269 research outputs found

    Multi-Plant Production and Transportation Planning Based on Data Envelopment Analysis

    Get PDF
    This paper proposes a methodology for developing a coordinated aggregate production plan for manufacturers producing multiple products at multiple plants simultaneously, in a centralized environment via data envelopment analysis (DEA). Based on demand forecast of the planning horizon, the central decision maker (DM) specifies the optimal combination of input resources required by the optimal output targets for each plant to keep the supply and demand in balance, and the accompanying transportation trips and volumes among distribution centers (DCs) or warehouse facilities. In this paper, we focus on an integrated production-transportation problem since production and transportation are two fundamental ingredients in the whole operation chain. We deal with multiple products manufactured in multiple plants.The proposed mixed integer DEA models minimize both production costs and transportation costs. The capacity constraint for each plant is enforced by using the production possibility set theory. Finally, we validate our models by a numerical example and sensitivity analysis

    Sustainable R&D portfolio assessment.

    Get PDF
    Research and development portfolio management is traditionally technologically and financially dominated, with little or no attention to the sustainable focus, which represents the triple bottom line: not only financial (and technical) issues but also human and environmental values. This is mainly due to the lack of quantified and reliable data on the human aspects of product/service development: usability, ecology, ethics, product experience, perceived quality etc. Even if these data are available, then consistent decision support tools are not ready available. Based on the findings from an industry review, we developed a DEA model that permits to support strategic R&D portfolio management. We underscore the usability of this approach with real life examples from two different industries: consumables and materials manufacturing (polymers).R&D portfolio management; Data envelopment analysis; Sustainable R&D;

    Multi-Dimensional Assessment of Transit System Efficiency and Incentive-based Subsidy Allocation

    Get PDF
    Over the past several decades, contending with traffic congestion and air pollution has emerged as one of the imperative issues across the world. Development of a transit-oriented urban transport system has been realized by an increasing number of countries and administrations as one of the most effective strategies for mitigating congestion and pollution problems. Despite the rapid development of public transportation system, doubts regarding the efficiency of the system and financing sustainability have arisen. Significant amount of public resources have been invested into public transport; however complaints about low service quality and unreliable transit system performance have increasingly arisen from all walks of life. Evaluating transit operational efficiency from various levels and designing incentive-based mechanisms to allocate limited subsidies/resources have become one of the most imperative challenges faced by responsible authorities to sustain the public transport system development and improve its performance and levels of service. After a comprehensive review of existing literature, this dissertation aims to develop a multi-dimensional framework composed of a series of robust multi-criteria evaluation models to assess the operational and financial performance of transit systems at various levels of application (i.e. region/city level, operator level, and route level). It further contributes to bridging the gap between transit efficiency evaluation and the subsequent subsidy allocation by developing a set of incentive-based resource allocation models taking various levels of operational and financial efficiencies into consideration. Case studies using real-world transit data will be performed to validate the performance and applicability of the proposed models

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input \u2013 output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input – output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Emission reduction policies and their impacts to port efficiencies : an empirical study based on Qingdao port

    Get PDF

    An interval efficiency analysis with dual‑role factors

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data envelopment analysis (DEA) is a data-driven and benchmarking tool for evaluating the relative efficiency of production units with multiple outputs and inputs. Conventional DEA models are based on a production system by converting inputs to outputs using input-transformation-output processes. However, in some situations, it is inescapable to think of some assessment factors, referred to as dual-role factors, which can play simultaneously input and output roles in DEA. The observed data are often assumed to be precise although it needs to consider uncertainty as an inherent part of most real-world applications. Dealing with imprecise data is a perpetual challenge in DEA that can be treated by presenting the interval data. This paper develops an imprecise DEA approach with dual-role factors based on revised production possibility sets. The resulting models are a pair of mixed binary linear programming problems that yield the possible relative efficiencies in the form of intervals. In addition, a procedure is presented to assign the optimal designation to a dual-role factor and specify whether the dual-role factor is a nondiscretionary input or output. Given the interval efficiencies, the production units are categorized into the efficient and inefficient sets. Beyond the dichotomized classification, a practical ranking approach is also adopted to achieve incremental discrimination through evaluation analysis. Finally, an application to third-party reverse logistics providers is studied to illustrate the efficacy and applicability of the proposed approach

    Integrating bio-hubs in biomass supply chains: Insights from a systematic literature review

    Get PDF
    Biomass sources are geographically scattered, and seasonal changes influence their availability. Variations in location, type, and feedstock quality impose logistical and storage challenges. Such a dispersion and variety of biomass sources, as well as the dispersion of demand points, may undermine the economies of scale and increase the risk of supply shortage. By consolidating biomass preprocessing and distribution activities in bio-hub facilities, they can contribute to the overall resilience of biomass supply chains (BSCs) and ensure a more sustainable and cost-efficient approach to bioenergy production. As such, investigating the advantages and challenges associated with bio-hub implementation can offer invaluable insights on the efficiency and sustainability of BSCs. Despite its critical role, a major part of the literature on BSCs is confined to the decision-making processes related to biomass suppliers and bioconversion facilities. To bridge this research gap, the current study conducts a systematic literature review on bio-hub implementation within BSCs in the period of the last ten years. Shortlisted papers are classified and analyzed meticulously to extract possible improvements from BSC and modeling perspectives. From the BSC viewpoint, one notable gap is the little attention to mid-term and short-term decisions of bio-hub operations such as inventory control, resource management and production planning. Furthermore, the results revealed that environmental and social aspects of bio-hub implementation require considerable attention. From the modeling perspective, findings illustrate the underutilization of integrated approaches to incorporate micro-level and macro-level information in decision-making. In this regard, a number of areas are suggested for further exploration
    • …
    corecore