349,874 research outputs found

    Model-Driven Development of Control Applications: On Modeling Tools, Simulations and Safety

    Get PDF
    Control systems are required in various industrial applications varying from individual machines to manufacturing plants and enterprises. Software applications have an important role as an implementation technology in such systems, which can be based on Distributed Control System (DCS) or Programmable Control System (PLC) platforms, for example. Control applications are computer programs that, with control system hardware, perform control tasks. Control applications are efficient and flexible by nature; however, their development is a complex task that requires the collaboration of experts and information from various domains of expertise.This thesis studies the use of Model-Driven Development (MDD) techniques in control application development. MDD is a software development methodology in which models are used as primary engineering artefacts and processed with both manual work and automated model transformations. The objective of the thesis is to explore whether or not control application development can benefit from MDD and selected technologies enabled by it. The research methodology followed in the thesis is the constructive approach of design science.To answer the research questions, tools are developed for modeling and developing control applications using UML Automation Profile (UML AP) in a model-driven development process. The modeling approach is developed based on open source tools on Eclipse platform. In the approach, modeling concepts are kept extendable. Models can be processed with model transformation techniques that plug in to the tool. The approach takes into account domain requirements related to, for example, re-use of design. According to assessment of industrial applicability of the approach and tools as part of it, they could be used for developing industrial DCS based control applications.Simulation approaches that can be used in conjunction to model-driven development of control applications are presented and compared. Development of a model-in-the-loop simulation support is rationalized to enable the use of simulations early while taking into account the special characteristics of the domain. A simulator integration is developed that transforms UML AP control application models to Modelica Modeling Language (ModelicaML) models, thus enabling closed-loop simulations with ModelicaML models of plants to be controlled. The simulation approach is applied successfully in simulations of machinery applications and process industry processes.Model-driven development of safety applications, which are parts of safety systems, would require taking into account safety standard requirements related to modeling techniques and documentation, for example. Related to this aspect, the thesis focuses on extending the information content of models with aspects that are required for safety applications. The modeling of hazards and their associated risks is supported with fault tree notation. The risk and hazard information is integrated into the development process in order to improve traceability. Automated functions enable generating documentation and performing consistency checks related to the use of standard solutions, for example. When applicable, techniques and notations, such as logic diagrams, have been chosen so that they are intuitive to developers but also comply with recommendations of safety standards

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft
    corecore