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their selfless support, I would have never even made it to a new day. On the contrary,

without my ridiculous ways, they would have a much better life.

This material is based upon work supported by the National Science Foundation

under Grant No. IIS-0855758.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . . 4

2.1 Traditional Turkish Music . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basic Concepts in Turkish Music Theory . . . . . . . . . . . 4

2.1.2 Turkish Folk Music . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Works in Music Technology . . . . . . . . . . . . . . . . . . 11

2.3 Contributions and Novelty . . . . . . . . . . . . . . . . . . . . . . . 16

III SYMBOLIC DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Problems and Decisions in Setting Up the Database . . . . . . . . . 19

IV COMPUTATIONAL MODELING . . . . . . . . . . . . . . . . . . . 25

4.1 n-gram Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Variable Length Markov Models . . . . . . . . . . . . . . . . 30

4.2.2 Prediction Suffix Tree . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 Zero Frequency Problem . . . . . . . . . . . . . . . . . . . . 36

4.3 Multiple Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4.4 Long-term and Short-term Modeling . . . . . . . . . . . . . . . . . . 39

V EXPERIMENT AND RESULTS . . . . . . . . . . . . . . . . . . . . 41

5.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

VI DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

VII FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VIIICONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



LIST OF TABLES

1 Makams in the Uzun Hava Humdrum Database and the number of
songs per makam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Unigrams of notes and rests observed in the modified version of the
last two measures of U0368 and their counts . . . . . . . . . . . . . . 27

3 Bigrams of notes and rests observed in the modified version of the last
two measures of U0368 and their counts . . . . . . . . . . . . . . . . 27

4 Basic and derived viewpoints corresponding to the events in the last
two measures of U0368. “N/A” indicates situations where obtaining a
value for the viewpoint is not applicable and “-” indicates the value of
the viewpoint is null. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Classification accuracies in percentage for the multiple viewpoints us-
ing a maximum order of 14. The first row in each cross type reports the
classification accuracy of the unique tokens obtained by the cross prod-
uct of the two viewpoints. The second and the third rows report the
classification accuracy of the first and the second viewpoints forming
the cross type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Average and median perplexities for the multiple viewpoints using a
maximum order of 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Average perplexities given by evaluating Durations ⊗ Scale-Degree-
with-Cents-Deviation and Durations ⊗ Melodic-Interval-with-Cents-
Deviation viewpoints for each song in the experiment using a VLMM
of maximum order of 14. . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



LIST OF FIGURES

1 Notes in an octave in Western classical music and in Turkish folk music.
The traditional names of the notes in traditional Turkish music are
given below each symbol. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Some important pentachords and tetrachords in Turkish traditional
music. They are written “at their locations.” . . . . . . . . . . . . . . 7
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SUMMARY

The thesis describes a new database of uzun havas, a non-metered structured

improvisation form in Turkish folk music, and a system, which uses Variable-Length

Markov Models (VLMMs) to predict the melody in the uzun hava form. The database

consists of 77 songs, encompassing 10849 notes, and it is used to train multiple view-

points, where each event in a musical sequence are represented by parallel descriptors

such as Durations and Notes. The thesis also introduces pitch-related viewpoints

that are specifically aimed to model the unique melodic properties of makam mu-

sic. The predictability of the system is quantitatively evaluated by an entropy based

scheme. In the experiments, the results from the pitch-related viewpoints mapping

12-tone-scale of Western classical theory and 17-tone-scale of Turkish folk music are

compared. It is shown that VLMMs are highly predictive in the note progressions

of the transcriptions of uzun havas. This suggests that VLMMs may be applied to

makam-based and non-metered musical forms, in addition to Western musical styles.

To the best of knowledge, the work presents the first symbolic, machine-readable

database and the first application of computational modeling in Turkish folk music.

ix



CHAPTER I

INTRODUCTION

1.1 Overview and Remarks

The thesis presents a new symbolic database of uzun havas, a non-metered structured-

improvisation form in Turkish folk music, and a machine learning system used for

computational modeling of uzun havas.

This introduction gives a brief presentation of the thesis and addresses the motiva-

tion. Chapter 2 gives a brief explanation of traditional Turkish music, related works

in music information retrieval (MIR), and the contributions and novelty of the thesis.

Chapter 3, presents the symbolic database and the conceptual and practical difficul-

ties faced during it’s creation. Chapter 4 brings the hypothesis, the computational

modeling framework and the evaluation process. Next, Chapter 5 explains the ex-

perimental setup, evaluation method and the results obtained from the evaluation of

the computational modeling. This chapter also presents the novel representation pro-

posed to model Turkish folk music. Chapter 6 discusses the results, and approaches

taken throughout the research. Chapter 7 suggests future works to be completed.

Finally, Chapter 8 concludes the thesis work.

Throughout the thesis, even though English translations are typically provided,

Turkish terms are more emphasized. This is due to the fact that traditional Turkish

music is mostly an oral tradition, which cannot be explained by Western classical

music theory. For this reason, English interpretations hold the danger of being “lost

in translation” and sometimes being completely misunderstood.

As a final remark, there are some mentions to Türk Sanat Müziği (Musikisi), which

is a sub-genre under traditional Turkish music and has emerged from the Ottoman
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palace [69]. Turkish classical music, Ottoman classical music and Turkish art music

(and all other possible variants) are possible translations. In order to emphasize the

origin of the music and as a homage to the Arabic, Armenian, Greek, Kurdish, Jewish,

Persian, Polish and all other musicians, who played the music in the Ottoman court,

I have chosen to use the term, “Ottoman classical music.”

1.2 Motivation

Musical improvisation is a complex phenomenon, and there have been many attempts

to describe and model it [8, 14, 90]. Moreover, there is a lack of understanding the

“music” in the current MIR research with respect to how humans actually perceive it

[101]. Previous work on Western melodies showed that variable-length n-gram models

and human judgments of melodic continuation are highly correlated [77]. We hope

this research will bring clues about how we actually anticipate music [53] outside the

Occidental boundaries.

Through the understanding of a musical style by computational methods, pre-

dictive or generative systems based on the style may be built. Such systems can be

used as machine performers which would be able to improvise on-the-fly in interac-

tive performances, meta-composers that would suggest improvisational ideas to other

performers [55, 75] or as an educational tool that can help musicians to play and

improvise in this particular style.

The vast unchartered aspects of the world musics remains as a major challenge

in the field of music information retrieval (MIR) [66]. In order to further advance

the state-of-the-art in MIR, the unique challenges brought by world musics should be

considered [46]. Research involving paradigms such as heterophony in music in Far

Asia [67], polyrhythms in African percussions [7] or makam theory in Turkish music

[89] would immensely expand our knowledge and tools in music. Further computa-

tional research into the diverse musical genres throughout the world will deepen our

2



knowledge of universal versus genre-specific aspects of music, and allow us to truly

evaluate the generality of various modeling strategies. Moreover, the findings from

various cultures might open up new paths for musical creativity, expressivity and

interaction.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Traditional Turkish Music

Throughout history, Anatolia and Thrace have been home to many civilizations and

the crossing bridge between cultures. As a result, music in modern Turkey is as di-

verse as the numerous groups that have stepped foot on its soil. Traditional Turkish

music has been one of the most important and influential traditions in the world

[13, 15]. Traditional Turkish music has been a “melting pot”, incorporating elements

from numerous other musical traditions such as Hellen, Hittite, Byzantine, Arme-

nian, Kurdish, Jewish, Arabic and Persian [45]. Western music theory and practice

is insufficient to explain the uniqueness and the richness of the melodic structures

(makam, Section 2.1.1.1) and metric structures (usul, Section 2.1.1.2) in traditional

Turkish music. In order to comprehend traditional Turkish music, it is necessary to

understand some basic concepts in Turkish music theory.

2.1.1 Basic Concepts in Turkish Music Theory

2.1.1.1 Makam

In Western classical music theory, the octave is divided into 12 pitches (Figure 1a).

On the other hand, in traditional Turkish music, an octave can be divided into more

than 12. At present, there is no theory that is completely agreed upon in Turkish

music due to the differences in theory and practice [97], and the suggested number

of pitches in an octave ranges from 17 to 79 [104]. Currently, education in makam

music is based on Arel-Ezgi-Uzdilek theory [5, 44]. However, Arel-Ezgi-Uzdilek theory

is highly criticized among contemporary scholars [73, 80, 89, 97]. As a result, this

section tries to form a basic picture of Turkish music theory that draws from various

4



contemporary theories. Nevertheless, some of the contradictions between theory and

practice will be pointed out throughout this section in order to inform the reader and

also to explain some of the decisions undertaken in the thesis work.

Throughout history, traditional Turkish musics has predominantly been an oral

tradition. Nonetheless, there have been different notation systems used throughout

centuries, and Western staff notation was adapted by the start of the 20th century

[80, Chapter 1]. To indicate intervals smaller than semitones, flat and sharp sym-

bols are altered to make special symbols. It is acceptable to use the note naming

conventions coming from Western classical music (La, Si, Do or A, B, C ) and the

traditional names interchangeably. The traditional names may indicate the octave of

the note (tiz to indicate one octave higher and kaba to indicate one octave lower) or it

may completely change in different octaves (see Dügah and Muhayyer in Figure 1b).

Traditional names are also emphasized more in practice, and it is crucial to learn the

traditional names not only to understand the cultural background and but also the

musical structures [97, Page 133].

According to the Arel-Ezgi-Uzdilek theory, a whole tone is divided into 9 intervals

named koma. Out of 53 komas in an octave, only flats and sharps of the 1st, 4th, 5th,

8th and 9th komas are used to discretize an octave into 24 consequent tones [69]. In

Turkish folk music, due to the selection of instruments (section 2.1.2.1), there may

be a single note between the semitones. This tone is notated either by a special flat

([2) or a sharp (]3) symbol adopted from Western classical notation. The number

written on the right top of the accidental symbols indicates the koma distance from

the natural note 1. It should be noted that in the Turkish folk music practice, the

koma distance is not important; it is merely used to indicate that the pitch lies

between a semitone. Therefore, it makes more sense to treat these as quarter-tones

1Notice that koma values of 2 and 3 are not used in Arel-Ezgi-Uzdilek theory.
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(b) Turkish folk music

Figure 1: Notes in an octave in Western classical music and in Turkish folk music.
The traditional names of the notes in traditional Turkish music are given below each
symbol.

2 with a non-deterministic deviation from its neighbors. When all of the notes are

arranged, there exists 17 notes in an octave (Figure 1b). It should also be noted that

the notes are not tuned according to the reference note, A = 440Hz, and they are

not well-tempered.

The melodic structure of traditional Turkish music is explained by makams.

Makams may be considered as the modes of traditional Turkish music [89]. Since

the music is based on modality rather than tonality, it makes more sense to talk

about a modal center rather than using terms such as tonic, dominant 3. Typically,

melodies in makams have a başlangıç (starting, initial) tone and a karar (ending,

final) tone [73].

The melodies in makams are built by using tetrachords (dörtlü) or pentachords

(beşli) [69] (Figure 2). Tetrachords and pentachords are explained by the traditional

2Harvard Dictionary of Music defines a quarter tone as ”an interval equal to half a semitone” and
a microtone as ”an interval smaller than a semitone [83].” Therefore, ”microtone” is more suitable
for the English explanation since the tone may not be equal to half a semitone. However, in Turkish
folk music discourse, the term çeyrek ses, which can be literally translated as quarter-tone, is used
to indicate the single tone smaller than a semitone. As stated in Section 1.1, I would prefer using
the Turkish terminology.

3On the contrary, Arel-Ezgi-Uzdilek theory uses tonal terminology such as dominant (güçlü) [69].
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(a) Buselik tetrachord (b) Buselik pentachord

(c) Rast tetrachord (d) Rast pentachord

(e) Uşşak tetrachord (f) Hüseyni pentachord

(g) Hicaz tetrachord (h) Hicaz pentachord

Figure 2: Some important pentachords and tetrachords in Turkish traditional music.
They are written “at their locations.”

names associated with them and the specified starting note. When a tetrachord or

pentachord is said to be played “at its location” (yerinde), it will start from the

default starting note of the sequence. For example, the default starting note of

Rast tetrachord/pentachord is Rast (G), whereas Hicaz tetrochord/pentachord at its

location starts from Dügah (A) 4.

Each makam has some peculiarities in melodies, which are explained as “melodic

nuclei” (ezgi çekirdeği) [70], “characteristic motifs” [97] and “tunes specific to a par-

ticular makam” [27] by different Turkish music scholars. It can be said that makams

are formed by “navigating” (noun: seyir) around these melodic progressions. Makams

can have ascending, descending or ascending/descending seyirs such that two pieces

having the same key signature but having different seyirs might also have different

makams [69].

4Since a lot of makams, tetrachords, pentachords and notes share the same traditional name,
readers should be careful to understand what is being referred. As an example “Hicaz pentachord
in Rast” means the Hicaz pentachord starting from the Rast note (G).
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(a) Hüseyni makam at its location

(b) Hicaz makam at its location

(c) Uşşak makam at its location

Figure 3: Hüseyni, Hicaz and Uşşak makams at their locations.

To make the explanations more concrete, let’s investigate three of the most used

makams in traditional Turkish music: Hüseyni, Hicaz and Uşşak at their locations

(Figure 3). All of these makams have the same karar (ending) note, Dügah (A),

however they differ from each other in key signatures, seyirs and başlangıç (starting)

notes. Hüseyni makam (Figure 3a) is formed by Hüseyni pentachord at its location

(A) and Uşşak tetrachord at Hüseyni note (E). The başlangıç (starting) note of the

makam is Hüseyni (E). Seyir of the makam may be both ascending and descending.

Hicaz (Figure 3b) is formed by Hicaz tetrachord at its location (A) and Rast penta-

chord at Neva note (D). The başlangıç note of the Hicaz makam is Neva (D). Again,

the seyir can be both ascending and descending. In both Hüseyni and Hicaz, Mahur

(F]), may be played as Eviç (F]3) 5 or Acem (F\). Acem (F\) is a typical case in

the descending seyir. Uşşak makam (Figure 3c) is formed by Uşşak tetrachord at its

5Notice that in both Hicaz and Hüseyni makams, to comply with the intervals in the upper
tetrachord/pentachord, the note should actually be F]3. Also in practice of Turkish folk music,
typically F]3 is the played note. This shows another contradicting representation between Arel-
Ezgi-Uzdilek theory and folk music practice.
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location (A) and Buselik pentachord at Neva note (D). Notice that the key signature

of Uşşak makam is almost identical to Hüseyni. However, the başlangıç note of this

makam is Neva (D).

2.1.1.2 Usul

In traditional Turkish music, the metric structure is explained by usul. Usul is “the

structure of musical events which are coherent with respect to time [69].” Usul can be

roughly translated to “meter.” Nevertheless, usul has a broader meaning than meter:

The usul of a piece may emphasize the makam, and a change in usul may affect the

seyirs and the makam [97]. An usul can be as short as two beats or as long as 128

beats. However, it should always have at least one strong and one weak beat [69].

Analogous to different makams having the same accidentals, there can be different

usuls with the same number of beats due to the difference in the timings of the beats.

Turkish music also makes a rich use of usulsüz (non-metered) progressions. Usulsüz

sections are typically the improvised parts of the pieces in traditional turkish music.

2.1.2 Turkish Folk Music

Turkish folk music is a profound music style that is the product of the emotions,

thoughts, humor and social life of Turkish people. Turkish folk music is typically

anonymous, and the songs have been carried from generation to generation as an oral

tradition.

In Turkish folk music, variations in performance practice and expression may

correspond to regional differences. Every region in Anatolia has a peculiar style, ex-

plained by the term tavır. Tavır constitutes the playing, singing styles and techniques

particular to the region. However, regional folk artists often devise their own styles

and do not strictly adhere to the regional style.

9



Figure 4: Aşık Veysel, one of the most famous folk artists of 20th century, playing
bağlama

2.1.2.1 Instruments

Turkish folk music uses a large number of plucked, bowed, wind and percussive in-

struments. The most characteristic instrument family of Turkish folk music is the

saz family, which consists of plucked string instruments native to Anatolia and the

surrounding geographies (Greece, Balkans, Caucasus, Iran...).

The most common saz played in Anatolia is bağlama (Figure 4). It typically has

17 notes in an octave [71]. The frets are tied to the fretboard instead of pinning them.

As a result, frets are easily moveable, and microtonal adjustments in the temperament

can be made to play in different makams and/or to emphasize tavır. Typically, other

instruments (if any) are tuned with respect to bağlama, therefore it is safe to say

that theory and practice in Turkish folk music is centralized around bağlama [97,

Chapter 17]. A thorough analysis of bağlama also suggests the theory behind Turkish

folk music is the same with the Ottoman classical music [97, Chapter 17–18] 6.

6Historically Arel-Ezgi-Uzdilek theory leaves Turkish folk music outside its scope. On the other
hand, contemporary scholars agree that the melodic structures in Turkish folk music are explainable
by makams [72, 93, 104]. This issue points out another weakness in the Arel-Ezgi-Uzdilek theory.
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2.1.2.2 Uzun Hava

In Turkish folk music, the pieces can be categorized into two groups with respect to

usul. Pieces with definite usul are named kırık havas, whereas pieces that incorporate

usulsüz (without any meter) sections are typically named as uzun havas. In the

usulsüz sections of an uzun hava, the performer improvises in notes and timings while

maintaining certain seyirs. The improvisations usually converge to modal centers and

therefore uzun havas can be explained by makam theory. In this sense, uzun havas

can be considered as structured-improvisation pieces. They are typically played in

Hüseyni [54].

Typically uzun havas are performed by a single performer, who also plays bağlama.

The music is usually sad; the lyrics (if any) are generally about the daily struggles and

emotions of Anatolian folk. There are various types of uzun havas across Anatolia,

which may differ from each other tavırs and choice of makams.

2.2 Related Works in Music Technology

Computational models of music are typically used to understand various aspects of

music through statistical means. The modeling is mainly aimed at two applications:

1) predictive systems, 2) generative systems. Predictive systems aim to guess future

events in music by taking peculiar aspects of the musical style into consideration,

whereas generative systems attempt to create music. Note that the practical applica-

tions may take both roles in its implementation and execution: a predictive system

might form the basis of the framework of a real-time interactive system, which keeps

the track of previous events, and generates the next event by prediction [74]; and a

generative system may be used to assess the consistency of the model with respect to

human expectations [82].

Computational modeling of musical styles is not a new topic in the field of music
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technology. One of the earlier attempts of computational modeling is done by Xe-

nakis [103], where he generates music through statistical distributions. Ebcioğlu has

developed a system named CHORAL, which can harmonize four part chorales [41].

CHORAL decides on musical events by consulting parallel representations of music.

The rules are set from baroque music theory. Another approach is the recombinant

model. In this model, musical patterns are predetermined; by various alternation

and combination algorithms, there patterns are stacked together to form the music.

The musical snippets may be, again, defined by the human developer, or they might

be gathered by (supervised or unsupervised) data mining techniques. Recombinant

modeling is one of the techniques adapted in David Cope’s EMI, which is one of the

earlier attempts (and probably the most controversial so far) of a machine composing

in a particular composers style [35, 36].

The modeling system in the thesis follows another scheme, in which the analysis

and modeling of the musical style in music is mostly left to the computer. The algo-

rithms are typically machine-learning algorithms. One of the noteworthy examples

is the artificial neural network (ANN) approach taken by Toiviainen [94]. By using

ANNs, he has modeled bebop style improvisation, and showed that ANNs are able

to create variances of the trained music.

Markov models and n-gram modeling are two closely related and common tech-

niques in computational modeling. Ames states that Markov models are common

tools in algorithmic composition [3], and explains various methods to incorporate the

models into musical applications. Assayag and Dubnov, with their colleagues, have

extensively worked on the performance of Markov models and dictionary-based meth-

ods for computational modeling of musical styles. Dictionary-based methods may be

interpreted as different representations of Markov models, which may give better per-

formances than a regular Markov model. In [9, 58, 39], the authors have described and
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compared two dictionary named prediction methods for automatic music style mod-

eling, namely the Incremental Parsing (IP) method and the Prediction Suffix Trees

(PSTs). Later, they have included factor oracles [8] in performance comparisons, and

developed the so-called “audio oracles” [38] from the the factor oracles. They have

applied these methods successfully to various musical styles from J.S. Bach’s chorales

to improvised jazz pieces.

Pachet’s the Continuator [74] is one of the state-of-art interactive generative sys-

tems. The system is based on varible-length Markov models (VLMMs). The Con-

tinuator is able to interact with human performers: It listens to the MIDI streams

played by the performer, and generates continuations of the input. The user can

choose the generative scheme from a number of continuations derived from the pa-

rameters of the MIDI data. Moreover, the outcomes from the VLMM is processed so

that the Continuator’s output is consistent with the polyphony, rhythm and musical

progressions.

The framework used in the thesis is mostly based on the so-called “multiple view-

points” modeling (MVM) (Section 4). It is introduced by Conklin et al. [30, 31, 32,

33, 34] and further developed by Pearce et al. [76, 77, 79]. MVM has made a major

impact in the machine-learning algorithms on music. MVM basically uses parallel

descriptors to represent music. It is a general framework, and its power comes from

the flexibility of viewpoints defined to represent the musical phenomenon. Moreover,

long-term and short-term modeling is integrated to capture the general context of

the musical style along with peculiar characteristics of the current song [32]. The

system uses entropy-based methods to merge the long-term and short-term models,

and also to quantitatively evaluate the predictions given by the computational model

[63]. Recently, Pearce et al. has also showed that this n-gram modeling scheme may

show a significant resemblance to the musical expectations in the human mind [78].

Even though information retrieval in world musics has recently started to attract
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attention in academia, there has already been substantial amount of research in the

field [61, 99]. The research topics range from the automatic segmentation and tran-

scription of tabla [26, 49] to robotic musicianship and hyperinstruments in Indian

classical music [56], and mode recognition in North Indian classical [22] and African

musics [65]. European folk musics have been studied in detail, probably because they

are similar to and culturally shared with Western musics. Chai and Vercoe have pre-

sented a classification method based on HMMs for European folk musics [19]. The

physical properties of Elgin Avloi, an ancient Greek instrument has been modeled

and simulated by Tsaxalinas et al [96]. Eerola et al. has shown that statistical sim-

ilarity methods capture the listeners’ similarity ratings by conducting experiments

on European folk songs from different ethnics. Conklin and Anagnostopoulou have

done melodic pattern mining on Cretan folk songs [29]. By using a measure defined

as “relative empirical probability,” the authors present short patterns peculiar to the

song types and locations across Crete. Krumhansl et al. has presented a compre-

hensive study of melodic expectation in Finnish spiritual folk hymns [57]. They have

observed that the musical familiarity and expertise in the style alters the melodic

expectations, and the neural network models of the self-organizing map (SOM) emit

expectations similar to the reactions of human subjects.

Most definitely, Chordia et al.’s research on tabla [21, 24, 25], an Indian percussion,

stands out as the most related research to the thesis work. The research is aimed

at the computational modeling of the tabla sequences by using multiple viewpoints

modeling. Tabla possesses a relatively simple musical language, where the name of

each stroke indicates a peculiar timbre [40]. Moreover, in some forms of tabla music

(such as qaida), the melodic instrument keeps on playing a rhythmic loop, while the

percussion plays solo improvisations centered around a theme [40]. Therefore, some

of the tabla music may be interpreted as structured improvisation pieces played by a

quasi-melodic instrument. Apart from the rhythmic dissimilarities, we can draw some
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parallelism in the symbolic analysis of uzum havas and qaidas. What is more, the

multiple viewpoints framework used in the thesis is adapted from this series of studies

with minor changes. Even though the success of the multiple viewpoints modeling

lies in the choice of parallel representations (Section 4.3), the conceptual similarities

between the two musical forms imply that the results might be consistent with each

other.

Parallel to the other world musics, computational research on traditional Turk-

ish music has recently emerged. Erkut has worked on physical modeling of tanbur,

a traditional Turkish stringed instrument [43]. Holzapfel’s PhD. thesis deals with

similarity measures of ethnic musics, and puts an emphasis on traditional musics of

Greece and Turkey [51]. The most comprehensive research in traditional Turkish

music is done in evaluating current music theories [1, 18, 47] and classifying makams

[17, 48, 60] through the use of pitch class histograms. Additionally, a novel makam

classification algorithm based on n-gram modeling has been presented by Alpkoçak

and Gedik [2].

To the my best of my knowledge, there has been a single work on the analysis

of melodies in traditional Turkish music. Güngör Gündüz and Ufuk Gündüz have

made mathematical analysis of 4 Ottoman classical music and 2 Turkish folk music

pieces [50]. Similar to the thesis, the symbolic notations provided by Turkish Radio

Television Corporation (TRT) are used for analysis. The paper checks some of the

properties of the songs such as fractal dimensions, self-similarities, note progressions

and organizational behaviours. However, the musical explanation of the traditional

Turkish music is strictly based on the Arel-Ezgi-Uzdilek theory. For example, they

state “the folk music is free of all makams.” As thoroughly explained in Section

2.1, this is a false claim. Moreover, the songs are treated as “complex mathematical

systems”, and some of the results are not discussed thoroughly with respect to their

musical meanings: The authors show that there are very frequent transitions from
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order to disorder in the songs, however they do not discuss whether these transitions

might correspond to a significant change in the symbolic notations or in human antic-

ipation. Therefore, the current state of the research is not as fruitful from a musical

or an ethnomusicological point of view.

Beyond debate, databases are crucial elements of statistical analysis of any kind of

data. Unfortunately, there is a lack of machine-readable databases dedicated to tradi-

tional Turkish musics. To the best of my knowledge, there are currently two databases

for traditional Turkish music that are ready to be used for machine processing. The

first one is the traditional Turkish music MIDI database, which is distributed along

with the music notation software Mus2 7. The second one is the Parametric Turkish

Music Database [16], which consists of the pitch tracks of the audio recordings of a

vast number of Ottoman classical music pieces. I believe, this absence is a key factor

in the lack of statistical research involving traditional Turkish folk music.

Parallel to Conklin et al. and Pearce et al.’s research [33, 76], the computational

framework in this thesis (Section 4) incorporates multiple viewpoints modeling (Sec-

tion 4.3) with both long-term and short-term models (Section 4.4). Variable-length

Markov modeling (Section 4.2.1) is used to model the sequences, and the training

data is stored as Prediction Suffix Trees (Section 4.2.2). The evaluation of the system

is done by entropy-based calculations (Section 5.3). In a limited fashion, the system

is capable of generating melodic patterns by either picking the mostly likely or a

random event from the probability distribution in the next step (Section 5.4).

2.3 Contributions and Novelty

To the best of my knowledge, the Uzun Hava Humdrum Database is the first symbolic

notation database of uzun havas in machine readable format. Though the database

cannot be considered as a novel contribution by itself, it would hopefully help to

7http://www.mus2.com.tr/en/
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satisfy the increasing demand in academia of accessing various musical traditions.

The computational modeling framework is based on multiple viewpoints modeling

(MVM) a general, flexible modeling technique for melodic sequences. From a technical

point of view, this work stands out as the first usage of variable-length Markov models

(VLMMs) and multiple viewpoints modeling (MVM) in traditional Turkish music. It

also presents the first attempt of computational modeling of traditional Turkish music.

The novelty of the thesis lies in the representations specifically defined for the analysis

of uzun havas: The work proposes novel pitch-related viewpoints that addresses the

key relationships in the 17-tone scale of Turkish folk music.
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CHAPTER III

SYMBOLIC DATABASE

For the computational modeling, an extensive database is built, which is comprised

of symbolic notations of uzun havas. To the best of my knowledge, the database is

the first machine-readable, symbolic notation database of uzun havas in Turkish folk

music, a relatively untouched phenomenon. Therefore, the database is an important

contribution to academia.

The database is aimed at enabling easy access to the uzun hava form. The

database may help scholars from various disciplines to focus on the analysis of the

Turkish folk music rather than setting up a database, and diversify the statistical

research in traditional Turkish music. I believe that the database will be especially

useful for scholars, who are unable to gather machine-readable data by themselves,

and who do not have the knowledge or the resources to construct a database of Turk-

ish folk music. I also hope that the database will open up a path for the analysis

of Turkish folk music in cross-cultural and cross-genre music research, especially in

research dealing with improvisation.

3.1 Overview

The Uzun Hava Humdrum Database is a collection of symbolic notations of uzun

havas, a structured improvisation form in Turkish folk music 1. The database cur-

rently encompasses 77 songs from different regions of Anatolia, Iraq and Caucasus. It

consists of 10849 notes in total, in 8 makams (Table 1). Unsurprisingly, the makams

of the songs are biased towards Hüseyni (Section 2.1.2.2). The notations are encoded

1The Uzun Hava Humdrum database is available online at
http://sertansenturk.com/uploads/uzunHavaHumdrumDatabase
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Table 1: Makams in the Uzun Hava Humdrum Database and the number of songs
per makam

Makams # of Songs
Hüseyni 40

Hicaz 15
Uşşak 13
Rast 3

Kürdi 2
Nikriz 2
Segah 1

Karciğar 1
Total 77

in the Humdrum based syntax called **kern format [52]. The database is constructed

with the help of Prof. Erdal Tuğcular (Department of Music Education, Gazi Uni-

versity, Ankara, Turkey).

The original source of the symbolic notations is the Turkish folk music database of

the Turkish Radio and Television Corporation (TRT) 2. The TRT folk music database

is the largest symbolic database of Turkish folk music, having more that 7250 pages

of sheet music, notated in modified Western staff notation and saved in .tiff image

format. The database holds kirik havas and uzun havas picked from different regions

of Anatolia, Thrace, Middle East and Azerbaijan. There are 123 scores of uzun

havas in the Turkish Radio and Television Corporation’s (TRT) Turkish Folk Music

Database.

3.2 Problems and Decisions in Setting Up the Database

Although the TRT database provides a nice set of symbolic notation, on the basis of

comments from Prof. Erdal Tuğcular and oral discussions with Okan Murat Öztürk

(Başkent Üniversity State Conservatory, Ankara, Turkey), it can be said that the

2The TRT Turkish folk music database is available online at ”Türk Müzik Kültürünün
Hafızası” Score Archive (http://www.sanatmuziginotalari.com/), which is freely accessible via
http://devletkorosu.com/.
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TRT database is sometimes unrealistic, and it contains considerable errors. First of

all, the notation is an adapted version of Western symbolic notation. In a musical

culture, a notation system has to hold certain features and represent the practice in

a satisfactory manner in order to be accepted in practice [80, page 13]. Therefore the

sufficiency of the symbolic notation might be debatable, especially when expressivity

of a musical culture is transferred from the teacher to the student by oral tradition.

Moreover, for world musics, there are some intrinsic problems of using symbolic no-

tation and making deductions solely based on them [68, Chapter 2–3]. This may also

raise questions about the validity of using Western notation as a valid representation

of improvisation in Turkish folk music. In fact, representation of traditional Turkish

music have undergone a series of contradictions during the adaptation of Western

symbolic notation [80, 97]. For these reasons, some musicologists suggest that audio

recordings should be the basis of analysis in ethnomusicology [6, 12]. Yet, since audio

analysis is generally not as easy and straightforward as processing symbolic data,

symbolic notation is at least an adequate choice for initial steps in computational

analysis.

Second, the quality of transcriptions between the transcribers and the pieces varies

considerably. Moreover, there are some transcription mistakes such as missing key

signatures and temporary accidentals (such as F]3’s in Hüseyni and Hicaz), which

were corrected manually in the Uzun Hava Humdrum Database. As another example,

in a couple of songs the usul of the piece changes in every measure, while the piece

should be usulsüz (as an example check U0218 in the TRT database): They clearly

show that the transcriber attempts to divide the piece into melodic phrases in a way

that totally disregards the usulsüz nature of uzun havas! while acknowledging these

facts, symbolic notation was chosen as the input since the thesis aims to be the first

step of computational modeling in Turkish folk music.

To read the image files in .tiff, three optical music recognition (OMR) softwares
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were tested. At first, Audaveris and SharpEye were tried. Upon checking some

files, Audaveris was not found to be satisfactory. For SharpEye, the accuracy was

fine, however the lyrics recognition made the files too bulky and difficult to clean-up.

Finally, the built-in SmartScore 5 Lite in Finale 2010 was chosen. Apart from some

handwritten scores, the optical character recognition in SmartScore 5 Lite was fairly

accurate. Nevertheless, all of these software are constrained within Western classical

music theory. As a result, there were some major conceptual problems in the accuracy

of the recognition software.

The simplest (and expected) error is that the OMR system will not be able to

recognize characters special to the music. Moreover, the system may misidentify these

special characters. The recognition of [2 as [ lies in this category. Note that this type

of errors does not bring any critical failures, and it is easy to automate the correction.

The second type of errors is due to hierarchy. Typically, the character recognition

system is forced to conceive the music under the assumption of Western classical

music tonality and metric structure. Therefore, even though the system can recognize

the musical symbols in low-level, high-level algorithms force these symbols to be

disregarded or altered in an inappropriate manner. Without a surprise, OMR fails in

recognizing makams and usuls in Turkish.

As the computer is constrained to typical metric structures seen in Western music,

it is either unable to or not confident in recognizing compound rhythms (5/8, 9/8,

11/8 etc.). Moreover, if there are frequent changes in meter, OMR may find it hard

to track the meter. Finally, free improvised sections might be a major problem.

While Western classical music until 20th century does not incorporate such elements

extensively, they are inseparable elements of traditional Turkish music. The main

issue arises when the algorithm tries to restrain the music to simple meters: once it

believes the duration of measure has been filled, it may disregard the upcoming notes

or write them as harmony. In both cases, the usual and seyirs will be disrupted,
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which requires careful manual corrections.

Another ominous error happens when the system tries to recognize the modal

structure under the rules of tonality. When the system faces a mode with a key

signature which is not present in Western classical music tonality, it will try to match

the key signature into one of the scales known to it. In order to do that, it might

either try to add or remove some accidentals. As a result, the piece may sound

completely different. As a practical example, this problem is inevitable in the Hicaz

makam. Since this makam has both flat and sharp signs (Figure 3b), OMR typically

deciphers the signature as B[, which is the key signature of F major (or D minor)

and adds a sharp to the first note it recognizes on the first measure of the staff and

also attaches the same accidental to all of the consequent notes with the same pitch.

Unless corrected manually, this would prove to be a fatal error, especially in research

involving melodic analysis.

Consequently, quarter tone accidentals, makams which do not follow Western

tonality, and non-metered sections, not only remained unrecognized but also caused

confusions in meter, scale and notation. Moreover, recognition of ties were prob-

lematic in OMR, and even though nearly all of the transcriptions are monophonic,

the OMR system has occasionally created erroneous parallel harmonies. Due to these

problems with OMR, handwritten scores and the scores with highly problematic char-

acter recognition are eliminated, and the number of pieces is reduced from 123 to 107.

After the recognition phase, the songs are saved in MusicXML 2.0 format, which

is supported by Finale 2010. Apart from that, Finale 2010 was not used for any

kind of processing. As the format of the database, the Humdrum based syntax called

**kern format was chosen. The syntax provides ease in readability with broad search,

comparison and editing capabilities, and it also supports microtonal deviations [52].

These features make Humdrum a well known and widely used toolkit in academia.

In fact, the simple and systematic syntax of the **kern format proved very useful to
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correct the mistakes in OMR and add the missing aspects specific to uzun havas: to

take care of these issues in OMR some fully or semi-automated tasks were run on the

**kern file. Almost all of the tasks are coded in either Python or bash scripting.

The first task was to convert the scores in MusicXML 2.0 format to **kern notation

by using xml2hum [86]. Next, by using regular expressions, again in bash scripting,

the **kern syntax was cleaned out of mistakes caused by ties and parallel harmonies.

In the Uzun Hava Humdrum Database, the name, region, makam, key signatures and

usul are printed to the start of the file as comments, which are filled manually.

Usulsüz (non-metered) sections in uzun havas are treated as cadenzas such that

the sections start with “*MX/X”, indicating the following notes will be played in

a non-metered fashion. Each note is proceeded by the letter “Q”, which is used to

indicate gruppettos in **kern format [52]. The meter changes are manually entered

in the **kern encoding, and then gruppetto symbols are added to the corresponding

notes by using Python.

In order to comply with the standard Humdrum notation, quarter tones are in-

dicated as deviations in cents in a second spine. This second spine is created in

Python with the default value of 0 deviation for notes and “not-applicable” deviation

for rests (indicated by “.”). Then, the quarter tone accidentals are corrected song

by song via regular expressions in TextWrangler. In the TRT database, there are

accidentals, which have different koma deviations from the same tone (B[2, B[3, B[4

etc.). However, as explained in Section 2.1, the most common instrument played in

uzun havas is bağlama, and it has 17 notes per octave. Moreover, the theoretical and

actual pitch values in Turkish folk music do not match, and they might even deviate

from region to region and even from performer to performer. Therefore, all koma

values lying between semitones are mapped into a single quarter-tone with 50 cents

deviation from the original note to match the 17-tone scale. The missing temporary

accidentals in the TRT database are also included in this step (Figure 5).
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Figure 5: The key signature, usul at the start and the last two measures of the uzun
hava, U0368, followed by the corresponding **kern syntax. The word “Serbest” (tr:
free) indicates the start of the usulsüz (non-metered) section
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CHAPTER IV

COMPUTATIONAL MODELING

This chapter is dedicated to the explanation of the computational modeling frame-

work. The framework aims to construct a model of the metric and melodic structures

in uzun havas, a structured non-metered improvisation form in Turkish folk music

by using various parallel descriptors for the pitches and durations of the notes. The

model is then used to predict the melodic continuations in uzun havas.

The framework is based on n-gram modeling (Section 4.1), and variable-length

Markov models (VLMM, Section 4.2.1) are used to train the computational model of

uzun havas. VLMMs are stored in Prediction Suffix Trees (Section 4.2.2) for better

performance. During the selection of the next symbol, the predictions from each level

of the tree are smoothed (Section 4.2.3) to include both the general structure and

specific patterns inside the trained sequences. If the system is asked to predict a

symbol which has never occurred before, it assesses its confidence by checking the

the number of single occurrences (Section 4.2.4). The real power of the system comes

from the so-called “multiple viewpoints modeling” (Section 4.3), where each event

in a musical sequence are represented by parallel descriptors. The predictions from

each viewpoint is obtained by consulting a long and a short term model (Section 4.4),

which are trained on the entire database and the specific song respectively.

4.1 n-gram Modeling

N-gram modeling is a commonly used technique to probabilistically model sequences

of elements such as phonemes in natural language processing [63], and music [37, 92].

A n-gram is simply a subsequence consisting n items from a given sequence.
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To demonstrate n-gram modeling, it is convenient to study a simple musical exam-

ple: Let’s take the last two measures of U0368 again, ignore the repeat sign between

the measures. Also, let’s change the Dügah (A) note at the 7th step to Çargah (C) to

decrease the sparsity in the sequence (Figure 6) 1. If we are to count the notes and

rests in this sequence, we will observe the unigrams shown in Table 2. The counts of

unigrams brings an interesting outcome: in this sequence, the note Neva (D) is played

the most, implying it has more importance than the others. In fact, as indicated in

the database (Figure 5), U0368 is in Uşşak makam, in which Neva (D) is one of the

modal centers.

While even the simple unigrams present a very powerful point, they do not tell

much about how the melody progresses. Just by looking in the unigram counts, we

cannot conclude whether the sequence was formed just by repeatedly playing a note

and then moving to the next note (i.e. B[2B[2CCDDDDDDEE) or there is a tendency

to converge to Neva (D). Therefore, it might be a good idea to increase the size of

the n-gram. Let’s check the bigrams and their counts (Figure 3). Now, we can argue

that the melody is indeed converging to Neva (D). Moreover, we can see that the

bigrams starting with Segah (B[2) or Hüseyni (E) always end up in Neva (D). This

brings us into another intriguing observation. By only looking at the unigrams, we

would always conclude that the next note should be 46.15% Neva (D), regardless of

the previous note. However, bigrams suggest that if the current note is either Segah

(B[2) or Hüseyni (E) then the following note will 100% be Neva (D)! Evidently,

increasing the size of the n-gram might help us to point out the peculiarities not only

in the makam but also in its seyir.

On the other hand, as easily seen in these examples, as the size of the n-grams

are increased, number of possible n-grams also increases. Since the length of the

1This sequence will be used in all examples throughout this section, and it will be called as ”the
modified version of the last two measures of U0368.”
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Figure 6: The modified version of the last two measures of U0368 from the Uzun
Hava Humdrum Database. The repeat sign between the two measures taken out, and
the Dügah note at the 7th step of the original melody is changed to Çargah.

Table 2: Unigrams of notes and rests observed in the modified version of the last two
measures of U0368 and their counts

Unigrams B[2 C D E Rest(R)
Counts 2 2 6 2 1

sequence does not change, this will result in a sparser space. Therefore, there is a

limitation to the size of a n-gram model. Formally, as the order n increases, the

maximum number of possible n-grams would increase to nk, where k is the number

of the possible symbols. However, even in large databases, most of the sequences will

not be present or seen with a few examples. Notice that for the sequence in Figure 6,

only 9 bigrams out of the 32 possible bigrams are observed, and there is typically a

single count on most of these bigrams. This sparsity issue might lead to the so-called

zero frequency problem [28] (explained in Section 4.2.4).

4.2 Markov Models

A Markov model is a causal, discrete random process. In a Markov model, every

possible outcome is represented with a symbol, sk, where 1 ≤ k ≤ N and N is the

total number of the symbols. Each of these symbols is assigned to a state, which

can simply be denoted as, k, the index of the symbol. The model can change from

Table 3: Bigrams of notes and rests observed in the modified version of the last two
measures of U0368 and their counts

Bigrams B[2D CD CR DB[2 DC DD DE ED RE
Counts 2 1 1 1 2 1 1 2 1
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one state to the other, and the probabilities of the next state, called the transition

probabilities, depend only on the probabilities of the current and the previous states

[81].

If the sequences are directly observable, i.e. the states are visible, most of the

problems can be directly solved by dealing with transition probabilities. To famil-

iarize with the concept, let’s consider the simplest case: 1st order Markov model.

Mathematically speaking, the state transition probability, aij, of a 1st order Markov

model can be written as:

aij = P (ωt+1 = j|ωt = i) (1)

where ω is the state at the given time (i.e. the current state at time t, the next

state at t + 1), while i and j indicate the possible states from 1 to N . These transition

probabilities can be arranged to form a NxN transition matrix. Since the transition

probabilities have to hold the definitions of probability theory, the coefficients of the

transition matrix should satisfy:

0 ≤ aij ≤ 1 and

N∑
j=1

aij = 1 (2)

To further solidify, let’s go back to the modified version of the last two measures

of U0368 (Figure 6), and train a 1st order Markov model from this sequence. Since

there are 5 symbols in the sequence, there will be 5 states in the model. Let’s define

the symbol set as S = {B[2, C,D,E,Rest}. From the counts found in Table 3, we

can easily calculate the transition probabilities between the states (Equation 3). The

graphical visualization of the Markov model is shown in Figure 7. The figure clearly

shows this short sequence is centered around the Neva (D) note.
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Figure 7: The first order Markov model trained on the notes of the modified version
of the last two measures of U0368.

A = {aij} =



0 0 0.2 0 0

0 0 0.4 0 0

1 0.5 0.2 1 0

0 0 0.2 0 1

0 0.5 0 0 0


(3)

Nevertheless, it should not be forgotten that the training is done over a very

sparse set of data. Clearly, with only 4 notes and the rest states, this model will

not be of any practical use. This model will not be able to predict any other states

accurately: it will not even be able to recognize Dügah (A), the karar (ending) note,

of the Uşşak makam 2. To overcome this problem, a Markov model should be trained

over a large set of data, especially in music, which has a vast sample space. Moreover,

escape probabilities might be introduced to the model to compensate the so called

“zero-frequency problem” (explained in Section 4.2.4).

Up until now, we have considered a 1st order Markov model. To generalize, in a

nth order Markov model, next state depends on the last n states. A (n− 1)th Markov

2If the D ügah note was not changed to Çargah in the modified version, the model would obviously
recognize the note. Nevertheless, the model will still be impractical.
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model can be trained by n-grams with a size of n. In this case, the probability of the

next state is defined as:

P (ωt+1 = st+1|ωt = st, ωt−1 = st−1, ωt−2 = st−2, . . . , ω1 = s1) =

P (ωt+1 = st+1|ωt = st, ωt−1 = st−1, ωt−2 = st−2, . . . , ωt−n = st−n) (4)

where s denotes the possible state at the given time. Higher order Markov models

provide more specific information about the trends in a sequence. However, this im-

provement also brings a major disadvantage: As the order of the model is increased,

possible transitions between states increases exponentially. A nth order Markov model

with N states will have a transition matrix of size Nn, rendering the model compu-

tationally expensive.

4.2.1 Variable Length Markov Models

As explained above, increasing the order of the Markov model might reveal more de-

tails about the data stream. However, specific patterns will get extremely uncommon

as the order of the model gets higher, even with very big data sets. Moreover, while

observing specific patterns is very helpful, sometimes general information might be as

crucial. As an example, as higher order models tend to be sparse, the n-grams will be

highly related to the training sequences, thus they might be less reliable. Therefore,

in a generative algorithm, integrating lower order models to the system might also be

useful to provide some regularity.

In order to capture the generality of lower order models and specificity of the

sequences in higher order models, we can use an ensemble of Markov models with

different orders to form a variable length Markov model (VLMM). The variable length

of memory in contrast with fixed Markov model yields a rich and flexible description

of sequential data.
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4.2.2 Prediction Suffix Tree

As mentioned in Section 4.2, while higher order reveals more specific patterns in a

data stream, the possible number of transition probabilities are increased enormously.

The computational expense will even be greater, if we are working on VLMMs, where

the predictions will be dependent of an ensemble of Markov models with different

orders. Even though most of the probabilities in higher orders may probably be equal

to zero, a straightforward implementation of a variable length Markov model requires

to check all possible transition probabilities.

This problem of dimensionality might be eased by using Prediction Suffix Tree

(PST) [84]. PST can be as depicted an alternative representation of VLMM. PSTs

have also been applied to music [39, 95]. In PST, each symbol is represented as a node

along with its count and probability. The root of the tree holds the current state of

the model. In every level, a node (parent) may be connected to children nodes in the

next level, which are the possible picks as the next state. By traversing from one level

to the next one via one of these these branches, we can observe the n-grams, seen

in the sequence, in increasing size. As an example, the first level is composed of the

unigrams observed in the sequence, the second level indicates the possible bigrams

starting in the states given in the first level, the third level constitutes the last symbol

of the trigrams, and so on. To visualize the data structure, a diagram of the PST

trained on the modified version of the last two measures of U0368 (Figure 6) is shown

in Figure 8.

Calculation of the probabilities are pretty straightforward by advancing in the tree.

Assume that a sequence has the symbol space of S = {s1, s2, . . . , sk, . . . , sN}, where

N is the total number of the symbols. The probability of observing two arbitrary

states, st and st+1, consequently can be computed as:

P (wt+1 = st+1, wt = st) , P (stst+1) = P (st)P (st+1|st) (5)
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Figure 8: Prediction suffix tree representing the Markov models with a maximum
order of 2, trained on the modified version of the last two measures of U0368. Bubbles
on the top right and bottom right of each node denotes the count and the probability
of the node respectively.

where P (st) is the probability of observing st in the first level and P (st+1|st) is

the probability at the children node marking st+1, branching from st. To generalize,

the probability of a particular subsequence of length m is given by:

P (stst+1. . .st+m) = P (st)P (st+1|st)P (st+2|stst+1). . .P (st+m|stst+1. . .st+m−1) (6)

which is simply calculated by starting from st at the first level, following the

consequent nodes and multiplying the probabilities seen in these nodes. For example,

probability of observing Çargah (C) followed by Neva (D) and Segah (B[2) in the

PST given in Figure 8 is simply:

P (CDB[2) = P (C)P (D|C)P (B[2|CD) (7)

≈ 0.15 · 0.5 · 1

≈ 0.075
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The result obtained from the PST will be exactly identical to a m− 1th order

Markov model trained on the same sequence. Moreover, since PST does not store

the unseen n-grams, the calculation will be much faster than a regular VLMM im-

plementation. Therefore we can benefit from this computational gain by including

much higher orders and consequently the performance will be increased.

4.2.3 Smoothing

Even if a PST shows some characteristic patterns, the probabilities of such n-grams

might be very small in higher orders due to the enormous size of the transition

matrices of the higher order Markov models in the VLMM. Due to this problem,

unless compensated, lower order Markov models will always dominate higher orders

in a VLMM and making the system insensitive to context-specific patterns. In order

to make up for the sparseness of the chains in higher order models, a method called

smoothing is applied. There are two basic types of smoothing algorithms: back-off

models and interpolation models.

Starting from the maximum order in the tree, back-off models search for the a

sequence with a count exceeding a certain threshold. If there are no matches, the first

element in the sequence is dropped, and the new sequence is searched again in the

n-grams one size smaller. This process is continued until a positive match is found.

In interpolation models, the predictions given by each Markov model in the VLMM

are given a weight, which is proportional to the models order. Mathematically speak-

ing, given the subsequence {st−n+1, st−N , . . ., st−1, st} of length n, probability of ob-

serving st+1 in the next state by using a VLMM with a maximum order of n is given

as:
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P (ωt+1 = st+1|ct+1) , P (ωt+1 = st+1|ωt = st, ωt−1 = st−1, . . . , ω1 = s1)

=
(
w0P (ωt+1 = st+1) + w1P (ωt+1 = st+1|ωt = st)

+ w2P (ωt+1 = st+1|ωt = st, ωt−1 = st−1) + . . .

+ wnP (ωt+1 = st+1|ωt = st, ωt−1 = st−1, . . . , ωt−n+1 = st−n+1

)
/

n∑
i=0

wi

=
w0P (ωt+1 = st+1) +

∑n
i=1wiP (ωt+1 = st+1|ωt = st, . . . , ωt−i+1 = st−i+1)∑n

i=0wi

(8)

where ct+1 denotes to conditions given by the preceding states in the VLMM,

and wi is the weight to be multiplied with the probability provided by the ith or-

der Markov model in a VLMM with a maximum order of N . Though this calcula-

tion seems complex, it is actually pretty straightforward. Starting from the unigram

st+1, the n-grams forming the end of the subsequence is inspected one by one (i.e.

{st+1, st}, {st+1, st, st−1}, . . ., {st+1, st, . . ., st−N+1}). By referring to the PST for these

n-grams, the probabilities of the outer node (st+1) multiplied by the weight of the or-

der of the fixed model (in other words, size of the n-gram−1) are summed altogether.

Finally, this value is divided by the summation of weights up to the maximum order of

the VLMM to get a single probability value for the particular state. This calculation

is repeated for each possible state and a discrete probability distribution for the next

state is obtained. If the mostly likely outcome is required, the state with the highest

smoothed probability is picked.

In language modeling, there are several choices of smoothing methods [20]. In

previous research [21], two smoothing methods termed as Kneser-Ney (KN) and 1/N

were compared for musical sequences. KN was adopted directly from language pro-

cessing because earlier work showed it to be a superior smoothing method in the

context of natural language processing [20]. By using an entropy-based evaluation of
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predicted outputs (Section 5.3), the results suggest that 1/N scheme might be better

in musical applications.

Later, a simple back-off model and a parametric approach based on generalizing

the 1/N technique were compared [24, 25]. In terms of average perplexities (Section

5.3), the interpolated models outperformed the back-off model, yet the back-off model

provided lower median perplexities. This means that back-off model works well as

long as it finds a matching pattern in the high orders, but interpolation methods are

preferable if occasional bad misses are not tolerated. Additionally, when 1/N and the

parametric model were compared, there wasn’t a significant increase in performance.

In this work, 1/N method is picked in order to minimize the bad misses. In this

smoothing method, the weight for the model with a order of i is given by:

wi =
1

(N − i + 1)
(9)

where N is the maximum order of the VLMM. 1/N method provides a greater

weight to higher orders relative to the lower orders.

Let’s give a solid example to make the procedure clearer. Given the PST in Figure

8, and the “smoothed” probability of observing the note Segah (B[2) after Çargah

(C) and Neva (D) is given as:

Ps(ωt+1 =B[2|ωt = D,ωt−1 = C)

=
w0P (B[2) + w1P (B[2|D) + w2P (B[2|DC)∑N

i=0wi

=
1
3
·0.15 + 1

2
·0.2 + 1·1

1
3

+ 1
2

+ 1

≈ 0.63 (10)
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It is easily seen that smoothing amplifies predictions given by higher order models,

while the lower order models are also contributing. By smoothing the predictions

by a weight proportional to the order of the model, the system would be able to

match longer musical structures, specific to the training dataset, while keeping the

consistency of the general model by referring to the lower order models.

4.2.4 Zero Frequency Problem

As mentioned in Section 4.1, a considerable amount of the n-grams might not appear

on training. As the size of the n-grams increase, the possible number of n-grams

grows exponentially and this sparsity issue becomes inevitable. Practically speaking,

even if a large database is at hand, a PST will not be able to cover all possibilities,

and consequently the system might argue the probability of very obvious, context-

specific patterns should be zero! For example, the PST in Figure 8 will not be able

to predict any symbols apart from Segah (B[2), Çargah (C), Neva (D), Hüseyni (E)

and rest. Using this PST is therefore impractical since it will not even be able to

properly understand, Uşşak, the makam it was trained on. This sparsity problem is

addressed as the zero frequency problem [28].

In order to overcome the zero frequency problem, escape probabilities may be

introduced. For each level of the PST, escape probabilities assigns a small amount

of probability to symbols, which have never been observed before. When an event is

observed at a branch, at which it has never occurred before, the escape probability is

returned instead of 0. In the system, the Poisson distribution was approximated to

calculate the escape probabilities [102]. The escape probability, e(n), at the nth level

is given as:

e(n) =


T1(n)

N(n)
if T1(n) > 0

1

N(n) + 1
if T1(n) = 0

(11)
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where T1 is the number of symbols that have occurred exactly once and N is

the total number of tokens at the nth level so far. By allowing escape probabilities

customized to the levels of the PST, we can get a better assessment whether the

system would expect new n-grams. If the counts of the nodes at a level are typically

one (which will be a tendency as the order gets higher), the escape probability will be

high, whereas a lower escape probability will be emitted from a level holding common

patterns. Notice that there is still a chance that every node in a level has a count

higher than 1, i.e. T1(n) = 0. To take care of this case, a special escape probability

is emitted (Equation 11).

Going back to the PST example in Figure 8, the escape probabilities when a unseen

event takes place, will be 1
13

, 1
2

and 9
11

in the 1st, 2nd and the 3rd levels respectively.

Notice how the system’s expectation of encountering a new event is increasing in the

deeper levels.

4.3 Multiple Viewpoints

Some types of data may be divided into parallel representations. These representa-

tions might be useful to distinguish different aspects and assess some of the peculiar

properties of the data stream. Treating the data in multiple representations can also

be useful to predict the next symbol when one of the representations might be suitable

for a particular sequence, whereas another representation might bring advantages in

other situations.

Music is a good case of such analysis. The notes in a musical progression, in

the simplest case, may be divided into pitches and durations. We can also work on

more “advanced” relations such as scale degree, position in the measure, fermata. In

terms of predicting next event, some of these representations might outperform others

under different conditions. As an example, scale degree would be very useful if all

the musical context is in the same key, however melodic interval might prove more
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suitable if the predictions are required in a transposed key.

The representation of data in multiple ways was first coined by Conklin and Witten

[31] and later developed by Pearce, Conklin and Wiggins [76] as the so-called “multiple

viewpoints modeling” (MVM). In this technique each of the representations are called

a “viewpoint.” A collection of viewpoints form the “multiple viewpoint system.” In

the system, the next sequence is predicted based on the information incorporated

from these viewpoints.

The viewpoints can be divided into 3 types:

• Basic types: The simplest viewpoint that do not depend on other viewpoints.

E.g. MIDI note numbers, duration of the notes

• Derived type: The viewpoints that are derived from basic types. E.g. Melodic

interval, pitch-class distribution

• Cross type: Viewpoints that are constructed by taking the cross-product of

two or more types. The tuples forming the parallel viewpoints are mapped

into unique tokens to obtain this viewpoint. E.g. Notes ⊗ Durations; in this

cross type a quarter C, a quarter D, a eighth C will all be mapped to different

symbols.

Multiple viewpoints modeling can be seen as a general modeling scheme: it can

be used to model anything that can be expressed in multiple representations such as

music, finance or reactions of artificial intelligence in computer games. On the other

hand, the power (or the weaknesses) comes from the choice of viewpoints picked to

describe the phenomena. Apart from obvious differences in the viewpoints for com-

pletely different situations (representations of finance and computer games would of

course be totally different), subproblems in a phenomenon might also require dissim-

ilar viewpoints. As an example, the position of a stroke in a rhythmic cycle of tabla

music would be helpful to predict the next stroke [25]; on the contrary it wouldn’t
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make sense to use this viewpoint to model the usulsüz (non-metered) sections in an

uzun hava as there are no cycles in these sections. Evidently, we have to be careful

about the viewpoints defined to gather computationally meaningful data.

Another important point is, even though actual events might be significantly dif-

ferent for two phenomena, their representation might be quite similar. The notes in

Bach’s chorales can be easily modeled in a viewpoint showing the associated MIDI

number with the note [32]. Even though frequencies of the notes in Turkish folk music

and Baroque music do not match, Turkish folk music notes can indeed be modeled

as floating point MIDI numbers (Section 5.2) 3. From a symbolic point of view, they

might seem very similar, however this does not mean the results would be the same

(Section 6): familiar ears wouldn’t want to hear Turkish music in Western classical

tuning, and vice versa.

4.4 Long-term and Short-term Modeling

A common limitation of training the predictive models over large amount of data

is the model is rendered too general to effectively predict patterns specific to the

current song: If the song has a peculiar recurring phrase, but this phrase is not seen

very frequently in the training database, the patterns generated might be totally

irrelevant, even though they are supposed to match the context. Therefore, to obtain

predictions which are trained over a particular style and also sounds like a specific

song, a long-term-model (LTM) and a short-term-model (STM) may be constructed

[32]. The long-term-model is built on the entire training set and a short-term-model

(STM), which is trained on the current song that is being evaluated. Only symbols

up to the current time are used in the STM; looking ahead is not permitted when

making a prediction.

When a prediction is to be made at a given time-step, the LTM and STM are

3The notes in Baroque music does not necessarily have to be tuned according to A = 440Hz. In
this sense, they also show a deviation from the frequency values mapped to MIDI numbers.
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combined and normalized to a single predictive distribution for each of the view-

points [32]. The probability of the next symbol for a possible state in the weighted

distribution is obtained by:

Pmerged(wt+1 = st+1) =

∑
m∈M ωmPm(wt+1 = st+1)∑

m∈M ωm

(12)

where ωm is the weight associated with the model, and M is the set of the models

in the system. In this case, M corresponds to {LTM,STM}. Weight associated with

the model is related to the, Hm, the entropy of the probability distribution of the

model. Hm is defined as:

Hm , −
N∑
k=1

Pm(wt+1 = sk) log2

(
Pm(wt+1 = sk)

)
(13)

where sk is an element in the symbol set, S = {s1, s2, . . . , sk, . . . , sN}, and N is

the total number of the symbols. As the probability distribution gets biased over

fewer outcomes, the entropy will decrease. Therefore, lower entropies implies higher

predictability. Entropy of a distribution is constrained by an upper bound, Hm−max.

The possible maximum entropy occurs when the probability is uniformly distributed,

implying that uniform probability distribution possesses the no predictive power.

Substituting Pm(wt+1 = sk) = 1/N to Equation 13, Hm−max is found as:

Hm−max = log2(N) (14)

Finally, weight associated with the model is defined as:

ωm ,
Hm−max

Hm

(15)
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CHAPTER V

EXPERIMENT AND RESULTS

5.1 Hypothesis

I hypothesize that multiple viewpoint modeling (MVM), which have been shown to

be effective for computational modeling of musical voices in Western music [30, 31, 33,

34, 76, 77], can be effectively adapted to predict Turkish folk music. The adaptation

will largely be concerned with finding appropriate representations that address key

relationships in the uzun havas, a structured and non-metered musical form in Turkish

folk music. We believe that the experiments will show that MVMs are a flexible

computational modeling tool that can be applied to various musics through the use of

appropriate representations. To verify the hypothesis, comparative experiments will

be carried between the viewpoints previously defined for Western melodies [31] and

the novel viewpoints defined for Turkish folk music. The viewpoints will be trained

on the transcriptions of the improvised melodies in uzun havas given in extended

Western staff notation. For the evaluation of the system, a quantitative entopy-

based scheme [63] will be performed at the song level and through all experiments. I

believe the results will bring relatively low entropies that would show that MVMs can

effectively model uzun havas. Moreover, by comparing the entropies obtained from

the viewpoints previously defined for Western melodies and the novel viewpoints

presented in the thesis, I hope to show that taking appropriate representations into

consideration might be a key factor to successfully model a musical style.
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5.2 Experimental Setup

From the Uzun Hava Humdrum database, the uzun havas in Hüseyni and Hicaz

makams, the two makams with the most songs are chosen. From the database, 5

songs in the Hüseyni makam and one song in the Hicaz makam are taken out, be-

cause they are either not played “at their locations” or they make a transition (geçki)

to another makam 1. Although Uşşak makam is represented nearly as much as Hi-

caz, it is not included because of its closeness to the Hüseyni makam, and it might

drastically worsen the predictions of LTM. Moreover, other makams in the database

are also disregarded because they are represented by very few songs, and again LTM

would not be able to give satisfactory results. In brief, the experiment is carried

on a set of 49 uzun havas of which 35 are in Hüseyni and 14 are in Hicaz makam

respectively (Table 7). The total number of musical events (i.e. notes and rests) in

the experiment is 7538.

For the experiments, 15 viewpoints were defined. The 8 viewpoints without the

Cents-Deviation are chosen from a subset of the viewpoints used by Conklin and

Witten [31] so that parallel observations can be made. The remaining 7 viewpoints

incorporating the Cent-Deviations are the novel contributions of the thesis which

are aimed at addressing the key relationships in the uzun havas. From the set of

viewpoints provided by Conklin and Witten, the viewpoints that incorporate the

position of the note in a cycle are taken out, since they would be problematic in the

usulsüz sections of uzun havas. Moreover, Fermata, Time-Signature, Key-Signature

and related viewpoints are left out from the experiments due to time constraints, and

they will be included in the future work (Section 7). The viewpoints are:

• Durations (D): A basic viewpoint indicating the duration of the note relative

to a whole note. The duration of a whole note is defined as one and shortest

1Even though it wouldn’t matter in terms of computational modeling, two of the pieces were
actually taken out due to their politically incorrect lyrics.
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duration is be zero, which is the duration of a grace note.

• Notes (N): A basic viewpoint indicating the pitch of the note. This is simply

the MIDI number of the note.

• Cents-Deviation (CD): A basic viewpoint indicating the deviation of a note

from semi-tone in cents. The value of the viewpoint taken as either 0 or 50

cents. This viewpoint is not used by itself but to form the novel pitch-related

viewpoints 2, since decoupling it from pitch might disrupt the makam structures

(explained later in section 6 in more detail). Viewpoints with Cents-Deviation

constitutes the context-specific aspects of the uzun hava modeling.

• Notes with Cents-Deviation (NwCD): A viewpoint indicating the pitch of the

note with quarter tones added to the scale. This viewpoint can be interpreted

as the floating MIDI number of the note.

• Contour (C): A derived viewpoint showing whether the current note is ascend-

ing, descending or stationary with respect to the previous note. It can take the

values of {-1, 0, 1, null}.

• Melodic-Interval (MI): A derived viewpoint marking the relative change in pitch

with respect to the previous note. This viewpoint can take any positive or

negative integer within the MIDI range.

• Melodic-Interval with Cents-Deviation (MIwCD): A viewpoint specifying the

relative change in pitch with respect to the previous note with quarter tone

2From a mathematical point of view, this operation can be interpreted as the crossing the 12-
tone scale (Notes viewpoint) and Cents deviation to bring the 17-tone scale in Turkish folk music.
However, as emphasized in Chapter 2.1 treating makam theory, as any kind of extension from
Western music theory would be an utter mistake! Therefore the pitch related viewpoints without
cent deviations are an incomplete (and unfortunate) method of describing traditional Turkish music.
In fact, those viewpoints are only added for comparison of the results when the target symbols are
increased from the Western constraints to encompass makams (Section 5.4). Under the light of
this discussion, the viewpoints constructed from Cents-Deviation viewpoint will not be addressed
as cross types from pitch and cents informations throughout the thesis.
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precision. This viewpoint can take any positive or negative floating number

within the MIDI range.

• Scale-Degree (SD): A derived viewpoint denoting the relation of the note with

respect to the karar (ending) tone of the makam. The notes are wrapped into

one interval such that the viewpoint can take an integer value between 1 (for

karar tone) and 12. Quarter tones are ignored, i.e. B[2’s is treated as B[.

• Scale-Degree with Cents-Deviation (SDwCD): A viewpoint comprising the re-

lation of the note with respect to the karar (ending) tone of the makam with

quarter tones included.

• Durations ⊗ Notes (D ⊗ N): A cross viewpoint incorporating the duration and

the MIDI note.

• Durations ⊗ Notes with Cents-Deviation (D ⊗ NwCD): A cross viewpoint join-

ing the duration and the floating MIDI note.

• Durations ⊗ Melodic-Interval (D ⊗ MI): A cross viewpoint linking the duration

and the melodic interval.

• Durations ⊗ Melodic-Interval with Cents-Deviation (D ⊗ MIwCD): A cross

viewpoint combining the duration, the melodic interval and the cents deviation.

• Durations ⊗ Scale-Degree (D ⊗ SD): A cross viewpoint putting the duration

and the scale degree together.

• Durations ⊗ Scale-Degree with Cents-Deviation (D ⊗ SDwCD): A cross view-

point incorporating the duration, the scale degree and the cents deviation.

The Durations, Notes, Cents-Deviation viewpoints are fetched from the songs

**kern format by calling regular expressions via a bash script. Then, using MATLAB,

all of the viewpoints except the cross viewpoints are extracted from these viewpoints,
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Table 4: Basic and derived viewpoints corresponding to the events in the last two
measures of U0368. “N/A” indicates situations where obtaining a value for the view-
point is not applicable and “-” indicates the value of the viewpoint is null.

1 2 3 4 5 6 7 8 9 10 11 12 13
D .250 .125 .125 .125 .125 .125 .250 .125 .125 .125 .250 .125 .250
N 70 74 72 74 70 74 72 - 76 74 76 74 74

CD .5 0 0 0 .5 0 0 - 0 0 0 0 0
NwCD 70.5 74 72 74 70.5 74 72 - 76 74 76 74 74

C N/A 1 -1 1 -1 1 -1 - - -1 1 -1 0
MI N/A 4 -2 2 -4 4 2 - - -2 2 -2 0

MIwCD N/A 3.5 -2 2 -3.5 3.5 2 - - -2 2 -2 0
SD 2 6 4 6 2 6 4 - 8 6 8 6 6

SDwCD 2.5 6 4 6 2.5 6 4 - 8 6 8 6 6

and the symbols in the viewpoints are mapped to unique floating numbers. Going

back to the example in Figure 6, Table 4 shows the non-cross type viewpoints that

would be obtained from this sequence.

The modeling and evaluation (Chapter 4, Section 5.3) part of the framework was

implemented in C++ [21]. Aside from being a computational model, the algorithm

is also aimed to be used for generative music, and therefore it is compiled as as an

external object in Max/MSP. The framework consists of the Max/MSP external along

with some supporting patches. Currently, the framework accepts two viewpoints in a

single run. For convenience, the viewpoints of all songs are combined into text files

and fed into Max/MSP. Each text file holds two columns of floating numbers which

are the corresponding viewpoints. The framework can be compiled either to treat

these viewpoints separately or to internally form a cross viewpoint from them. The

end of each song is marked with a special character in order to reset the stream in

the end of each song during training.

5.3 Evaluation

For evaluation of the prediction system, leave-one-out cross-validation was performed

on the subset picked from the Uzun Hava Humdrum database explained in Section

5.2. During the experiment, each song is picked as the testing data, and LTM is
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trained over the other songs. STM is built while the testing data is fed to the system.

At each time step t, the true symbol is noted. Then the predictions carried in the

previous step t − 1 are checked and P (ωt = s′t), the probability of the true symbol,

s′, at t is recorded.

From the probabilities, average cross-entropy [63] is calculated at the song level

and through all experiments. Cross-entropy is a common domain-independent ap-

proach used for evaluating the quality of model predictions. Assume that we have

observed a sequence of length N . Average cross-entropy is defined as:

Hc = − 1

N

N∑
i=1

log2

(
pT (ei|ci)

)
(16)

where pT (ei|ci) is the probability of ei given the context ci with respect to the

probabilistic predictive theory T [88]. Rewriting the equation to match our system:

Hc = − 1

N

N∑
t=1

log2

(
Ps(ωt = s′t|ct)

)
(17)

where, Ps(ωt = s′t|ct), the “smoothed” probability of the true symbol, given by

the computational modeling algorithm, at each time step t, and ct refers to condi-

tions given by the preceding states in the VLMM (Equation 8). Assuredly, escape

probabilities (Equation 10) are also considered in the calculations.

Upon inspecting this equation, it can be seen that the higher the probability of

the true symbol is, the lower the cross-entropy will get. This behavior allows us to

interpret the average cross-entropy as a way to evaluate the confidence of the system.

Also, notice that if the probability of any event in the sequence is predicted as 0, the

average cross-entropy will diverge to +∞. Nevertheless, escape probabilities at each

level of the PST (section 4.2.4) ensure such an occurrence would never happen.
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In a predictive system, average cross-entropy is a more reliable criteria than the

prediction accuracy of the true symbol. While calculating the symbol recognition

rate, a wrong but likely outcome will be treated as bad as an unlikely choice. On

the other hand, average cross-entropy will distinguish a confident prediction from an

unsure one by penalizing the former less. Therefore average cross-entropy is preferable

to prediction accuracy, especially in applications, which can be used in generative

processes, where we would not want the exact replica of the music but alternations

of it. The Max/MSP framework can predict the next note by picking either the

most-likely or a random symbol from the probability distribution of the next symbol

space. The most likely prediction and the true symbol are also recorded during the

experiment, and the symbol recognition accuracy is provided in the Section 5.4.

During the experiment, the Max external outputs instantaneous cross entropies

(the log2 values of the probabilities) of the true symbol at each prediction step. Later,

the values are averaged in MATLAB to obtain average cross-entropy and they are

also converted to perplexities. Perplexity is a measure of the number of choices that

the model has picked among the true symbol [63]. Average perplexity is defined as

P = 2Hc . Average perplexity is found for each validation (i.e. for each song) and also

for the whole experiment. In addition to average perplexities, median perplexities

are recorded. The prior probabilities of the symbols are used to obtain a baseline

for evaluating perplexity results. In other words, average perplexity of the 0th order

model LTM is used as the baseline.

5.4 Results

In the experiments, classification accuracies, average and median perplexities over

the whole dataset and in the song-level are recorded for STM, LTM and combination

of LTM and STM with different maximum orders. For all results below, the term

“significant” has the following meaning: the claim is statistically significant at the 0.01
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level as determined by a multiple comparison test using the Tukey-Cramer statistic

3.

The accuracies of most-likelihood classification for a maximum order of 14 is given

at Table 5. The table shows that the system has a low classification accuracy, and

apart from the recognition of Duration viewpoints, there is hardly an useful increase

in the classification accuracy with respect to the a-priori classification. Though,

generally STM gives slightly worse results, it is not possible to say whether LTM, STM

or the combination of the two models consistently outperforms others. Moreover, in

some cases, the baseline (classification by prior information) surpasses the model.

Also notice the classification accuracy greatly decreases in the Contour viewpoint.

Nonetheless, as explained in Section 5.3, classification accuracy is not as depend-

able as entropy based evaluation methods. Therefore, average and median perplexities

for the predictions of the multiple viewpoints given by the LTM, STM and combined

model for a number of different maximum VLMM orders are calculated. Figure

9 shows that for the Durations viewpoint, the average perplexity decreases almost

monotonically with increasing order. This trend is true for all of the viewpoints.

This result was expected since increasing the order would allow us to locate more

context-specific patterns, and the system would be more confident with it’s predic-

tions. STM gives the lowest perplexities in every order. It is also seen that there is

only a slight change in perplexity after order 14, therefore checking back more than

14 durations is not necessary. Note that there is not a significant decrease in the

cross-entropies after a maximum order of 5.

Table 6 shows the average and median perplexities for a maximum order of 14.

It can be easily seen that the average and median perplexities greatly decreases with

respect to the baseline. Therefore, although the system typically fails to give an exact

3The experimental data and the complete set of results are available at
http://sertansenturk.com/uploads/publications/senturk2011Improv/.
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Table 5: Classification accuracies in percentage for the multiple viewpoints using a
maximum order of 14. The first row in each cross type reports the classification
accuracy of the unique tokens obtained by the cross product of the two viewpoints.
The second and the third rows report the classification accuracy of the first and the
second viewpoints forming the cross type.

Priors LTM Com. STM
D 35.45 70.96 69.09 61.46
N 24.22 26.57 27.66 26.94
NwCD 24.22 23.27 27.09 26.36
C 38.58 18.19 21.32 25.21
SD 24.64 22.92 23.27 21.60
SDwCD 24.09 26.70 27.31 26.64
MI 24.64 26.84 27.28 26.61
MIwCD 24.08 23.16 23.18 21.19
D ⊗ N 8.42 14.91 14.01 12.19

35.40 64.23 59.72 54.60
24.22 25.51 25.78 24.24

D ⊗ NwCD 8.53 15.60 14.39 12.48
35.45 63.64 59.75 54.62
24.22 25.84 25.18 23.59

D ⊗ SD 13.16 13.16 13.20 11.78
26.43 64.83 59.27 53.01
24.09 21.72 21.94 21.29

D ⊗ SDwCD 15.10 15.10 14.08 12.23
35.45 64.66 60.21 55.01
24.64 26.65 25.44 24.05

D ⊗ MI 8.53 15.79 14.49 12.48
35.45 65.40 60.27 55.00
24.64 26.35 25.33 24.08

D ⊗ MIwCD 8.15 12.88 12.19 10.71
26.43 63.33 57.83 51.76
24.08 21.70 20.88 20.07
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Figure 9: Average perplexities for duration prediction using LTM, STM and combined
models for orders 0-25

match to the notes in the melodic progressions, it is giving more confident predictions.

When comparing the LTM, STM and their combination, although LTM is a noti-

cable improvement over the baseline, STM always delivers the most confident results.

Even combining the LTM and the STM is not as effective as STM. LTM significantly

outperforms the Combined model, while STM significantly outperforms both. Com-

paring results of STM and the baseline, it can easily be seen that there is a remarkable

decrease in the average and median perplexities. The power of STM is even more

obvious in the cross types, where the average perplexities of the baseline and LTM are

enormous with respect to the average perplexities of STM and, average perplexities

of STM are the approximately half of the average perplexities given by the combined

model! This means that STM may reduce the number of symbols to choose the true

symbol as much as to the half.

Table 6 also shows that there is typically not much of difference between the

average perplexities between pitch related viewpoints without Cents-Deviation and

pitch-related viewpoints with Cents-Deviation incorporated. This means there is not

a significant penalty if the quarter tones seen in Turkish folk music are added up to the

possible symbols of the 12-note target space of Western classical music (implications

are explained in Section 6.).
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Table 6: Average and median perplexities for the multiple viewpoints using a maxi-
mum order of 14

Priors LTM Combined STM
Av. Med. Av. Med. Av. Med. Av. Med.

D 6.14 3.00 3.99 2.30 3.65 2.01 3.18 2.00
N 10.61 5.18 5.00 3.51 4.12 2.84 3.87 2.60
NwCD 11.51 5.18 5.12 3.54 4.16 2.84 3.90 2.62
C 2.95 2.75 2.57 2.04 2.56 1.85 2.38 1.81
SD 8.36 5.00 4.59 3.40 3.94 2.78 3.75 2.54
SDwCD 9.10 5.00 4.69 3.43 4.01 2.78 3.77 2.55
MI 8.94 6.00 5.14 3.54 4.54 2.96 4.13 2.93
MIwCD 14.19 7.50 5.86 3.79 5.01 3.18 4.57 3.10
D ⊗ N 61.10 12.50 29.55 9.98 15.07 9.98 7.61 6.00
D ⊗ NwCD 65.60 12.50 30.85 19.59 15.45 10.1 7.64 6.00
D ⊗ SD 50.23 12.50 26.13 9.65 14.26 9.65 7.62 6.00
D ⊗ SDwCD 54.87 12.50 27.73 9.81 14.61 9.81 7.64 6.00
D ⊗ MI 49.92 12.00 26.75 10.70 16.31 10.70 7.46 5.90
D ⊗ MIwCD 75.58 12.81 35.69 13.38 20.39 13.38 7.53 5.63

When the average perplexities are checked song by song (Table 7), it was observed

that some songs have exceptionally high perplexities. Upon examining the songs, it

was seen that the reason for the relatively high average perplexities seen in these

songs is mostly due to the uncommon durations such as dotted notes (especially the

double dotted notes), triplets, 64th notes and gruppettos. When other pitch related

viewpoints were inspected song by song, no critical problems were observed: usually

if a song had a high perplexity, it was due to the length of the song being too short

so that even a single ripple in the perplexity affected the average substantially. Also,

by comparing the average perplexities of from Durations ⊗ Scale-Degree-with-Cents-

Deviation and Durations ⊗ Melodic-Interval-with-Cents-Deviation at Table 7, it can

be observed that one viewpoint can be favorable to the other for different patterns.

As stated in Section 5.3, the Max/MSP framework have the limited generative

capability of predicting next symbol. The most-likely predictions at each step were

checked empirically to observe whether the results have some validity with the source

material. Figure 10 shows the ending of U0057, the predicted phrases by Durations ⊗
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Table 7: Average perplexities given by evaluating Durations ⊗ Scale-Degree-with-
Cents-Deviation and Durations ⊗ Melodic-Interval-with-Cents-Deviation viewpoints
for each song in the experiment using a VLMM of maximum order of 14.

D ⊗ SDwCD D ⊗ MIwCD
# Song Makam Priors LTM Com. STM Priors LTM Com. STM
1 U0002 Hicaz 37.35 17.87 9.93 7.38 65.86 27.76 15.81 9.70
2 U0020 Hicaz 34.28 16.95 9.19 5.79 56.50 30.59 15.23 5.78
3 U0023b Hicaz 41.22 22.57 10.63 6.08 59.51 32.85 16.26 6.22
4 U0031 Hüseyni 73.74 36.22 27.11 7.27 92.11 33.07 30.50 7.56
5 U0037 Hüseyni 45.07 24.71 13.13 5.36 79.07 40.99 19.99 4.01
6 U0049 Hicaz 46.63 26.17 6.17 3.07 81.91 41.50 8.42 2.95
7 U0049a Hicaz 39.68 18.08 12.67 9.04 69.56 29.94 20.38 9.98
8 U0051 Hüseyni 31.36 18.78 16.79 7.18 47.76 29.35 25.47 7.53
9 U0057 Hüseyni 51.98 24.52 17.55 8.62 61.59 35.50 26.01 8.85
10 U0072 Hicaz 84.73 32.24 22.70 12.10 122.49 47.26 36.33 11.06
11 U0080 Hüseyni 56.59 25.00 12.04 6.55 65.39 33.21 17.77 6.84
12 U0120 Hüseyni 33.21 18.09 14.71 9.99 64.79 34.13 30.16 10.15
13 U0143 Hüseyni 40.17 17.88 12.70 6.40 44.73 26.41 19.94 5.46
14 U0181 Hüseyni 38.41 15.89 10.92 6.29 43.09 28.55 13.23 5.51
15 U0184 Hicaz 67.54 39.11 8.90 5.56 83.33 48.34 11.10 5.73
16 U0208 Hüseyni 120.25 86.20 27.08 10.84 62.15 33.42 26.51 10.81
17 U0218 Hüseyni 54.95 27.26 21.98 10.59 54.39 31.38 26.35 7.45
18 U0272 Hüseyni 48.19 37.06 31.92 12.71 80.69 52.57 49.50 8.50
19 U0285 Hicaz 69.23 45.48 15.11 6.78 108.00 69.10 20.09 6.75
20 U0333 Hüseyni 57.04 34.11 20.24 9.85 106.12 61.89 38.95 9.35
21 U0396 Hüseyni 74.43 64.88 96.12 2.55 101.41 94.95 91.13 3.20
22 U0410 Hüseyni 43.74 15.90 11.73 6.00 49.04 18.72 13.37 5.51
23 U0418 Hüseyni 42.52 30.29 15.99 6.40 65.18 49.96 27.45 5.95
24 U0460a Hüseyni 32.61 18.44 7.19 5.44 57.42 28.33 9.76 6.20
25 U0485 Hicaz 154.02 126.54 20.48 11.38 138.19 87.89 29.91 11.60
26 U0561 Hüseyni 41.43 16.99 17.67 7.20 85.64 32.21 33.69 6.61
27 U0573 Hüseyni 30.36 18.86 9.96 5.45 57.04 32.22 16.81 5.84
28 U0605 Hüseyni 50.37 26.84 25.11 9.65 68.82 36.07 31.87 8.73
29 U0611 Hüseyni 56.06 24.15 21.16 9.95 82.88 28.21 26.87 10.75
30 U0624 Hüseyni 131.09 67.91 30.55 9.37 152.43 73.69 46.60 8.22
31 U0628 Hüseyni 107.38 43.30 19.80 11.14 136.54 42.46 25.80 10.56
32 U0647 Hicaz 43.62 13.44 7.49 5.49 63.95 18.18 9.64 5.65
33 U0648 Hüseyni 51.54 27.19 36.84 9.55 67.20 34.98 56.07 6.45
34 U0668 Hüseyni 43.16 18.76 19.53 7.35 66.34 27.42 35.80 6.49
35 U0670 Hüseyni 41.95 18.49 20.11 5.17 43.04 18.96 18.52 4.98
36 U0697 Hicaz 39.92 18.85 11.27 6.87 57.87 22.20 18.81 8.29
37 U0706 Hüseyni 62.30 20.71 12.71 10.28 60.01 24.86 15.66 9.06
38 U0711 Hicaz 48.42 25.32 17.06 12.57 71.36 33.39 23.27 11.22
39 U0718 Hüseyni 43.73 29.01 13.44 5.13 58.87 36.23 17.74 6.20
40 U0723 Hüseyni 96.44 71.32 41.15 7.31 129.70 92.44 49.22 6.89
41 U0724 Hüseyni 92.10 59.16 28.11 11.71 153.45 65.26 39.10 11.44
42 U0730 Hicaz 57.11 26.77 8.35 4.44 66.79 26.60 9.36 4.08
43 U0741 Hüseyni 39.04 17.25 9.84 7.60 81.23 29.05 15.01 9.21
44 U0745 Hüseyni 61.56 15.81 10.15 7.20 37.23 21.75 14.20 4.30
45 U2002 Hüseyni 33.25 17.99 18.71 5.42 49.24 28.32 24.88 6.80
46 U2007 Hicaz 61.06 51.95 13.15 3.86 85.14 61.28 15.84 4.00
47 U2008 Hüseyni 43.05 20.87 14.19 4.86 54.87 20.00 11.09 4.27
48 U2009 Hüseyni 45.49 12.66 8.90 3.99 67.74 16.26 9.47 4.70
49 U2010 Hüseyni 32.82 13.45 10.84 4.06 50.04 18.08 15.92 3.45
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Scale-Degree-with-Cents-Deviation, and the cross-entropy profile of each prediction.

At a glance, it can be seen that all the predictions lie within the key signatures of

Hüseyni, the makam of U0057. The only exception is observed when the LTM is

asked to predict the next note in the place of the rest at the 10th step (Figure 10b).

There, LTM predicts B[, which is in the key signature of Hicaz. On the other hand,

STM and Combined models both predict F]3 (Figure 10c, Figure 10d), where the

true symbol emits a slightly less instantaneous cross-entropy (Figure 10e). Figure

10a shows that the start of the subsequence is highly structured in terms of both

durations and the pitches. However, all of the models fail to capture this descending

path adequately. Nonetheless, transcribed melody and all of the predictions except

the predictions at step 10 consistently stay inside the Hüseyni pentachord at its

location (Figure 2f). Moreover all melodies converge to Dügah, the karar (ending)

tone of Hüseyni makam, and the entropy profile (Figure 10e) shows that the models

are relatively confident in this prediction. Another interesting point is in terms of

average perplexities Combined model (24.41) gives better results in this short pattern

compared to LTM (28.25) and STM (28.32). Notice that these average perplexities

are much higher than the average perplexities of the song (Table 7).
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(a) Ending of U0057

(b) Prediction of D⊗SDwCD using LTM

(c) Prediction of D⊗SDwCD using STM

(d) Prediction of D⊗SDwCD using Combined Model
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(e) Instantaneous cross-entropies of D⊗SDwCD for each model emitted by the true sym-
bol at each prediction step

Figure 10: Ending of U0057, predicted patterns by using Durations ⊗ Scale-Degree-
with-Cents-Deviation viewpoint and the instantaneous cross-entropies of the true
symbols at each model.
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CHAPTER VI

DISCUSSIONS

Even though the classification rates are very low (Table 5), the average perplexity

results (Table 6) show the computational modeling is confident of its predictions:

Compared to the baseline, the system is able to pick the true symbol among signif-

icantly fewer symbols using the STM with 14 order VLMM. Since our aim in the

system is a predictive model instead of a classification model, on the basis of the av-

erage perplexity values, we can argue the computational modeling has been successful

in modeling the uzun havas. Therefore, it can be argued that multiple viewpoints

modeling, which has been shown to be effective for computational modeling of West-

ern music [30, 31, 33, 34, 76, 77], can be effectively adapted to predict Turkish folk

music.

Moreover, STM significantly outperforms LTM, and the combination of both of the

models. The success of STM indicates that the songs typically have strong patterns.

These patterns peculiar to each song are either not observed in no to few songs,

therefore LTM cannot effectively track them. Since seyirs are an integral part in the

explanation of makams, finding context-specific patterns might be easier if a medium

term model (MTM) is introduced to the system. A MTM would have parallel PSTs,

each of which are only trained on a single makam. It should also be noted that

this finding is in parallel with the results in the previous research on tabla sequences

[21, 24, 25].

In order to model the melodies in traditional Turkish music, the selection of mul-

tiple viewpoints might be crucial. For example, the Cents-Deviation information can-

not be used without being integrated to the pitch-related viewpoints such as Notes
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or Scale-Degree. For a generative system, decoupling them might still give good av-

erage perplexities. However, when the pitch and the cents deviation are predicted

independently from each other, the results might introduce notes with wrong acci-

dentals. These erroneous pitches would disrupt the melodic intervals and the makam

structure.

One of the most prominent observations is that extending the possible set of

pitches from Western music to Turkish music results in a slight, insignificant increase

in perplexity values. At first, this finding may be misinterpreted as incorporating

Cents-Deviations is meaningless. On the contrary, one should not fail to note that

when the quarter tones are included, i.e. the symbol indicating both the quarter tone

and the neighboring tone is decoupled to create two unique symbols. For a given

song, the occurrence of one of the symbols is usually very close to zero, and almost

all of the counts are accumulating on the other note since the transcriptions strictly

obey the key signature of their makams. By inspecting the most-likely predictions,

it is seen that the predictions typically stay at the key signatures or the temporary

accidentals of the makam. Moreover, the instantaneous perplexities show that the

confidence of the system does not differ when it is asked the predict a quarter-tone

or a semi-tone (Figures 10a, Figure 10e). Therefore, the multiple viewpoint system

is able to model the context-specific pitches in makams and distinguish them from

the neighboring tones present in Western music virtually without any penalty. If the

system’s symbolic output is sonified, the consequences will be much clearer: music

generated in the 12-tone scale of Western classical theory is expected to sound much

different and less “Turkish” than the 17-tone scale of makam theory. As an example,

think of a sequence generated from a song trained on Uşşak makam: predictions from

pitch-related viewpoints without Cents-Deviation will have B[’s instead of B[2. As a

result, the generated melodies will probably not sound like Uşşak; they might sound

more like the modern Phrygian mode on A.

56



On the other hand, the slight increase in perplexities brings a negative criticism.

As explained in Section 2.1.1.1, the notes played in ascending and descending seyirs

are typically different in practice. In detailed transcriptions, it would cause a scatter

to the neighboring notes around quarter tones, and we would expect some signifi-

cant increase in perplexities of the predictions. However, the Uzun Hava Humdrum

Database does not typically show these deviations in ascending and descending seyirs.

It is one of the reasons why 12-tone and 17-tone predictions give such close results.

To detect these changes in seyirs, it is almost certain that the research should be

extended into the audio domain.

As explained in Section 4.3, multiple viewpoints are a general way of modeling

parallel representations of a sequence. Once the framework is set, it is relatively

straightforward to use the concept in completely different problems. Yet, the power

of the model comes from the the viewpoints picked to describe the sequence. As no-

free-lunch theorem suggests, the viewpoints have to be decided after thorough consid-

erations. In our experiments, pitch related viewpoints with Cents-Deviation somewhat

fulfill the necessity of context-dependent descriptors, and as explained above, such

viewpoints are as confident as the ones without Cents-Deviation while presenting us

with a much more precise melody modeling.

Viewpoints based on absolute pitch might give poor results. As an example, if

the training songs in Hüseyni makam are entirely played at their location, the system

would not be able to predict a piece in Hüseyni transposed to a different karar note.

However, since the experiment set is removed of such transposed pieces, this problem

is not encountered. In the model, prediction of the next note in a song would be

inclined to follow the branches in the PST which were trained on the same makam. As

a result, the average perplexities given by the Notes and Notes-with-Cents-Deviation

viewpoints brings very similar results to the other pitch related viewpoints.

As mentioned in Section 5.4, the system cannot properly predict some less frequent
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states of the Durations viewpoint such as the gruppettos, 64th notes and dotted

notes. In LTM, since these notes are rarely encountered, they typically do not possess

high counts in any n-grams. As a result, the presence of these notes aggravates the

predictions. On the other hand, STM, which is trained on the particular song, is

affected less from this problem: in fact, the patterns formed by these note durations

may even be as prominent as patterns formed by fourth notes, eighth notes and

such. However, these durations also increase the number of possible states in the

system; leaving STM less confident in its predictions. This fact can be easily seen

from the increase in the prior average perplexities given in Table 7. Also, gruppettos

and very fast notes such as 64th notes may be interpreted as the embellishments

and ornamentations transcribed from listening to a piece. As explained in Section

3.2, the transcriptions in the TRT database typically do not represent these musical

elements adequately. Consequently, since these symbols occur very infrequently in

the Uzun Hava Humdrum Database, the system finds it very hard to recognize these

symbols. We can conclude that the Uzun Hava Humdrum Database is incapable of

representing the ornamentations and embellishments in the original performances of

the uzun havas, and therefore the computational model is unable to predict these

improvisational elements, which are inseparable from the uzun hava form.

Up to now, the results obtained from the symbolic notation have been discussed.

However, the biggest potential criticism towards the thesis work is whether these

results show any actual relevance to the uzun hava form. In Section 3.2, some of

the dangers and drawbacks of using transcriptions and Western symbolic notation to

represent non-Western music are given. Moreover, the notations provided by TRT

are known to contain critical errors [97], and there is a noticeable difference between

the transcription styles of the transcribers.

At the current stage of the thesis, it can be observed that the predictions may

have some consistencies with the transcriptions (Figure 10). Moreover, the average
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perplexities emitted by the true symbols are relatively low. Nevertheless, as long as

the input type stays in the notation format, it is not clear whether the system is

adequately able to describe the actual music. On the other hand, in order to conduct

systematic research in any topic, especially in ones where very little previous research

is available, it makes more sense to keep the complexity as simple as possible rather

than to dive into the problem blindly. Accordingly, the usage of symbolic data and

transcriptions is a necessary, initial step to discover the hidden aspects of traditional

Turkish music.
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CHAPTER VII

FUTURE WORK

While, the current viewpoints with Cents-Deviation have been pretty useful in pre-

dicting the melodic sequences in uzun havas, it is acknowledged that constructing

more viewpoints and introducing new cross types might give us a better understand-

ing of the uzun hava form. As an example, Table 6 shows that the average perplexities

are reduced for the Contour viewpoint using STM, and this decrease is significant.

Nonetheless, it might be more helpful to cross the Contour viewpoint with Scale-

Degree-with-Cents-Deviation or Melodic-Interval-with-Cents-Deviation viewpoints to

get a better view in seyirs. In addition to Scale-Degree-with-Cents-Deviation view-

point, which shows the distance of the note with respect to the karar (ending) note,

it might be useful to construct another viewpoint, which shows the distance of the

note with respect to the başlangıç (starting) note. Moreover, adding viewpoints such

as Fermata and Time-Signature [31] might bring more knowledge about usul and its

effects on the melody. Time-Signature might be especially useful to predict and dis-

tinguish the melodic continuations in the usullü and usulsüz sections of uzun havas.

Parallel to the novel pitch-related viewpoints used in the thesis, Time-Signature and

related viewpoints might be extended to address the distinct usuls having the same

number of beats (Section 2.1.1.2).

In order to claim a stronger relevance between the model and the actual music,

the research has to be extended in some ways. One crucial step is to include audio in

the computational model along with the symbolic notation. First, we would ideally

be able to learn more aspects of uzun havas such as the embellishments by directly

working on audio, Also, the relevance of the music and the symbolic notation may
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be evaluated by comparing the results from symbolic notations and audio. From

the MIR point of view, this can be done by incorporating note segmentation and

automatic transcription algorithms and setting up a model by using variable-length

hidden Markov models (VLHMM). Automatic segmentation and transcription algo-

rithms may also be beneficial to automatically gather more consistent and reliable

transcriptions of uzun havas. The VLHMM model is already coded in our previous

research [25] by Avinash Sastry. However, an extensive implementation and integra-

tion of the automatic segmentation and transcription algorithms stand out as major

challenges.

The next step would be to convert the setup into a practical generative system.

By learning from both audio and symbolic notations, the generative system would

be able to play or print improvisational ideas based on the computational modeling

of uzun havas. Then, Turkish folk music virtuosos and ethnomusicologists expert

on Turkish folk music might be consulted to point out the “interesting” and the

“failed” parts in the generated patterns. They may be asked to write out and play

the patterns in their own style. Later, the original, generated and reinterpreted scores

and audio recordings may be cross-compared. Moreover, cognitive experiments might

be carried out in parallel to scientifically present the relevancy of the model according

to the expectations of humans. I hope that the parallelism in the quantitative results

between Conklin et al. and Pearce et al.’s research [30, 31, 33, 34, 76, 77] and this

thesis, may be generalized to Pearce’s findings in music perception and cognition [78].

Within such feedback, I believe there is a substantial room for the computational

modeling to improve. Moreover, if the modeling is improved above a certain level,

the model might be either used as a core component of an educational software,

which might help beginner-to-intermediate students to learn how to play Turkish

folk music or improvisation in general, and as a meta-musician/composer, which can
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improvise along with human musicians or provide them improvisational ideas on-

the-fly in human-computer interactive performances. Such applications would open

up new paths for musical expressivity and help spreading the ideal of “liberation of

sound” [100].

Another interesting aspect of including audio recordings is investigating tavırs.

To the best of my knowledge, there is a lack of extensive research on how the mu-

sic of Turkey changes with respect to factors such as geographical regions, ethnic

groups, languages and religions. Later, the research might be extended to include

musical cultures from the neighbors of Anatolia such as Balkan, Armenian, Persian

and Arabic, which share some musical connections with traditional Turkish music

such as makams, musical forms and sometimes even the songs. While a plain com-

putational approach would lack the depth of social analysis, it might still indicate

musical similarities in a geotagged and multi-cultural context.
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CHAPTER VIII

CONCLUSION

Within the thesis, a symbolic database, named Uzun Hava Humdrum Database, is

constructed from the transcriptions of uzun havas in the TRT Turkish folk music

archive with the collaboration of Prof. Erdal Tuğcular (Department of Music Edu-

cation, Gazi University, Ankara, Turkey). The database is encoded in the Humdrum

**kern format [52] and it encompasses 77 songs, 10849 notes in 8 makams. To the best

of knowledge, the database is the first symbolic database of uzun havas in machine-

readable format. The conceptual problems and the practical hardships of creating

a symbolic database of a non-Western musical style is also presented along with the

explanation of the database. We hope that the database will help to fill the lack of

availability of examples from world musics for academic research purposes.

The second contribution of the thesis is the computational modeling of uzun havas.

The system is based on the multiple viewpoints modeling (MVM) framework devel-

oped at the Georgia Tech Center for Music Technology (GTCMT) [21]. A subset of

pieces from Uzun hava Humdrumdatabase is picked to train the computational model.

The novelty of the thesis lies within the viewpoints constructed to model the 17-tone

scale of Turkish folk music. These viewpoints and viewpoints previously defined for

Western music [31] are experimented on to predict the duration and pitch of the next

note. The average and median perplexities show that the system is highly predictive.

It also shows that the multiple viewpoints modeling, which has previously been ap-

plied to Western music [30, 31, 33, 34, 76, 77], may also be used to model makam

music. The results also suggest that the transcriptions hold highly context-specific

patterns that are not easy to catch in the long-term model (LTM). On the other
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hand, the melodic patterns in the uzun havas are self-consistent since the short-term

model (STM) outperforms LTM. To the best of my knowledge, the thesis brings the

first attempt of modeling melodies and improvisations in traditional Turkish music,

and it is the first usage of varable0length Markov models (VLMMs) and MVMs in

the statistical analysis of traditional Turkish music.

Even though the current stage of the thesis requires more depth in the modeling

scheme and different methodologies, as the first step of computational analysis of

melodic structures in Turkish folk music, it is very promising. Future work, opened

by this research, may help us better understand musical structures in Turkish folk

music, and lead to practical applications that might be integrated in music education

and performances.

Finally I would like to point out that there are next to no considerations of world

musics. This lack of interest may be conceived as as maybe an inevitable occidental in-

clination in the music technology area. I believe this constrained point of view should

be eliminated if the MIR community aims to work on music in general. Moreover,

research on different musical styles might not only widen our perspective on musical

creativity, but current (Eurocentric) MIR technologies might also benefit from the

findings from other traditions. I hope this work will bring inspiration and motivation

to both myself and other colleagues, who desire to understand musical phenomenon,

pursue new horizons in musical interactions, and embrace human creativity in a mul-

ticultural context.
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Müziğinde Uygulama-Kuram Sorunları ve Çözümleri Çağrılı Kongre, Maçka,
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[100] Varèse, E. and Wen-chung, C., “The liberation of sound,” Perspectives of
new music, vol. 5, no. 1, pp. 11–19, 1966.

[101] Wiggins, G., “Semantic gap?? schemantic schmap!! methodological con-
siderations in the scientific study of music,” in 2009 11th IEEE International
Symposium on Multimedia, pp. 477–482, IEEE, 2009.

[102] Witten, I. and Bell, T., “The zero-frequency problem: Estimating the prob-
abilities of novel events in adaptive text compression,” Information Theory,
IEEE Transactions on, vol. 37, no. 4, pp. 1085–1094, 1991.

[103] Xenakis, I., Formalized Music: Thought and mathematics in composition.
Pendragon Pr, 1992.

[104] Yarman, O., 79-tone tuning & theory for Turkish maqam music. PhD thesis,
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