the litera-
ture that deal specifically with onset detection within ITM,
particularly with reference to the flute.

Onsets were found by Gainza et al. (2004) using band-
specific thresholds in a technique similar to Scheirer
(1998) and Klapuri (1999). A decision tree was used to
determine note, cut or strike based on duration and pitch.
Kelleher et al. (2005) used a similar system to analyse or-
naments on the fiddle within Irish music, as bowed instru-
ments also produce slow onsets.

Köküer et al. (2014) also analysed flute recordings
through the incorporation of three kinds of information and
a fundamental frequency estimation method using the YIN
algorithm by De Cheveigné & Kawahara (2002). As in
Gainza et al. (2004) a filterbank with fourteen bands opti-
mised for the flute was used. More recently, Jančovič et al.
(2015) presented a method for transcription of ITM flute
recordings with ornamentation using hidden Markov mod-
els.

Unlike the above flute-specific methods, which rely on
signal processing based onset detection algorithms, state
of the art generalised onset detection methods use proba-
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bilistic modelling. The number of onset detection meth-
ods using neural networks has substantially risen since
Lacoste & Eck (2005). OnsetDetector by Eyben et al.
(2010) uses bidirectional long short-term memory neural
networks, and performs well in a range of onset detection
tasks including solo wind instruments.

In this paper we perform an evaluation using several
modern onset detection algorithms and a dataset comprised
of 79 real flute performances of ITM. We then demonstrate
how this information may be utilised towards the determi-
nation of notes and single note ornamentations.

The remainder of this paper is structured as follows:
Section 2 details the method of segmentation, feature ex-
traction and classification. In Section 3 we discuss evalua-
tions of a range of onset detection methods and classifica-
tion of notes, cuts and strikes. Results of the studies into
onset detection and ornament classification are presented
in Section 4 and finally conclusions and further work are
discussed in Section 5.

2. METHOD

Figure 2 shows an overview of the proposed method. We
extract features from audio segments representing events
(notes, cuts, strikes) and propose an event type classifica-
tion approach using the segmented event features.

For a fully automated method we use onset detection
for segmentation. Event features are then extracted from
inter-onset intervals (IOI). These features are used in a su-
pervised learning algorithm to classify the segments as one
of three distinct classes: notes, cuts and strikes. For onset
detection, we attempt to use the top-performing algorithm
from the evaluation presented in Section 3.2, and in the fol-
lowing discuss only the remaining feature extraction and
classification stages.

segmentation feature
extraction

ornament
classification

cuts

notes

strikes

Event Feature Extraction Event Classification

Figure 2: Overview of the proposed classification method
of notes, cuts and strikes in flute signals. The first phase
shows feature extraction from segmented audio events and
the second phase shows classification of the events.

2.1 Feature extraction

In order to capture the differences between each event type
we extract features related to rhythm, timbre and pitch.
An important distinction between notes, cuts and strikes
is their duration, where notes are significantly longer than
the two ornaments. To capture this we use the length ms
of event segments. We then extract timbral features as

these are also important in class distinction. The change
in timbre is caused by player’s fleeting finger motion as a
tonehole is temporarily opened or closed. This results in a
unique timbre that differs from notes. For that purpose we
extract 13 Mel-frequency cepstral coefficients (MFCCs),
excluding the first coefficient, and 12 chroma features fea-
tures to accommodate for timbre and pitch changes in each
of the articulations.

To extract features from the audio segments the input
audio (mono WAV files) is down sampled to 11,025 Hz.
Following the approach in Mauch & Dixon (2010) we cal-
culate the MFCC and chroma features using a Hanning
window of 1024 samples with 50% overlap. The extracted
features are then normalised to the range [0,1] for every
corresponding feature type. Each audio segment is as-
signed to its class Ω (e.g. note). An n x 26 matrix FΩ is
created, where n represents the number of segments with
26 features (i.e., MFCCs, chroma, durations).

Each FΩ segment appears in the context of musical pat-
terns such as rolls, shakes or just consecutive notes in the
recording. To account for the rhythmic, timbral and pitch
changes of each event type in the context of these patterns,
we concatenate the first derivatives of all features into ev-
ery FΩ segment.

2.2 Neural network classification

Audio segments are then classified into note, cut and strike
classes using a feed-forward neural network.

input
features a1

b1

w1 a2

b2

w2 a3

b3

w3
output

Figure 3: Neural network architecture containing two hid-
den layers a1 and a2, with weights w and biases b.

The proposed neural network, shown in Figure 3, con-
sists of two hidden layers containing 20 neurons each.
Back propagation is used to train the neural network, up-
dating the weights and biases iteratively using scaled con-
jugate gradient of the output errors. A maximum iteration
limit is set to 10,000 and the weights and biases are ini-
tialised with random non-zero values to ensure that training
commenced correctly. A validation set is used to prevent
over-fitting and cross entropy is used for the performance
measure.

The output for each layer of an L layered neural net-
work can be calculated using:

a(l) = fl(a
(l−1)(t)W l + bl), (1)

where, al is the output at layer l and W and b are the weight
and bias matrices. The transfer function is determined by
the layer, as shown in Eq. 2.

fl(x) =

{
2/(1 + e−2x) − 1, l 6= L
y = ex/(

∑
ex), l = L.

(2)
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Classification is performed by finding the index of the
maximum value within the output from the neural network.

3. EVALUATION

As the performance of the proposed method depends heav-
ily on the accuracy of the chosen onset detection method,
the aim of our first evaluation is to determine the best per-
forming onset detection algorithm. We then perform an
evaluation of our note and ornament classification.

3.1 Dataset

For both these evaluations, we require a dataset that is rep-
resentative of a range of respected players with individ-
ual stylistic traits. The dataset is comprised of 99 solo
flute recordings of between 16 and 81 seconds in length,
spanning over 50 years. For the purpose of this study,
79 recordings were selected excluding the excerpts from
Larsen (2003), as they contain tutorial recordings not rep-
resentative of typical ITM performances.

The recordings are 16-bit/44.1kHz WAV files all
recorded by professional ITM flute players. Annotations
were made using either Sonic Visualiser by Cannam et al.
(2010) or Tony by Mauch et al. (2015). The annotation
was performed by an experienced flute player. Full details
of the annotation methods may be found in Köküer et al.
(2014) and Ali-MacLachlan et al. (2015).

Annotations associated with this dataset include the
temporal location of onsets and the event type (e.g., note,
ornament). Additional classes such as breaths were in-
cluded in the note class as they contained pitch informa-
tion from a previous note. The annotated event types are
represented by 15,310 notes, 2,244 cuts, and 672 strikes.

3.2 Onset detection evaluation

In this evaluation we measured how well eleven onset de-
tection algorithms were capable of identifying onsets re-
lated to notes, cuts and strikes within real-life flute record-
ings. We reviewed the wind instrument class results from
MIREX and examined various studies that concerned de-
tection of soft onsets within these instruments.

Specialised methods for soft onset detection have been
proposed in the literature. SuperFlux by Böck & Widmer
(2013b) calculates the difference between two near short-
time spectral magnitudes and is optimised for music sig-
nals with soft onsets and vibrato effect in string instru-
ments. ComplexFlux by Böck & Widmer (2013a) is based
on the SuperFlux algorithm with the addition of a local
group delay measure that makes this method more robust
against loudness variations of steady tones. Similarly, Log-
FiltSpecFlux introduced in Böck et al. (2012) was designed
to deal with onsets of various volume levels but was opti-
mised for real-time scenarios.

In addition, there are several other onset detection meth-
ods proposed in the literature that we tested. The Onset-
Detector by Eyben et al. (2010) processes the input sig-
nal both in the forward and backward manner and outputs

peaks that represent the probability of an onset at the de-
tected position. The Energy (Masri, 1996), Spectral Dif-
ference (Foote & Uchihashi, 2001), Spectral Flux (Dixon,
2006) and Kullback-Leibler (KL) (Hainsworth & Macleod,
2003) represent detection functions solely based in the
spectral domain. Brossier (2006) presented a modification
to the KL algorithm shown as Modified Kullback-Leibler
in our evaluation. The Phase-based method by Bello &
Sandler (2003) looks at phase deviation irregularities in
the phase spectrum of the signal. Lastly, the Complex Do-
main approach by Duxbury et al. (2003) combines both the
energy and phase information for the production of a com-
plex domain onset detection function. Peak-picking for the
evaluate approaches is performed with Madmom 1 and
Aubio 2 MIR toolboxes.

The onset detection results were calculated using the
standard precision, recall and F-measure scores that mea-
sure performance of each onset detection algorithm. Preci-
sion and recall are determined from the detected flute on-
sets if reported within 25 ms on either side of the ground
truth onset times. The mean F-measure is calculated by
averaging F-measures across recordings.

3.3 Note and ornament classification evaluation

To assess the performance of our presented note and or-
nament classification method, we perform two evaluations
using the dataset from Section 3.1. In the first evaluation,
we attempt to determine the worth of the chosen classifi-
cation method and selected features alone. In this exper-
iment, we rely on the manually annotated note onsets to
segment the audio prior to the feature extraction and classi-
fication stages. In the second evaluation, we seek to deter-
mine the viability of a fully automated ornament detection
approach that relies on onset detection for segmentation.
In this evaluation we employ the top performing onset de-
tection algorithm found in the onset detection evaluation
detailed in Section 3.2. For the training of the automated
method only the true positive onsets will be used to ensure
that the neural network is trained with the features corre-
sponding to their correct classes.

To ensure an approximately equal proportion of train-
ing examples per class, we reduced the number of notes
per recording to 6%, cuts to 30% and left in all strikes due
to the proportion of these classes in the dataset. The clas-
sification evaluation is then performed using 5-fold cross
validation.

4. RESULTS

4.1 Onset detection results

The results obtained from our experiment are shown in Ta-
ble 1. The OnsetDetector method by Eyben et al. (2010)
achieves the highest precision of 83% and F-measure of
78%. The high performance of this approach is in agree-
ment with the results in the literature for the wind instru-
ment class (Böck & Widmer, 2013a,b). While Spectral

1 https://github.com/CPJKU/madmom
2 http://aubio.org/
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P R F
OnsetDetector2015
Eyben et al. (2010) 0.8306 0.7510 0.7875

ComplexFlux2015
Böck & Widmer (2013a) 0.7414 0.6639 0.6996

SuperFlux2015
Böck & Widmer (2013b) 0.7659 0.6714 0.7144

LogFiltSpecFlux2015
Böck et al. (2012) 0.7597 0.6494 0.6989

Energy
Masri (1996) 0.6870 0.5888 0.6270

Complex Domain
Duxbury et al. (2003) 0.7548 0.6561 0.6999

Phase-based
Bello & Sandler (2003) 0.7206 0.5522 0.6177

Spectral Difference
Foote & Uchihashi (2001) 0.7087 0.5928 0.6416

Kullback-Leibler
Hainsworth & Macleod (2003) 0.7926 0.4025 0.5265

Modified Kullback-Leibler
Brossier (2006) 0.7659 0.1868 0.2890

Spectral Flux
Dixon (2006) 0.5854 0.7618 0.6580

Table 1: Precision (P), Recall (R) and F-measure (F) for
eleven onset detection methods. Maximum values for Pre-
cision, Recall and F-measure shown in bold.

class notes cuts strikes
notes 86.97 8.43 8.54
cuts 6.79 70.46 16.96
strikes 6.24 21.07 74.49

Table 2: Confusion matrix for classification of notes, cuts
and strikes using manually annotated onsets.

class notes cuts strikes
notes 81.57 83.46 82.61
cuts 6.97 6.85 6.48
strikes 11.47 9.70 10.91

Table 3: Confusion matrix for classification of notes, cuts
and strikes using a fully automated segmentation.

Flux achieved the highest recall score of 76% this is likely
due to its overestimation of the onset positions thus result-
ing in a lower precision value. Consequently, in our note,
cut and strike detection we use the onsets detected using
the OnsetDetector as it outperforms other tested methods.

4.2 Note and ornament classification results

Table 2 presents a confusion matrix for note, cut and strike
classification using features extracted from the annotated
onset boundaries. The results demonstrate the effective-
ness of the classification method for all three classes with
86% note, 70% cut and 74% strike detection accuracies.
Misclassified notes are equally distributed across the other
two classes demonstrating large timbral, pitch and rhyth-
mic differences between note and ornament event types.
The cuts and strikes are mostly misclassified as each other,
which reflects their similar duration. These findings con-
firm the importance of duration in identifying the differ-

ence between ornaments (Gainza et al., 2004).
The results for a fully automated system evaluation are

presented in Table 3. Here cuts and strikes were over-
whelmingly misclassified as notes. These poor results are
likely due to the imbalance between the number of anno-
tated onsets and detected onsets. The evaluation using an-
notated onsets used in 916 notes, 670 cuts and 672 strikes,
while the fully automated method used only 691 notes, 503
cuts and 518 strikes.

Training the system with features extracted from an-
notated segments and testing on automatically found seg-
ments did not improve on these results. To investigate the
possible reasons for the poor classification results in Table
3, we conducted additional analysis of the onset detection
results per event type.

4.3 Note, cut and strike onset detection accuracy

Cuts and strikes are components in multi-note ornaments
such as rolls and shakes. To determine where onset detec-
tion errors occur we evaluate detection accuracy in relation
to events that occurred immediately before and after the de-
tected events. This evaluation allows us to see which event
classes are most difficult to detect, and provide insight in
the limitations of the real-life application of the proposed
method for note, cut and strike detection.

Table 4 presents the onset detection results for each
class of musical pattern. The classes consist of three event
types where the central event is identified in bold. For ex-
ample, note cut note is a detected cut with a note before and
note afterwards, which exists within the event context of
short and long roll or a single cut. The number of correctly
detected onsets (true positives) is found as a percentage of
the overall number of annotated onsets of that pattern.

As can be seen in Table 4, low accuracies were found for
notes following ornaments. The largest error was found in
the cut note note. This pattern exists only in the context of
single cuts and shakes and occurred 1579 times with only
574 correctly found instances.

Our proposed note, cut and strike detection method de-
pends on the features extracted from the found inter-onset
intervals. The events corresponding to the cut and strike
classes are detected with 83% and 82% accuracies respec-
tively. Detecting notes that exist directly after these orna-
ments in the onset detection stage augments the content of
the features describing the ornament event types. This re-
sults in training data that does not represent the classes that
we intended to capture.

5. CONCLUSIONS AND FUTURE WORK

In this paper we present a note, cut and strike detection
method for traditional Irish flute recordings. Our chosen
approach to this problem is that of inter-onset segment
classification using feed-forward neural networks. To eval-
uate the effectiveness of this approach we first conducted
an evaluation of various onset detection algorithms on our
dataset with the hope of using this method as a first step in
the feature extraction.
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Musical pattern Event context Accuracy True positives Total onsets
note note note single notes 83.36 8651 10378
note cut note short & long rolls & single cuts 83.44 1870 2241
note note cut notes before a roll 84.16 1637 1945
cut note note notes after single cuts & shakes 36.35 574 1579
note strike note short & long rolls & single strikes 82.39 552 670
cut note strike short & long rolls 34.62 180 520
strike note note last notes in rolls 16.22 84 518
cut note cut shakes 31.03 45 145
strike note cut last notes in rolls 20.69 30 145
note note strike notes before single strikes 90.85 129 142

Table 4: Onset detection results for each event class (bold) in the context of events happening before and after the detected
onset. Accuracy shown as percentage of the accurately detected onsets (true positives) from that pattern

When using ground truth onset annotations, we
achieved 86%, 70% and 74% accuracies for note, cut and
strike classification respectively. When using detected on-
sets to train the neural network we achieved poor classifica-
tion results. We then performed an analysis of the detected
onsets and the context in which they appear to establish
both the degree of the errors and the musical patterns in
which they occur.

In the future we intend to work on improving the auto-
mated detection of note events. We will also develop note
and ornament classification methods with additional fea-
tures and other neural network architectures (e.g., recurrent
neural networks, networks with long short-term memory)
in order to capture trends that appear in time-series data.
We also plan to investigate how well the proposed system
generalises to other instruments that are characterised by
soft onsets such as the tin whistle and fiddle.
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1.  INTRODUCTION

How do we speak about the timbre of a singer? How do
we compare singers singing the same song? It wouldn't
be particularly hard to distinguish a Chinese opera singer
from a Western opera singer, but it would be much harder
to verbalize how we distinguish them. And when a classi-
cal singer performs a rock song, we all hear it is stylisti-
cally wrong, but how do we explain to the singer what he
needs to change? 

All these questions are about vocal production
and how it can be captured in words. As it currently
stands there is no widely accepted vocabulary to talk
about it, not even within a single culture or genre (Gar-
nier, 2007; Mitchell, 2003). Publications in English ana-
lysing vocal production in other cultures are rare (Föder-
mayr, 1971; Bartmann 1994). Singing teachers very often
use idyosincratic language based on their subjective per-
ception or learnt from their own teachers, it is hard for
teachers from different schools to agree about the terms
(McGlashan, 2013). Medical professionals are mainly in-
terested in vocal dysfunction (Little, 2009). Ethnomusi-
cologists focus on the context of music making and rarely
mention the sound itself; while for musicologists or mu-
sic critics it is considered a virtue to use unique terms
specific to the particular writer and objectivity of lan-
guage is not a priority.

We became interested in the subject in the con-
text of MIR, hoping to train a computational model to
classify vocal production. Applications would include:
differentiating recordings of singing from different cul-
tures; singer recognition; distinguishing originals from
covers and covers by different singers; genre classifica-
tion, etc. All these tasks have been addressed by brute
force computational algorithms and by more sophisticat-
ed approaches (Tsai 2006, Serra 2010, Holzapfel 2008).
Yet there seems to be a glass ceiling of classification ac-
curacy that can be achieved (Karydis 2010, Downie
2008). In MIR it is referred to as “semantic gap” (Wig-
gins, 2009). If a middle layer could be introduced of more
objective categories where further hunan knowledge is in-
corporated in the model, that could help improve classifi-
cation accuracy further. 

2. MODELS OF VOCAL PRODUCTION

There is no theoretical model of vocal production which
could provide the basis for predictions. There are no an-
notated datasets either. As we have seen above, there isn't
even a vocabulary to talk about vocal production. We
have found only three approaches to parametrising vocal
production that have had a wider reach: one originating in
ethnomusicology, another coming from vocal education
and one formulated in singing voice science.

Ethnomusicological parametrization was intro-
duced by Alan Lomax in his Cantometrics experiment in
which over 5000 recordings from more than 500 cultures
were analysed, performance practice was expressed via
36 parameters (Lomax 1976). 13 of these parameters
were related to vocal production, including volume, rasp,
vocal tension, glottal shake, nasality, vocal pitch, etc. Lo-
max took an auditory-perceptual approach: human listen-
ers were trained to rate the value of each parameter after
listening to an audio recording. Lomax tried to diversify
the ratings by getting at least three people to rate each
recording. But his raters were mainly US university stu-
dents with similar life experiences and musical back-
grounds. A proper diversification would include people
of all ages and professions, from different cultures and
with varying musical experience. It is a much bigger un-
dertaking and would have been unworkable in Lomax's
circumstances. Only if it were conducted this way though
would we be able to say with certainty whether Canto-
metrics musical parameters are perceived similarly inde-
pentently of cultural and musical background. 

Johan Sundberg, the father of singing voice sci-
ence, introduced phonation modes describing the voice
source aspect of vocal production (Sundberg 1979). They
are based on the relationship between subglottal pressure
and transglottal airflow. Three of his phonation modes -
breathy, neutral and pressed - are widely used by speech
and language therapists and in other fields. Sundberg for-
malised the terms relating them to the aerodynamic pro-
cesses from which each of the modes originates. He sug-
gests ways to infer phonation mode from an audio record-
ing of singing via inverse filtering. This model works on
a miliseconds scale but becomes unmanagable on a sec-
onds scale, which is necessary for humans to recognise
music and to feel something about it or deduct its charac-
teristics – the time scale on which the Cantometrics ex-
periment was conducted. Sundberg's phonation model
does not include the resonance body aspect, which is cru-
cial for resulting timbre. 

Jo Estill was an american singer, teacher and
voice researcher, who suggested a physiology-based sys-
tem for understanding and teaching vocal production. Her
idea was to isolate physiological structures, learn to man-
age them indepentently and use these building blocks of
vocal physiology to construct various kinds of vocal pro-
duction, ultimately leading to the ability to build any
singing style (Estill, 1979; Colton, 1981). While her sci-
entific evidence was partial at best, her work has had a
huge influence on contemporary singing education
(Sadolin, 2000; Soto-Morettini, 2006; Kayes, 2004). 
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Since we could not verify the inter-personal and
inter-cultural consistency of Cantometrics approach we
concentrated on the physiology including phonation. We
devised aн ontology of vocal production based on Sund-
berg's and Estill's terminology with some minor additions
(Table 1).

Table 1. Our  ontology of vocal production. 

3. THE STUDY

The aim of our study is to assess the viability of the phys-
iological approach to modelling vocal production as well
as to verify applicability and usefulness of our prelimi-
nary ontology of vocal production (Table 1). The study is
based on interviews with vocal physiology experts and
combines a qualitative and a quantitative approach (Bry-
man, 2006). 

We chose eleven tracks from the Cantometrics
dataset (see Chapter on vocal width in Lomax, 1977), all
from different musical cultures. Nineteen physiologically
stable fragments were extracted from the tracks, which
were then used as entities of analysis in the interviews.
We recruited 13 participants: otolaryngologists, speech
language therapists, singing teachers. Participants' profes-
sional involvement with vocal physiology ranged from 10
to over 40 years. Three of them had a non-Western cul-
tural background. 

Interviews were structured and lasted from 90
minutes to several hours. Participants were asked to rate
physiological dimensions from the preliminary ontology
with which they were familiar; they were encouraged to
explain their ratings, to point out complexities, to suggest
better terms and approaches.  

4. RESULTS 

Participants showed confidence in the majority of terms
introduced in the preliminary ontology: only 20% of
physiological dimensions were rated by less than 80% of
participants.  While experts generally supported the on-
tology, the inter-participant agreement on the ratings was
low. Only for two descriptors – position of the larynx and
AES – was there a tendency to agreement. 

In this talk we shall present the results of the
qualitative analysis of the interviews, the analysis of in-
ter-participant (dis)agreement including problem cases
and searching for possible causes. We shall demonstrate
using the words of our participants how some common
themes have emerged from the interviews and how these
findings could explain the disagreement. The advantages
and disadvantages of physiological vs perceptual ap-
proaches to vocal production as well as their possible
combinations will be discussed. We shall outline future
research directions for this largely understudied area and
explain the significance of our findings for academic and
applied fields outside  MIR.
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range scale metrics

subglottal pressure low to high 5-point interval

transglottal airflow low to high 5-point interval

phonation breathy present/absent 2-point nominal

phonation pressed present/absent 2-point nominal

phonation neutral present/absent 2-point nominal
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ABSTRACT

From a computational perspective, structural analysis of Ottoman-
Turkish makam music (OTMM) is a research topic that has not
been addressed thoroughly. In this paper we propose a method,
which processes machine-readable music scores of OTMM to ex-
tract and semiotically describe the melodic and lyrical organiza-
tion of the music piece automatically using basic string similarity
and graph analysis techniques. The proposed method is used to
identify around 50000 phrases in 1300 music scores and 21500
sections in 1770 scores, respectively. The obtained information
may be useful for relevant research in music education and musi-
cology, and it has already been used to aid several computational
tasks such as music score content validation, digital music en-
graving and audio-score alignment.

1. INTRODUCTION

In analyzing a music piece, scores provide an easily acces-
sible symbolic description of many relevant musical com-
ponents. Moreover they typically include editorial anno-
tations such as the nominal tempo, the rhythmic changes
and structural markings. These aspects render the music
score a practical source to extract and analyze the melodic,
rhythmic and structural properties of the studied music.

Analyzing the structure of a music piece is integral in
understanding how the musical events progress along with
their functionality within the piece. Automatic extraction
of the melodic and lyrical structures, as well as their roles
within the composition, might be used to facilitate and
enhance tasks such as digital music engraving, automatic
form identification and analysis, audio-score and audio-
lyrics alignment, music prediction and generation.

Structural analysis is a complex problem which can be
approached in different granularities such as sections, phra-
ses and motifs (Pearce et al., 2010). To find such group-
ings there has been many approaches based on music the-
ory (Jackendoff, 1985), psychological findings and com-
putational models (Cambouropoulos, 2001; Pearce et al.,
2010). On the other hand, there are a few studies that has
investigated automatic structural analysis of makam mu-
sics. Lartillot & Ayari (2009) has used computational mod-
els to segment Tunisian modal music and compared the
segmentations with the annotations of the experts. Lartillot
et al. (2013) has proposed a similar segmentation model
for OTMM and also conducted comparative experiments
between the automatic segmentations and human annota-
tions. Due to the lack of musicological agreement on how
to segment makam music scores, Bozkurt et al. (2014) fo-
cused on learning a model from a dataset of music scores

annotated by experts and segmenting larger score datasets
automatically using the learned model. They propose two
novel culture-specific features based on the melodic and
rhythmic properties of OTMM and conduct comparative
studies with the features used in the state-of-the-art meth-
odsand show that the proposed features improve the phrase
segmentation performance. 1 These methods typically fo-
cus on finding the segment boundaries and do not study the
inter-relations between the extracted segments.

In this study, we propose a method which extracts both
the melodic and lyrical organization on phrase-level and
section-level using symbolic information available in the
music scores of Ottoman-Turkish makam music. The met-
hod labels the extracted sections and phrases semiotically
according their relations with each other using basic string
similarity and graph analysis. Our contributions are:

• An automatic structural analysis method applied on
Ottoman-Turkish makam music scores

• A novel semiotic labeling method based on network
analysis

• An open implementation of the methodology extend-
ing our existing score parser

• A dataset of sections and phrases automatically ex-
tracted from more than 1300 and 1750 music scores,
respectively

The structure of the rest of the paper is as follows: Sec-
tion 2 decribes the OTMM score collection we use in our
analysis, Section 3 defines the problem and scope of the
analysis task, Section 4 presents the proposed methodol-
ogy, Section 5 explain the experiments and Section 6 dis-
cusses our findings, Section 7 gives the use cases where
we have already integrated the extracted structure infor-
mation, finally Section 8 suggests future directions to be
investigated and concludes the paper. 2

2. SCORE COLLECTION

In the analysis, we use the release v2.4.1 of the SymbTr
score collection (Karaosmanoğlu, 2012). 3 This release in-
cludes 2200 scores from the folk and classical repertoires.

1 For a detailed review of structural analysis applied to OTMM and
relevant state of the art we refer the readers to (Bozkurt et al., 2014)
and (Pearce et al., 2010), respectively.

2 The relevant content such as the implementation of the methodology,
the score collection, the experiments, the results are also accessible via
the companion page http://compmusic.upf.edu/node/302.

3 https://github.com/MTG/SymbTr/releases/tag/
v2.4.1
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It is currently the largest and the most representative mac-
hine-readable score collection of OTMM aimed at research
purposes (Uyar et al., 2014). The scores typically notate
the basic melody of the composition devoid of the per-
formance aspects such as intonation deviations and embel-
lishments. The scores also include editorial metadata such
as the composer, the makam, the form, the usul (rhythmic
structure) of the composition. We use the scores in txt for-
mat in our analysis, as they are the reference format from
which the other formats are generated.

The content in the SymbTr-txt scores are stored as “tab
separated values,” where each row is a note or an editorial
annotation (such as usul change) and each column repre-
sent an attribute such as the note symbol, the duration, the
measure marking and the lyrics. The pitch intervals are
given according to both the 24 tone-equal-tempered (TET)
system defined in the Arel-Ezgi-Uzdilek theory and the 53-
TET system. 4 The lyrics are synchronous to the note on-
sets on the syllable level. The final syllable of each word
ends with a single space and the final syllable of each po-
etic line ends with double spaces (Karaosmanoğlu, 2012).
Some columns may be overloaded with additional types of
information. For example the lyrics row also includes ed-
itorial annotations such as the section names, instrumenta-
tion and tempo changes, entered in capital letters.

As will be explained in Section 4.1, we use the explicit
section names along with the poetic line ends mentioned
above in the section extraction step. However, this set of
editorial annotations does not convey the complete infor-
mation about the section boundaries and the section names.
First, the section name (and hence the first note of a sec-
tion) is only given for the instrumental sections and the fi-
nal note of these sections are not marked at all. Moreover,
the section name does not indicate if there are any differ-
ences between the renditions of the same section. Regard-
ing the vocal sections, only the last syllable of a poetic line
is marked as explained above. This mark does not typi-
cally coincide with the actual ending of the vocal section
since a syllable can be sung for longer than one note or
there might be a short instrumental movement in the end
of the vocal section. Out of 2200, 1771 txt-scores in the
SymbTr collection has some editorial section information.
The remaining 429 scores either lack the editorial section
information or they are very short such that they do not
have any sections.

3. PROBLEM DEFINITION

As explained in Section 1, symbolic structural analysis is
a complex problem that can be approached from different
perspectives and granularities. For our initial work in the
topic, we assume that the structural elements of the same
type are non-overlapping and consecutive (e.g. the last
note of a sectoion is always adjacent to the first note of the
next section). Consecutiveness restriction also implies that
any transitive interactions between two consecutive struc-
tural elements are ignored.

4 The unit interval of the 53-TET, which is simply the 1/53th of an
octave, is called a Holderian comma (Hc).

Given the note sequence N := {n1, n2, . . . } and the
measure sequence M := {m1,m2, . . . } in the score, our
aim is to extract the sections S := {s1, s2, . . . } and the
phrases P := {p1, p2, . . . } (which we call as structural el-
ements collectively, throughout the text) along with their
boundaries, and the melodic and lyrical relationship with
other structural elements of the same type. We assume
each poetic line as a section.

Remark that each subsequence 5 might cover or over-
lap with subsequences of different types, e.g. the note
sequence in a section would be a subsequence of N or a
phrase might start in the middle of a measure and end in
another. We denote the index of the first note and the index
of the last note of an score element x in the note sequence
N as β(x) and γ(x), respectively. For example, the start
of an arbitrary section si, phrase pj and measure mk are
denoted as β(si), β(pj) and β(mk), respectively.

4. METHODOLOGY

We first extract the section boundaries from the score us-
ing a heuristic process taking the editorial structure labels
in the score as an initial reference (Section 4.1). In parallel,
we automatically segment the score into phrases according
to a model learned from the phrases annotated by an ex-
pert (Section 4.2). Next, we extract the synthetic pitch and
the lyrics of each section and phrase (Section 4.3). Then,
a melodic and a lyrical similarity matrix are computed be-
tween the extracted phrases and the sections separately. A
graph is formed from each similarity matrix and the rela-
tion between the structural elements in the context of the
similarity (melodic or lyrical) is obtained (Section 4.4). Fi-
nally semiotic labeling is applied to the computed relations
(Section 4.5).

4.1 Section Extraction

We infer section boundaries using the explicit and implicit
boundaries given in the lyrics column of the SymbTr-txt
scores (Section 2). As a preprocessing step to distinguish
the instrumental section labels from other editorial annota-
tions in the lyrics column, we extract the unique strings in
the lyrics column of all SymbTr scores. We only keep the
strings, which are written in capital letters and obtain the
set of all editorial annotations in the SymbTr-scores. Then,
we pick the section annotations manually. 6

Given a score, we first search the set of instrumental
section names in the lyrics column. The matched note in-
dices mark the actual beginning β(si)s of the instrumen-
tal sections si ∈ S |λ(si) = ∅. Next, the lyrics column
is searched for syllables ending with double spaces. The
index of the matched notes are assigned to the final note
γ(si)s of the vocal sections si ∈ S |λ(si) ̸= ∅. As ex-
plained in Section 2, the index γ(si)s may not coincide

5 or element, which can also be regarded as a subsequence composed
of a single element

6 https://github.com/sertansenturk/
symbtrdataextractor/blob/master/
symbtrdataextractor/makam_data/symbTrLabels.json
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with the actual ending and it may be moved to a subse-
quent note.

Up to here we have found the section sequence S :=
{s1, s2, . . . , sI}, where I is the total number of sections.
The first note of the vocal sections and the last note of the
instrumental sections are unassigned at this stage. We pro-
ceed to locate the section boundaries using a rule-based
scheme iterating though all sections starting from the last
one.

If a section si is instrumental, the β(si) is already as-
signed. If a section si is vocal and the previous section
si−1 is instrumental, we find the last instrumental mea-
sure, mk ∈ M |λ(mk) = ∅, before the last note γ(si)
of the section si. We then assign the first note β(si) to the
first note β(mk+1) of the next measure mk+1. If both the
current section si and the previous section si−1 are vocal,
we assign β(si) to the index of the first note with lyrics
after the last note γ(si−1) of si−1. If β(si) and γ(si−1)
are not in the same measure, we reassign β(si) to the first
note of its measure, i.e. β(mk) | β(si) ∈ mk. Finally the
last note γ(si) of the section is moved to the index of the
first note γ(si+1) of the next section si+1 minus one. The
pseudocode of the procedure is given in Algorithm 1. Note
that the start of the first section and the end of the final sec-
tion are assigned to 1 and |N |, respectively, where |N | is
the number of notes in the score. This detail omitted from
the pseudocode for the sake of brevity.

Algorithm 1 Locate section boundaries
for i := L→ 1 do ▷ from the last index to the first

if si is vocal then ▷ find β(si) of the vocal section
if si−1 is instrumental then

β(si)← argkmin (β(mk) > β(si−1) ∧
λ(mk) ̸= ∅)

else ▷ si−1 is vocal
β(si)← argkmin (k > γ(si−1) ∧

λ(nk) ̸= ∅)
if β(si) ∈ mk ∧ γ(si−1) /∈ mk then

β(si)← β(mk)

γ(si)← β(si+1)− 1 ▷ sections are consecutive

Having located the boundaries, the sections are extracted
by simply taking all information (i.e. rows in the SymbTr-
txt score) between these note boundaries. Figure 1 shows
the section boundaries obtained on a mock example.

4.2 Automatic Phrase Segmentation

In our method we use the only automatic phrase segmenta-
tion methodology proposed by Bozkurt et al. (2014) (Sec-
tion 1). The source code and the training dataset (Karaos-
manoğlu et al., 2014) are open and available online. 7

In order to train the segmentation model, we use the an-
notations of Expert 1, who annotated all the 488 scores in
the training dataset (Karaosmanoğlu et al., 2014). There
are a total of 20801 training phrases annotated by the first
expert. Using the trained model, we apply automatic phrase

7 http://www.rhythmos.org/shareddata/
turkishphrases.html

segmentation on the score collection (Section 2) and obtain
the phrase boundaries β (pk) and γ (pk) for each phrase
pk ∈ P := {p1, p2, . . . }, where P is the automatically
extracted phrase sequence. In Figure 5 (Appendix A), the
vertical red and purple lines shows the phrase boundaries
extracted from the score “Kimseye Etmem Şikayet.” 8

4.3 Synthetic Pitch and Lyrics Extraction

We use the information in the lyrics column to determine
the boundaries of the vocal sections in Section 4.1. Later,
the lyrics of each structural element are extracted in Sec-
tion 4.4 and a lyrical similarity is computed between each
structural element of the same type using the extracted.
The lyrics associated with a sequence or an element x is
a string denoted as λ(x), simply obtained by contatenating
the syllables of the note sequence {β(x), . . . , γ(x)} of x.
The editorial annotations (Section 2) and the whitespaces
in the lyrics column are ignored in the process. Then the
characters in the obtained string are all converted to lower
case. Trivially, λ(ni) of a note ni is the syllable associated
with the note ni in the lyrics column.

Given a subsequence or element x in the score, the syn-
thetic pitch ρ(x) is computed by sampling each note in x
according to the note symbol and the duration, and then
concatenating all of the samples (Şentürk et al., 2014). The
synthetic pitch is used in melodic similarity computation
parallel to the lyrics (Section 4.4). Figure 2 shows the
lyrics and the synthetic pitch extracted from an except of
the SymbTr-score of the composition “Gel Güzelim”.

4.4 Melodic and Lyrical Relationship Computation

Given the structure sequence F := {f1, f2, . . . } (which is
either the section sequence S or the phrase sequence P )
extracted from the score, we first compute the synthetic
pitch and extract the lyrics of each structural element (Sec-
tion 4.3). Then, we compute a melodic similarity and lyri-
cal similarity between each element using a similarity mea-
sure based on Levenshtein distance (Levenshtein, 1966).
The similarity measure L̂(x, y) is defined as:

L̂(x, y) := 1− L(x, y)

max (|x|, |y|) (1)

where L(x, y) is the Levenshtein distance between the two
“strings” x and y with the lengths |x| and |y|, respectively
and max() denotes the maximum operation. In our case, x
and y are the synthetic pitch or the lyrics of two structural
elements. The similarity yields a result between 0 and 1.
If the strings of the compared structural elements are ex-
actly the same, the similarity will be one. Similar strings
(e.g. the melodies of two instances of the same section
with volta brackets) will also output a high similarity.

From the melodic and lyrical similarities, we build two
separate graphs, in which the nodes are the structural ele-
ments and the elements are connected to each other with

8 https://github.com/MTG/SymbTr/blob/
a50a16ab4aa2f30a278611f333ac446737c5a877/txt/
nihavent--sarki--kapali_curcuna--kimseye_
etmem--kemani_sarkis_efendi.txt
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<A1 1A  > <AB 1B > <C1 1C  > <D1 1B  > <C2 2B   > <B1 1A  >, ,1 , , , ,

3s2s1s 4s 5s 6s

Figure 1: Section analysis applied to a mock example. The section labels (“INTRO” and “FIN”) are given in the lyrics
written in capital letters, The spaces in the end of the syllables are visualized as *. The semiotic < Melody, Lyrics > label
tuples of each section are shown below the lyrics. The similarity threshold in the similar clique computation step is selected
as 0.7 for both melody and lyrics.
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Figure 2: A short excerpt from the score of the composi-
tion, Gel Güzelim. a) The score, b) the lyrics, c) the syn-
thetic pitch computed from the note symbols and durations.
The spaces in the end of the syllables are displayed as *s.

undirected edges. The weight of an edge connecting two
structural elements fi and fj is equal to L̂ (ρ (fi) , ρ (fj))

in the melodic relation graph and L̂ (λ (fi) , λ (fj)) in the
lyrics relation graph, respectively. Next, we remove the
edges with a weight less than a constant similarity thresh-
old w ∈ [0, 1]. In Section 5, we will investigate the effect
of using different w values.

Given the graph, we obtain the groups of structural ele-
ments having similar strings by finding the maximal cliques
in the graph (Tomita et al., 2006). A maximal clique is a
subgraph, which has its each node connected to each other
and it cannot be extended by including another node. We
denote these cliques as vj ∈ V , where V is the set of “simi-
lar cliques.” We additionally compute the maximal cliques
of the graph only considering the edges with zero weight.
These cliques show us the groups of structural elements,
which have exactly the same string. We call each of these
cliques as “unique clique” uk ∈ U , where U is the set of
the unique cliques. Note that two or more similar cliques
can intersect with each other. Such an intersection resem-
bles all the relevant similar cliques. We denote these “in-
tersections” as wl ∈W , where W is the set of intersections
between different similar cliques. Also, η (x) denotes the
nodes of an arbitrary graph x. Here we would like to to
remark a few relations:

• A unique clique is a subgraph of at least one similar
clique, i.e. ∀uk ∈ U, ∃vj ∈ V | η (uk) ⊆ η (vj).
• A unique clique cannot be a subgraph of more than

one intersection, i.e. ∀uk ∈ U, ∄{wl, wm} ⊆ W |
η (uk) ⊆ η (wl) ∧ η (uk) ⊆ η (wm).
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Figure 3: The graphs, the cliques and the semiotic labels
obtained from the mock example (Figure 1) using an edge
weight threshold of 0.7 for both melody and lyrics. The
circles represent the nodes and the lines represent the edges
of the graphs, respectively. The edge weights are shown
next to the lines. Green, blue and red colors represent the
unique cliques, the similar cliques and the intersection of
similar cliques, respectively. The semiotic label of each
similar clique and each intersection is shown in bold and
the semiotic label of each unique clique is shown in italic,
respectively.

• A structural element belongs to only a single unique
clique, i.e. ∀fi ∈ F, ∃!uk ∈ U | η (fi) ⊆ η (uk).

Figure 3 shows the graphs computed from the sections
of the mock example introduced in Figure 1. In the melodic
relations graph, each section forms a unique clique since
the melody of each section is not exactly the same with
each other. Using a similiarty threshold of 0.7, we found
four similar cliques formed by {s1, s2}, {s2, s6}, {s3, s5},
{s4}. Notice that {s4} is not connected to any clique. so
it forms both a unique and a similar clique. Moreover, s2

is a member of both the first and the second similar cliques
and hence it is the intersection of these two cliques. For
the lyrics, there are four unique cliques, formed by the sec-
tions {s1, s6} (aka. instrumental sections), {s2, s4}, {s3}
and {s5}. The lyrics of s5 is very similar to {s2, s4} and
they form a similar clique composed of these three nodes
and the relevant edges.

4.5 Semiotic Labeling

After forming the cliques, we use semiotic labeling ex-
plained in Bimbot et al. (2012) to describe the structural
elements. First we label similar cliques with a base let-
ter (“A”, “B”, “C”, . . . ). Then we label the intersections
by concetanating the base letters of the relevant similar
cliques (e.g. “AB”, “BDE”, . . . ). We finally label each
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unique clique with the label of the relevant intersection, if
exists and with respect to the relevant similar clique oth-
erwise, plus a number according to the occurence order of
the clique in the score. Right now, we only use the sim-
ple labels (e.g. “A1”, “A2”, “AB2”) as termed by Bimbot
et al. (2012) to label the unique cliques.

The pseudocode of the process is given in Algorithm 2.
During labeling, V , W and U are sorted with respect to the
index of their first occurence in the score. We denote the la-
bel of an arbitrary element x as Λ(x). In the algorithm, we
also use iterators #(vj) and #(wl) for each similar clique
vj and each intersection wl, which are used to assign the
numerical index to each unique clique uk ∈ U according
its relation with the relevant similar clique or intersection.

Algorithm 2 Semiotic labeling
λ←“A” ▷ Start the base letter from “A”
#(vj)← 1, ∀vj ∈ V ▷ Init. the iterators for all vj

#(wl)← 1, ∀wl ∈W ▷ Init. the iterators for all wl

for vj ∈ sort(V ) do ▷ Label similar cliques
Λ(vj)← λ

for wl ∈ sort(W ) do ▷ Label intersections
Λ(wl)← concat. Λ(vj), ∀(vj) | η (wl) ⊆ η (vj)

for uk ∈ sort(U) do ▷ Label unique cliques
if ∃wl | η (uk) ⊆ η (wl) then ▷ e.g. “ACD1”

Λ(uk)← Λ(wl)#(wl)

#(wl)← #(wl) + 1
else ▷ e.g. “C2”

Λ(uk)← Λ(vj)#(vj) | η (uk) ⊆ η (vj)
#(vj)← #(vj) + 1

for fi ∈ F do ▷ Label structural elements
Λ(fi)← Λ(uk) | η (fi) ⊆ η (uk)

The label of each section of the mock example is shown
below the staff in Figure 1. The same semiotic labels are
also shown on the computed graphs in Figure 3. Notice
that the melodic semiotic label of s6 is B1 because the first
occurence of the relevant similar clique is at s2.

By extracting the relations in the graphs computed from
the melodic and lyrics similarity matrices (Section 4.4) and
then applying semiotic labeling to each section and phrase
according to its relation, we obtain a < Melody, Lyrics >
tuple for each section and phrase (Section 4.5). For each
phrase we additionally mark the sections, which enclose
and/or overlap with the phrase. Appendix A shows the re-
sults of the structural analysis applied to the score “Kim-
seye Etmem Şikayet.” We leave the examination of the
analysis to the readers as an exercise.

5. EXPERIMENTS

In (Bozkurt et al., 2014) report the evaluation of the phrase
segmentation method (Section 4.2) on an earlier and slightly
smaller version of the annotations that we use to compute
the segmentation model. We refer the readers to (Bozkurt
et al., 2014) for the evaluation of the training data. Fur-
thermore, the labels of the automatic phrase segmentations

need to be validated by musicologists parallel to the discus-
sions brought by Bozkurt et al. (2014). For this reason, we
leave investigating the effects of the similarity threshold w
in phrase analysis as future research.

To observe the effect of the similarity threshold in the
melodic and lyrical relationship extraction (Section 4.4),
we have collected a small dataset from the SymbTr collec-
tion. The test dataset consists of 23 vocal compositions in
the şarkı form and 42 instrumental compositions in peşrev
and sazsemaisi forms. These three forms are the most
common forms of the classical OTMM repertoire. More-
over their sections are well-defined within music theory;
the two instrumental forms typically consists of four dis-
tinct “hane”s and a “teslim” section, which follow a verse-
refrain-like structure; the sections of the şarkıs typically
coincide with the poetic lines. In our initial experiments
we focused on şarkıs with the poetic organization “zemin,
nakarat, meyan, nakarat,” which is one of the most com-
mon poetic organization observed in the şarkı form. Us-
ing the automatically extracted section boundaries (Sec-
tion 4.1) as the ground-truth, the first author has manually
labeled the sections in the scores with the same naming
convention explained in Section 4.5. 9 Due to lack of data
and concerns regarding subjectivity, we leave the evalua-
tion of section boundaries as future research.

We have conducted section analysis experiments on the
test dataset by varying the similarity threshold from 0 to 1
with a step size of 0.05. After the section labels are ob-
tained, we compare the semiotic melody and lyrics labels
with the annotated labels. We consider an automatic label
as “True,” if it is exactly the same with the annotated la-
bel and “False,” otherwise. For each score, we compute
the labeling accuracy for the melody and the lyrics sepa-
rately by dividing number of correctly identified (melody
or lyrics) labels with the total number of sections. We ad-
ditionally mark the number of similar cliques and its ratio
to the unique cliques obtained for each score. For each ex-
periment, we find the average accuracy for the similarity
threshold w by taking the mean of the accuracies obtained
from each score.

Figure 4 shows the notched boxplots of the accuracies,
the total number of similar cliques and the ratio between
the number of unique cliques and the number of similar
cliques obtained for each similarity threshold. For the me-
lody labels, the best results are obtained for the similarity
threshold values between 0.55 and 0.80 and the best ac-
curacy is 99%, when w is selected as 0.70. For lyrics la-
beling, any similarity value above 0.35 yields near perfect
results and 100% accuracy is obtained for all the values of
w between 0.55 and 0.70. In parallel, the number of sim-
ilar cliques and the ratio between the unique cliques and
the similar cliques gets flat in these regions. From these
results we select the optimal w as 0.70 for both melodic
and lyrical similarity.

9 The experiments and results are available
at https://github.com/sertansenturk/
otmm-score-structure-experiments/releases/tag/
fma_2016
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Figure 4: The notched boxplots of the accuracies, num-
ber of similar cliques and the ratio between the num-
ber of unique cliques and similar cliques obtained for a)
the melody labels and b) the lyrics labels (only for vocal
compositions) using different similarity thresholds. The
squares in the boxplots denote the mean accuracy.

6. DISCUSSION

As shown in Section 5, the similarity threshold w has a di-
rect impact on the structure labels. A high threshold might
cause most of the similar structural elements regarded as
different, whereas a low threshold would result in many
differences in the structure disregarded. In this sense the
extreme values of w (around 0 or 1), would not provide
any meaningful information as w = 0 would result in all
the structures being labeled similar and w = 1 would be
output all the structures as unique. We also observe that
the melodic similarity is more sensitive to value of w than
lyrics similarity. This is expected as the strings that make
up the lyrics are typically more diverse than the note sym-
bols used to generate the synthetic pitch. In our experi-
ments we found the optimal value of w as 0.7 for the small
score dataset of compositions in the peşrev, sazsemaisi and
şarkı forms. Moreover we observe that the curves repre-
senting the number of similar cliques and the ratio between
the unique cliques and the similar cliques are relatively flat
around the same w value, where we obtain the best results
(Figure 4). This implies that there is a correlation between
decisions of the annotator and our methodology.

Nevertheless, we would like to emphasize that the w
value found above should not be considered as a general
optimal. First of all, the sections were annotated by a sin-
gle person and therefore our evaluation does not factor in
the subjectivity between different annotators. Second, the
section divisions in different forms are much different from
the forms we have experimented upon, which might influ-
ence the structure similarity. For example, we expect many
vocal compositions of OTMM with“terennüm”s (repeated
words with or without meaning such as “dost,” “aman,”
“ey”) need a lower similarity threshold in the lyrics rela-
tionship computation step. Moreover the poetic lines might
not coincide with melodic sections in many vocal compo-
sitions especially in folk music genre. Third, the threshold
can be different in different granularities. For example, the

phrases are much shorter than the sections as can be seen
in Appendix A. The human annotators might perceive the
intra-similarity between sections and phrases differently.

7. APPLICATIONS

We have implemented the structural analysis methodol-
ogy in Python and integrated it to the symbtrdataextractor
package, a SymbTr-score parser written by us. 10 We have
also forked the open automatic phrase segmentation pack-
age by Bozkurt et al. (2014), which is written in MATLAB
scripting language. The fork modularizes the code and
packages it into a standalone binary so it can be integrated
to other tools without the need of a MATLAB proprietary
license. Moreover, the code is optimized such that it per-
forms considerably faster than the original code. 11 We
have been using the information extracted from the struc-
tural analysis in several applications:

Score collection analysis: Using the optimal similar-
ity threshold (w = 0.7), we applied structural analysis
on the latest release of the SymbTr collection (Section 2).
We have extracted and labeled 49259 phrases from 1345
scores, which have both their makam and usul covered in
the phrase segmentation training model. Because there is
no training data for the usul variants “Yürüksemai II”, “De-
vrihindi II”, “Müsemmen II”, “Raksaksağı II”, “Devrituran
II” and “Kapalı Curcuna,” we treat them as the most com-
mon variant of the same usul, namely “Yürüksemai”, “De-
vrihindi”, “Müsemmen”, “Raksaksağı”, “Devrituran” and
“Curcuna”. In parallel, 21569 sections are extracted from
1771 scores. 12 The data can be further used to study the
structure of musical forms of OTMM.

Automatic score validation: Structural analysis, along
with the other functionalities of the symbtrdataextractor
package are used in unittests applied to SymbTr collection
in a continuous integration scheme to automatically vali-
date the contents of the scores. 13

Score format conversion: We are currently develop-
ing tools in Python to convert the SymbTr-txt scores to the
MusicXML format 14 and then to the LilyPond format 15

to improve the accesibility of the collection from popular
music notation and engraving software. The converters use
the information obtanined from symbtrdataextractor to add
the metadata and the section names in the converted scores.

Audio-score alignment: In the performances of OTMM
compositions, the musicians occasionally insert, repeat and
omit sections. Moreover they may introduce musical pas-
sages, which are not related to the composition (e.g. im-

10 https://github.com/sertansenturk/
symbtrdataextractor/

11 The fork is hosted at https://github.com/MTG/
makam-symbolic-phrase-segmentation

12 The data is available at https://github.com/
sertansenturk/turkish_makam_corpus_stats/tree/
66248231e4835138379ddeac970eabf7dad2c7f8/data/
SymbTrData

13 https://travis-ci.org/MTG/SymbTr/
14 https://github.com/burakuyar/

MusicXMLConverter
15 https://github.com/hsercanatli/

makam-musicxml2lilypond
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provisations). In (Şentürk et al., 2014), we have proposed a
section-level audio-score alignment methodology proposed
for OTMM, which considers such structural differences.
In the original methodology the sections in the score are
manually annotated with respect to the melodic structure.
Next, the candidate time intervals in the audio recording
are found for each section using partial subsequence align-
ment. We replaced the manual section annotation step with
the automatic section analysis part of our alignmet method,
where we use the melody labels to align relevant audio
recordings and music scores. Using the modified method
we have aligned the related audio and score pairs in the
CompMusic Turkish makam music corpus (Uyar et al.,
2014) and linked 18.770 sections performed in 1767 pairs
of audio recordings and music scores. The aligned audio-
score pairs are accessible via Dunya makam, our proto-
type web application for the discovery of OTMM (Şentürk
et al., 2015). 16 In the application, the audio can be listened
synchronous to the related music score(s) on the note-level
and the sections are displayed on the audio timeline.

We have additionally conducted experiments using the
melodic relations of the extracted phrases. Our prelimi-
nary results suggest that phrase-level alignment may pro-
vide better results than section-level alignment.

8. CONCLUSION

We proposed a method to automatically analyze the melodic
and lyrical organization of the music score of OTMM. We
applied the method on the latest release of the SymbTr col-
lection. We extracted 49259 phrases from 1345 scores and
21569 sections from 1771 scores. We are also using the
extracted structural information in automatic score valida-
tion, score engraving and audio-score alignment tasks.

In the future, we would like to test other string matching
and dynamic programming algorithms (Serrà et al., 2009;
Şentürk et al., 2014) in general, for similarity measures
with different constraints and select the optimal similar-
ity threshold w automatically according to the melodic and
lyrical characteristics of the data. We would also like to
solidify our findings by working on a bigger dataset anno-
tated by multiple experts and cross-comparing the anno-
tated and the automatically extracted boundaries as done
in (Bozkurt et al., 2014). Our ultimate aim is to develop
methodologies, which are able to describe the musical struc-
ture of many music scores and audio recordings semanti-
cally and on different levels.
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A. EXAMPLE ANALYSIS
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1125p    ← <P , K > 1126p    ← <Q , L > 1227p    ← <N , I >
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p   , p   ← <H , H >1118 33 p   , p   ← <J , A >1119 34
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Figure 5: The results of the automatic structural analysis of the score “Kimseye Etmem Şikayet.” The sections are displayed
in colored boxes with the volta brackets colored with a darker shade of the same color. The section labels and their semiotic
< Melody, Lyrics > label tuple is shown on the left. The phrase boundaries are shown as red lines for the first and as
purple for the second pass. The phrases and their semiotic labels are shown on top of the relevant interval and on the bottom,
when there are differences in the boundaries in the second pass. Note that s5, s6, s9 and s10 are the repetitive poetic lines
(tr: “Nakarat”). “[Son]” in the end of the “Nakarat” marks the end of the piece. The similarity threshold is taken as 0.7 for
both melody and lyrics. The usul of the score is Kapalı Curcuna, which we treat as Curcuna in the phrase segmentation
step.
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AFTER THE Harmonie Universelle BY Marin MERSENNE (1636), 
WHAT FINGERING FOR THE CHABRETTE IN 2016?

Philippe RANDONNEIX
Musician – Researcher – Teacher – philippe.randonneix@gmail.com

1. SCIENTIFIC CONTEXT

In  1636,  Marin  Mersenne  publishes  his  Harmonie
Universelle,  Contenant  la  Théorie et  la  Pratique de la
Musique,  ou  est  traité  de  la  Nature  des  Sons,  &  des
Mouvemens,  des  Consonances,  des  Dissonances,  des
Genres,  des  Modes,  de la Composition, de la Voix des
Chants, de toutes sortes d’instruments harmoniques.
In  Book  Five  “On  Wind  Instruments”,  two  sets  of
bagpipes are illustrated on separate plates.
The first one, Cornemuse des bergers (i.e. the shepherd’s
bagpipe) has a monoxyle chanter (made from one piece
of wood) with two drones [Figure 1]. 

The second one,  Cornemuse de Poictou  (in reference to
the french province of Poitou) has a composite chanter
and one drone [Figure 2]. 
These two types of chanter are reproduced several times
in the book.
The  chabrette borrows  from  these  two  bagpipes:  the
chanter is the same as the  Cornemuse de Poictou  but a
small drone of medium length is set on a box while the
bass drone is bigger and borne on the arm. Based on a
known corpus of tens of ancient pieces, this instrument
has been rebuilt since the seventies.

2. OBJECTIVES OF THE WORK

What fingering for the chabrette? 
This bagpipe is often played in Limousin1 and compared
to  its  two  geographical  neighbours,  the  cabrette (in
Auvergne) and the  musette du Centre (in  Berry-Boubon-
nais-Nivernais).  Naturally,  the fingerings of  these three
instruments are often confused because of their proxim-
ity.
The chanters  of the  cabrette and the  musette  are made
from one piece of wood whose internal bore is continu-
ous. The employed fingers are relatively well known and
established. They are semi-closed and each note is com-
posed of an ensemble of holes, open or closed. The gen-
eral  rule is  that  the lower hand closes  when the upper
hand opens. 

1 https://fr.wikipedia.org/wiki/Chabrette

Identical  to  the  Hautbois  de  Poictou presented  by
Mersenne [Figure 3], the melody pipe of the chabrette is
composed of several pieces, with its flaring bell quite de-
tached from the main body on which it is set [Figure 4]. 
A keywork (covered by a fontanelle) enables the player to
reach the subtonic or leading tone of the oboe. 
All these characteristics point to a specific functioning. 
There is a need to define a comprehensive, precise and re-
liable fingering for the chabrette, just like for any instru-
ment.

Figure 1 – Cornemuse des bergers Figure 2 – Cornemuse de Poictou
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3. METHODS

Initially, the cabrette’s semi-closed fingering was used for
the  chabrette after  the  former  replaced  the  latter  in
Limousin  during  the  twentieth  century.  Marin
MERSENNE’s  work  has  been  long  known  for  its
representations  of  these  bagpipes  of  the  seventeenth
century,  identical  to  our  chabrettes.  If  the  lecture  and
interpretation of the drawings are immediate, the same is
not true for the text. The author describes the flutes in a
relatively complete  manner  and  relies  on  them for  the
oboes and bagpipes.
“Tout ouvert” (i.e. everything open) is mentioned several

times  in  addition  to  the  “tout  fermé”  (i.e.  everything
closed). 
The  first  mention  “tout  ouvert”  clearly means  that  the
highest  note  can  be  obtained  by keeping  all  the  holes
open, both on the flutes and oboes. 
The second indicates the fundamental note of the oboe,
with  all  the  holes  plugged.  Likewise,  many  tablatures
clearly show a “trou par trou” opening (i.e. hole by hole),
where the following note is obtained by lifting the finger
on the next hole. Thus,  the highest note can be obtained
by lifting all the fingers.

Marc  ECOCHARD2 furthers  our  understanding  of
MERSENNE’s  description  of  the  fingerings  at  that  time,
when he uses the term “doigté naturel” (i.e. natural fin-
gering) for this playing technique.

2 Les hautbois dans la société française du XVIIe siècle, 
une approche par l’Harmonie universelle de Marin 
MERSENNE et sa correspondance - 2001

Figure 3 – Hautbois de Poictou Figure 4 – Chabrette - Chabretaire

Figure 5 – MERSENNE’s Tablature Figure 6 – Quote “C sol ut tout ouvert”
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4. RESULTS

As  said  before,  the  cabrette’s  technique  of  combining
semi-closed holes was used by many musicians. But, as I
went along in an empirical but nevertheless musical way,
I  realized  that  opening  hole  by  hole was  much  more
satisfying, as shown by the illustration on the right. 
While  inventing  new  playing  techniques  for  the

chabrette, I wonder about what fingering to employ. As
research progressed, as instruments were remanufactured,
after  many  reed-making  attempts,  after  many
confrontations,  I  realized  that  the  initial  fingering  was
borrowed from other traditions of bagpipes adopted in the
region, and thus remained unsatisfying.

The complete fingering [Figure 7] can be read in 3 steps:
– First, we are interested in the basic notes forming

a  diatonic  scale,  starting  from  the  fundamental
note (G highlighted in blue) [Figure 8];

– The  alterations,  with  fork  fingering,  in  grey
[Figure 9];

– The vibratos, represented on the edge of the used
hole [Figure 10].

  
5. DISCUSSION

As we all know very well, and to cite but two examples,
the Uilleann pipes as well as the Great Highland Bagpipe
have their own fingerings and no one would even think of
questioning these fundamentals…
Therefore, it  appears possible, important, and necessary
to build the same principles for the  chabrette.  This new
technique is detailed in an online publication3.

3 http://philippe.randonneix.free.fr/DuJeudeChabrette.pdf  

6. CONCLUSION

The chabrette has been rebuilt and played again for forty
years  now.  But  it  is  only  in  the  last  ten  years  that
reflections  on  its  use  have  empirically  led  to  precise
functional elements.
Marin  MERSENNE’s  representations of  instruments have
always been a reference for me. It is quite remarkable to
find  (again)  consistent  elements  after  almost  four
centuries. Some of them derive from a technique that was
presumably already well established and perfected in the
17th century.

Figure 7 – Complete fingering Figure 8 – Basic notes – Diatonic scale

Figure 9 – Alterations Figure 10 – Vibratos
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1. INTRODUCTION 

The current system to classify musical instruments, 
(Hornbostel-Sachs), is conceptually and practically out-
dated, because it has a reducing effect by only consider-
ing morphological features (Weisser et al., 2011). Our 
research project NeoMI aims at developing a new envi-
ronment for the organization of musical instruments that 
takes into account their many aspects. The aim is to de-
velop an environment consisting of an integrated, un-
hierarchical and flexible tool to organize the musical in-
struments. Without reducing the complexity and the rich-
ness of these multifaceted objects, it includes the mani-
fold aspects of musical instruments into a unique envi-
ronment. To that end, the system is based on temporary 
grouping of instruments among their “peers”, according 
to user-based criteria. This allows an important variability 
in the precision level: it can be used to group instruments 
according to a single-criterion (such as the presence on 
the instrument of an anthropomorphic decoration), or to 
constitute a corpus of very specific instruments (for ex-
ample, instruments equipped with devices contributing to 
provide buzzing sounds), or, on the contrary, to constitute 
a group of similar instruments made by the same maker, 
at the same place, over time. NeoMI aims at providing a 
flexible and pertinent tool for managing museum collec-
tions, as well as a fruitful and innovative conceptual 
framework for research.  It explores three different axes: 
(1) the instrument as an artefact (production time and 
place, maker, morphological features, etc.); (2) the in-
strument in its social/cultural context; (3) the instrument 
as a tool for music. In this paper we focus on the latter, 
and study the sound-based classification (Fourer et al., 
2014; Dupont et al., 2010) of one family of instruments: 
the fiddles, or bowed chordophones. 
 

2. METHODS 

To form a sound-based classification of fiddles, many 
sound recordings of different fiddle types were gathered 
from libraries, personal archives and online sources. 
Effort has been made to ensure that fiddles are included 
with diverse geographic provenances. The recordings 
were edited in the Musical Instruments Museum using 
SoundStudio1 to get smaller samples of 2 to 4 seconds 
with minimal environmental noise. Representative 

                                                         
1 http://felttip.com/ss/ 

samples -referred to as the MIM database from now on- 
have thus been created for the following fiddle types 
(number of sound samples between parentheses):  
Endingidi (10), a one-string spike tube fiddle from the 
Baganda people in Uganda; 
Erhu (14), a two-string spike tube fiddle from China; 
Haegum (9), a two-string spike tube fiddle from Korea; 
Hardingfele (20), a folk violin with 4 playing strings and 
4 sympathetic strings from Norway; 
Imzad (15), a one-string spike bowl fiddle from the 
Touareg people in Northern Africa 
Izeze (17), a spike fiddle from the Wagogo people in 
Tanzania with one to four strings; 
Kamanche (9), a spike bowl fiddle from Iran with four 
strings; 
Kiiki (31), a half-spike bowl fiddle with one string from 
Chad;  
Mamokhorong (10), a one-string fiddle with a tin can 
resonator from Lesotho; 
Masenqo (11), a one string spike fiddle with a rhombus-
shaped resonator from the Amhara in Ethiopia; 
Morin khuur (18), a two-string fiddle with a horsehead 
scroll from Mongolia; 
Njarka (15), a one-string spike bowl fiddle from the 
Songhay people in Mali; 
Orutu (10), a spike tube fiddle with one string from the 
Luo people in Kenya; 
Ruudga (10), a one-string spike bowl fiddle from the 
Mossi people in Burkina Faso; 
Sarangi (9), an classical Indian fiddle with three playing 
strings and up to 35-37 sympathetic strings. 
 
The timbre of the MIM instruments was studied using a 
set of 22 sound features from MirToolbox (Lartillot et al., 
2008). Two other databases were also used to test the rel-
evance of the proposed methods as well as to select a 
subset of discriminating features: 
 
1. MIS: recorded in standardized conditions by the Elec-
tronic Music Studios of the University of Iowa, USA2.  
 
2. PHIL: recorded by musicians from the Philharmonic 
Orchestra of London, UK3. 
 

                                                         
2 http://theremin.music.uiowa.edu/MIS.html 
3 http://www.philharmonia.co.uk/explore/make_music 
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Several classification algorithms (K-nearest neighbors 
(kNN), naïve Bayes, Support Vector Machines (SVM)) 
were applied to each database. 
 
We started with the MIS and PHIL databases, for which 
30% of the sounds were used as a test set to estimate the 
percentage of correct classifications, while the other 70% 
were used as a training set.  
 
Those results were compared with a complete exploration 
of all the combinations of 22 features from MirToolbox: a 
set of 13 MFCC coefficients, centroïd, spread, skewness, 
kurtosis, brightness, flatness, entropy, roll frequencies, 
and the mean of the signal’s envelope. This feature selec-
tion allowed us to select a subset of 14 features that gives 
a better classification performance. 
 
Afterwards, the MIM database (15 fiddle types) was 
grouped into classes using either all features or the subset 
of features identified by feature selection. Because the 
MIM database is too small to allow 30% of the sounds to 
be kept aside, we performed an n-fold cross-validation, 
with a stratified scenario to preserve the percentage of 
samples for each class and n=9, which corresponds to 
number of samples in the smallest class. 
 
A multidimensional scaling approach was then used to 
represent the results in two dimensions.  

 

3. RESULTS 

3.1 MIS and PHIL databases 

The confusion matrices for the MIS and PHIL databases 
are shown in Figures 1 and 2, respectively, using one rep-
resentative classifier (kNN with k=3). Confusion matrices 
with other classifiers (kNN with k=1,5; Naïve Bayes; 
SVM) are similar. 

 

Figure 1. Confusion matrix for the MIS database 

 

 

Figure 2. Confusion matrix for the PHIL database 

 
In Figures 1 and 2, the numbers in the diagonal indicate a 
correct classification, while the off-diagonal ones reflect 
a confusion between the true and predicted labels. 
 

For the MIS database, the precision is 77%, while the re-
call is 73%. Some confusion occurs for example among 
the different types of flutes (altFlute, bassFlute and flute) 
or among clarinets. This indicates some difficulty to dis-
tinguish between instruments of the same family or 
whose timbre is similar. 
 

For the PHIL database, precision and recall are both 
around 95%. This reflects the fact that the PHIL database 
is bigger, but mostly that it contains shorter recordings, 
each producing a specific note, which simplifies the task 
of the classifier. Some confusion occurs for example be-
tween Cello and Violin, which makes sense considering 
the proximity of these instruments. 
 

As mentioned in Section 2, these performances have been 
measured on the test set composed of 30% of the sam-
ples. 
 

To improve these results, we performed feature selection, 
starting from the observation that not all 22 features from 
MIRTOOLBOX were contributing efficiently to the clas-
sification. We thus performed a complete combinatorial 
analysis to find the best combinations among the 22 de-
scriptors from the MIRTOOLBOX, by comparing the 
best results obtained with several classifiers: k nearest 
neighbours (kNN) with k values ranging from 1 to 5, na-
ive Bayes and SVM. The results in Figure 3 show indeed 
that the classification rate reaches a maximum between 
10 to 15 features, before decreasing progressively when 
increasing the number of features until 22.  
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Figure 3. Number of features and accuracy 

 

 

A study of the frequency of appearance of each feature in 
the most accurate combinations (i.e., more than 85% ac-
curacy) of features is shown in Figure 4, which shows 
that features with indices 9 to 14 are less efficient.  

 

 

 
Figure 4. Efficiency of features, measured by the fre-
quency of appearance of each feature in the solutions 
with more than 85% accuracy in the MIS database. 

 

 

 

 

 

Removing the features 9 to 14 from the set of features 
used for the classification leads to the confusion matrices 
shown in Figures 5 and 6, for the MIS and PHIL data-
bases, respectively. 

 

 

Figure 5. Confusion matrix for the MIS database, with a 
subset of features. 

 
 

 

Figure 6. Confusion matrix for the PHIL database, with 
a subset of features. 

 

For the MIS database, the precision has now increased to 
86%, and the recall to 84%. However, for the PHIL data-
base, the precision and recall remain stable around 94%.  

The slight variations in the PHIL database upon feature 
selection (95% to 94%) are probably caused by the fact 
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that a different subset of 30% of sounds is chosen each 
time. 
 

 

3.2 MIM database 

The confusion matrix for the MIM database is shown in 
Figure 7, with one representative classifier (kNN with 
k=3).  

 

 

Figure 7. Confusion matrix for the MIM database 

 

Considering the proximity of the instruments involved -
the fiddle family- it is not surprising that the confusion 
matrix is less accurate than for the MIS and PHIL data-
bases.  

Some tendencies can be extracted but have to be inter-
preted with caution. For example, the Kiiki family seems 
to be fairly homogeneous. However, it is also the most 
populated (31 instruments), which has a tendency to bias 
the classification by attracting other instruments (such as 
Imzad, Izeze or Ruudga) in this category. Another class 
that appears quite homogeneous is Masenqo. Endingidi, 
on the contrary, has a high recall (most Endingidi have 
indeed been classified as Endingidi) but a low precision 
(several instruments from the Hardingfele, Imzad, Izeze, 
Kamanche, Kiiki, Mamokhorong, Orutu and Ruudga 
types have been misidentified as Endingidi). 

We also tried the feature selection to classify the MIM 
sounds with the subset of features, giving us a confusion 
matrix as shown in Figure 8. 

 

 
Figure 8. Confusion matrix after feature selection 

 

The new confusion matrix shows a slight overall im-
provement; all fiddle types have a higher recall, except 
Endingidi and Mamokhorong. 

To visualize and to be able to interpret the results, we 
computed the distance matrices between predicted classes 
of instruments (Figure 9), and represented them using a 
multidimensional scaling (MDS) approach (Cox et al., 
2000), as shown in Figure 10. 

 

 
Figure 9. Interclass Euclidian distances 
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Figure 10. Distances between fiddle types 

 

 

 

4. DISCUSSION 

A visual representation using an MDS approach leads to 
some interesting questions.  For example, based on their 
morphology and geographic distribution one would not 
expect a close proximity between the Indian Sarangi 
(Figure 11) and the Tanzanian Izeze (Figure 12):  

 

 

 
 
Figure 11. Indian sarangi, mim inv. 1972.003. © mim, 
photo Simon Egan 

 

 
 
Figure 12. Tanzanian izeze, mim inv. 2014.273.001. © 
mim, photo Simon Egan 

 

 

However, as shown in Figure 10, these two fiddle types 
are quite close to each other. This leads to new questions: 
is it because they both possess sympathetic strings? Does 
the playing technique play a role in their similarity? An-
other question arises when looking at the Imzad, a fiddle 
from the Touareg people in Northwest Africa (Figure 13), 
and the Njarka, a fiddle from the Songhai people in Mali; 
both are single string spike fiddles with a calabash reso-
nator, played with a horsehair bow (Figure 14):  

 

 
 
Figure 13. Touareg imzad, mim inv. 2009.002. © mim, 
photo Simon Egan 
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Figure 14. Njarka from Mali, RMCA inv. 
MO.1967.63.777. © RMCA Tervuren 

 

However, apparently there are certain qualities that make 
them appear far from each other in Figure 10. How can 
we explain this distance? Not all distances between the 
different fiddle types are surprising, though - to the hu-
man ear, the Endingidi and Orutu sound very much alike, 
and they are indeed quite close to each other in the graph 
in Figure 10. 

 

5. CONCLUSION 

Confusion matrices show that a classification based 
on sound features is efficient for two databases (MIS 
and PHIL) containing various kinds of instruments. 

Our results indicate that it is also feasible with the 
MIM database, containing only various fiddle fami-
lies.  

The interest of the sound-based classification is that it 
allows us to discover possible new links between cer-
tain instruments, for example between different fiddle 
types, as shown on the visualization using an MDS 
approach. Furthermore, at the dawn of the 21st centu-
ry, the persistent use of a conceptual framework de-
signed in the 19th century is a problem. Indeed, clas-
sificatory systems are not a mere way to sort objects: 
they are also (and often implicitly) a conceptual 
ground and a basis for research. The NeoMI project 
aims therefore to induce an important change of sci-
entific paradigm: from a linear thought to a truly mul-
tidimensional one, in which the relative importance of 
features is adjusted according to the needs of the re-
search.   
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1. INTRODUCTION

In this extended abstract, we would like to present the con-
cept of the ‘closed pattern’ from computer science and use
it to investigate patterns in folk music. We also show how
the quantity of patterns can be different comparing to other
genres. We use three symbolic music databases: The Es-
sen Folksong Collection (Schaffrath & Huron, 1995), The
Jazz Tune Collection (Rodrı́guez López et al., 2015), and
Bach’s chorales (Sapp, 2005).

There have been lots of quantitative analyses on the Es-
sen dataset (Huron, 1996; Bodet al. , 2002; Toiviainen &
Eerola, 2001; Bod, 2002; Von Hippel & Huron, 2000). One
central topic that appears in many of these analyses is the
discovery of patterns. The difficulty of pattern discovery
in music lies in the ambiguity of the term ‘pattern’. With a
rigid definition of what is a ‘pattern’, the process of extract-
ing a pattern is comparatively easy. Here, we use the def-
inition of pattern from MIREX (2015): a sequence which
appears at least twice in a corpus is called a pattern.

Such a definition is very broad. For example, in a se-
quence of letters ‘ABC ABCDE ABCDE’ (the spaces are
not included in the sequence), omitting the single letters
which appear twice, we have ‘patterns’: AB, ABC, ABCD,
ABCDE, BC, BCD, BCDE, CD, CDE, CDE, DE. How-
ever, from intuition, we can tell that, within these patterns,
there are more important sequences: ABC and ABCDE.
To capture this intuition, we borrow the definition of the
‘closed pattern’ developed in the computer science and data
mining community. A closed pattern is the type of pat-
tern which is more significant in terms of its length and
repetitiveness, first proposed in (Pasquier et al., 1999). In-
tuitively, they are the patterns with the longest length and
repeated the most frequently. Formally, a closed pattern
is a pattern that is not included in another pattern which
has the same support (or the number of sequences which
contain the sequence in consideration).

In fact, people have used the closed pattern for analysing
music in multiple occasions (Lartillot, 2005; MIREX, 2015),
but as far as we know, there has not been research which
systematically investigated the closed pattern of the Essen
dataset and the Jazz Tune dataset.

In the case of music, we can treat each piece of music as
a sequence of pitch-duration pairs. Nevertheless, such an
arrangement is not able to capture the translation of pitches
and the self-similarity of durations. For example, a pitch
pattern of ‘C4, D4, E4’ and a pitch pattern of ‘G4, A4, B4’,
in a general sense, should be considered as the same pat-
tern since they have the same interval structure; a duration

pattern of ‘crochet, quiver, quiver’ and a duration pattern
of ‘minim, crochet, crochet’, similarly, should be treated
the same. Therefore, we use the pairs of pitch differences
and duration ratio as the input music pattern sequence, but
not the simple absolute values of pitch-duration pairs.

Using the above definition of pattern and closed pattern,
we present the number of closed patterns in three datasets
of different genres. We also take one folk song from the
Essen dataset and look at the specific closed patterns which
were extracted. All the extracted patterns are available in
.mid format per request.

2. RESULTS

Figure 1 shows the number of patterns and closed patterns
we extracted using music from different genres: folk, jazz
and classical. We can see that, although the ranges of the
numbers of the patterns are similar, there is a big differ-
ence in the group variances. The classical Bach’s chorales
show a steady count of the number of patterns and closed
patterns; the jazz pieces have the most uncertain amount
of closed patterns; for folk music, we split the dataset into
European and Asian groups to see if we could find any re-
gional differences, but they are very similar both in range
and variances, which are larger than the classical variance
and smaller than the jazz variance.

Comparing the quantity of patterns and closed patterns,
it is clear that using the definition of the closed pattern
eliminates a certain amount of patterns. In addition, the
variance differences of different genres are preserved re-
gardless of patterns or closed patterns.

These observations on the ranges and variances help us
establish the fact that the abundance of patterns and close
patterns is universal across the three datasets of different
genres.

Figure 2 is the example of a Chinese folk song. Figure
3 and Figure 4 show the closed patterns extracted from this
specific Chinese song. As described in Section 1, we use
the pitch difference and duration ratio pairs for the pattern
extraction, so we do not have the absolute values of the
patterns. Therefore, to re-construct the melody, we use the
midi number 60, which is the note C4, as our first pitch,
and a minim as our first duration. The information in the
sequence of pitch differences and duration ratios is then
used to generate the rest of the melody. We can see that
the extracted melodies in Figure 3 and Figure 4 do have
musical meaning.
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Figure 1: The number of patterns and closed patterns of different genres. For each x label, we use a hundred songs to
calculate the number of the closed patterns. The y axis gives the count of how many patterns or closed patterns there are.
The red line in the box plot shows the median of the distribution of the number of patterns across the hundred pieces. The
four boundaries in the box plot indicate the Q1, Q2, Q3, Q4 of the distribution. The plus sign markers indicate outliers.
The figure on the left shows the results of patterns, and the figure on the right is the results of closed patterns.

Figure 2: The example of a Chinese folk song.
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Figure 3: Closed pattern extracted from the song in Figure 3.

Figure 4: Closed pattern extracted from the song in Figure 3.

3. DISCUSSION AND FUTURE WORKS

We used a rigid definition of the ‘pattern’ and the ’closed
pattern’ to investigate the patterns in folk music, and com-
pared the results with other genres. We also showed some
musically meaningful melodies extracted from the closed
pattern definition.

With limited space, we could not show every pattern
and closed pattern we extracted as they are numerous. Most
musically meaningful patterns are covered in this defini-
tion of the pattern and the closed pattern, but there are ones
which are less important. In the future, we hope to devise
further conditions to restrict the amount of patterns, and
make cross-genre and cross-region comparison.
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1. INTRODUCTION 

The present paper proposes a computational approach to 
the comparative analysis and visualization of the harmon-
ic structure of three-voiced vocal music. The dataset 
which has been used in this study is the same as in 
Scherbaum et al. (2015), a corpus of polyphonic songs 
from Svaneti (Akhobadze, 1957). Similar to the earlier 
work, a song is treated as a discrete temporal process in 
which harmonic or melodic states change according to 
unknown rules which are implicitely contained in the 
song itself. In contrast to the prior study, however, there 
are no assumptions regarding their probabilistic or deter-
ministic nature. 

2. METHODOLOGICAL FRAMEWORK  

In the preprocessing phase of the analysis described in 
Scherbaum et al. (2015), each score was analysed for its 
mode type. It turned out that 99% of the usable songs 
where in mode La (75%), Sol (21%), and Re (3%). The-
se modes differ only in the size of the 3rds and 6ths be-
ing sung as minor or major. Based on the observation of 
recent recordings of authentic Svan singers (Scherbaum, 
2016) which suggest that 3rds and 6ths in traditional 
Svan music are neither sung as minor nor as major inter-
vals, it was concluded that the separation of the 
Akhobadze corpus into different modes is not sufficient-
ly supported by the data. For the subsequent analysis it 
was therefore provisionally assumed that all songs be-
long to a single 7-step mode in which the distinction be-
tween minor and major intervals is dropped, but for 
which the particular scale does not have to be specified. 

In the main part of the analysis, each song is represented 
as a directed graph (e. g. Chartrand, 1985)  G=={V,E} 
which consists of a set of vertices V (representing the 
harmonic states of a song) and a set of edges E which 
represent all the chord transitions in a song (Figure 1). 
Fig. 1 shows the harmonic structure of the song "Tamar 
Mepla" in a very efficient graphical way, which also con-
tains some statistical information regarding the harmonic 
structure of the song. Fig. 1b) for example shows the 
number of times chords - the positions of which corre-
spond to the positions of the edges in Fig. 1a) - are  used. 
It can be seen that the most common chord is VI3

5 which 
is used 10 times, followed in frequency by the chords 

!!VII4
5 (the starting chord), !!V5

7 , and  !!VII1
3 each of which are 

used 8 times. From the edge thicknesses in Fig. 1a) one 

can see for example that the sequence !!V5
7 ,!!VI3

5  !!VII1
3  is 

the most often used chord progression in the whole song.   

  
Figure 1. Graph representation of the song "Tamar 
Mepla" in which the line thickness of each edge indi-
cates how many times the corresponding  chord pro-
gression is used in the song. The vertex positions in the 
graph are calculated  such that the number of edge 
crossings of the graph is minimized (Tutte embedding). 
Fig. 1. a) shows the graph while Fig. 1. b) shows the 
number of times the corresponding chord is used in the 
song. 

Within the graphical framework, an individual song is 
simply a “path” (called “song path”) in a "landscape of 
chords" which will be referred to as "chordscape". The 
thickness of the individual segments of a song path re-
flects how often the particular segment is "travelled". The 
interpretation of songs as directed graphs might require 
some training on the side of a musicologist but its ad-
vantages become obvious in the context  of analysing a 
whole set of songs together. Naturally, the concept of 
song paths is easily expanded to a larger group of songs 
by simply adding new chords (as vertices) to the chord-
scape and recalculating their optimum positions so that 
the number of path crossings of all song paths is mini-
mized, using the principle of Tutte embedding. This is 
illustrated in Fig. 2 for the combination of two songs 
(Akhobadze song number 5 "Mgzavruli" Fig. 2a with 
Akhobadze song number 9 "Tamar Mepla" Fig. 2b. 
 

���

�����

����

����� ���

���������

���

�����
���

�����

���

�����

���
���

�

�)

�

�
��

� �

��
�

� �

�

�

�
��

�

�)

FMA 2016 Workshop

59



  
 

 
 

 
Figure 2. Chordscape and song paths for the combina-
tion of two songs, a) “Mgzavruli" and b) "Tamar 
Mepla".  

3. RESULTS 

The representation of songs as song paths in a chordscape 
offers interesting ways of graphically analysing the har-
monic organization of songs and their relationships. Due 
to the space constraints in this abstract, the potential of 
this framework can only be highlighted through some se-
lected features. If for example one displays all song paths  
in a single graph on the full chordscape of the whole cor-
pus (Fig. 3), the chords in the outer locations of the 
chordscape reveal those chords which are less often used 
(maybe even only once) while the most used chords in 
the whole corpus are found in the center of the cluster.  

  
 
Figure 3. Joint song paths for all songs in the corpus plotted on 
top of the chordscape for the complete corpus. The complete 
chordscape consists of a total of  102 different chords. 
 
One can now also quantitatively calculate the relationship 
of songs in terms of their harmonic organisation, e. g.  by 
calculating the Sammon´s map (Sammon, 1969) for the 
song path images (Fig. 4), just to mention another exam-
ple. 

 
 
  
Figure 4. Sammon´s map for the song paths images of all ana-
lysed songs. The two-dimensional mutual distances between the 
individual points, each representing a song, are reasonably good 
approximations of the mutual distances of the dissimilarity of 
the corresponding song paths. 

4. CONCLUSIONS 

The representation of songs as directed graphs allows the 
quantitative analysis of the harmonic organization of in-
dividual songs in a graphical, transparent and reproduci-
ble way.  It also provides a framework to quantitatively 
compare the similarity of songs in a whole corpus e. g. by 
using techniques such as Sammon´s maps. The resulting 
neighborhood relations from the latter analysis can be 
displayed in ways which can be used for further musico-
logical studies even by non-mathematically inclined ana-
lysts. 
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Figure 1: Hierarchical organisation of flamenco style fam-
ilies, styles and sub-styles.

1. INTRODUCTION

Flamenco is a rich music tradition from the southern Span-
ish province of Andalucı́a. Having evolved from an oral
tradition, the singing voice remains the central musical el-
ement, typically accompanied by a guitar and rhythmic
hand-clapping. Since its existence, flamenco songs have
been transmitted orally throughout generations and only
manual transcriptions are the rare exception. Consequently,
performances are highly improvisational and not bound
to a musical score. Despite its improvisational charac-
ter, flamenco music is based on a hierarchical structure of
style families, styles and sub-styles (Kroher, Dı́az-Báñez,
Mora & Gómez, ress), each of which is defined by a set
of melodic, rhythmic and harmonic concepts (Figure 1).
Based on these characteristics and their experience, fla-
menco aficionados can identify a flamenco style in a matter
of seconds.

In the relatively new field of computational flamenco
analysis, automatic style recognition is considered a key
challenge. So far, approaches have been limited to the dis-
crimination of two styles belonging to the tonás family,
the deblas and martinetes (Cabrera, Dı́az-Báñez, Escobar-
Borrego, Gómez & Mora, 2008). In this particular case,
performances of the same style share a common melodic
skeleton which is subject to strong melodic ornamenta-
tion. Based on this knowledge, previous approaches have
focused on classification solely based on melodic simi-
larity (Dı́az-Báñez, Kroher & Rizo, 2015; Mora, Gómez,
Escobar-Borrego & Dı́az-Báñez, 2010; Gómez, Mora, Gó-
mez & Dı́az-Báñez, ress). Even though promising results
have been obtained, this particular task represents only a
small sub-problem of automatic flamenco style classifica-
tion.

In a first step towards the development of a generic sys-
tem for automatic style categorisation of flamenco record-
ings, we demonstrate the particular challenges and difficul-

ties of this task on 78 recordings belonging to three styles:
fandangos de Huelva, seguiriyas and alegrı́as. We inves-
tigate in how far the melody-based approach generalises
to these three styles (Section 2) and furthermore explore
the domains tonality (Section 3) and rhythm (Section 4) as
potential features for style classification.

2. MELODY

It has been demonstrated in Dı́az-Báñez et al. (2015) that
for the particular case of discriminating styles from the
tonás family, a classification based on melodic similarity
yields nearly perfect accuracies. In order to evaluate in
how far this concept holds for the three styles investigated
in the scope of this study, we follow the method proposed
by Dı́az-Báñez et al. (2015) to compute pair-wise similari-
ties of automatic melody transcriptions (Kroher & Gómez,
2016) of the first sung verse. The resulting similarity ma-
trix S holding the pair-wise similarity values can be rep-
resented as a graph G(V,E), which we visualise using
the Gephi software (Bastian, Heymann & Jacomy, 2009).
We furthermore evaluate the discriminate power of the ob-
tained representation by computing the cluster quality q as
the ratio of intra and inter cluster edges, where a cluster is
formed by all instances belonging to the same style.

The cluster qualities for different style combinations (Ta-
ble 1) and the graph visualisations (Figure 2) indicate a
poor class discrimination among fandangos de Huelva, se-
guiriyas and alegrı́as compared to the task of discriminat-
ing among two members of the tonás family: deblas and
martinetes. We identify conceptual as well as methodolog-
ical causes for this behaviour: Contrary to the particular
case of members of the tonás family, not all styles nec-
essarily share a single common melodic skeleton, but may
encompass a large set of characteristic melodies or melodic
patterns. In other words, the degree of intra-style melodic
similarity is highly style dependent. Further experiments
show that a reliable discrimination based on the melodic
contour is achieved in lower hierarchical structures, e.g.
among sub-variants of a style which tend to share the same
melody. We furthermore observed that in particular in the
alegrı́as, melodies exhibit structural differences, i.e. repe-
titions of a phrase or sub-phrase, which cause a high local
alignment cost resulting in low melodic similarity values.
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styles cluster quality q(S)

Martinete vs. Debla 3.19
Alegrı́as vs. Seguiriyas 1.15
Fandangos de Huelva vs. Seguiriyas 1.06
Alegras vs. Fandangos de Huelva 1.07

Table 1: Cluster quality for various style combinations.

(a) (b)

Martinete Debla Seguiruiyas Alegrías

Figure 2: Graph visualisations of melodic distances.

3. TONALITY

In flamenco music, apart from major and minor, we en-
counter a third scale, the flamenco mode: While its dia-
tonic structure is identical to the phrygian mode, the dom-
inant is located on the second and the subdominant on the
third scale degree. Among the three considered styles,
the alegrı́as are set in major mode, seguiriyas in flamenco
mode and the fandangos de Huelva are bimodal in a struc-
tural sense, where the guitar plays in flamenco mode dur-
ing its solo sections and modulates to major when the vo-
cals set in.

In order to detect and investigate tonality across styles,
we analyse the distribution of occurring pitch classes (Gó-
mez, 2006; Temperley & Marvin, 2008): We extract pitch
class profiles from automatic vocal transcriptions and chro-
magrams of guitar sections and compute the correlation
with pitch class templates for the major mode taken from
Temperley & Marvin (2008) and for the flamenco mode,
which we have estimated by analysing 40 flamenco record-
ings from this tonality.

Displaying the resulting correlation values obtained from
the vocal melody across styles (Figure 3 (a)), clearly re-
flects the mode affinity of alegrı́as and seguiriyas. The
fandangos de Huelva seem to be spread across both tonali-
ties, which indicates a weak tonal identity. This is an inter-
esting finding, since vocal melodies of the fandangos the
Huelva are in literature referred to as being sung in major
mode (Fernández-Martı́n, 2011). Further studies indicate a
typical pitch class distribution in the fandangos de Huelva
which differs clearly from the major mode known form
Western music. When analysing the same illustration for
pitch histograms extracted from guitar sections, we iden-
tify a clear separation tendency between the alegrı́as which
are played in major mode and the fandangos de Huelva and
seguiriyas in flamenco mode.

(a) automatic vocal melody 

transcriptions
(b) chroma extracted from guitar 

sections

corr. major mode template
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Figure 3: Histogram correlation with major and flamenco
mode templates.
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Figure 4: Estimated tempo and confidence.

4. RHYTHM

Flamenco is based on a complex accentuation of style-
dependent metric structures: While the fandangos are set
in a 3/4 meter, both alegrı́as and seguiriyas are based on
a 12/8 pattern. Seguiriyas are performed in slow tempo
with weak rhythmic accentuation and tempo fluctuations.
The faster alegrı́as are characterised by a complex accen-
tuation shifting between on- and off-beat, which is often
emphasised by hand-clapping. In the case of fandangos,
the tempo and its stability can vary strongly among perfor-
mances.

We apply a beat tracking algorithm proposed by Zapata
& Gómez (2014) to estimate the tempo value in BPM and
together with confidence value. We compare the tempo es-
timates obtained from the three considered styles to the es-
timate for pop recordings taken from the Jamendo 1 dataset.

The results in Figure 4 indicate that the flamenco record-
ings yield overall lower confidence values than the pop
recordings, probably due to the irregular accentuation. A-
mong the styles, the seguiriyas obtain the lowest confi-
dence values. Both alegrı́as and fandangos de Huelva are
on average estimated to have a faster tempo and return a
higher beat confidence.

5. DISCUSSION

We have introduced the task of automatic flamenco style
detection and have shown the limitations of existing prob-
lems. Based on the findings of this study we identify a need
to develop novel descriptors related to melodic, harmonic
and rhythmic content targeting style-specific characteris-
tics. In particular, we aim to develop systems capable of
extracting chord progressions, characteristic melodic pat-
terns and the underlying metric structures.

1 http://www.mathieuramona.com/wp/data/jamendo/
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La Madrugá. Revista de Investigación sobre Flamenco,
5(1), 37–53.
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1. INTRODUCTION 

This poster describes new developments in the popular 
Tunepal project. Tunepal is a query-by-playing music 
score search engine used primarily by musicians on 
smartphones in traditional music sessions and classes. Us-
ing Tunepal, a musician can quickly identify the name of 
a melody being played and download the score for later 
study. Since 2009, there has also been a version of Tunepal 
that runs in a web browser that allows a musician to play a 
tune extract and find the name of the tune. Over the sum-
mer of 2015, we embarked on a project to redevelop the 
Tunepal website in HTML5. Additionally we aimed to 
connect Tunepal searches which normally return music 
scores, to recordings of those scores, through the Eurpoe-
ana Sounds project. Finally, we aimed to make the core 
Tunepal technology open source and provide API access 
to the Tunepal corpus and search engine so that others 
could build on our work1.  

2. BACKGROUND 

Tunepal is predominantly used on IOS and Android 
smartphones and it allows users to search for a music 
score by playing a 12 second extract on a traditional in-
strument. The transcription is then sent to the Tunepal 
server where it is matched against over 23K music scores 
and the results are returned to the user in order of similar-
ity to the audio search query. Tunepal has in excess of 20K 
users in over 40 countries who submit around 1K music 
searches per day. For a more detailed description of the 
functionality and impact of Tunepal see (Duggan and 
O’Shea, 2011). Since 2009 there has been a browser 
hosted version of the Tunepal search engine that used a 
Java applet to record and transcribe audio. However by 
2015, it was clear that this needed to be redeveloped given 
that browsers were increasingly dropping support for Java 
applets.  

The Europeana Sounds project unifies access to arti-
facts stored by digital libraries and museums across Eu-
rope through a common API.  It aims is to provide one 
million audio recording by January 2017 whilst improving 
access and promoting the creative reuse of these record-
ings (Europeana Sounds, 2016). 

                                                           
1 See http://github.com/skooter500 

3. GOALS 

Over the summer of 2015 we embarked on an ambitious 
project to redevelop the Tunepal website in HTML5 and 
add the ability to find matching audio artifacts from the 
archives of Comhaltas Ceoltoiri Eireann, the Irish Tradi-
tional Music Archive and Tobar an Dualchais through the 
Europeana Sounds API. 

Our goals were as follows: 

 Replace the Java applet with record and tran-
scription functionality implemented in HTML5 

 Return recordings of music, not just music 
scores. 

 Make all the functionality of the Tunepal, includ-
ing query-by-playing work similarly across all 
devices including smartphones. 

 Open-source Tunepal and make an API server 
available to other projects. 

4. IMPLEMENTATION 

Our team consisted of a back end developer, a front end 
developer and two experts in music archiving and digital 
libraries who provided leadership and support from His-
torypin. Three of the team were based in London whilst the 
back end developer and project coordinator was based in 
Dublin. The team communicated regularly using Google 
Hangouts and Slack, while all the coding was managed in 
git repositories.  

Over the summer, the back end technology that per-
forms Tunepal searches was redeveloped as a JSON API 
using Jersey (Jersey, 2016). The front end of the project 
was redeveloped using Materialize and AngularJS, open 
source frameworks that allows web applications to devel-
oped in HTML/CSS and Javascript that conform to 
Google’s Material Design principles (Materialize, 2016). 
Emscripten was used to cross-compile the ABC2MIDI li-
brary on which Tunepal depends  from C to Javascript 
(Emscripten, 2016; Shlien, 2011).  To display music scores 
in the browser, the ABCJS library is used (Rosen and 
Dyke, 2016). 
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In the new Tunepal web application, whenever a user 
makes a query-by-playing search for a tune, we also per-
form a Europeana API search for the title of the closest 
matching Tune returned by Tunepal. When a user searches 
for a title, we also search for that title in Europeana 
Sounds. Also when a user loads a specific tune in Tunepal, 
we also show search results from Europeana Sounds. We 
limit our searches to those collections in Europeana 
Sounds we know to have most traditional music content. 
Figure 1 illustrates some of these workflows. 

5. EVALUATION 

We evaluated our work by running user trials for the week 
of Feadh Ceoil na hEireann in various locations in Sligo in 
August 2015. In total 40 users tested the new version of 
Tunepal.  

From our user trials, we established that users valued 
the provision of archive recordings greatly, though we did 
discover that transcription in the browser version of Tune-
pal was not as accurate as the version implemented in the 
apps. We are still investigating this and hope to provide 
improved accuracy in future a version. Also, although 
Comhaltas provides the majority of archive recordings, 
these are currently limited to 30 seconds extracts. Often 
these extracts are from recordings of sets of tunes and 
sometimes the tune being searched for is not in the first 30 
seconds of the recording. We are currently working with 
Comhaltas to resolve this issue.  

Typically we are handling around 2K music searches 
per month through the new, browser hosted version of 
Tunepal. This compares to around 20K music searches that 
originate in the native app versions of Tunepal. 

6. CONCLUSIONS & FUTURE WORK 

We achieved our goal of redeveloping the Tunepal website 
using modern technologies and also integrating search re-
sults from Europeana. We have made a number of en-
hancements and bug fixes since launch including default-
ing to HTTPS connections which was necessary to support 
access to the microphone on the Chrome browser. When 
the functionality works, the experience is compelling. It is 
possible to start an interaction by playing an unknown mel-
ody and conclude with the music score from several man-
uscript collections in addition to recordings of the tune 
played by iconic musicians on a variety of instruments and 
contexts. We are also happy to report that the core Tunepal 
technology is now being integrated into other projects in-
cluding thesession.org. We aim to build on our work by 
improving transcription accuracy, including key invariant 
searches and improving the utility of the archive record-
ings returned. We are hopeful that as more people become 
aware of the functionality of the new version of Tunepal, 
that it will broaden access to a wealth of cultural heritage 
available through Europeana Sounds.   

    

     
 

Figure 1: Screenshots of the new Tunepal web application 
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ABSTRACT 
 
Computational music analysis investigates the relevant features 
required for the detection and classification of musical content, 
features which do not always directly overlap with musical com-
position concepts. Human perception of music is also an active 
area of research, with existing work considering the role of per-
ceptual schema in musical pattern recognition. Data sonification 
investigates the use of non-speech audio to convey information, 
and it is in this context that some potential guidelines for human 
pattern recognition are presented for discussion in this paper. Pre-
vious research into the role of musical contour (shape) in data 
sonification shows that it has a significant impact on pattern 
recognition performance, whilst investigation in the area of 
rhythmic parsing made a significant difference in performance 
when used to build structures in data sonifications. The paper pre-
sents these previous experimental results as the basis for a dis-
cussion around the potential for inclusion of schema- based clas-
sifiers in computational music analysis, considering where shape 
and rhythm classification may be employed at both the segmental 
and supra-segmental levels to better mimic the human process of 
perception. 

1. INTRODUCTION 

The innate audio processing capability of all humans (and indeed 
most animals (Kaas, Hackett, & Tramo, 1999)) is amply demon-
strated by the ability of infants to discriminate between pitches 
(Olsho, Koch, & Halpin, 1987), melodic contour (Trehub, Bull, 
& Thorpe, 1984) and rhythm (Trehub & Thorpe, 1989) as well as 
an adult can. This ability even extends to the segmenting of mel-
odies (Thorpe & Trehub, 1989) into smaller phrases, and the as-
sociation of music with other events (Fagen et al., 1997) in a sim-
ilar manner to adults. The mechanism for such processing is mu-
sically specific, with certain neurons directly responsible for 
pitch perception, rhythm and melodic contour (Johnsrude, 
Penhune, & Zatorre, 2000; Weinberger & McKenna, 1988) being 
found only in the right hemisphere of the brain (Trehub et al., 
1984). 

Perception is a subjective manner of assessment, as by defi-
nition differences in perception account for subjective opinion 
and hence do not easily conform to standardisation. The pitch, 
loudness or location of sounds can help define their similarity- as 
can their individual timbres. Also the temporal variations of 
sounds (such as modulations over time or even their initial onset), 
can lead to sounds being perceived as grouped or separate- rela-
tive to their occurrence and subsequent change (Bregman, 1993). 
Physically, the fundamental frequency of a sound (and its associ-
ated harmonic series) is important in distinguishing between sep-
arate sources, as sounds of different fundamental frequency can 
be detected as separate rather than fused. The rhythmic compo-
nents of a source also play a major role in its detection (Deutsch, 
1980) and recognition, and different rhythmic patterns allow 
sounds of often similar timbre and pitch to be perceived as sepa-
rate rather than fused (Bregman, 1993). 

Some studies of the mechanics of human audio perception 
suggest that the requirements for detection and recognition of 
melodic patterns are different (Hébert & Peretz, 1997), where 
long-term memory pattern recognition is biased more towards 
melodic factors than the rhythmic elements required by pattern 
detection. Although not an arrhythmic condition by any means, a 
preference is exhibited for melodic criteria when testing the abil-
ity of participants to recognise previously introduced patterns. 
For this reason, the work presented in this paper distinguishes 
between recognition using contour (shape) and detection using 
rhythm, aiming to illustrate the crucial role of both criteria in hu-
man perception of sound and music. 

2. CONTOUR PATTERN RECOGNITION 

Melodic contour has been considered by many musicologists as 
a means of defining relative changes in pitch (Toch, 1948) (with 
respect to time), rather than the definition of absolute values. In 
this manner, the shape, direction and range of a melody can all 
be summarised by its overall contour. Graphical contour repre-
sentations were considered by composers such as Schoenberg 
(Schoenberg & Strang, 1967) as a means of supplementing a mu-
sical score (Figure 1): 

 
Menuetto, String Quartet in D, K. 575, mvt. III, mm. 1-16 

 
Andante, Symphony 39, K. 543, mvt. II, mm 1-8 

Figure 1. Contour Graphs of Selected Mozart Composi-
tions, taken from Schoenberg (Schoenberg & Strang, 

1967) 

Contour can be considered an important part of musical memory. 
Dowling (Dowling, 1978) suggests that contour information 
functions separately and independently from scalar information 
in memory. Experiments by Edworthy (Edworthy, 1983) showed 
that single pitch alterations in a melody could be detected by par-
ticipants as changes in contour- even when they were unable to 
define what pitch had been actually altered in the pattern. This 
capability is believed to be present in infancy (Chang & Trehub, 
1977) (around 5 months), at a stage of development where 
changes in pitch cannot be recognised. It has also been shown 
that different brain cells are used in the processing of melodic 
contour (Weinberger & McKenna, 1988) than are used in the de-
tection of temporal or harmonic (Sutter & Schreiner, 1991) com-
ponents of music. This aspect of neural activity would again sug-
gest that different parts of the brain are used (Zatorre, 1999) in 
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the detection and recognition of musical events: rhythmic factors 
being paramount in detection, while melodic contour and range 
(Dowling, 1991; Massaro, Kallman, & Kelly, 1980) and being 
more important in the recognition of familiar and recently learned 
melodies. 

In previous research into the use of contour (Cullen & Coyle, 
2005, 2006), multimodal patterns defined as contour icons were 
developed to exploit gestalt concepts of good continuation and 
belongingness (Bregman, 1993) (Figure 2): 

 

  

 
 

Figure 2. Example Up and Down Contour Icons, with 
associated musical score representations 

Testing was then performed to assess whether contour icons were 
more memorable than low-level earcon pattern designs 
(Hankinson, John & Edwards, 2000) within a data sonification, 
to determine the effect of shape on pattern recognition (Figure 3): 
 

 

Figure 3. Graph showing overall average percentage 
scores for recognition of low-level patterns and contour 
icons in a data sonification, showing standard deviations 

Results showed that performance had improved from 44% in the 
low-level (earcon) reference pattern condition to 56.87% in the 
contour icon condition, a significant improvement (T(20) = -3.68, 
p=0.0007) that suggests contour icons are more memorable than 
low level reference patterns that do not employ shape as a me-
lodic feature. Post-test Task Load Index testing (Hart, Sandra, 
2006) that examines participant workload during a task showed a 
significant reduction (T(20) =4.53, p<0.0001) in overall work-
load from 50.33 to 36.25 for the contour icon condition. 

Though no reduction was significant in any individual cate-
gory, the scores were lower for the contour icon condition in each 
case. Having said this, higher data to pattern combinations had 
proven less effective, and it was observed on several occasions 
that whilst participants could recognise a particular contour icon 
they were subsequently unable to remember its data mapping. 
This suggests that the abstract nature of the mapping between 
value and contour icon was difficult to remember for some par-
ticipants, though this may not necessarily interfere with the use 
of shape as an aid to recognition. 

Although significant for data sonification, the role of contour 
in musical pattern recognition requires further investigation in re-
lation to its potential role in computational music analysis. Some 
consideration has been given to the concept of stream analysis of 
musical segments (Rafailidis et al., 2008), whilst Karydis et al 
(Karydis, Nanopoulos, A., Papadopoulos, & Cambouropoulos, 
2007) define a computational model of the musical score that in-
cludes the concept of a perceptual ‘voice’ within the overall au-
ditory stream. It is argued that contour may play a significant role 
within such models, given it’s demonstrable effect on human mu-
sical pattern recognition. 

3. RHYTHMIC PATTERN DETECTION 

Rhythm is a fundamental building block of musical composition 
(Taylor, 1989) that serves to group various sonic events within a 
piece for aesthetic purposes. In sonification research, rhythm can 
be employed to group patterns used to represent data for analysis 
so that they may be more efficiently processed by the listener. It 
is argued that rhythm is a fundamental component of all human 
interactions (Jones, 1976), and so is similarly fundamental to the 
communication of effective musical patterns to a listener. 

In the case of infants, the role of rhythm is the most funda-
mentally important aspect of early cognitive development 
(Zentner & Eerola, 2010), and is believed to begin in the womb 
(where the child is often observed to move in response to rhythms 
in speech or music). Infants display several common rhythms 
(Fridman, 1991), which are used to seek attention from their par-
ents or other adults. This use of rhythmic patterns is both frequent 
and essential (Kempton, 1980) in the communication between in-
fant and adult, communication that is dictated by a pulse common 
to all parties. Indeed, the variation or absence of such rhythmic 
components is observed to engender disinterest and negative re-
sponses from the child involved (Drake, Jones, & Baruch, 2000).  

Rhythm dictates the structure of a piece of music, from the 
individual sequence of notes to the hierarchical groupings of dif-
ferent musical phrases or passages. The ability of musicians to 
detect and convey complex structures (Jongsma, Desain, & 
Honing, 2004) within a piece is a direct result of training and ex-
perience, the lack of which effectively reduces rhythmic patterns 
to sequential processes. This means of structuring music relies 
heavily on the metrical organization (Essens, 1995) of such 
rhythmic patterns into regular frameworks, utilising the time sig-
nature of the piece to define different sections. Thus rhythm al-
lows a piece of music to be organised into sections- sections of 
differing levels of complexity. By defining the bar (or measure) 
in terms of the beat, the basic organisational structure of a piece 
of music is decided. When this bar structure is then further or-
ganised into sections (such as the simple verse and chorus of pop-
ular music) it allows differing pieces of related musical infor-
mation to be conveyed in a structured manner. 

In previous research (Cullen & Coyle, 2003, 2006), rhythm 
was investigated as part of a strategy to sonify data, and the spe-
cific role of rhythmic parsing was subsequently investigated in 
the sonification of (fictitious) exam results (Cullen, Coyle, & 
Russell, 2005). Test participants were informed they would be 
asked questions on a sonification of 20 exam results, which con-
tained 4 distinct course groups (with 5 members each) in sequen-
tial order. The test used rest notes between course groups in the 
parsing condition, compared to a single grouping of musical 
events in the control condition, as a means of using rhythm to 
delineate groupings (or structures) within the data. Participants 
were asked questions that compared the data of each group (e.g. 
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which group had a higher pass rate) to determine the effect of 
adding rhythmic gaps to the processing of information in the son-
ification (Figure 4): 

 

Figure 4. Graph showing overall average percentage 
scores (by test condition) for rhythmic parsing of a data 

sonification, showing standard deviations 

Overall results showed performance improved to 75.3% in the 
rhythmic parsing condition from 67.6% in the non-rhythmic pars-
ing condition. This improvement was significant (T(20) = -2.79, 
p=0.008), suggesting that rhythmic parsing had a positive effect 
on performance in multiple stream sonification. In addition, post-
test TLX questions relating to the workload involved in analyzing 
a data sonification showed a significant reduction in overall 
workload from 60.75 to 41.33 in the rhythmic parsing condition 
(T(20) =7.45, p<0.001), with significant reductions in temporal 
demand (16.33 to 7.65, T(20) =6.236, p<0.001), effort (9.95 to 
4.583, T(20) =4.435, p<0.001), and frustration (7.983 to 4.05, 
T(20) =2.966, p=0.005). 

These results suggested that participants had found the rhyth-
mic parsing condition a more effective method of representing 
sub-groups in a data sonification, though the use of a rest note to 
parse the data arguably serves only to indicate a change in the 
current context within the sonification. A more effective method 
of rhythmic parsing could employ features such as markers and 
labels (Smith & Walker, 2002), in combination with rest notes to 
better mimic the compositional use of rhythm as a means of 
grouping motifs and patterns into distinct structures within a 
larger piece (Barry, Gainza, & Coyle, 2007). 

4. DISCUSSION & FUTURE WORK 

This section is still to be completed, but will consider the follow-
ing 3 areas: 

• Hierarchical models for short-term/long-term struc-
tures- Contour? 

• Measuring relevance of different musical properties 
and structure principles- Dan & Mikel (Barry et al., 
2007) 

• Developing taxonomies/ontologies for structure anno-
tation- Rhythm & Contour. 
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1. INTRODUCTION

In the ethnomusicological study of oral music cultures, the
question what are the units of music has been of particular
interest. Bohlman (1988) regards the song as the most ba-
sic unit. To better understand a given song culture, a possi-
ble next question would be what is the smallest unit of mu-
sic. Nettl (2005, p.117) observes that folk musicians ma-
king field recordings are not always willing, or even una-
ble to perform individual phrases, or motifs in isolation.
Nevertheless, these units can to a certain extent have an
independent existence, recurring in different pieces. This
observation was first elaborated on by Tappert (1890), who
entitled his study Wandernde Melodien (Wandering Melo-
dies), employing the metaphor of traveling.

An important ethnomusicological concept we use in our
study, is the concept of tune family, which has been in-
troduced by Bayard (1950) to group together a set of folk
song melodies that supposedly descend from one original
tune through the process of oral or semi-oral transmission.

In a previous study on the way in which human collec-
tion specialists categorize Dutch folk song melodies into
tune families (Volk & Van Kranenburg, 2012), it was found
that the recurrence of short characteristic motifs is most
relevant for the perception of similarity between songs be-
longing to the same tune family. Therefore, in the current
work, we set out to analyse tune families in terms of shared
melodic motifs.

In our approach, the set of melodies is divided into a
corpus and an anticorpus (Conklin, 2010). The algorithm
is capable of discovering recurring patterns that are statis-
tically over-represented in the corpus with respect to the
anticorpus. In all cases described in this paper, the corpus
consists of all members of a given tune family, while the
anticorpus consists of members of other tune families.

The question we ask is how to employ an existing se-
quential pattern mining algorithm (Conklin, 2010) to dis-
cover recurring patterns in a collection of Dutch folk tunes
that can be considered building blocks for the melodies,
and that characterize a melody as member of a tune family.
In the following, we outline the method, the first results we
obtained, and some open questions we want to address in
our future work.

2. DATA

The pre-existing data set MTC-ANN 2.0, which is part of
the Meertens Tune Collections (MTC) (Van Kranenburg
et al., 2014) 1 , contains 360 digitized vocal folk songs in
26 tune families from Dutch oral tradition, made available
in symbolic encoding (*kern). These songs have been col-
lected through ethnological field work in the Netherlands
and from written sources such as song books. The collec-
tion specialists at the Meertens Instituut grouped the songs
into tune families based on melodic similarity.

The small sample of 360 songs in 26 tune families has
carefully been selected from a larger collection of thou-
sands of songs. The sample is claimed to be representative
for the larger collection concerning the kinds of variety that
occur among variants of a tune family (Volk & Van Kra-
nenburg, 2012). MTC-ANN 2.0 is provided with several
sets of human annotations including a tune family label for
each melody, but also 1,657 motif occurrences in 102 motif
classes. Each of these motif classes represents an abstract
melodic motif that has a number of concrete occurrences
in songs within a tune family. These motifs are conside-
red characteristic for the tune family in which they occur
by the expert annotators. Therefore, we would expect an
algorithmic pattern discovery method to find patterns that
correspond to some of these annotated motifs.

3. METHOD

A melody is represented as a sequence of events, each a
tuple comprised of basic attributes such as pitch, dura-
tion, and onset time. A viewpoint is a function that com-
putes a value for each event in a sequence. Viewpoints
can be basic: simply returning the basic attribute of an
event; derived from other viewpoints; or constructed. For
example, the derived level viewpoint, computed from the
prevailing time signature and event onset time, describes
the metric level of the event (0 being the highest metric
level); and another derived viewpoint intref computes the
diatonic interval from the reference pitch (the tonic) to the
given pitch.

The choice of viewpoints is crucial for our study. The

1 http://www.liederenbank.nl/mtc. Accessed: 5 June
2016.
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{
phrpos : first

}{ intref : M2
c3(dur) : −

}{
c3(dur) : =

}{
c3(pitch) : +

} �� ���� � � ��




intref : P5
phrpos : in
c5(pitch, 3) : ++
c5(pitch, 7) : +





{
intref : P5

}{
intref : P4

}{ c3(dur) : −
phrpos : first

} ���� �� �� 98� � ��

Figure 1: Patterns discovered in tune family Koopman (top), and Stad (bottom), with one example occurrence. The colored
notes constitute the occurrence, red indicating a note-event that is determined by non-pitch features only, green indicating
the presence of pitch contour in the feature set, and blue indicating the presence of scale degree. The Koopman pattern
describes a note that is the start of a phrase, followed by a note that is a major second above the tonic, and has shorter
duration than the previous note, followed by a note of equal duration, and concluded with a note that has a higher pitch
than the previous note. The Stad pattern describes a note somewhere in the middle of a phrase that is the fifth of the scale,
and is approached by a leap of a third or fourth from the previous note, followed by, again, the fifth of the scale, then by the
fourth of the scale, and concluded by a note of shorter duration, which is the first of a new phrase.

abstraction level of the viewpoints should be high enough
to capture variability in the melodies as caused both by the
process of oral transmission and by variations in choices
that were made in the process of transcription into music
notation. To achieve a suitable level of abstraction, we me-
asure relative values for all viewpoints derived from pitch
or duration.

For the current study we define the following viewpoints:
phrpos, which records whether the note is the first in a
phrase, the last in a phrase, or inside a phrase; intref, which
represents the scale degree of the note given the key of
the song; c3i(level), which records whether the metric le-
vel of a note is higher, lower or equal with respect to the
previous note; c3(dur), which records whether the note is
shorter, equal, or longer in duration than the previous note;
c3(pitch), which records whether the note is higher, equal,
or lower in pitch than the previous note; c5(pitch, 3), which
records whether the note was approached by a leap (three
semitones or larger), a step (smaller than a three semito-
nes), or a unison, with distinction between ascending and
descending intervals; and c5(pitch, 7), which records whe-
ther the note was approached by a leap (seven semitones or
larger), a step (smaller than seven semitones), or a unison,
with distinction between ascending and descending inter-
vals.

A feature is a tuple τ : v comprised of a viewpoint name
τ paired with a value v. A feature set is a set of features,
for example the feature set

{
c3(pitch) : −
intref : M2

}

contains two features, expressing that the pitch of the cor-
responding note is lower than that of the previous note, and
is the major second (M2) of the scale. An event instanti-
ates a feature set if all features in the set are true for the
event.

A feature set pattern is a sequence of feature sets, and a
song instantiates a pattern (or, stated equivalently, the pat-
tern occurs in the song) if the successive feature sets of the
pattern instantiate successive events in the song in at least
one place. For example, the patterns shown in Figure 1

have four feature sets, with different features in each of
them.

Following the method presented by Conklin (2010), a
one vs. all strategy (Neubarth & Conklin, 2016) is used
for mining patterns that contrast between groups of data.
The method is designed to discover maximally general dis-
tinctive patterns (MGDPs), meaning that for each reported
discovered pattern there is no more general pattern that is
also distinctive. Each tune family is mined individually for
distinctive sequential patterns, using each tune family F
as a positive corpus and the rest of the pieces (¬F ) as the
anticorpus.

In this work a statistical approach is used to measure the
distinctiveness of a pattern: it is the probability p of finding
at least the observed number of pieces of family F when
taking a single random sample of pieces from the entire
corpus F ∪ ¬F . A pattern is then considered distinctive if
its p-value falls below some specified significance level α
(see Conklin, 2013, for details).

The MGDP set may contain overlapping patterns, so for
the tune family mining task this set is further reduced by a
greedy pruning strategy. Proceeding from the best (lowest
p-value) pattern, a pattern is placed in the final set if it does
not overlap, in any piece, with any pattern already in the
final set. Thus none of the patterns in the final set will
overlap in any piece with any other pattern.

4. RESULTS

The mining algorithm was applied repeatedly with each of
the tune families in MTC-ANN in turn as corpus, while
the other 25 tune families constitute the anticorpus. For
this initial study, to obtain only a few highly distinctive
patterns, we set the p-value threshold at the very low value
of α = 10e-15. The resulting set of discovered patterns
contains 22 patterns in 14 tune families, showing that the
algorithm is capable of discovering various kinds of me-
lodic patterns that are significantly over-represented in the
tune family.

We compare the discovered patterns with the manually
annotated motifs as provided in MTC-ANN 2.0. These an-
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notated motifs show what parts of the melodies are consi-
dered characteristic for the tune family according to human
specialist annotators. We compute the establishment pre-
cision and recall 2 with a similarity function that considers
an overlap of a discovered pattern occurrence with at least
half of the notes of an annotated motif a hit, provided that
the discovered pattern is not much longer than the anno-
tated motif occurrence. We obtain an establishment preci-
sion of 0.86 and an establishment recall of 0.23, showing
that the discovered patterns do correspond quite well with
annotated motifs, but that the algorithm discovers much
less patterns than human annotators did annotate. The low
recall is caused by the very conservative p-value that we
set. We only discover 22 patterns in 14 tune families, while
the annotations consist of 102 motif classes in 26 families.

It is an open question what exactly this evaluation means.
The motifs as provided in MTC-ANN 2.0 seem to be a
highly subjective choice of the annotators. It is questi-
onable to take this as ground truth for pattern discovery.
Nevertheless, the high establishment precision suggests at
least that the algorithm is able to find parts of the melodies
that are considered stable within the tune family by human
specialists. Further study of the interaction between the
algorithmic results and the human annotations is needed.

As an example of a pattern that does not correspond
with an annotated motif, we show a distinctive pattern that
was discovered in tune family Koopman (adopting the ab-
breviations of the tune family names of Volk & Van Kra-
nenburg, 2012). This pattern comprises an ascending con-
tour starting from the tonic, which may seem trivial. Howe-
ver, the current results show that this particular way of star-
ting a phrase is in fact rare outside Koopman.

The second example that is presented in Figure 1 is inte-
resting because the fourth feature set of the pattern contains{

phrpos : first
}

, which indicates a phrase break as part of
the pattern. Such a phrase-crossing pattern would not be
considered a motif in traditional hierarchical conceptuali-
zation of motifs in music theory. However, in the context
of oral transmission, this seems a very meaningful piece of
information, stating that this particular way of phrase tran-
sition, as part of the pattern, is specific for the tune family.
For a singer generating a version of this tune, this might be
crucial knowledge to properly sing the song.

5. CONCLUDING REMARKS

In this study, we present a first step towards a computati-
onal model of a given folk song culture as constituting of
recombinations of a (possibly very large) number of melo-
dic motifs. The occurrences of these motifs establish the
identity of a song as member of a tune family. Since mo-
tifs may reoccur in a more or less varied appearance, the
current approach in which not all notes of a motif are ne-
cessarily described with the same set of features, is very
appropriate. The current study shows that the employed
MGDP discovery method is capable of discovering parts

2 As defined at: http://www.music-ir.org/mirex/wiki/
2015:Discovery_of_Repeated_Themes_&_Sections. Ac-
cessed: 5 June 2016.

of the melodies that are stable within the variants of a tune
family. Furthermore, it shows that the algorithmic mining
results in patterns that very likely would not occur in tra-
ditional analysis, but that are meaningful in the context of
understanding oral transmission of melodies.

There are several questions that should be addressed in
future work when pursuing this approach. The relation of
discovered patterns to experts’ annotations is still poorly
understood. Furthermore, there is still a gap between tradi-
tional musicological conceptualizations of motifs and tune
families, and the kinds of patterns that are discovered by
automatic discovery as presented in our study. We are
convinced that a proper confrontation between the two do-
mains will be beneficial for both, enriching traditional folk
song analysis with objective methods, and enriching the
algorithmic approach with knowledge of oral transmission
of melodies.

6. ACKNOWLEDGMENTS

This research is partially supported by the project Lrn2Cre8
which is funded by the Future and Emerging Technolo-
gies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, un-
der FET grant number 610859. Peter van Kranenburg is
supported by the Computational Humanities Programme
of the Royal Netherlands Academy of Arts and Sciences,
under the auspices of the Tunes & Tales project. Thanks to
Kerstin Neubarth for assistance with the manuscript.

7. REFERENCES
Bayard, S. (1950). Prolegomena to a study of the principal

melodic families of British-American folk song. Journal
of American Folklore, 63(247), 1–44.

Bohlman, P. (1988). The Study of Folk Music in the Modern
World. Bloomington: Indiana University Press.

Conklin, D. (2010). Discovery of distinctive patterns in music.
Intelligent Data Analysis, 14(5), 547–554.

Conklin, D. (2013). Antipattern discovery in folk tunes. Jour-
nal of New Music Research, 42(2), 161–169.

Nettl, B. (2005). The Study of Ethnomusicology: Thirty-one
Issues and Concepts (2nd ed.). Urbana and Chicago: Uni-
versity of Illinois Press.

Neubarth, K. & Conklin, D. (2016). Contrast pattern mining in
folk music analysis. In D. Meredith (Ed.), Computational
Music Analysis (pp. 393–424). Springer.

Tappert, W. (1890). Wandernde Melodien: Eine musikalische
Studie. Leipzig: List und Francke.

Van Kranenburg, P., De Bruin, M., Grijp, L. P., & Wiering, F.
(2014). The Meertens Tune Collections. Meertens Online
Reports 2014-1, Meertens Institute, Amsterdam.

Volk, A. & Van Kranenburg, P. (2012). Melodic similarity
among folk songs: An annotation study on similarity-based
categorization in music. Musicae Scientiae, 16(3), 317–
339.

FMA 2016 Workshop

73



  
 

 

THE GEORGIAN MUSICAL SYSTEM 

  Malkhaz Erkvanidze  
   maxokulasheli@gmail.com 

1. INTRODUCTION 

The present paper discusses selected results from  
my dissertation work on “The History of Georgian Chant 
Notation and the Georgian Musical System” (Erkvanidze,  
2014). One of the main challenges in the context of trying 
to understand the Georgian Musical System is the fact 
that no theoretical treatise has survived to this day. The 
main sources of our information today are the audio re-
cordings of professional chanter-singers made over 100 
years ago. Theoretical and acoustic analysis of this mate-
rial are the only means to understand the old Georgian 
musical system and the underlying systemic thinking, or 
modal thinking as we call it. This has been the focus  of 
my research since I was a Conservatoire student.  

Naturally the question arises how the musical sys-
tem and systemic thinking are preserved and maintained 
in these recordings? For years, together with my students, 
I conducted experiments in the direction of singing and 
thinking in the original Georgian scale. I believe that both 
the musical system and systemic thinking are invariably 
preserved in the available recordings, primarily implying 
modal thinking. The magnificent traditions of the old 
Georgian schools of chant and song had been imprinted 
and settled in the minds and memories of the recorded 
performers.  

2. GEORGIAN MUSICAL THINKING 

It is well known among musicologists studying tra-
ditional Georgian music that Georgian musical thinking 
is based on tetrachords, pentachords, as well as seven- 
and eighth-note scales. The largest challenges in Geor-
gian ethnomusicology  today, and a topic of intense re-
search, are related to the attempts to understand the mod-
al structure of the music. Although the importance of the 
modal structure is basically undisputed among musicolo-
gists, there is still controversial discussion on several as-
pects. In this context, critical points from my perspective 
are e. g.: a) modes and steps are often counted bottom-up 
and not top-down ; b) the bass is often considered as de-
terminant for mode, i.e. the mode is ascertained according 
to the bass either at the beginning or at the end of the 
song; c) the bass is often considered to direct modula-
tions; d) conclusions are often drawn from transcriptions 
of the songs into a five-line notation system, which often 
does not correspond to the original sound; e) theory is 
often distanced from practice. 

Based on the results of my research which will be 
further detailed below, I have come to the conclusion that 
the Georgian system conforms to descending thinking. It 

resembles the Ancient Greek descending modal system, 
where the basic mode is obtained from two ways of bind-
ing two tetrachords: “interlocked” and “separated”.  
Modal formations of higher quality came into existence 
as tetrachord combinations. There were two principles of 
combination: interlocked – with the coincidence of adja-
cent sounds in tetrachords and separate – with adjacent 
sounds distanced by a whole tone” (Kholopov, 1975: 30). 
In this context, see also the discussion of the descending 
nature of Georgian modes by Kakhi Rosebashvili dis-
cussed (Rosebashvili, 1988). 
The discovery of the 3500-year-old tongueless salamuri 
in Mtskheta is the earliest evidence for the existence of a 
musical system in Georgia. The tongueless salamuri is a 
unique instrument from the perspective of musical acous-
tics; different tetrachords are formed by inclining the in-
strument. Particularly interesting is the modulation on the 
salamuri. The basic scale of the instrument is the de-
scending tetrachord; it should be noted that this tetra-
chord is the same as the basic upper tetrachord of the 
general scale discovered by us, but with a distinctive 
character: with the elevated II and lowered III steps. The 
eight-step scale manifested in the polyphonic modal sys-
tem could have been formed based on the descending tet-
rachord (Ex. 1).  

 

Example 1. Scale of Salamuri and modal modulation 
on the Salamuri. 

 
Particular mention should be made of several 

circumstances. In Georgian musical thinking, modes, as 
well as the principle of harmonization, are conceptualized 
downward. As a consequence of this, the mode should 
naturally be determined top-bottom and not vice versa. 
The bass functionally is derived from the top voice, but at 
the same time the bass establishes the stability of the 
mode. During modulation (apart from rare exceptions, 
especially in folk songs), it does not initiate the process 
but acts according to the upper voices, particularly the top 
voice-part. In chanting, it operates strictly from the top 
voice, but in folk music either from mtkmeli or 
modzakhili, depending on the case. I would also like to 
add that the bass is always ready for modulation, as it al-
ways knows in advance when the modulation is going to 
happen, as the bass singer also knows both top and mid-
dle voice-parts (in the old times every performer knew all 
voice-parts). 
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The analysis of the audio material revealed that 
Georgian chant thinking is based on an eight-degree scale 
according to the two methods for binding tetrachords into 
a scale, which I refer to as merged and split scales. Oth-
erwise, this is one scale which implies two in itself. In 
this context two modes can coexist: one of them is  basic, 
the other one auxiliary. There are cases when only one 
scale with one mode is standing out. I have observed that 
both modes are equally present in chants.  
In a large number of Georgian chants and songs, with the 
two ways of tetrachord binding (merged and split), Geor-
gian scales outwardly resemble old Greek ones. When 
discussing the old Greek modal system, Kholopov and 
Herzman correctly consider modal steps from Nete to 
Hipate (Kholopov, 19 : 306; Herzman, 1986: 29).  
Sulkhan-Saba Orbeliani provides similar explanation: 
“Hipatoi and Nita are strings tuned from zili to bokhi” 
(Orbeliani, 1991: 594). Such an explanation by the lexi-
cographer underlines the descending nature of musical 
thinking, i.e. from zili to bokhi (zili is the top string of the 
instrument, while bokhi  is the bottom one).  
 What is the principal difference between the old 
Greek and Georgian descending modes? As a conse-
quence of the fact that Georgian musical thinking is poly-
phonic and Georgian polyphony is constructed on fourth-
fifth-octave parallelism, at one time tetrachords were evi-
dently divided with the consideration of this type of po-
lyphony, namely: a) by avoiding the tritone (the existence 
of a tritone as augmented fourth or diminished fifth was 
inadmissible at the time), at the same time by the mainte-
nance of interval features by fourth and fifth; b) to 
achieve modal diversity by displacing the centers of up-
per steps of the mode (Ex. 2).  

 
 

 
 

Example 1. Top staff:  Basic mode with two tetrachords 
–interlocked mode. Bottom staff: Accomplished system. 

See also the chart illustrating interval conformity in the 
Appendix (Fig. A1). If the distance between the sounds 
of the Georgian systemic scale changes by a few cents, 
everything will become mixed together. It is remarkable 
that during singing the old masters accurately follow this 
modal thinking and system.  
Based on the studied material we suppose that there are 
six ways for tuning the chonguri (Ex. 3). 
 

 
 

Example 3. Six different tunes of the chonguri. 

3. EVIDENCE FOR  THE TOP-DOWN 
STRUCTURE OF THE MODAL SYSTEM 

As mentioned above, the Georgian mode is descending. 
There is a huge difference between ascending and de-
scending modes, expressed in conceptual categories. For 
instance, if we compare the ascending Dorian mode with 
the Georgian descending double-tetrachord split mode we 
can see that both have a similar modal character (Ex. 4). 
 

 
 

 
 

Example 4. Top staff: ascending Dorian mode. Bottom 
staff: descending double-tetrachord split mode. 

The main aspect here is that the two modes have different 
reference points: the bottom degree I  for the ascending 
and the top degree I for the descending type. The ascend-
ing Dorian mode is generally considered to be of a minor 
character and indeed this is so; as for the Georgian de-
scending split mode, which resembles  the Dorian mode 
at first glance, the picture is absolutely different. In the 
descending Georgian mode songs and chants are mostly 
interpreted as of major character with the consideration of 
the central I degree. This is determined by the existence 
of the upper degree as centre (Ex. 5).  

 
 

Example 5. The Georgian Major charatcer of Dorian 
mode in double-tetrachord separated mode. 

 
For more clarity, all examples in the paper are presented 
in one mode-tonality with the consideration of corre-
sponding degrees. 
 
In support of the conclusion that the mode is determined 
not by the bass or lower support, but by degree I, below 
are three examples of Kriste aghdga (Ex. 6). 
 

FMA 2016 Workshop

75



  
 

 

 

 

Example 6a. The chant Kriste Aghdga (Christ Is Risen) 
in Kartli-Kakhetian simple mode (Erkvanidze, 2014a: 
267). 

 

 

 
 

Example 6b. The chant Kriste Aghdga (Christ Is Risen) 
as performed by Artem Erkomaishvili. Preserved at the 
Archive of the Georgian Musical Folk Laboratory of 
Tbilisi State Consertvatoire. 

 

 
 

Example 6c. The chant Kriste Aghdga (Christ Is Risen) 
in the version of Benia Mikadze(Erkvanidze, 2004: 
147). 

Let us look carefully. The first part is the same in all three 
cases, but in the beginning of the first variant the bass en-
ters the fifth, whilst in the second variant it enters the oc-

tave, and in the third variant, the ninth. Does this not 
mean that in all three cases we have different modes? In-
deed, this would be the conclusion based on the current 
perspective of many in ethnomusicologists.  However,  I 
believe that the determination of  the mode from the  bass 
will not lead to logical conclusions. In the presented ex-
amples it seems obvious that  the mode is determined 
from by the top voice with its centre on degree I which 
directs and determines the mode.  
Here we have an example of the old method of vocal tun-
ing according to which in chanting and singing the bass 
tunes with the first voice, sometimes in a fifth, sometimes 
in an octave, but in West Georgia, particularly in the 
Gurian tradition, in a ninth. This is a usual occurrence. If 
in the three afore-mentioned cases of Kriste aghdga, we 
would determine the modes according to bass we would 
come to the conclusion that there are three different 
modes on the same melody. I definitely believe that this 
is wrong. In this particular case we have a double-
tetrachord split mode with the consideration of the cen-
trality of the upper step and different ways for the harmo-
nization of bass.  

4. MODULATIONS 

Some remarks on modulations within the Georgian modal 
system. If F is conditionally considered as a basic mode-
tonality, then G and E flat are considered closely kindred 
tonalities (Ex. 7).  

 

Example 7. Basic mode-tonality and related closely and 
distant kindred tonalities. Modulations in closely kin-
dred tonalities (from F to G and Es). 

Here is one obvious example of modulation activity in 
the Georgian modal system, the chant Tsmindano mot-
sameno, where two mode-tonalities have only one shared 
pitch (notably, while this single pitch is common, its 
function is not), but the rest are different (Ex. 8).  

 
 

Example 8a. The chant Tsmindano motsameno (Ye holy 
martyrs) as performed by Artem Erkomaishvili. Pre-
served at the Archive of the Georgian Musical Folk  
Laboratory of Tbilisi State Conservatoire. 
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Example 8b. The tones of  the F mode-tonalities. 

Example 8c. The tones of  the G mode-tonalities. 

 

 

 

Example 8d. The correlation between the steps during 
the modulation. 

 
This is exactly what Ioane Batonishvili discusses in 
“Kalmasoba”: “The kankledi, also called shinpardi, only 
slightly differs from mode; it is used the same way with 
an instrument as with chant in the eight-tone system” 
(Bagrationi, 1991: 524). I believe that kankledi and shin-
pardi imply modulation.  
 
Noteworthy here is that in the European functional sys-
tem, modulation is realized via a modulating chord, 
whilst in the Georgian modal system this happens either 
via a modulating sound or direct transition. In the case of 
mode-tonal modulation one tone upward or downward, 
only one sound remains common, while the other 7 
change.  As an example of modulation into distant tonali-
ties related to F mode-tonality, here I provide the modula-
tion schemes from F to A flat mode-tonalities via E flat 
mode-tonality (Ex. 9). 
 

 

Example 9. Modulation to the distant mode-tonalities ( 
from F to As and Es) and the tones of the As and Es 
mode-tonalities (bottom staffs). 

For an example of such modulation, see the chant Ga-
natldi and the Rachan song Maqruli (Ex. 10) 
 

 

Example 10a. The Chant Ganatldi, ganatldi (Shine, 
Shine O New Jerusalem) as performed by Artem Erko-
maishvili. Preserved at the Archive of the Georgian 
Musical Folk Laboratory of Tbilisi State Conservatoire. 

 

 
 

Example 10a. The Rachan folk song maqruli, from the 
field expedition of Chjkhikvadze-Grimo, 1967. Tran-
scribed by M. Erkvanidze. Preserved at the Archive of 
the Georgian Musical Folk Laboratory of Tbilisi State 
Conservatoire. 

 
Please note that of these two examples one is a chant and 
the other one is a song. The first stanzas of both examples 
are identical in terms of modulation and structure, which 
emphasizes the unity of modal thinking of chant and 
song.  

5. MODAL THINKING 

In Georgian polyphonic chant practice, diversity is creat-
ed not by different modes with corresponding centers (as 
in the Greek eight-tone system), but by stanzas with dif-
ferent modal characters similar to eight-tone. For in-
stance, the stanza starting on degree I and ending on de-
gree IV has a major character, but the one starting on de-
gree I and ending on degree III has a minor character. As 
an example, we provide several five-step phrases on dif-
ferent degrees within one mode-tonality (Ex. 11). 
 

 
 

Example 11a. The chant  Daghatsatu Nebsit Tvisit 
(Though thou didstdescent) as performed by Artem 
Erkomaishvili. Preserved at the Archive of the Georgian 
Musical Folk Laboratory of Tbilisi State Conservatoire. 
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Example 11b. The chant  chant Mtasa  zeda  peri 
itsvale  kriste (Thou wast transfigured). Preserved at the 
Archive of the Georgian Musical Folk Laboratory of 
Tbilisi State Consertvatoire. 

 

 
 

Example 11c. The Christmas IV Heirmos KvertkhiIe-
sesdzirisagan (The Rod of the Root of Jesse) as per-
formed by ArtemErkomaishvili. Preserved  at the Ar-
chive of the Georgian Musical Folk Laboratory of Tbili-
si State Consertvatoire. 

 

 
 

Example 11d. The IX Heirmos Saidumlo utskho (A 
Mystery strange) as performed by Artem Erkomaishvili. 
Preserved  at the Archive of the Georgian Musical Folk 
Laboratory of Tbilisi State Conservatoire. 

 
As we see, these stanzas have different modal characters, 
but this does not necessarily mean that they belong to dif-
ferent modes and mode-tonalities. Here we have one F (in 
this case) mode-tonality and an arrangement of stanzas on 
different steps within this mode-tonality.  
Similar stanzas are on the same degrees of the mode, 
which determines stability and order in musical material. 
A number of chant and song examples are bound not ac-
cording to a particular melody, but mostly by the unity of 
different stanzas. Thus, for example, the same chant may 
consist of different stanzas in East and West Georgia.  

6. CONCLUSIONS AND OUTLOOK 

The chief goals of my research and practical work are:  
 
• to understand three-part  and polyphonic thinking in 

general 

• to master modal thinking  

• to sing in traditional scale and to revive medieval 
sound 

• to think with parallel stanzas in chant and song  

• to understand how to differentiate stylistic-
harmonious peculiarities  

• to master a diversity of  traditional   performance 
manners  

• to revive systemic thinking in general  

• to solve the enigma of dasdebeli	
  	
  

The focus (and novelty) of my research is on the deci-
phering of the Georgian polyphonic musical system, al-
lowing us to conceptualize our ancient music.  I hope that 
in the long run this will lead to  
 
• a revival of the original Georgian modes and scales, 

allowing us to perform thousands of chants in the 
original way. In this context,  singing modally is par-
ticularly important, as this contains the treasures of 
the Georgian musical language. 

• the revival of the musical system, allowing us to 
make correct and valuable scientific conclusions on 
issues such as mode, modulations, scales, instrument 
tunings, eight-tone system, etc. 

• the revival of musical systems, implying the revival 
of modal thinking i.e. the performer knows in which 
mode the chant or song was started and finished (in 
the case of modulation), what kind of modulation 
was applied, and where the musical construction was 
moved. 

• the preparation of text-books of Georgian solfeggio 
and harmony, allowing the students to become accus-
tomed to correct Georgian musical thinking; such 
manuals have never yet been prepared. 

• enabling the revival of the oral tradition of learning 
chants and song. I apply this method practically at 
the High School; after completing the preparatory 
period in vocal tuning, students can study all three 
parts of a chant in an oral way with the help of 
neumes in 15-20 minutes. This practically means that 
the old method of teaching has been achieved.  

One of the most significant issues of Georgian musical 
thinking is performance in the correct manner. This has 
survived invariably in old authoritative records. They al-
lowed reviving the sound system, guaranteeing the mas-
tery of correct performance manner.  
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Fig. A1. Interval conformity in cents. 
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1. INTRODUCTION 

In a previous study Scherbaum et al. (2015) have demon-
strated that recordings of body vibrations during singing  
contain all the essential information of a singer ́s voice 
regarding pitch, intonation, and voice intensity, but are 
practically unaffected by the voices of other singers (ex-
cept for extreme situations). This allows the recording of 
the contribution of each singer while they are singing to-
gether. Because of these characteristics, Scherbaum et al. 
(2015) proposed the utilization of body vibrations record-
ed as an additional source of information for the docu-
mentation and analysis of traditional polyphonic vocal 
music. Questions remained, however, regarding the ap-
plicability of this approach under field recording condi-
tions and if it indeed provides useful information not ob-
tainable by other means. These questions were at the fo-
cus of an exploratory field trip to Upper Svaneti/Georgia 
during the summer of 2015. Here I report on selected  re-
sults of the analysis of recordings (larynx microphone 
and audio) of 20 Svan songs sung by two different trios 
in Lakhushdi and Ushguli in Svaneti/Georgia recorded 
during this pilot study.  

2. FIELD EXPERIMENT 

The region of Svaneti, located on the southern slopes of 
the high Caucasus Mountains in Northwestern Georgia, 
is the home of a highly distinctive musical heritage. Svan 
songs represent a living  part of ancient traditions and are 
believed to be one of the oldest forms of Georgian vocal 
polyphony (e. g. Araqishvili, 2010). During the field trip 
of 2015, a total of ten singers in three villages in Upper 
Svaneti/Georgia, were willing to take part in the experi-
ment and have themselves recorded in four different trio 
combinations with a combination of  conventional stereo 
microphones, a video camera but in particular also with 
larynx microphones tied around their necks.  

The analysis of body vibration recordings allows to ad-
dress a number of interesting musicological problems 
from a new perspective. For the following illustration, 
three topics have been selected: documentation, intona-
tion and interaction of singers, and the tuning of tradi-
tional Georgian  vocal music. 

3. DOCUMENTATION OF MICROTONALITY 

One of the most obvious uses of body vibration record-
ings is in the context of documentation. In contrast to 
conventional field recordings, larynx-microphone record-
ings capture the contribution of each singer separately 
and in a way which allows automatic pitch recognition 
and note estimation with high precision. Fig. 1 shows an 
example of the individual pitch and note tracks for the 
song Elia Lrde, recorded by three larynx microphones. 
The pitch and note estimation was done with the TONY 
software (Mauch et al., 2015) on each of the recordings 
and subsequently combined in Fig. 1. The lyrics were 
manually added to the output file. 

 

Figure 1. Pitch tracks (a) and annotated note tracks (b) 
for the song Elia Lrde (singers: Islam Pilpani (red), 
Gigo Chamgeliani (blue), Murad Pirtskhelani (black)). 
Pitches are given in cent relative to A2 (110 Hz). 

Several advantages of documenting oral tradition mu-
sic this way come to mind. First, the process captures all 
microtonal details (naturally limited to the precision per-
mitted by the sampling process and the subsequent analy-
sis) of the music and does not force it into a possibly in-
appropriate (tempered) notation system. It is completely 
transparent and reproducible. Furthermore, it documents 
the music in a digital form which allows susbsequent 
processing in a multitude of new ways. To illustrate this 
further, Fig. 2 shows the beginning of the song Elia Lrde 
displayed in a way which allows to see both the complete 

FMA 2016 Workshop

80



  
 

 

melodic and harmonic content including microtonal de-
tails in a single plot. 
 

 

Figure 2. Melodic and harmonic content of the begin-
ning of the song Elia Lrde. The black, red and blue dot-
ted lines show the pitch tracks for the bass, middle and 
top voice respectively. The spaces between the middle 
and  top voice and the bass and middle voice are color 
coded according to the corresponding interval sizes be-
tween the voices. The space below the bass voice is 
shaped and color coded according to the interval be-
tween bass and top voice.  

4. INTONATION AND COMMUNICATION 
BETWEEN SINGERS 

One of the most fascinating aspects of the intonation pro-
cess in polyphonic a-cappella music is how the individual 
singers find and maintain their pitches and timbres and 
how their perception of their own and the other voices 
influences them in this process (e.g. Mauch et al., 2014). 
Larynx-microphone recordings in combination with regu-
lar microphones can help to monitor the intonation pro-
cess in an interesting way.  Fig. 3 shows again the song 
Elia Lrde, but only for the beginning of the polyphonic 
part and only for the top voice. The dense dotted line at 
the bottom part of  Fig. 3 shows the sequence of pitches 
(determined by the TONY pitch tracking algorithm) for 
the first few seconds. The horizontal blue lines show 
pitches of the determined notes with the red error bars  
indicating their corresponding  standard deviation. The 
blue and red traces in the top part of the figure show the 
sensory roughness values (Vassilakis, 2007) for the top 
voice and the mix of all voices, respectively, which be-
fore the onset of the polyphonic part is only determined 
by the contribution of the middle voice.  

 

Figure 3. Voice track of the top voice onset together 
with sensory roughness track for top voice and mix of 
all voices. 

From Fig. 3 it can be noted that the voice slides to the 
target pitch from below. Interestingly, this “sliding 

phase” is so soft that it is not really audible on the acous-
tical  microphone but is clearly detected on the larynx 
microphone. It coincides with a short time of increase of 
sensory roughness (blue trace) which is also observed on 
the mix of all voices (red trace). In the present context, 
change of sensory roughness is seen as a simple proxy for 
change of timbre. Roughly speaking, while tuning in to 
the other singers, the singer of the top voice adjusts both 
pitch and timbre at the same time.  Interestingly, the other 
singers do the same, which points to a strong mutual in-
teraction. This feature was consistently observed for all 
voices during intonation. Further analysis of these records 
in this direction (intended to be addressed in a future 
analysis) might provide interesting information regarding 
the factors  controlling the intonation process (pitch or 
interval precision, sensory roughness, etc.) in a polyphon-
ic a-capella setting. 

5. TUNING OF TRADITIONAL GEORGIAN 
VOCAL MUSIC 

Part of the fascination and archaic beauty of Georgian 
vocal polyphonic music in general, but Svan music in 
particular, stems from the abundant use of chords which 
to ears trained on western music sound "unusual". In ad-
dition, part of the distinctiveness of  this music is the fact 
that the scale(s) from which the pitches for these chords 
are drawn are not tuned to the 12 tone equal temperament 
scale (12-TET scale) on which most western music now-
adays is based. While the non-tempered nature of tradi-
tional Georgian vocal music can be considered consensus 
amongst musicologists, the particular nature(s) of the 
Georgian sound scale(s) is an ongoing topic of intense 
and controversial discussion  (Erkvanidze,  2002;  Gelzer, 
2002;  Westman,  2002; Kawai et al, 2010; Tsereteli and 
Veshapidze, 2014). Complicating the evaluation of the 
different propositions on what could be called "the Geor-
gian sound-scale controversy" is the fact that it is hard to 
judge if at least part of the controversy is actually caused 
by methodological differences or by fundamental disa-
greement. The analysis of the present set of recordings  
might be able to contribute to this discussion from a 
completely new perspective. Since synchronized pitch 
information from all voices can be derived unambiguous-
ly, the analysis of larynx-microphone recordings can help 
to shed some light on some of the principal questions be-
hind this issue.  
Sound-scale and tuning analysis can be done in many dif-
ferent ways, possibly leading to very different results 
even if the same sound recordings were used. When we 
listen to polyphonic music, we will perceive melodies and 
chords. In piano music for example, the intervals which 
we can hear in a melody and the intervals which we can 
hear in a chord both draw from the same "interval inven-
tory", namely the set of all intervals which can be played 
on the piano. With vocal a-capella music interval percep-
tion can interfere with the intonation which can lead to 
pitch drifts of the whole ensemble (e. g. Howard, 2007; 
Mauch et al., 2014). In such a situation, the interval sizes 
in a melody (horizontal perspective) might differ from the 
interval sizes in a chord (vertical perspective) which in 
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turn would make the results of a tuning analysis depend-
ent on the way the intervals are determined. Larynx-
microphone recordings provide a very convenient way to 
quantitatively analyse the magnitude of this effect and if 
it might affect the determination of sound scale(s). 

5.1 The harmonic interval set 
In order to obtain a first impression of the harmonic in-
terval set, in other words the set of concomitantly per-
ceived intervals, in the song Elia Lrde, Fig. 4 jointly dis-
plays the melodic and harmonic content of the complete 
song. 

 

Figure 4. Melodic and harmonic content of the com-
plete song Elia Lrde. The black, red and blue dotted 
lines show the pitch tracks for the bass, middle and top 
voice, respectively. The spaces between the middle and  
top voice and the bass and middle voice are color coded 
according to the corresponding interval sizes between 
the voices. The space below the bass voice is shaped 
and color coded according to the interval between bass 
and top voice. 

From Fig. 4 it can be seen that the colors representing the 
intervals between the bass and the top voice are mostly 
light blue which corresponds to pitch differences of 
around 700 cents (a fifth), interrupted once in a while by 
red colors, which corresponds to 1200 cents (an octave). 
The color codes for the pitch differences between the bass 
and the middle voice indicate values of approximately 
500 cents (a fourth), once in a while interrupted by a dif-
ference of 700 cents (a fifth). Consequently the differ-
ences between the middle and the top voice correspond to 
values around 200 cents (a major second), once in a while 
interrupted by values of approximately 500 cents (a 
fourth). At times all three voices approach the same pitch 
value (unisone). So in a single glance, Fig. 4 reveals the 
harmonic character of the song Elia Lrde.  
 
For the subsequent analysis, only those pitch samples 
from the complete pitch tracks were selected which be-
long to stable notes (as determined by TONY) which 
have a minimum duration of 1 sec of which the first 0.4 
and the final 0.25 sec are discarded for the analysis. The 
purpose of these restrictions is to discard sliding phases at 
the beginning (as e. g. seen in Fig. 3) and the end of a 
note and to focus on intervals which could be called "sta-
bly established" by all three singers. The resulting pitch-
track sample sets are shown in Fig. 5. 
 

 

Figure 5. Pitches for  concomitantly perceived intervals 
of at least 1 sec duration for the song Elia Lrde (singers: 
Islam Pilpani (red), Gigo Chamgeliani (blue), Murad 
Pirtskhelani (black)). Pitches are given in cent relative 
to A2 (110 Hz). 

Yet another way to look at the harmonic interval set is by 
plotting the statistical frequency distribution of the stable 
concomitant intervals  shown in Fig. 5. which results in 
the distribution shown in Fig. 6. 

 

Figure 6. Frequency distribution of the stable concomi-
tant intervals. The peaks (orange disks) occur at  values 
of  213, 370, 494, 704, and 1212 cents. For comparison, 
in Pythagorean tuning the fourth and the fifth corre-
spond to 498 and 702 cents. 

The most prominent intervals visible from this perspec-
tive appear at 213, 370, 494, 704, and 1212 cents. This 
corresponds to a slightly sharp major second, a "neutral" 
third,  a fourth, a fifth and a slightly sharp octave. For 
comparison, in Pythagorean tuning, which can be build 
up from a series of fifth and which was already described 
in Babylonian artifacts (West, 1994), the fourth and the 
fifth correspond to values of 498 and 702 cents which is 
pretty close to what is observed here. 

5.2 The melodic interval set 
In contrast to the harmonic interval set, the determination 
of the melodic interval set requires the estimation of the 
pitch step sizes of successive notes in each of the voices. 
In this context, all note durations (not only the long ones) 
where considered. The resulting statistical frequency dis-
tribution is shown in Fig. 7. 
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Figure 7. Melodic interval distribution in the song Elia 
Lrde obtained from the pitch differences of successive 
notes in all three voices.  The peaks, marked by the or-
ange discs, of the overall step size distribution  (top 
panel) appear at 14, 172, 323, 401, 500, 529 and 685 
cents. The peaks in the distribution of the downward 
steps (middle panel) appear at 15, 147, 328, 401 and 
530 cents. The peaks in the distribution of the upward 
steps (bottom panel) appear at 14, 174, 239, 318, 496 
and 685 cents. 

Fig. 7 reveals a number of interesting features. The peak 
at approximately 15 cents corresponds to the small ampli-
tude fluctuation discussed above but are not really seen as 
a real feature of the melody. The  most prominent delib-
erate melodic pitch step shows up at 172 cents for all 
steps combined but appears to be smaller (147 cents) for 
downward steps than for upwards steps (174 cents). The 
peaks in the distribution for all steps combined  are not 
very far from the integer multiples of the most prominent 
melodic interval at 172 cents (which would be at 344,  
516 and 688 cents) which could therefore be interpreted 
as the basic building block of the melodies. Interestingly, 
this value coincides very well with the value Tsereteli and 
Veshapidze (2014) determined as basic distance for their 
proposed equidistant Georgian sound scale. 

5.3 The analysis of a single voice 
AS far as I know, Tsereteli and Veshapidze (2014) de-
rived their sound scale model essentially by analysis of 
individual voices, in other words by melodic and not by 
harmonic analysis. In order to investigate the conse-
quences of this approach on the current records, the mid-
dle voice of the song Elia Lrde was selected (Fig. 8 top 
panel) and the corresponding pitches of the note set as 
determined by TONY were determined. The melodic in-
tervals were calculated with respect to the mean value of 

the lowest notes in the song (at 1017 cents in the top pan-
el). The resulting statistical frequency distribution is 
shown in the bottom panel  of Fig. 8.   

 
 

Figure 8. Frequency distribution of melodic intervals 
obtained by analysis of the middle voice of the song 
Elia Lrde. The peaks marked by orange discs appear at  
144, 185, 319, 491, and 697 cents. 

The location of the peaks of the interval frequency distri-
bution reasonably well matches the melodic interval dis-
tribution shown in Fig. 7. This would be in line with the 
hypothesis that it is the basic melodic step size which will 
control the resulting sound scale model. The double peak 
below 200 cents might be due to the difference in the up-
ward and downward melodic step size. 

5.4 Melodyne´s scale detective 
Using larynx microphones, the melodic and harmonic in-
terval set of a song can be precisely determined since the 
individual voices are already separated during recording 
but time synchronisation is kept. With traditional audio 
recordings, however, the situation becomes blurred be-
cause polyphonic pitch determination is still subject to 
considerable technical challenges. A few commercial 
software packages exist which have tried to attack this 
problem with mixed success. One of those, the recently 
released Melodyne 4 (Celemony GmbH), contains poly-
phonic pitch tracking and a feature called direct note ac-
cess (DNA) which claims to allow to access the proper-
ties of the individual notes detected in an audio record. In 
addition, it contains a feature called “scale detective” 
which allows the determination of a sound scale corre-
sponding to the analysed audio material. Since the under-
lying algorithms are unknown, it is impossible to test the 
performance of these tools in a scientific way, but a com-
parison  of  algorithms in the present case might provide  
some information regarding their applicability for tuning 
analysis in cases where only audio material is available, 
e.g. historical phonograph records.   
For this comparison, the notes for all voices determined 
from the individual larynx microphone recordings by the 
TONY algorithm  were jointly used for the analysis of the 
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frequency distribution of  intervals determined from the 
pitch differences of note pairs. In this case, the distinction 
between melodic and harmonic intervals is lost because 
some pitch pairs  may belong to the same time and hence 
be harmonic while the majority will be correspond to dif-
ferent times and hence has to be considered melodic. It is 
suspected that this setup best matches the situation of the 
scale detective in Melodyne which faces the additional 
challenge of polyphonic pitch determination. The result-
ing distribution is shown in Fig. 9. The vertical dashed 
lines correspond to the pitch values found for a seven de-
gree scale using the mix of all larynx microphone record-
ings (red lines) and the conventional audio stereo record 
(blue lines). 

 

Figure 9. Frequency distribution of intervals obtained 
by analysis of all three  voice of Elia Lrde.  The peaks 
marked by orange discs appear at 187, 358, 499, 678, 
847, 1049, and 1179 cents  and 144, 185, 319, 491, and 
697 cents.  The application of Melodyne´s (release 4) 
scale detective on the mix of all larynx microphone re-
cordings and the audio stereo recording results in sets of 
pitch values of  {196, 349, 531, 702, 928, 1040, 1200} 
(blue lines) and {153, 333, 494, 691, 837, 1029, 1200} 
(red lines), respectively. 

The results of applying  Melodynes scale detective to the 
mix of larynx microphone recordings results in pitch val-
ues which are reasonably close to the peaks of the fre-
quency distribution of intervals shown by the values indi-
cated by the orange discs. Except for the first one, these 
values are reasonably close to the integer multiples of the 
basic melodic pitch step size of 172 cents which would be 
at 172, 344, 516, 688, 860, and 1032 cents. The fact that 
the first peak appears closer to 200 cents than for the 
analysis of the individual voice could be due to the fact 
that in particular the seconds in this mixed data set are a 
mixture of harmonic and melodic intervals as already dis-
cussed above. The results of applying Melodynes scale 
detective to the audio stereo signal are similar except for 
the pitch value at 928 cents. Since the algorithm is not 
known, the reasons for this remain unknown. 

5.5 How robust are these features? 
In order to test the robustness of the observed features, 
the analysis was extended in two ways. First, all voices in 
the recordings of  five songs sung by Islam Pilpani, Gigo 
Chamgeliani, and Murad Pirtskhelani in Lakhushdi were 
analysed regarding the containing melodic and harmonic 
interval sets. The results are shown in Figs. 10 and 11, 
respectively.  

 

 
 

Figure 10. Frequency distribution of all melodic inter-
vals obtained by analysis of all voices in the songs  Elia 
Lrde, Jgragish, Kviria, Lile and Riho  sung by Islam 
Pilpani, Gigo Chamgeliani, and Murad Pirtskhelani. 
The peaks, marked by the orange discs, of the overall 
step size distribution  (top panel) appear at 15, 163,  
298, 462, 504, and 691 cents. The peaks in the distribu-
tion of the downward steps (middle panel) appear at 16, 
152, 287, 463, and 513 cents. The peaks in the distribu-
tion of the upward steps (bottom panel) appear at 15, 
169, 304, 460, 502, 584, 691 cents. 

The results in Fig. 10 are similar to the ones for the single 
song Elia Lrde in that the dominant melodic interval for 
all voices and all songs is still on the order of 150 - 170 
cents. In addition, the feature that the pitch steps down-
ward are systematically smaller than the upward steps  is 
also observed for all songs. 

 

Figure 11. Frequency distribution of all harmonic inter-
vals obtained by analysis of all voices in the songs  Elia 
Lrde, Jgragish, Kviria, Lile and Riho  sung by Islam 
Pilpani, Gigo Chamgeliani, and Murad Pirtskhelani. 
The peaks (orange disks) occurr at  values of  13, 209, 
366, 498, 706, 873, 1061, and 1214 cents. 
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The harmonic interval set derived from the analysis of all 
songs songs sung by Islam Pilpani, Gigo Chamgeliani, 
and Murad Pirtskhelani turns out to consist of 7 steps and 
is clearly not equidistant. The “major 2nd” at 209 cents, 
which would not exist if the scale were equidistant, is 
clearly present in all songs and all voices. The fourth and 
the fifth at 498 and 706 cents are very close to just tuning 
as will be further discussed below. 
 
The second test to check the robustness of the observed 
features was to analyse the recordings of 15 songs sung 
by Jano Charkseliani, Zoia Charkseliani, Lola Nizharadze 
in Ushguli in the same way. The corresponding melodic 
and harmonic interval distribution from all voices and all 
songs are displayed in Figs. 12 and 13, respectively.  
 

 
 

Figure 12. Frequency distribution of all melodic inter-
vals obtained by analysis of all voices in 15 songs sung 
by Jano Charkseliani, Zoia Charkseliani, Lola Nizha-
radze in Ushguli. The peaks, marked by the orange 
discs, of the overall step size distribution  (top panel) 
appear at 15, 174, 496, 711, and 814 cents. The peaks in 
the distribution of the downward steps (middle panel) 
appear at 15, 174, and 358  cents. The peaks in the dis-
tribution of the upward steps (bottom panel) appear at 
15, 177, 290, 409, 496, 711, and 814 cents. 

 

Figure 13. Frequency distribution of all harmonic inter-
vals obtained by analysis of all voices in 15 songs sung 
by Jano Charkseliani, Zoia Charkseliani, Lola Nizha-
radze in Ushguli. The peaks (orange disks) occurr at  
values of  15, 204, 339, 509, 700, 849, and 1075 cents 

Again, the harmonic interval set is clearly different from 
the melodic one. The  melodic 2nd is again at approxi-
mately 170 cents while the harmonic one is at 204 cents. 
The harmonic interval set derived from  the Ushguli re-
cordings is very similar to the one derived from the 
Lakhushdi recordings while the melodic interval sets dif-
fer in that the Ushguli recordings do not show a differ-
ence between downward and upward movements. 
From the analysis so far, it looks like there is a significant 
difference between the interval set for the chords and the 
one for the melodic movements. Below, the harmonic in-
terval sets derived from the analysis of the recordings in 
Lakhushdi and Ushguli are compared to the ones which 
were proposed by Erkvanidze (2002) as models for Geor-
gian tunings, to the one proposed by Tsereteli and Ve-
shapidze (2014) but also to the Pythagorean scale and  
Ptolemy´s diatonic scale as well as the modal scales de-
rived from 12 tone equal tempered (12-TET) tuning (Fig. 
14). 
 

 
 

Figure 14. Comparison of the interval sizes of the har-
monic interval sets  derived from the analysis of the re-
cordings in Lakhushdi (S1) and Ushguli (S2) with the 
equidistant scale suggested by Tsereteli and Veshapidze 
(2014) (EQ), the joined (JM) and split (SM) mode 
scales suggested by Erkvanidze (2002), the Pythagorean 
scale (PY), the Ptolemy diatonic scale (Ptol) and the 
modal scales derived from 12 tone equal tempered tun-
ing (modes C- H). 
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Obviously, the harmonic interval set derived from the 
analysis of the recordings in Lakhushdi and Ushguli (S1 
and S2) are quite different from the rest of the modal 
scales derived from the 12 TET based scales, but over all 
it is difficult to interpret the mutual relationships simply 
from the visual appearance in Fig. 14. One way to visual-
ly represent  the information contained in Fig. 14 in a 
more intuitive way is by making use of methods from 
high-dimensional visualization and multi-dimensional 
scaling analysis. For this purpose one can view each in-
terval set as a feature vector in a high-dimensional space 
the dimensions of which are given by the number of dif-
ferent intervals present in (here 7). What would actually 
be interesting to "see" is the set of the individual points 
(to which the feature vectors point to) in this seven di-
mensional space, which of course can only be calculated 
but not "seen". However, one can try to project the points 
from the high-dimensional space onto a map (similar to 
the way the three-dimensional surface of the Earth is pro-
jected onto a two-dimensional map) in such a way, that 
the neighbor-relations between nearby points in the high-
dimensional space is preserved. One of the techniques by 
which this can be achieved is the non-linear Sammons 
map (Sammon, 1969). The resulting distribution of scales 
(or interval sets) is shown in Fig. 15. 

 
 

Figure 15. Sammon´s map for the scales in Fig. 13. The 
mutual distances between the scales quantitatively  re-
flect their similarity in a Euclidean sense. 

Each labeled disc in Fig. 15 corresponds to one of the 
scales (or interval sets) in Fig. 14. The proximity of the 
scales in Fig. 15 corresponds to the similarity of the cor-
responding interval vectors in a Euclidean sense.  Fig. 15 
shows that the harmonic interval sets obtained from the 
recordings in Lakhushdi (S1) and Ushguli (S2) are most 
similar to each other, followed in similarity by the scale 
suggested by Erkvanidze (JM) and Ptolemy´s diatonic 
scale (Ptol). 

6. DISCUSSION AND CONCLUSIONS 

Based on the material presented above it seems justified 
to say that field recordings of body vibrations can provide 
new and very valuable information on the tunings and 

intonation of traditional singers which would be difficult 
to obtain by only conventional audio recording setups. 
Most importantly, larynx microphone recordings capture 
the contributions of the individual singers undisturbed by 
the other singers and therefore offer the possibility to in-
vestigate the melodic and harmonic interval inventory of 
a song separately. The results of the analysis of 20 Svan 
songs sung by two different trios in Lakhushdi and Ush-
guli suggest a clear and significant difference between the 
melodic and the harmonic interval set. For one of the tri-
os, the melodic interval set even showed differences in 
step sizes between downward and upward movements. It 
is worth noting, that this is not a feature unique to Svan 
songs, as I learned from S. Arom (pers. comm., Arom, 
2016). I cite from his comments: "Both observations ab-
solutely corroborate what I experienced when, years ago, 
I was transcribing (only by ear, alas…) the polyphonic 
songs of the Aka Pygmies: when listening to the isolated 
recording of a singer's voice and to its combination 
with another voice, the perception of the intervals is dif-
ferent !". 
The sizes in which melodic movements in the analysed 
songs happen occur in multiples of roughly 170 cents 
which would be consistent with an interval set with inter-
vals of equal size, while the concomitantly perceived in-
tervals are related to sets in which the different degrees 
are clearly non-equidistant. In the context of the discus-
sions on the Georgian sound scale(s), a quote which is 
atttributed to the German physicist Werner Heisenberg, 
nobel laureate and one of the fathers of quantum mechan-
ics comes to mind: "We have to remember that what we 
observe is not nature in itself, but nature exposed to our 
method of questioning.". The results of the present  anal-
ysis seem to suggest that the analysis of individual voices 
or monodic segments will  result in an equidistant scale 
model, while the analysis of concomitant intervals  will 
result in  a non-equidistant scale model. 
In conclusion, it seems worth to investigate further if the 
different propositions regarding the "Georgian sound 
scale" could be reconciled by assuming that the differ-
ence between the melodic and the harmonic interval set is 
a general and robust feature of traditional Georgian vocal 
polyphony. At present this is admittedly only a specula-
tion based on a very limited data set but as an hypothesis 
it seems worth to be tested further. The consequences of 
such a model would be that during melodic movements 
of a song the singers would continuously readjust the tun-
ings of their intervals to the desired values which is simi-
lar to what a brass instrument player is doing when play-
ing in an orchestra (pers. comm. Arom, 2016). This might 
actually also explain some of the seemingly random pitch 
fluctuations observed in the individual pitch tracks of the-
se highly skilled traditional singers.  
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ABSTRACT

In this study we propose how to modify a standard approach
for text-to-speech alignment to apply in the case of alignment
of lyrics and singing voice. We model phoneme durations by
means of a duration-explicit hidden Markov model (DHMM)
phonetic recognizer based on MFCCs. The phoneme durations
are empirically set in a probabilistic way, based on prior knowl-
edge about the lyrics structure and metric principles, specific for
the Beijing opera music tradition. Phoneme models are GMMs
trained directly on a small corpus of annotated singing voice. The
alignment is evaluated on a cappella material from Beijing opera,
which is characterized by its particularly long syllable durations.
Results show that the incorporation of music-specific knowledge
results in a very high alignment accuracy, outperforming signifi-
cantly a baseline HMM-based approach.

1. INTRODUCTION

The task of lyrics synchronization (also known as lyrics-to-
audio alignment) has as an aim to find in an automatic way
a match between two representations of a musical com-
position: the singing voice and the corresponding lyrics.
Lyrics-to-audio alignment may be used in various applica-
tions: for example to automatically match structural sec-
tions from lyrics (verse, chorus) to a recording of a par-
ticular singer. This facilitates navigation and can thus be
beneficial for musicologists or singing students.

The problem of lyrics-to-audio alignment has inherent
relation to text-to-speech alignment. Text-to-speech align-
ment has been a research field for more than 20 years
and thus yielded established successful ways for model-
ing phonemes (Anguera et al., 2014). However, compared
to speech, singing voice has some substantially differ-
ent characteristics including harmonics, pitch range, pro-
nunciation, vibrato, etc. In particular, unlike speech, for
singing voice, durations of vocals have on average some-
what higher variation (Kruspe, 2014). This suggests that
applying an approach from speech recognition out of the
box might not lead to satisfactory results. Traditional mu-
sic, characterized by frequent local tempo changes, poses
an additional challenge: Singers might prolong substan-
tially certain syllables, as a way to emphasize them or as
an expressive singing element.

Furthermore, current approaches on modeling lyrics are
confined by the necessity of a large speech corpus, on
which phoneme models are typically trained (Fujihara &
Goto, 2012). Such corpora might not be present for every
language or not freely available, as is the case for Man-
darin. Recent work has shown that training on singing

voice instead might be a viable alternative (Hansen, 2012).
In this paper we propose a lyrics-to-audio alignment

method, which relies on some of the specificities of lyrics
structure of Beijing opera as an additional cue to an ap-
poach adopted from speech alignment. One of the goals
of the study is to show that enhancing computational tasks
with music-specific knowledge might improve accuracy.

2. BACKGROUND ON JINGJU MUSIC
PRINCIPLES

Lyrics in Jingju (also known as Beijing opera or Peking
opera) come from poetry and are thus commonly struc-
tured into couplets: each couplet has two lyrics lines. A
line is usually divided into 3 syllable groups: a group is
called dou and consists of 2 to 4 written characters (Wich-
mann, 1991, Chapter III) 1 . To emphasize the semantics of
a phrase or according to the plot, an actor has the option
to sustain the vocal of the dou’s final syllable. In this work
we will refer to the final syllable of a dou as key syllable.

In addition to that, each aria from Jingju can be arranged
into one or more metrical pattern (called banshi): it indi-
cates the mood of singing and is correlated to meter and
tempo (Wichmann, 1991). Usually an aria starts with a
slow banshi, which gradually changes a couple of times to
a faster one, to express more intense mood. The language
of Jingju is standard Mandarin with some slight dialect.

3. RELATED WORK

Current lyrics-to-audio alignment is mostly based on
an approaches, adopted from text-to-speech alignment
(Mesaros & Virtanen, 2008; Fujihara et al., 2011): A
phonetic recognizer is built from speech corpus, whereby
a hidden Markov model (HMM) is trained for each
phoneme. The acoustics of phonemes are described by
mel frequency cepstral coefficients (MFCCs). In an ex-
ample of such an approach, polyphonic Japanese and En-
glish pop music is aligned (Fujihara et al., 2011). The au-
thors propose to adapt the speech phoneme models to the
specific acoustics of singing voice by means of Maximum
Likelihood Linear Regression. This is necessary because
of the lack of a big enough singing voice corpus for train-
ing. Further, an automatic segregation of the vocal line
is performed, in order to reduce the spectral content from
background instruments.

1 We use the term syllable as equivalent to one written character.
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HMMs, being originally applied to model spoken
phonemes, have the drawback that, in general, are not
capable to represent well vowels with long and highly-
variable durations. This is because the waiting time in
a state in traditional HMMs cannot be unlimitedly long
(Rabiner, 1989). Durations can be modeled instead by
a duration-explicit hidden Markov model (DHMM) (also
known as hidden semi-Markov model). In DHMMs the
underlying process is allowed to be a semi-Markov chain
with variable duration of each state (Yu, 2010). DHMMs
have been applied to detect keywords from a cappella En-
glish pop songs (Kruspe, 2015). The author showed that
accuracy of detection increases if the duration of each
phoneme is learned from a singing dataset. In addition,
DHMMs have been shown to be successful for modeling
other problems from the domain of music information re-
trieval: They have been, for example successful in rep-
resenting chord durations in automatic chord recognition
(Chen et al., 2012).

To our knowledge, very few studies of lyrics-to-audio
alignment have been conducted on songs with Chinese lan-
guage (Wong et al., 2007).

4. APPROACH OVERVIEW

To model phoneme durations, we rely on a DHMM 2 . A
general overview of the proposed approach is presented
in Figure 1. First an audio recording of an aria is man-
ually divided into audio segments corresponding to lyrics
lines as indicated in the lyrics script of the aria, whereby
instrumental-only sections are discarded. All further steps
are performed on each line segment of audio. If we had
used automatic segmentation instead, potential erroneous
lyrics and features could have biased the comparison of a
baseline system and DHMM. As we focus on evaluating
the effect of DHMM, manual segmentation is preferred.

Then each lyrics line is expanded to a sequence of
phonemes, whereby reference syllable durations guide the
alignment process. The main contribution of this work is
twofold: 1) the application of music-specific rules for the
creation of reference durations and 2) training phonemes
on singing voice.

4.1 Rule-based duration modeling

The idea of the duration modeling is that the actual du-
ration of a phoneme can be seen as being generated by
a statistical distribution with highest probability at an ex-
pected reference duration. The reference durations can be
assigned using any prior knowledge like for example struc-
ture of lyrics segments, as has been done by Wang et al.
(2004). In this work they are derived as follows:

Firstly, each key syllable in a dou is assigned longer
reference duration according to empirically found ratios,
while the rest get equal durations. Additionally, we ob-
served in the dataset that usually the last key syllable of
the last line in a banshi is prolonged additionally. Thus

2 For brevity in the rest of the paper the proposed alignment scheme
will be referred to as DHMM.

Figure 1: Approach Overview: The middle column shows
how reference durations are derived based on music-
specific knowledge.

we lengthened additionally the reference syllable duration
of these last key syllables. Figure 2 depicts an example.
According to dou groups the 3rd, 6th and last syllable are
expected to be prolonged. Note that for the example this
expectation does not hold for the 3rd syllable.

Then, to form a sequence of phoneme reference dura-
tions Ri, the reference durations of syllables are divided
among their constituent phonemes, according to the initial-
middle-final division of syllables in Mandarin (Duanmu,
2000). A syllable has a middle part (nucleus) being a sim-
ple vowel, a diphthong, or triphthong. An initial part (a
consonant) or a final part (a group of consonants) is op-
tional. We assign consonants a fixed reference duration
Rc = 0.3 seconds, while the rest of the syllable is dis-
tributed equally among vowels. The reference durations
Ri are linearly scaled to a reference number of frames ac-
cording to the ratio between the number of phonemes in a
lyrics line and the duration of its corresponding audio seg-
ment.

4.2 Phoneme models

For each phoneme a GMM is trained on annotated a cap-
pella singing. The first 13 MFCCs and their ∆ and ∆∆
are extracted from 25ms audio frames with the hop size of
10ms. The extracted features are then fit into a phoneme
GMM with 40 components: a number of components usu-
ally proved as sufficient in speech recognition. A model for
silent pause sp is added at the end of each syllable, which
is optional on decoding. This allows to accommodate the
frequent for Jingju regions of pauses after some syllables.

4.3 DHMM alignment

The syllables for a line are expanded to a sequence of
phonemes based on grapheme-to-phoneme rules 3 . Then
the trained GMMs are concatenated into a phonemes net-
work, represented by a HMM, where each GMM is a state.

3 We built a pinyin-to-X-Sampa mapping available at
https://github.com/georgid/AlignmentDuration/blob/noteOnsets/jingju/syl2ph.txt
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Figure 2: An example of 10-syllable line, being last in a banshi (before the banshi changes). Actual syllable durations are
in pinyin, whereas reference durations are in orange parallelograms (below).

The HMM is aligned to the MFCC features, extracted from
the aria, being aligned. The most likely state sequence is
found by means of a forced alignment with Viterbi decod-
ing.

We have adopted the idea of Chen et al. (2012) not to
represent durations by an additional counter state in the
HMM, but instead to modify the Viterbi decoding stage.
Let us define

δt(i) : probability for the path with highest probability
ending in state i at time t (comply with the notation
of Rabiner (1989, III. B)))

Now maximization is carried over the most likely duration
for each state, instead of over different states:

δt(i) = max
d
{δt−d(i− 1)Pi(d) [Bt(i, d)]} (1)

where Bt(i, d) is the observation probability of stay-
ing d frames in state i until frame t. The duration d of a
phoneme is modeled as a normal distributionN ∼ (Ri;σ),
with a peak at Ri. Thus, we chose to restrict the domain
of d to (max{Ri − σ, 1}, Ri + σ). Note that in forced
alignment the source state could be only the previous state
i − 1. More details on the inference with DHMM can be
found in our previous work Dzhambazov & Serra (2015).
In comparison to our previous work, we opted for divid-
ing the global standard deviation σ into σc for consonants
and σv for vowels. Proper values for σc and σv assure
that a phoneme sung longer or shorter than the expected
Ri can be adequately handled. Another modification we
did is that sp models are assigned an exponential distribu-
tion, because the duration of inter-syllable silences cannot
be predicted.

5. DATASET

The dataset has been especially compiled for this study and
consists of excerpts from 15 arias of two female singers,
chosen from a CompMusic corpus of Jingju arias (Repetto
& Serra, 2014). For a given aria were present two ver-
sions: a recording with voice plus accompaniment and an
accompaniment-only one. Thus a cappella singing was
generated by subtracting the instrumental accompaniment
from the complete version 4 . Table 1 presents the average
values for lines and syllables.

4 The resulting monophonic singing is as clean as if it were a cappella,
having slightly audible artefacts from percussion on the non-vocal regions

dataset ’canonical’
dataset

duration (minutes) 67 27

#lines per aria 9.2 9.9

#syllables per line 10.7 10.3

line duration (seconds) 18.3 23.4

syllable duration (seconds) 2.4 3.1

Table 1: Line and syllable averages about the dataset

Each aria is annotated on the phoneme level by native
Chinese speakers and a Jingju musicologist. The phoneme
set has 29 phonemes and is derived from Chinese pinyin,
and represented using the X-sampa standard 5 . To assure
enough training data for each model, certain phonemes are
grouped into phonetic classes, based on their perceptual
similarity.

Further, we selected a ’canonical’ subset of the dataset,
consisting of lines, according to the assumptions we made:
key syllables should be prolonged. Thus, we kept only
these audio segments, for which at most one key syllable
is not prolonged and discarded the rest. We considered a
syllable as being prolonged if it is longer than 130% of the
average syllable duration for the current line.

6. EXPERIMENTS

Alignment accuracy is evaluated as the percentage of dura-
tion of correctly aligned syllables from total audio duration
(see Fujihara et al. (2011, figure 9) for an example). Ac-
curacy is measured for each manually segmented line and
accumulated on total for all the recordings 6 .

6.1 Experiment 1: oracle durations

To define a glass ceiling accuracy, alignment was per-
formed considering phoneme annotations as an oracle for
acoustic features. Looking at phoneme annotations, we set
the probability of a phoneme to 1 during its time interval

5 Annotations are made available at
http://compmusic.upf.edu/node/286

6 To encourage reproducibility of this research an efficient open-
source implementation together with documentation is available at
https://github.com/georgid/AlignmentDuration/tree/noteOnsets/jingju.
Further, a script for building the models is available at
https://github.com/elitrout/lyrics/blob/master/code/htk/buildModelHTKSave.py
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baseline DHMM oracle

overall 56.6 89.9 98.5

’canonical’ 57.2 96.3 99.5

Table 2: Comparison of accuracy on oracle, baseline and
DHMM alignment on total and selected arias. Accuracy is
reported as accumulate correct duration over accumulate
total duration over all lines from a set of arias.

and 0 otherwise. We found that the accuracy per line of
lyrics is close to 100%, which means that the model is gen-
erally capable of handling the highly-varying vocal dura-
tions of Jingju singing. Most optimal results were obtained
with σc = 0.7 seconds; σv = 2.0 seconds, which are used in
experiment 2.

6.2 Experiment 2: comparison with baseline

As a baseline we employ a standard Viterbi decoding, run
with the htk toolkit (Young, 1993). For both baseline and
DHMM, to assure good generalization of results, evalua-
tion is done by cross validation on 3 folds with approx-
imately equal number of syllables: Phoneme models are
trained on 10 of the arias using the phoneme-level an-
notations and evaluated on a 5-aria hold-out subset.We
have further evaluated on the ’canonical’ selected subset
of lyrics lines, introduced in Section 5. Table 2 shows that
the proposed duration model outperforms significantly the
baseline alignment. The improved accuracy for ’canoni-
cal’ lyric lines can be attributed to the increased degree, to
which prior duration expectations are met.

7. CONCLUSION

In this work we evaluated the behavior of a HMM-based
phonetic recognizer for lyrics-to-audio alignment in two
settings: with and without utilizing lyrics duration infor-
mation. Using probabilistic duration-explicit modeling of
phonemes for the former setting outperformed the latter
on recordings of a cappella Beijing opera. It has incor-
porated prior expectations of syllable durations, based on
knowledge specific for this music genre. In particular, the
proposed DHMM aligns remarkably well a selected set
of lyrics lines, which comply more precisely with these
music-specific principles.
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Analysis of Tahreer in traditional Iranian singing

ABSTRACT 
 
Iranian tradition singing is based on a rich musical heritage and 
contains styles and techniques distinct to the region, which dif-
ferentiate it from other styles of Middle Eastern singing. In this 
paper I aim to highlight the specific characteristics of a traditional 
Iranian vocal technique called Tahreer by analysing its features 
using computational tools and methods. 

1. INTRODUCTION 

The song of nightingale is regarded as the symbol of mu-
sical beauty in Persian/Iranian1 visual arts, literature and 
poetry (Aʿlam, Clinton, 1989). Iranian traditional singing, 
āvāz, is often enriched by a vocal ornamentation called 
Tahreer2 which is regarded to be inspired by the song of 
nightingale too. Miller (1999) quotes an Iranian master 
about different styles of Tahreer and mentions one of the 
main styles of Tahreer being the nightingale Tahreer3 . 
Tahreer is a quick alternation between laryngeal mecha-
nisms producing a frequency jump during a very short time 
interval, typically 50 to 70 ms (Castellengo, 2006; Caton, 
1974). During the performance of Tahreer, each consecu-
tive pair of notes of the melody (primary notes) are bridged 
by a higher pitched note (secondary note) in between with 
a quick transition. The secondary note is also referred to as 
Tekiyeh4 note, which translates to the note on which to 
lean and in fact a single unit of Tahreer is called Tekiyeh 
which when performed twice or more becomes Tahreer 
(Caton, 1974; Fereydooni 2015). Due to the fast nature of 
the technique, it is perceived as an abrupt break in a con-
tinuous melody but the secondary note is not heard. 
Tahreer is generally used in multiples at the end of singing 
a phrase or while emphasising a part of a phrase. It is per-
formed on most vowels but typically while uttering an /a/ 
or /o/ phoneme. Tahreer could be called Iranian yodelling 
while unlike a yodel melody expanding successively in 
both the modal register(M1) and the Falsetto(M2), Tahreer 
melody stays completely in M1 with short ornamental ex-
cursions in M2 (Castellengo, 2006; Roubeau, 2007). The 
current literature on Tahreer is mainly focused on its con-
textual use in Iranian music as well as high level charac-
teristics with regards to ethnomusicology. What follows in 
this paper is an analysis of the fundamental building blocks 
of Tahreer and its different features, to help expose more 
information about its characteristics at a granular level. 

                                                             
1 The word Iranian will be used in this text as it relays a broader meaning 
of the word, which is particularly required when discussing Iranian music 
as it’s not limited to the borders of Iran and shares plenty with neighbour-
ing countries such as Azerbaijan and Iraq. 

2. DATASET, TOOLS AND METHODS 

The dataset used consists of 50 excerpts of Avaz from a 
selection of five renowned Iranian singers of the 20th cen-
tury (1920s-present) to represent all eras of recorded              
Avaz available. The singers selected also represent a good 
variety of different schools/Maktabs of avaz, which do 
vary to a large extent (Simms & Koushkani, 2012). I chose 
10 different vocal segments from the repertoire of each 
singer with the conditions that there must be a good pres-
ence of Tahreer in the Avaz, instrumental accompaniment 
to be minimal and subordinate to the voice and the Avaz 
to be in its most characteristic free time, non-rhythmic 
form. These conditions allow for better focus on the 
Tahreer itself and reduce the effect of other parameters for 
the purpose of this analysis. 

The selected excerpts were annotated using the Sonic 
Visualizer software (Cannam et al., 2010) which was also 
used for some analysis. Time constraints of manual calcu-
lations in Sonic Visualizer resulted in reduced dataset for 
parts of the analysis. Some melodic transcriptions were 
performed using the software Tony (Mauch et al. 2015) 
and for other aspects of the analysis, MATLAB was used 
with the whole dataset in the form of audio excerpts as well 
as exported data from Sonic Visualizer and Tony. 

3. SPECTRAL, TEMPORAL AND PHONEMIC 
ANALYSIS 

The following section presents findings regarding different 
characteristics of Tahreer. The aim was to automate as 
much of the process as possible by creating recognition 
mechanism to handle the large amount of data. However, 
in this study some measurements have still been performed 
by manual annotation and calculation. Some visual evi-
dence based on temporal and spectral views of the data 
have also been used as evidence, only when the findings 
have been clear, almost expected and further measure-
ments were not deemed required.  

3.1 Distinction from Vibrato  
The spectrogram of a Tahreer at the first glance looks sim-
ilar to that of a Vibrato due to the visible oscillation in 
pitch. There are however major differences between the 
spectral characteristics of the two techniques. Since Vi-
brato is also used in Iranian Avaz, I selected instances of 

2 Tahreer, also spelled Tahrir in other literature translated to any form of 
ornamentation but in the context of traditional music it refers to this par-
ticular technique 
3 Tahreer-e Bolboli 
4 Tekiyeh/Takiyeh means either to lean or the object/place to lean onto 
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each technique both from within each piece to ensure sim-
ilar quality on other musical aspects such as timbre or 
background music. A visual comparison of the spectro-
gram of Tahreer and Vibrato excerpts within the same 
piece demonstrated their distinctions. The most important 
difference between these techniques is that Tahreer com-
prises of a transition between a primary dominant note and 
a secondary higher pitched note while Vibrato is a bidirec-
tional oscillation around the primary note. The pitch rise in 
Tahreer has larger deviation/step from the main note com-
pared to that of a Vibrato which is typically within 1 sem-
itone in each direction (Hakes, Shipp & Doherty 1988). 
The sinusoidal shape of a vibrato dictates gradual rise and 
fall and a sustain on each secondary note while Tahreer 
reaches the peak of the secondary note and also returns to 
primary with a sharp rise and fall. Unlike the audible sound 
on each secondary pitch of a vibrato, the duration of the 
secondary note of a Tahreer is very short which makes it 
inaudible. Tahreer and Vibrato are often used back to back 
in one breath. Tahreer usually ends on a prolonged note 
which may have Vibrato accompanying its sustain. 

3.2 Overall Duration in time 
In order to calculate the duration of a single Tahreer or 
Tekiyeh, the boundaries of a single instance were defined 
to be between when the pitch of the primary note starts as-
cending and when the descend back to primary is com-
pleted. I then calculated the distance in time for several in-
stances of Tahreer per excerpt. Each instance was marked 
at its boundaries and durations were calculated in millisec-
onds. 
 

 
Figure 1. A selection of annotated Tahreer durations 

The mean and standard deviation were calculated for 
all Tahreer instances for each singer independently and 
also for the overall dataset. The overall mean duration was 
calculated as 66 ms with standard deviation of 13 ms. One 
particular singer, Taj Esfahani, was found to have the mean 
duration at 85 ms and Standard deviation of 19 ms which 
lifted the overall numbers. The standard deviation shows a 
range of durations for each singer independently as well 
which indicates different scenarios affecting the duration. 
However, the majority of excerpts used are free time and 
therefore it is not easy to judge how much of the speed of 
performance is bound by glottal characteristics of the tech-
nique, as opposed to traditional or personal stylistic 
touches. 

 

 
Chart 1. Tahreer Duration Mean and SD for each singer 

3.3 Interval distance 
Due to the speed of the transition, the higher (secondary) 
note is not audible in normal playback speed. An essential 
part of this analysis was to determine the pitch of the sec-
ondary note and find if a relationship exists with the pri-
mary note. Using the software Tony, I transcribed the mel-
ody line, identified the Tahreer segments and isolated 
them. The transcribed Tahreer portions were imported into 
MATLAB and a peak-picking algorithm was used to find 
the local minima and maxima in the segments. Due to the 
continuous oscillation between the primary and secondary 
notes, it was possible to assume every minimum and max-
imum found (apart from where transcription errors had oc-
curred) within a segment of continuous Tahreer are guar-
anteed to be the primary and secondary respectively. The 
algorithm output for each individual instance of Tahreer is 
the difference between the fundamental frequency of the 
two notes in Hertz. These intervals were not always equiv-
alent to a discrete number of steps on the chromatic scale 
and therefore were rounded to the closest number of sem-
itones. The intervals used, range from 2 to 5 semitones 
overall. All singers but Taj Esfahani, used a 2-3 semitone 
interval. This number was 4-5 semitones for Him. The ac-
tual interval used by each singer and across singers cov-
ered the whole range between 2 and 3 semitones. At first 
this seemed possibly related to the frequent use of quarter-
tones in Iranian scales in that the secondary note could it-
self be a quartertone. However most of the motifs selected 
for these experiments were not sung in scales or sections 
of the scales using quartertones and therefore the argument 
could not musically justify this. It could however be re-
lated to the difficulty of landing on a note accurately in the 
high speed of the transition.  

 
Looking at the findings across all singers allows 

for making a few musical observations too which conform 
with instrumental techniques of traditional Iranian music. 
If a primary note is repeated in the melody, the secondary 
notes following each would stay the same too. This how-
ever does not always hold for the last repeated primary 
note before a new one is introduced. If the melody is about 
to descend, the last secondary could be of a lower pitch and 
if the melody is about to ascend, the secondary could be of 
a higher pitch. 
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 Figure 2. A segment containing 8 instances of Tahreer 
with identified primary and secondary notes 

3.4 Change in intensity 
During the performance of Tahreer a Tremolo type of ef-
fect can be heard which is also easily identifiable by look-
ing at the time-domain representation of a recording. By 
comparing the time-domain and spectrogram view of the 
same segment in Sonic Visualiser I found that the ampli-
tude drops correspond to the peak point of each Tahreer. 
To support this assumption further I calculated the raw 
power of the signal over time using the Mazurka Power-
Curve plugin for Sonic Visualiser (Sapp, 2006). It was re-
vealed that the power has a sharp decrease at the point in 
time when the secondary note is being voiced. This is due 
to the intensity drop which is associated with moving from 
the M1 mechanism to M2 (Henrich et al., 2005). 
 

 
 
Figure 3. The power Curve in bright green laid onto the 
spectrogram of a segment of Tahreer 

3.5 The phoneme “h” 
In majority of cases the performance of Tahreer is accom-
panied with an audible phonation of “h” after the second-
ary note is voiced. For instance, the word "Jaan", a popular 
lyrical word used as a base for Tahreer, would be heard as 
"Jaahaahaahaahaan" after using 4 instances of Tahreer. It 
was not easily possible to capture this added phenomenon 
in time or frequency domain analysis due to the voiceless 
nature of the sound. It is however very audible and an im-
portant characteristic of Tahreer to the listener. 

                                                             
1 A genre of popular music in Iran known as the “Kucheh 
Bazari” music during the 1960s-70s which was inspired by 
popular Arabic music of the time. 

4. COMPARISON WITH OTHER VOCAL 
ORNAMENTATIONS 

In order to get a better perspective about Tahreer and its 
use in traditional music of Iran, I looked at other singing 
styles of the region, all of which include some form of sim-
ilar vocal ornamentation. Pop music styles of Iranian sing-
ing which developed in the second half of the 20th century, 
use a considerable amount of vocal ornamentation. Pop 
music singing also utilised ornamentations in fast melodic 
transitions which could be perceived as similar to the tra-
ditional Tahreer. Spectral analysis of excerpts from a few 
popular songs reveal short breaks in the melody similar to 
that of Tahreer but the transitional secondary note is a lot 
less visible or non-existent. Many pop music singers are 
influenced by traditional music of Iran and this influence 
could have led to the development of the vocal technique 
used by many pop singers. Arabesque1 music influenced 
by Arabic music gained popularity during the 1960s and 
1970s in Iran. Arabesque singers used Persian lyrics bu the 
instrumentation, phrasing and ornamentations used resem-
bled that of Arabic pop music. Analysis of some of these 
examples revealed melodic transitions via a higher note 
but these transitions are smooth and in a prolonged audible 
form and include no change of vocal mechanism. There-
fore, they are heard as part of the melody unlike the sec-
ondary notes of Tahreer. The figure below is a short ex-
cerpt from a prominent Egyptian singer, Mohammed Ab-
del Wahab, singing 8 notes in the short duration of 1.4 se-
conds. Despite the fast performance of these notes, they 
are all clearly audible, have a smooth transition between 
each pair and all sung in the modal M1 register. A detailed 
analysis of the characteristics of these other techniques 
was not performed in this study and the findings are lim-
ited to evidence from looking at the spectrogram of a hand-
ful of excerpts. 
 

 
Figure 4. A short excerpt of an Arabic vocal ornamenta-
tion marking the position of 8 consecutive notes 

 
The form of Tahreer discussed in this paper is unique 

to Iranian, Kurdish and Azeri music and practised mainly 
in Iran and Azerbaijan (Miller, 1999). The ornamentations 
used in neighbouring Iraqi and Turkish music are different 
from Tahreer and a lot closer to the above arabesque ex-
amples and what may be more widely regarded as Middle 
Eastern style of singing. 

5. DISCUSSION 

The limited published work on Tahreer has been focused 
on high level analysis of this form as a musical ornament 
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and its use with respect to other aspects of music. The 
primary aim of this research was to depict a better 
representation of this unique vocal technique by analysing 
it with respect to the temporal and spectral features of a 
single instance of Tahreer. Traditional Iranian music is an 
ancient art form which is still predominantly taught via a 
direct teacher-student relationship and mostly holds an 
oral form to this date. Music notation and available 
literature in this field have not seemed to capture the depth 
and subtleties of the techniques that would allow for more 
accessible methods of independent learning without 
compensating quality and detail. In the case of singing in 
particular, it is more difficult to refer to written text or 
sheet music for any form of practical learning. 
Additionally, the human voice unlike musical instruments, 
isn’t explicitly accessible to allow use of visual aid in 
training. The findings of this research propose a bottom up 
approach to learning this particular technique. This method 
of analysis introduces new forms of transferable 
knowledge, and provides more accessible ways to learn the 
techniques and ornamentations of this kind. This approach 
can directly help preserve the subtle and often complex 
technicalities of ornamentations which otherwise may 
disappear in the near future. Furthermore, detailed 
comparison of Tahreer with other styles of vocal 
ornamentation clarifies similarities and differences which 
may not be evident to non-native listeners. These subtle 
characteristic differences may facilitate ethnomusicology 
research to expand on the variety, contrast and depth of 
different musical techniques used in each region, culture 
or country. 

Future goals of this research are to expand on Tahreer 
analysis in two different aspects. The first goal is to 
develop automatic segmentation of individual Tahreer 
excerpts to easily analyse larger quantities of data. The 
calculation of Tahreer durations in the current study was 
performed on a reduced number of excerpts due to the 
manual nature of segmentation. This could be further 
expanded following the development of automatic 
segmentation. The second goal is to increase the 
dimensions of comparison in order to expose differences 
within various forms of Tahreer itself. This study was 
focused on characterising Tahreer as a whole and 
contrasting this form with other styles of singing. 
However, one interesting finding was the statistical 
difference in temporal and spectral characteristics of one 
singer, Taj Esfahani, compared to other singers in the 
study. An explanation for this could be the characteristics 
of the school of Avaz he practiced. However, confirming 
the correlation requires further comparison with other 
singers of the same school. The dataset used in the current 
study consisted of one female and four male singers. 
Adding more female singers to the dataset could help 
pinpoint potential gender-specific characteristics of 
Tahreer. Finally, the influence of time and era in which 
these singers lived is another dimension worth exploring. 
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1. INTRODUCTION

Structure is an important aspect of music. Musical structu-
re can be recognized in different musical modalities such
as rhythm, melody, harmony or lyrics and plays a crucial
role in our appreciation of music.

In recent years many researchers have addressed the
problem of music segmentation, mainly for popular and
classical music. Some of the more recent approaches are
Mauch et al. (2009), Foote (2000), Serrà et al. (2012) and
McFee & Ellis (2014). Last three are included in the music
structure analysis framework MSAF Nieto & Bello (2015).
None of the mentioned approaches however, addresses the
specifics of folk music.

While commercial music is performed by professional
performers and recorded with professional equipment in
suitable recording conditions, this is usually not true for
folk music field recordings, which are recorded in every-
day environments and contain music performed by ama-
teur performers. Thus, recordings may contain high levels
of background noise, equipment induced noise (e.g. hum)
and reverb, as well as performer mistakes such as inaccu-
rate pitches, false starts, forgotten melody/lyrics or pitch
drift throughout the performance.

One of the most recent approaches which addressed folk
music specifics was presented by Müller et al. (2013). The
approach was designed for solo singing and was evaluated
on a collection of Dutch folk music by Müller et al. (2010).

In our paper, we present a novel folk music segmenta-
tion method, which also addresses folk music specifics and
is designed to work well with a variety of ensemble types
(solo, choir, instrumental and mixtures).

2. METHOD

The proposed method processes the input audio recording
in several steps and returns a list of segment boundaries.
The method assumes that songs consist of similar repeti-
tions of a single part (stanza).

2.1 Feature extraction

The method averages the input audio to a single channel
and normalizes it. To find repetitions in a melodic/harmo-
nic space, we use harmonic chroma features to represent
the contents of recordings, more specifically we use 24-di-
mensional HPCP features presented in Gómez (2006).

2.2 Finding similarity

Our aim is to find segment boundaries that separate repe-
titions of a segment in a song. We do not know how long
individual repetitions are, how many repetitions there are
in a song nor how similar they are. To bootstrap the seg-
ment finding process, we randomly select a number of 10
second long parts in a song and calculate their distances to
the entire song. We use dynamic time warping (DTW) to
calculate the distances, as it can tolerate tempo variations
well, the technique was already presented by Müller et al.
(2009).

Besides rhythm and tempo variations, we also have to
take into the account pitch drifting, which occurs when
intonation of performers changes upwards or downwards
over the course of a song. Ignoring pitch drift would result
in inaccurate distance curves and thus poor segmentation.
We thus calculate several distance curves for each selected
segment, where we shift the intonation of the selected part
before calculating the distance. As drifting occurs gradu-
ally, we obtain the final distance curve by minimizing dis-
tances across all curves, and at the same time restricting the
number of intonation changes over the course of a song.
An example of an obtained pitch drift curve is presented in
Figure 1 (a).

The process results in a series of distance curves, de-
scribing the distance of each randomly selected part to the
entire song, where tempo and intonation variances are ta-
ken into consideration. An example is given in Figure 1
(b). Local minima in these curves represent repetitions of
a chosen part in the song. We then remove the self-similar
parts of the distance curves, and the resulting curves are
shown in Figure 1 (c).

2.3 Alignment and length

The set of distance curves (Figure 1 (c)) is not time aligned,
since the parts used for their calculations were randomly
chosen. To perform alignment, we select a reference dis-
tance curve, which is the one that has the highest correla-
tion (is the most similar) to all other curves, thus we may
say that it is very representative of the song. Alignment
is performed by time-shifting each curve according to its
closest local minimum to the part the reference curve was
calculated for. From aligned curves we calculate the aver-
age distance curve shown in Figure 1 (e).

We also calculate the approximate segment length from
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the average distance curve with auto-correlation, as shown
in Figure 1 (f).
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Figure 1: Segmentation steps.

2.4 Segmentation

Segmentation is performed with a probabilistic framework
similar to hidden Markov models. The model has a state
for every possible segment beginning (placed at each sec-
ond of a song). Segmentation is calculated as an optimal
path through the model, defined by state and transition
probabilities.

State probabilities are proportional to the likelihood of
placing a segment boundary at a certain time. We assume
that this likelihood is larger if the boundary is preceded by
a region of low-amplitude: for singing, this often corre-
sponds to breathing pauses, while for instrumental music
this often corresponds to end of phrases. The longer this
region is, the higher is the probability of a segment bound-
ary.

Transition probabilities represent the probability of plac-
ing a segment boundary at certain time i if the previous
was located at some other time j. We consider three re-
strictions in calculation of transition probabilities: (a) two
segments beginning at times i and j should be similar; (b)
the segments should be separated by approximately the es-
timated segment length and (c) only forward transitions are
allowed.

To find an optimal path through states of this model,
we use Viterbi algorithm, whereby we allow the starting
state to occur within first 6 seconds of a song and enforce
the ending in the last state. The resulting sequence of
states represents the set of found segment boundaries, as
the states are directly mapped to time.

The detailed description of the method and its individual
steps can be found in Bohak & Marolt (2016).

3. EVALUATION AND RESULTS

We have evaluated the methods on a collection of folk mu-
sic from the Ethnomuse presented in Strle & Marolt (2007)

archive and part of the Dutch folk music collection pre-
sented in Müller et al. (2010). The EthnoMuse collection
consists of different ensemble types: solo singing, two-
and three-voice ensembles, choirs, instrumental and mixed
singing and instrumental ensembles. We chose 206 songs
of different types and recording quality for our collection
with a total duration of 534 minutes. The collection was
manually annotated, placing segment boundaries with ±
100 ms precision.

We calculated precision, recall and F1 measure values
per song for each ensemble type and for the entire collec-
tion. The estimated segment boundary was considered as
correct (true positive) if it was located within a± 3 second
window around an annotated boundary (the same window
size as in MIREX evaluations).

The proposed approach significantly outperforms com-
pared methods for non-instrumental music, while for in-
strumental it is comparable to the best performer. The
overall results are presented in Table 1.

Results are also comparable with current state-of-the-
art segmentation method for folk music presented in Müller
et al. (2013), with an F1 measure of 0.87 on a collection of
solo Dutch folk songs - our method achieves an F1 mea-
sure of 0.85 on the same collection.

Table 1: Evaluation results.
Method P R F1

Mauch et al. (2009) 0.74 0.40 0.4
Foote (2000) 0.39 0.81 0.52

McFee & Ellis (2014) 0.41 0.59 0.48
Serrà et al. (2012) 0.41 0.56 0.47
Proposed method 0.78 0.80 0.76

4. CONCLUSION

We presented a novel approach to segmentation of folk mu-
sic. The method takes into account folk music specifics
and significantly outperforms current state-of-the-art seg-
mentation methods for segmenting commercial music and
is on pair with a state-of-the-art method for solo singing
segmentation.

As part of our future work we can envision several im-
provements of the method, especially for segmentation of
instrumental music. We also plan to further specialize the
method for better performance with individual ensemble
types, by first automatically detecting ensemble type and
then choosing an appropriate set of method parameters.
We also aim to extend the method for hierarchical musi-
cal structure discovery.
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