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Abstract 

Control systems are required in various industrial applications varying from individual 
machines to manufacturing plants and enterprises. Software applications have an 
important role as an implementation technology in such systems, which can be based on 
Distributed Control System (DCS) or Programmable Control System (PLC) platforms, 
for example. Control applications are computer programs that, with control system 
hardware, perform control tasks. Control applications are efficient and flexible by 
nature; however, their development is a complex task that requires the collaboration of 
experts and information from various domains of expertise. 

This thesis studies the use of Model-Driven Development (MDD) techniques in control 
application development. MDD is a software development methodology in which 
models are used as primary engineering artefacts and processed with both manual work 
and automated model transformations. The objective of the thesis is to explore whether 
or not control application development can benefit from MDD and selected 
technologies enabled by it. The research methodology followed in the thesis is the 
constructive approach of design science. 

To answer the research questions, tools are developed for modeling and developing 
control applications using UML Automation Profile (UML AP) in a model-driven 
development process. The modeling approach is developed based on open source tools 
on Eclipse platform. In the approach, modeling concepts are kept extendable. Models 
can be processed with model transformation techniques that plug in to the tool. The 
approach takes into account domain requirements related to, for example, re-use of 
design. According to assessment of industrial applicability of the approach and tools as 
part of it, they could be used for developing industrial DCS based control applications. 

Simulation approaches that can be used in conjunction to model-driven development of 
control applications are presented and compared. Development of a model-in-the-loop 
simulation support is rationalized to enable the use of simulations early while taking 
into account the special characteristics of the domain. A simulator integration is 
developed that transforms UML AP control application models to Modelica Modeling 
Language (ModelicaML) models, thus enabling closed-loop simulations with 
ModelicaML models of plants to be controlled. The simulation approach is applied 
successfully in simulations of machinery applications and process industry processes. 

Model-driven development of safety applications, which are parts of safety systems, 
would require taking into account safety standard requirements related to modeling 
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techniques and documentation, for example. Related to this aspect, the thesis focuses on 
extending the information content of models with aspects that are required for safety 
applications. The modeling of hazards and their associated risks is supported with fault 
tree notation. The risk and hazard information is integrated into the development 
process in order to improve traceability. Automated functions enable generating 
documentation and performing consistency checks related to the use of standard 
solutions, for example. When applicable, techniques and notations, such as logic 
diagrams, have been chosen so that they are intuitive to developers but also comply with 
recommendations of safety standards. 

Keywords: control application, model-driven development, modeling, simulation, 
safety 
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1 Introduction 

This Chapter introduces the topics of the thesis and provides an introduction to the 
background and motivation of the work. The Chapter is organized as follows. First, the 
background of the thesis, the research questions and the research methodology are 
presented. They are followed by the contributions, before outlining the organization of 
the thesis. 

1.1 Background 

Control systems are required in various applications ranging from individual and small-
scale machines to extensive manufacturing plants and enterprises. The systems are 
required to control and supervise machines and processes in a timely and efficient 
manner while at the same time optimizing their productivity and guaranteeing the safety 
of their environment and operating and maintenance personnel. Currently, an essential 
role  as  an  implementation  technology  of  such  systems  is  played  by  software  control  
applications that are often executed on Distributed Control System (DCS), 
Programmable Logic Controller (PLC) or embedded platforms. 

Control applications, computer programs that perform control tasks, are fairly efficient 
and flexible by nature. A single processing unit with a control application can control 
and supervise a number of complex processes, sub-processes and devices. Processing 
units can be connected together to control ever-larger processes while their applications 
exchange real-time information on the measured properties and statuses of the 
processes. To adapt to changing needs and specifications, the dynamic behavior of a 
controlled system can be flexibly altered by changing the parameters and operating 
points of the control application or by updating it entirely or partially. However, while 
the applications have become essential parts of the systems, at the same time the 
efficiency of their development process has become an essential competitiveness factor 
in the domain. 

Development of a control system for an industrial plant, for example, is a complex 
endeavour. It requires the collaboration of experts and information from various 
domains of expertise. Control system development, and control application 
development as part of it, requires and integrates information from process, electric, 
hydraulics, safety and chemical engineering, for example. Some of these engineering 
disciplines may also require information from control application development. 
However, in a common case it is the control application that can and need to adapt to 
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requirements and conditions from the other disciplines. To cope with the amount of 
information and requirements, the use of models – to complement or to substitute 
written documents - has been studied in the domain. However, models and modeling 
concepts alone are not the answer. They need appropriate, flexible tool support for 
performing the required engineering activities within a model-driven development 
process. 

Modeling concepts developed for the needs of automation and control domain need to 
be supported by a modeling tool, including their possible relations to the concepts of 
more general purpose modeling languages: UML and SysML. UML and SysML based 
modeling techniques that have been widely used in MDD are a sound alternative for 
also control applications and enable modeling from the early stages of development. 
The models need to be processed with model transformations to automate repetitive but 
error-prone tasks and in order to streamline information transfer from and to the related 
engineering disciplines. Especially at the early stages of adopting MDD technologies to 
practical use, modeling concepts need to be implemented in a flexible manner for future 
needs. Re-use of existing knowledge and design information has to be supported in 
models in order to obtain the benefits of re-using application blocks, which is already 
reality in control application development. 

Using models as primary artefacts during development offers possibilities that are 
beyond the capabilities of current control system and application development practices. 
Models that are formal enough can be analyzed and studied either alone or together with 
the models of the processes to be controlled. In control algorithm design, simulation is a 
technique that has been traditionally used to study and experiment possible control 
approaches, structures and tunings. However, traditionally the activity has been 
separated from the basic control application development. Simulation studies have been 
possible only after developing the applications, by executing them in conjunction to the 
models of processes to be controlled. 

If models are to be used as the primary engineering artefacts, they should also serve 
documentation purposes for which information is currently produced mainly with 
manual work. Safety related systems, especially, constitute an area of applications in 
which documentation is of special importance because of the need to be able to prove 
the compliance of the produced applications to standards and to convince the authority 
of the correctness of the application. However, it is also an area of applications that 
could especially benefit from the use of models. Models could enable automated 
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consistency checks during design and transferring the design information to a form in 
which it answers the relevant questions. 

The motivation of the thesis is to study how control application engineering could be 
facilitated by extending a Model-Driven Development (MDD) approach. The thesis 
focuses on concepts and tool support for modeling, model processing, integrated 
simulations and safety-related information in models. 

1.2 Research Questions 

The thesis explores whether or not the control application development can benefit from 
MDD and selected technologies enabled by it. To answer this general question, the 
thesis  focuses  on  a  set  of  smaller  research  topics.  They  are  related  to  modeling  and  
developing tool support for modeling the applications, ability to integrate and gain 
benefit from integrating simulations into MDD and ability to document safety-related 
information on control applications in models.  These research topics are divided into 
three groups of questions hereafter referred as RQ1-3. 

1. How to develop support for domain-specific, UML based modeling in control 
application development? How to develop support for and gain benefit from 
applying design patterns in models? How to enable and gain benefit from re-
using platform specific blocks in modeling? 

2. How can model-in-the-loop simulations be integrated into MDD of automation 
and control applications with UML based modeling? What are the requirements 
and constraints for selecting the simulation approach to be followed? How can 
simulations with the selected approach benefit MDD? 

3. How can the safety of control applications be supported in MDD? How can risk 
and hazard information be integrated into modeling? How can traceability, 
correctness and completeness be supported in models? How can the use of 
design patterns support documenting the safety features of control applications? 

1.3 Scope of the Thesis 

The thesis discusses the use of MDD and techniques enabled by it in automation and 
control application development. The main focus of the thesis is on whether and how 
control application development could be enhanced with MDD techniques and how the 
required tool support can be implemented with the use of standard techniques. 
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Related to implementing the domain specific modeling concepts and tool support for a 
MDD process, the thesis studies and uses standardized modeling, metamodeling and 
model processing techniques. Graphical support for the modeling concepts, which is in 
current modeling tools often implemented on top of the information content layer, is not 
considered in detail in the thesis.  

In the thesis, simulation is considered as a means to evaluate and compare control 
application designs. It is also a technique that is already in use in the domain; however, 
not necessarily during basic control application development. Simulations are widely 
used in control algorithm development and in, for example, control system testing after 
the  development.  In  the  thesis,  the  use  of  simulations  as  well  as  techniques  and  
approaches to create closed-loop simulations are discussed with focus on the software 
development phase. However, especially related to interlock functions the distinction 
between algorithm and software development is sometimes difficult to make. 

Related to safety aspects and safety related information in models, the thesis focuses on 
extending the information content of models with IEC 61508 [1] as a reference. The 
purpose is to develop the MDD process and concepts in a direction in which they could 
fulfill  more  of  the  requirements  of  the  safety  standard.  However,  with  discussion  on  
documentation, the author does not want to claim that safety systems should or should 
not be developed with MDD techniques only. Nevertheless, in order to develop safety 
systems  with  MDD  techniques,  it  would  be  vital  to  be  able  to  fulfill  the  relevant  
documentation requirements with MDD. 

1.4 Research Methodology 

The research methodology of the thesis is the constructive approach of design science. 
According to Iivari [2], design science research has been applied in computer science, 
software engineering and information systems for decades producing e.g. new 
architectures, languages and algorithms. It is the rigor of constructing IT artifacts that 
distinguishes the design science from the practices of building IT artifacts and to 
demarcate the two there are two options. The essence of information systems can lie in 
the scientific evaluation of the artifacts or in a reasonable rigorous constructive research 
method for building the artifacts. [2] 

According to Crnkovic, the key idea of constructive research is the construction based 
on the use of existing knowledge in novel ways and possibly adding new links. The 
construction proceeds through design thinking to the projections of future solutions. 
Conceptual and other knowledge gaps are filled with purposefully tailored building 
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blocks to support the whole construction. When a construction, theoretical or practical, 
differs profoundly from pre-existing ones, it constitutes a new reality against which pre-
existing ones can be examined and understood [3]. 

According to Hevner and March [4], the purpose in design science is to create 
innovations or artifacts that embody ideas, practices, capabilities, and products that are 
required to efficiently accomplish the analysis, design, implementation and use of 
information systems.  According to [4], the output artifacts of research include 
constructs, models, methods and instantiations. However, due to the range of output 
research artefacts in reported research, a more expansive view of the artifacts can 
include any designed solution that solves a problem in a given context [5]. 

The main research steps applied in the research are as follows: 

1. Tool support for the domain specific modeling concepts of UML Automation 
Profile is developed while taking into account the needs of the application 
domain related to the re-use of application blocks, for example. The industrial 
applicability of the model-driven development process and tools as a part of it 
are assessed. 

2. The use of design-time, closed-loop simulations is investigated to facilitate 
control application development. Methods are developed for generating 
simulation models from UML Automation Profile models and to integrate the 
models in a novel manner to plant simulation models. General approaches to 
closed-loop simulations in MDD in the domain are compared. 

3. The use of design patterns is studied to enhance the re-use of existing design 
solutions. Modeling concepts and tool support are developed for specifying 
design patterns, marking and visualizing design pattern instances, applying 
design patterns as well as for using patterns to produce documentation from 
models. 

4. The modeling concepts are extended to enable the specification of how the 
hazards associated with the controlled systems may occur. Traceability, 
correctness and completeness are improved within models with safety aspects in 
mind. 

The evaluation of the results is performed in each step with respect to the fulfillment of 
requirements, comparison to the state-of-the-art as well as evaluation of improvements 
in comparison to the state-of-the-art. 
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1.5 Contributions of the Thesis 

The scientific contribution of the thesis and included publications to the research 
questions are following. 

RQ1 Modeling and model processing 

 Development of a modeling tool, by extending existing open source modeling 
tools and frameworks, so that modeling concepts are implemented on metamodel 
level.  The models are extendable and they can be processed with standard 
model transformation languages. 

 Qualitative assessment of industrial applicability of the experimental MDD 
development process and tools as a part of it. 

 Development of an approach to specify design patterns and mark design pattern 
instances in UML, SysML and UML Automation Profile (UML AP) models to 
support the learning of developers, the traceability of solutions and producing 
documentation from models. 

 Development of a method and tool support for modeling control application 
implementation block libraries with stereotypes and model libraries so that code 
generation can utilize existing blocks within produced executables. 

RQ2 Simulation of design models 

 Development of an approach to transform UML AP control application models 
to existing Modelica Modeling Language plant simulation models to enable 
design-time closed-loop simulations.  

 Extending the simulation approach to cover the aspects of basic control systems 
including feedback control, binary control, sequential control as well as 
interlocks. 

 Comparing the transformation assisted approaches to closed-loop simulations in 
MDD in control application development. Assessment of benefits of design-time 
simulations based on case studies and literature. 

RQ3 Modeling safety features  
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 Specification of modeling concepts to describe how hazards, related to a 
controlled system can occur, to extend the documentation value of the models 
and to support the traceability of requirements. 

 Development of documentation exporters to support correctness, completeness 
and traceability in MDD and in models. 

 Extending the design pattern modeling concepts for the patterns of safety 
systems and developing methods to use the concepts in generating safety 
documentation from models and guiding development work. 

1.6 Organization of the Thesis 

The research questions, RQ1-3, are addressed in separate Chapters of the thesis and in 
the included publications as indicated in Table 1. The publications appear in the table in 
the order of their importance related to the research questions.  

Table 1 the included publications, the research questions and their presentation in the thesis. 

Research Question Publications Thesis Chapter 

1 Modeling and model processing P1, P2, P7 3 

2 Simulation of design models P3, P5, P4 4 

3 Modeling safety features P6, P8, P7 5 

Chapter 2 introduces the technologies and standards that have been applied in the thesis 
and in the included publications. The general purpose technologies are in the thesis 
applied to model-driven development of control applications. The standard introduced 
in Chapter 2 is a functional safety standard that has been used as a normative reference 
when extending the information content of models to safety aspects. The means to 
support domain-specific modeling with focus on the re-use of both design patterns and 
concrete implementation blocks and automated model processing are discussed in 
Chapter 3. Simulations and techniques to enable and benefit from simulations of design-
time models in model-driven development are discussed in Chapter 4. Extensions to 
modeling concepts and model processing tools for supporting safety related information 
in models are presented and discussed in Chapter 5.  Chapter 6 provides a summary of 
the included publications. Chapter 7 concludes the thesis with the re-examination of the 
research questions and an outlook of future research. 
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2 Technological Background 

The focus of the thesis is in model-driven development (MDD) of control applications. 
Control applications are software parts of control systems which perform control tasks. 
In industry, the control applications are typically executed in Distributed Control 
System (DCS), Programmable Logic Controller (PLC) or embedded platforms. They are 
used in the real-time control of processes of various kinds ranging from mobile working 
machines and platforms to, for example, chemical industry and power production plants. 
In addition to real-time control, the control applications of this kind can include, among 
others, monitoring and safety features. However, safety critical control functions the 
sole purpose of which is to guarantee the safety of the processes to be controlled are 
typically implemented in dedicated safety systems. The role of (basic) control 
applications, on the other hand, is to keep the processes in their normal, profitable 
operation regions. The focus of the thesis is in the basic control systems. 

Following is a brief introduction to the technologies and methods that are used in the 
thesis and included publications to enable or to facilitate the development of control 
applications with the use of models. 

2.1 Modeling and Model-Driven Development 

2.1.1 Model-Driven Development 

Model-Driven Development (MDD) is a software development methodology that 
emphasizes the use of models as primary engineering artefacts during the development 
of applications. Acronyms related to MDD include, among others, model-driven 
engineering (MDE) and model-driven architecture (MDA) [6], the latter being a 
registered  trademark  of  Object  Management  Group  (OMG).  In  MDD,  models  of  
different phases and accuracy levels are used to contain the information about the 
system (application) during the development of it. The models, starting from, for 
example, requirement models, are developed, elaborated and refined with automated 
model  transformations  and  manual  work.  The  role  of  the  transformations  is  often  in  
automating the creation of later phase models based on former ones. In software 
development, the goal of the development process is often an executable application, 
which (or part of which) can also be possible to be produced automatically with one 
type of model transformations, with code generation. 
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2.1.2 UML and SysML 

Unified Modeling Language (UML) is a software modeling language that defines both 
the information content of modeling elements and the graphical notation of diagrams 
conforming to the language. The first official version of the language was adopted by 
OMG in 1997 [7]. A major improvement to the language was version 2.0 that included 
improvements and clarifications to the metamodel and semantics of the language [8]. 
The metamodeling technique used to specify the UML metamodel is Meta Object 
Facility (MOF) [9], which has also been specified by OMG. The current officially 
adopted version of UML is 2.4.1 [10], [11]. 

UML is currently the de-facto modeling language for the modeling of software systems 
and applications including their requirements, structure and behavior. The modeling 
concepts of the language are closely related to concepts in object-oriented programming 
languages. However, the language can and has been used to describe the aspects of e.g. 
procedural PLC applications. UML has been designed to be extendable for special 
purposes and needs of specific applications domains. For example, SysML [12] has 
been developed for systems engineering purposes with the use of the profile mechanism 
of UML. The mechanism utilizes stereotypes to alter the semantics of the elements. In 
addition to the profile mechanism, an alternative to extend UML is to apply 
metamodeling, by extending the modeling elements of the language with the 
metamodeling technique (MOF) that has been used to specify them in the first place. 

Systems Modeling Language (SysML) [12] is another graphical modeling language 
specified by OMG, for systems engineering purposes. The language has been defined as 
an extension to UML, by re-using parts of UML (UML4SysML), altering parts of UML 
and adding new modeling concepts and diagrams. Whereas UML is software centric, 
SysML is less restrictive related to the implementation of the models. Blocks of the 
language, which correspond to UML classes, are suitable for representing hardware 
blocks and parts of systems, for example. 

2.1.3 Metamodels and Meta Object Facility 

The modeling concepts that can be used in models conforming to a modeling language 
are defined in the metamodel of the language. Metamodels, thus, define the concepts 
available for modeling including their properties and other information content as well 
as relations to other concepts. In addition to defining modeling languages, metamodels 
can be used when defining model transformations between languages. 
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Models conforming to a modeling language are instances of the metamodel of the 
language similarly to metamodels being instances of metametamodels, which can be 
used to define metamodeling languages. The metamodel of UML, for instance, has been 
defined with MOF. MOF, on the other hand, defines itself so that a metametamodeling 
language has not been needed for defining MOF. With respect to metamodeling layers, 
real world objects can be described being level M0 and instances of model elements on 
level M1. Models on level M1 are instances of metamodels on level M2 whereas 
metamodels on level M2 are instances of metametamodels on level M3.  

2.1.4 Model Transformations and QVT 

Model transformations are processes that are used to ensure, by modifying one or more 
models, that the models processed by the transformations are consistent with each other. 
Model transformations can be further divided into model-to-model transformations, 
which are used between models, and model-to-text transformations, which are used to 
create text (e.g. code) based on models. Model-to-model transformations are thus 
processes that create or update models or parts of models based on the same or other 
models or parts of them. Model transformations can be performed automatically, by a 
computer  program,  or  manually  with  operations  that  are  manually  performed  by  a  
modeler. In model-driven development, a common goal is to automate model 
transformations that are repetitive, which reduces the amount of required manual work 
and potential for errors. 

Query/View/Transformation (QVT) [13] is a model-to-model [14] transformation 
language that has been specified by OMG for defining transformations between models 
that conform to modeling languages that have been defined with MOF. The language 
specification defines three distinct languages: Core, Relations and Operational 
Mappings. By nature, Core and Relations languages are declarative whereas Operational 
Mappings language is imperative. With respect to the metamodeling layers, QVT 
language can be regarded to be on layer M2, similarly to UML metamodel, for example. 
Individual model transformation (specification) instances are on level M1 and utilize the 
concepts of the source and target metamodels on layer M2. Executable model 
transformations, which are instances of their specifications, manipulate models and 
modeling elements on layer M1. The metamodeling layers as well as relationships 
between metamodels, models, transformation definitions and model transformations are 
illustrated in Figure 1 that has been modified from [15]. 
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Figure 1 The relationships between metamodels, transformation definitions, models and model 
transformations. 

2.2 Simulations 

2.2.1 Overview 

Computer simulation is a technique that can be used to imitate the operation of a 
process or system based on a model of the process or system in order to predict, study or 
explain the behavior of it. In control system and application development, simulations 
can be used e.g. in the design and validation of control programs, strategies and human-
machine interfaces before installing the complete systems [16]. In control application 
development, a closed-loop simulation requires a simulation model of the system to be 
controlled and a component acting as the control system in the simulation. 

A closed-loop simulation can be executed within a single simulation engine or as a co-
operative simulation (co-simulation). In the latter approach, two or more simulation 
engines are connected together and execute the parts of the simulation model. For 
example,  the  parts  can  be  a  simulation  model  of  the  system  to  be  controlled  and  the  
model of the control system and/or application controlling the former one. 

2.2.2 XiL Simulations 

XiL simulations refer to the 4 simulation approaches that can be used in conjunction to 
model-based development: model-in-the-loop (MiL), software-in-the-loop (SiL), 
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processor-in-the-loop (PiL) and hardware-in-the-loop (HiL) simulation [17]. In MDD of 
control applications, these approaches differ in the control system configurations used to 
control the simulation model of the process to be controlled. 

In MiL, a model of the control system and or application is used whereas SiL, PiL and 
HiL utilize software generated from the model, generated software with its target 
processor and generated software with the entire target control system hardware, 
respectively. Similar simulation approaches, except MiL, can be used to test control 
applications in more conventional application development processes. HiL simulation, 
for example, can be used to test a control application with its target control system 
hardware regardless of the process to develop the application. 

2.2.3 Modelica and ModelicaML 

Modelica is a non-proprietary, object-oriented, acausal language for the modeling of 
heterogeneous physical systems [18], [19]. It supports the use of libraries and multi-
domain modeling so that the modeled systems may include, among others, mechanical, 
electrical and control subsystems. Modelica models are mathematically described with 
differential, algebraic and discrete equations [19]. Modelica models can be defined both 
textually and graphically, depending also on tool support. 

ModelicaML is a UML profile that has been developed to enable creating, reading, 
understanding and maintaining Modelica models with UML tools. [20] The profile uses 
a subset of UML concepts and defines a set of stereotypes, with stereotype specific 
tagged values, that are given semantics by the Modelica language. The profile has been 
implemented on Eclipse platform based on UML2 implementation of the UML 
metamodel. The profile is currently tool supported so that ModelicaML models can be 
transformed to textual Modelica code and simulated with a Modelica tool [21]. 

2.3 Safety 

2.3.1 Overview 

Safety can be defined as freedom from an unacceptable risk. The risk concept can be 
defined as a combination of the probability of occurrence of harm and the severity of 
the  harm  [1].  Functional  safety  is  part  of  the  overall  safety  relating  to  the  system  of  
interest (equipment under control and its control system) that depends on the correct 
functioning of the electrical/electronic/programmable electronic safety-related systems 
and other risk reduction measures. [1] 
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A practical definition for software safety, provided in [22] is: features and procedures 
that ensure that a product performs predictably under normal and abnormal conditions. 
The likelihood of an unplanned event occurring is minimized and its consequences 
controlled and maintained; thereby preventing accidental injury or death, whether 
intentional or unintentional [22]. In the automation and control domain, the safety of the 
controlled plants, processes and machines often needs to be ensured by functional safety 
systems that perform safety functions and include software parts. 

2.3.2 IEC 61508 

IEC 61508 [1] is an essential standard in the domain of functional safety. The standard 
has  been  renewed  a  short  while  ago,  in  2010,  so  that  with  respect  to  its  
recommendations the standard is still as modern as applicable. The standard is a basis 
for several sector specific standards, e.g. IEC 62061 in machinery [23] and IEC 61513 
for nuclear power plants [24], which increases its importance. IEC 61508 covers the 
functional safety of systems containing electrical, electronic and/or programmable 
electronic systems. Software applications as parts of the programmable electronic 
systems are covered in the third part of the standard. The standard defines an overall 
lifecycle model for safety functions, according to which they can be specified, 
developed and maintained. 

The standard has been built so that a natural way to fulfil the requirements of it would 
be to utilize the traditional V-model development process. However, provided that the 
requirements are fulfilled, any development process can be used [P6]. Safety functions 
that consist of electrical parts, for instance, are treated by the standard based on the 
probabilities of correct operation. However, because of the systematic nature of 
software faults, in case of software safety functions the standard focuses on software 
development techniques and measures. It guides their selection as well as the 
information content of documentation that must be produced to develop certifiable 
applications to safety systems. In the thesis, the standard and the requirements of it are 
used as a basis for extending the information content of models of basic control systems 
with safety aspects and features. 

2.3.3 Systematic Safety System Development and Patterns  

Generally,  the  concepts  of  safety  and  reliability  are  well  understood  in  relation  to,  for  
example, electronic components. However, software safety and reliability form a 
discipline that is well understood by few [22]. Unlike hardware, software does not 
break, fail or wear out over time. The causes of software failures are systematic, not 
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random [22]. Because of the enormous state spaces of digital systems, it is also possible 
that only a small part of causes of the failures can be exercised with testing [25]. 

System safety, in contrast, integrates management, hazard analysis and design 
approaches to a planned, disciplined and systematic approach to prevent or reduce 
accidents throughout the system lifecycle. System safety attempts to predict accidents 
before they occur and to eliminate or prevent hazardous states. The primary concern in 
system safety is, thus, the management of hazards in a controlled and systematic 
manner. [25]  

In software engineering, design patterns are a means to systematically re-use well-
known, proven solutions. Each design pattern systematically names, motivates and 
explains a design solution that addresses a recurring problem or challenge in system 
designs [26]. For safety systems, suitable design patterns can be found from both 
standards and related literature. For example, IEC 61508 (in the third part) lists 
architectural approaches and solutions, many of which have been presented in a more 
detailed manner in pattern literature. For example, the standards suggest the use of 
redundancy [27], backward recovery from faults [28], [29] as well as cyclic program 
execution [27]. 
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3 Tool Support for Model-Driven Development of 
Control Applications 

The use of models and model-driven development techniques has drawn extensive 
research attention in the domain of automation and control systems during the past few 
years. The modeling of software applications and systems, including their requirements, 
has been seen as an integral phase in development and as a means to cope with the 
increasing size and complexity of the applications. Such work has been published 
related to both IEC 61131-3 [30] and IEC 61499 [31] based control system platforms. 
Of these languages, IEC 61131-3 is a standard that defines five PLC programming 
languages. The languages include Function Block (FB) diagram, structured text, 
sequential function chart, ladder diagram and instruction list. IEC 61499, on the other 
hand, extends the FB concept of IEC 61131-3 with event-driven execution and support 
for distributing FBs in de-centralized execution environments. 

With IEC 61499 [31] as a target language, Thramboulidis and Tranoris have studied and 
developed tools [32] and an engineering process [33] for distributed control applications 
using UML to present requirements and design before implementations. The approach 
of the EU MEDEIA project [34] builds on the use of Automation Components and bi-
directional model transformations between models. Automation Components are 
described as composable combinations of embedded software and hardware. Vyatkin et 
al. [35] have developed a model-integrated design framework for automation and 
control applications that is based on an intelligent mechatronic component concept and 
use of the IEC 61499 architecture. Of the referred approaches, [34] and [35] discuss also 
how design  models  could  be  simulated,  which  is  the  topic  of  Chapter  4  of  the  thesis.  
Other approaches related to combining the use of IEC 61499 and UML in the domain 
include the work of Dubinin et al. [36], Hussain and Frey [37] as well as Panjaitan and 
Frey [38]. 

Related to IEC 61131-3 [30] as a target language, FLEXICON project, see [39] and 
[40], has integrated a combination of commercial off-the-shelf tools for supporting 
software  development  of  both  basic  control  and  safety  related  control  systems.  
MAGICS approach  [41]   aims  at  non-device-centric  abstractions  and  support  for  PLC 
(IEC 61131-3) code generation that is claimed to be missing from many approaches. 
The approach ([41]) also addresses sequential control activities. Related to generating 
PLC code from models, mappings between UML and IEC 61131-3 as well as the earlier 
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version of it have been presented by Witsch and Vogel-Heuser [42] as well as by Vogel-
Heuser and Witsch [43]. 

Use of design patterns in the domain has not been addressed in many MDD approaches. 
However, Witsch and Vogel-Heuser in [42] envision collecting known solutions to 
pattern catalogues in order to improve their re-use, motivated by the object-oriented 
extensions to IEC 61131-3. For example, implementing a structure such as the one in 
Observer design pattern [26] requires object-oriented features of programming 
languages. In application domains other than industrial control, techniques and support 
related to design patterns have been developed to specify patterns [44], to apply and 
evolve patterns to models [45], [46], to detect pattern instances [47], to detect points in 
models where patterns could be applied [48] as well as to visualize pattern instances in 
models and diagrams [49], [50]. 

This Chapter discusses the development of tool support for domain specific modeling 
and MDD in automation and control domain. The AUKOTON MDD process, which is 
to be supported, is introduced briefly in Section 3.1. Domain requirements for the tool 
are presented in Section 3.2. Possible implementation techniques are discussed in 
Section 3.3. Section 3.4, then, introduces the developed UML AP tool and discusses 
choices related to the development of it. 

3.1 AUKOTON Development Process 

AUKOTON is a development process for automation and control applications that was 
developed during AUKOTON project. In detail, the process has been presented in [51]. 
However, it has been discussed also in the included publications [P1] and [P2]. The 
development process aims to apply model-driven development technologies to control 
application development while at the same time taking into account domain specific 
practices related to, for example, the re-use of existing implementation blocks. The 
process emphasizes the importance of platform independent modeling, automated 
transfer of design information and late binding of platform specific details. The 
objectives are to enhance productivity, solution re-use and software quality [P1].  

The modeling basis in the process is UML AP [52] that covers the essential concepts of 
modern, complex automation applications. The profile was further developed during the 
project with respect to both requirement modeling and functional modeling concepts. 
The development process, see Figure 2, applies models in three phases. The names of 
the phases are requirement import and elaboration; functional, platform independent 
design; and functional, platform specific design. 
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Figure 2 The AUKOTON development process proceeds from requirements to executable 
applications through the requirement, functional and platform specific development phases. 

During the requirements phase, UML AP requirement concepts are used to describe the 
required functionality as well as non-functional properties of the applications. Part of 
the information can be imported to the phase from source information documents e.g. 
IEC 62424 [53] Piping and Instrumentation (P&I) diagrams or MS Excel spreadsheets 
that can be produced e.g. by the process and instrumentation design. Spreadsheets, with 
company specific practices, are also commonly used in industry [P2]. Such documents 
can contain vital information about required control functions as well as connection 
points in the processes to be controlled for controls and measurements. The Imported 
requirements, as well as other intermediate products of the development process, can be 
inspected and refined by developers in order to add information and decisions that are 
not automated. The requirements are described mainly with the structured Automation 
Requirement concepts of the profile but also informal textual requirements can be used. 

During the functional, platform independent design phase, the functionality of the 
applications is specified in a platform independent manner but so that it can be later 
refined with platform specific details [P2]. The purpose is to increase the re-use 
potential of models so that design work could be re-used also in projects that are 
targeted to other control system platforms. During the phase, the modeling concepts of 
interest are the Automation Function (AF) concepts of the profile (UML AP). 

The central AF concept has been further divided into a hierarchy of different kinds of 
measurements, actuation, control and interlock functions. AFs represent individual 
pieces of the applications. They could be characterized as platform independent, 
abstract type circuits (function blocks) representing different kinds of measurement, 
actuation, control and interlock functions that can be combined and connected together 
to compose an application [P2]. However, for each AF, there can exist several concrete 
type  circuits  -  possibly  on  different  platforms  -  that  could  be  used  to  implement  the  
functionality. That is, AFs neither identify the type circuits to be used nor restrict the 
selection of the target platform. AFs exchange information with Ports that specify both 
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their types and roles, from the point of view of the AFs. For example, it is possible to 
define a Port to be intended for relaying measurement information. 

During the functional, platform specific phase, the purpose is to detail the platform 
independent design for a chosen platform so that the application code can be generated 
[P2]. Appropriate AFs (of the platform independent model) are tied to platform specific 
implementation blocks to be used in the final applications. The connection interfaces of 
the AFs are completed to correspond to those of the blocks and the required parameters 
of the blocks are set.  For example, for the assessment of the development process and 
tools [P2], a set of type circuits that had been developed as IEC 61131-3 FBs was 
modeled as an AUKOTON DCS collection. The collection was used for the generation 
of an executable application in PLCopen IEC 61131-3 XML format [P2]. 

In the development process, see [51] and [P2], model transformations are used between 
source information documents and requirement models, between requirements models 
and functional platform independent model and between platform specific models and 
executables. Between platform independent and platform specific modeling phases, the 
process uses an interactive model transformation that reads and modifies a single model. 
Thus, three types of transformations are required by the process: 1) import 
transformations that import information to a model or a model Package, 2) intra-model 
transformations that read and modify Packages of a model and 3) export transformations 
that produce e.g. documentation files or parts of executables based on models or 
Packages. All the transformations are automatic; however, after executing 
transformations the resulting models can be edited manually. The transformations 
produce rather starting points for manual work than complete phase products of the 
development phases. 

A single modeling tool is used throughout the AUKOTON process. The tool shall 
support the entire application development process starting from manufacturing oriented 
requirements and proceeding via platform independent design to platform specific 
implementations.  During  the  process,  the  tool  must  enable  the  use  of  the  required  
diagram  types  and  concepts  of  UML  AP.  During  the  requirement  import  and  
elaboration, the process utilizes mainly Requirements Specification Diagram. During 
the functional modeling phases, the diagram types of interests are Control Structure 
Diagram and Automation Sequence Diagram, both of which may not always be 
required, depending on the modeled application. 
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3.2 Requirements for Modeling and Model Processing 
Support in MDD of Control Applications 

3.2.1 Modeling Concepts and implementations 

The use of the AUKOTON development process in control application development, 
with domain specific modeling concepts, requires tool support for the entire application 
development lifecycle. Support shall start from source information and requirements 
and proceed, via platform independent, architectural considerations, to the platform 
specific implementation. [P1] Development of a MDD tool with consideration for 
domain requirements and practices was, thus, an important research task from the 
beginning of this research. Tool support was also required to further improve and to 
experimentally estimate the profile (UML AP) that had been previously specified [P1]. 
The development work begun in the AUKOTON project,  during which UML AP was 
initially applied to MDD. Thereafter, tool development has been an on-going activity 
during which both the modeling concepts and techniques to benefit from models have 
been further developed. 

Applying MDD techniques also requires taking into account various application domain 
specific and other requirements and characteristics. These requirements are briefly 
discussed in this and following sub-sections related to the modeling concepts and their 
implementation techniques, development of graphical tool support, use of model 
transformations as well as re-use of design patterns and concrete implementation blocks. 

UML AP, in its initial form [52], was partially extended from the suitable concepts of 
SysML [12], the UML Profile for Schedulability, Performance and Time [54] as well as 
UML  Profile  for  Quality  of  Service  and  Fault  Tolerance  [55].  Although  the  profile  
defines new diagram types, not all the concepts of it are intended for them [P1]. Instead, 
many of the extended concepts are intended for UML and SysML diagram types in 
which they can be used as stereotypes, so that practical use of parts of the profile 
requires support for UML and SysML. It was, thus, a clear requirement that the profile 
implementation should be based on an existing UML/SysML tool to enable the co-use 
of the languages without developing UML and SysML support from scratch [P1]. 
However, significant parts of the concepts of the profile are new, specific to the domain 
and intended to be used in new, domain specific diagram types. (The new diagram types 
are intended to describe the requirements of control applications, control structures as 
well as sequentially executed control activities.) 
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In addition to be used with UML, the UML AP modeling concepts were required to be 
extendable and flexible for future needs; so that the profile and concepts could be 
further developed [P1]. Modeling languages undergo major changes infrequently so that 
their implementations do not need to be updated every day. Changing the metamodel of 
a tool does not need to be as easy as modifying a graphical application model. However, 
changes need to be realizable with a reasonable amount of work. UML AP has also been 
further developed during the research to enable e.g. modeling control logic and hazards. 
The fulfilment of the extendibility requirement has thus been evaluated during the 
research. 

3.2.2 Graphical Support 

Implementing UML AP required implementing the new graphical diagram types. The 
new diagrams resemble domain specific diagram types and notations and are thus 
intuitive for domain professionals. For example, the Automation Sequence Diagram 
type  is  based  on  the  Sequential  Function  Chart  (SFC)  notation  which  is  part  of  IEC  
61131-3 [30]. The purpose of the (intended) resemblance is to make it easier for domain 
professionals to familiarize themselves with UML based modeling and tools. With a 
Domain Specific Language (DSL), problems can be solved with domain concepts, on a 
high level of abstraction and in a problem-oriented manner. However, as a drawback, 
design and implementation of a DSL require a lot of effort and consideration [P1]. 

Graphical support development requires the stability of modeling concepts. On Eclipse 
platform, with existing open source tools, the supported approach to build graphical 
modeling support is to develop diagram types on top of a model layer, in a layered like 
architecture. In this way, graphical code manipulates models that are on a lower level. 
Graphical diagrams need the information content of models and their metamodel level 
properties. As a consequence, code related to implementing graphics often requires 
changes when the model code (metamodel) is changed1. Changes, however, are not 
required on a daily basis and it  should not be possible to cause changes to metamodel 
e.g. by accident. 

                                                

1 Graphical tool support development is in this thesis addressed only to the extent to which graphical tool 
development is affected by choices in modeling concept implementations. 



 

 

23 

3.2.3 Model Transformations 

In  MDD,  model  transformations  are  the  means  to  reduce  the  amount  of  manual  
development work and to automate tasks that are repetitive enough to be treated with 
programmed rules. Transformations can be used in importing information to models 
[P1, P2], transferring information between modeling and development phases [P2], 
generating code [P1, P2] and generating documentation from models [P6, P7, P8]. 
Transformations and related techniques, e.g. QVT and Object Constraint Language 
(OCL) [56], can be used to query models and to automate consistency checks [P6]. It is 
also possible to use model transformations for creating simulation models that can be 
used to assess designs in a timely manner [P3, P4, P5]. 

The models that are used in a MDD process thus need to be processable with 
(preferably standard) transformation techniques. OMG, for example, has specified three 
QVT [13] model transformation languages for which there are open source 
implementations on Eclipse platform, e.g. SmartQVT2. Transformations should be 
integrated into the MDD environments so that all transformations could be searched and 
controlled in an agreed manner, with a graphical user interface of the tool. However, 
similarly to graphical modeling support, model transformations often need to undergo 
changes when modeling concepts change. On the other hand, to support e.g. new source 
information formats or control system platforms, the integration must be loose and 
adaptable [P1]. It must be possible to add, remove and replace transformations in a 
flexible manner. It cannot be assumed that all transformations that may be required in 
future would be known or would have been known. 

Transformations, thus, differ from each other by their basic purpose. However, they also 
accept different parameters, which must be taken into account in the development of the 
transformation support mechanism [P1], [15]. For example, in the AUKOTON process, 
code generators usually only read source models whereas intra-model transformations 
both read and modify parts of a model.  On the other hand, to import  information to a 
requirement Package from several sources, for example, it must be possible to target 
transformations to the selected Packages of a model. [15] 

                                                
2 http://sourceforge.net/projects/smartqvt/ 
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3.2.4 Design Patterns 

The efficiency of control application development work is becoming a more and more 
important competitiveness factor in the domain. A means to improve the efficiency of 
the work is facilitating the re-use of work and solutions. In the domain, such solutions to 
re-use can be concrete, platform specific implementations and blocks, the re-use of 
which is already common. However, re-use should be supported also with respect to 
general, platform independent solutions and structures. Due to the lack of acknowledged 
methods for supporting the platform independent development [57], for instance, their 
re-use has not been as common as in the case of platform specific design. 

Design patterns, see [58] and [59], are a means to re-use platform independent solutions. 
A design pattern represents a relation between a context, a problem and a solution [59]. 
Patterns document proven solutions to recurring challenges in design and development 
work and capture expert knowledge for re-use purposes, for both expert developers and 
less  experienced  ones  [P7].  In  the  domain,  an  example  of  a  design  pattern  could  be  
organizing a measurement, a controller and an output to a control loop. 

Patterns have names that are known to developers so that their use aids communication. 
They provide vocabulary for developers, enhance documentation and encapsulate 
knowledge and experience. [60] A design pattern instance marks a point in which a 
developer has been potentially faced with a challenge (that the pattern addresses). 
Pattern instances represent design decisions to use patterns, with pattern specific 
potential  benefits  and drawbacks.  The use of patterns could thus be of great value and 
extend the documentation value of models towards architectural knowledge. Especially 
this  could  be  useful  in  MDD  that  emphasizes  the  use  of  models  instead  of  (written)  
documents. If documents are not used in a development process, the only places where 
the information can be added are the models [P7]. 

To benefit from patterns, a non-restrictive pattern modeling approach is required. UML, 
as the de-facto software modeling language, aims to support patterns with its 
Collaboration concepts. However, as presented in [P7], a pattern modeling approach 
should not restrict the nature of solutions in patterns. Patterns should be able to consist 
of any modeling elements such as class definitions or components, not only the 
properties of UML Classifiers,  as is  the case in the UML approach [P7].  On the other 
hand, it should be possible for other modeling elements than Classifiers to contain 
elements that play roles in pattern instances [P7]. To systematically use and benefit 
from  the  use  of  patterns,  it  should  also  be  possible  to  collect  patterns  to  libraries  as  
suggested e.g. in [42]. 
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Automating the application of patterns to models could be a useful feature. However, 
even without it, patterns could be used to document recurring solutions and their use for 
e.g. documentation and traceability purposes. Pattern concepts should also enable 
generating traceability information and statistics on their use. It should be possible to 
visualize patterns in models and diagrams so that they could improve the documentation 
value of the diagrams and learning of developers. With an appropriate tool support, 
patterns could also enable comparing applications in terms of re-use as was done e.g. in 
[61] with respect to the re-use of platform specific engineering work. [P7] 

3.2.5 Platform Specific Implementations 

In addition to platform independent models and solutions, re-use can be related to 
platform specific blocks. The re-use of implementation blocks, e.g. type circuits that 
perform control algorithms or interface with the sensors and actuators, is a special 
characteristic of the domain. As such, it needs to be taken into account when developing 
tool support for the AUKOTON development process. As argued in [57], DCS 
platforms capture the results of years of development and well-tested features that are 
worth supporting. Ability to re-use existing, tested and known blocks could increase 
quality and reduce the amount of repeated work also within MDD. 

To enable the re-use of implementation blocks, it should be possible to refine platform 
independent design to platform specific design. In the AUKOTON process, parts of 
platform independent models need to be possible to be refined to platform specific ones 
that are then used in executables. In order to use code generation to produce 
applications, the required information should be available in models. That is, it should 
be possible to use the platform specific features of implementation blocks, e.g. interlock 
ports, and it should be possible to set platform specific properties in models. 

3.3 Considerations on Implementation Techniques 

3.3.1 Extension Mechanisms of UML and MOF Based Languages 

UML can be extended with two distinct approaches: by using the built-in, stereotype 
based profile mechanism of it and by extending the metamodel of the language with the 
use of Meta Object Facility (MOF) [9]. MOF is the metamodeling technique that has 
been used in the first place to define the metamodel of UML. These two approaches 
were also the practical alternatives for implementing the UML AP modeling concepts 
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[P1]. However, the mechanisms differ in terms of modifications that they enable and in 
terms of required work. 

With the built-in (light-weight) mechanism, extensions are defined as Stereotypes that 
can be used to specialize the semantics of the modeling concepts of the language. 
Stereotypes can also define tagged values, which are attributes with basic data types. 
The tagged values can parameterize the semantic characteristics of the Stereotypes. 
Stereotypes, however, cannot be used in a way that would contradict with the UML 
metamodel [10]. For example, the use of Stereotypes to insert new metaclasses or meta-
associations between metaclasses is prohibited. This is a clear restriction of the 
approach, since some of the concepts required by the new UML AP diagram types have 
structural features that do not fit the UML metamodel. Implementing these concepts 
requires at least new meta-associations, in addition to defining Stereotypes [P1]. In the 
MOF-based approach, there are no such limitations related to the addition of new 
elements [P1], [10]. Removing existing metamodel elements from an extended tool, 
however, could be difficult if the concepts were implemented with program code in an 
extended tool. 

Both the extensions mechanisms are, to some extent, tool-supported. The Stereotype 
based mechanism, for example, is supported by standard tools such as Magicdraw3 and 
Topcased4 so that no programming work is required. Stereotypes can be defined in 
profile models that are referenced by application models in which the Stereotypes are 
used. In this way, models with domain specific extensions can be portable to other tools 
(with compatible file formats). However, UML profile models cannot define new 
graphical diagram types in typical tools. (Although new diagram types are sometimes 
described  in  written  profile  specifications  such  as  that  of  SysML  [12].)  As  a  
consequence, to support new diagram types, programming work is often required in any 
case.  On  the  other  hand,  with  special  diagram  types,  models  may  not  be  portable  to  
other tools regardless of the implementation technique of the modeling concepts. 

The metamodeling based approach often requires additional programming work 
(compared with the Stereotype based approach) since modifications to the metamodel 
require changes in program code. For example, new metaclasses usually require 
implementing  code  for  them  so  that  the  new  code  is  coupled  to  implementations  of  

                                                
3 http://www.nomagic.com/products/magicdraw.html 
4 http://www.topcased.org/ 
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existing metaclasses. Metamodel modifications can also affect adversely on the 
portability of models. It is possible that models containing instances of new metaclasses 
cannot be opened in other (standard) tools. However, as mentioned, with new diagram 
types this can be the case regardless of the modeling concept implementation technique. 
This is because the models would include information related to the new diagram types 
and elements in them. 

3.3.2 Graphical Diagram Development on Eclipse Platform 

At the time of AUKOTON project and beginning of the tool development, there were at 
least two alternative tool families that supported graphical tool development. These 
alternatives were: 1) the use of Graphical Editing Framework (GEF5) and Graphical 
Modeling Framework (GMF6) of Eclipse Modeling Project7 and 2) the use of Topcased 
as the extended base tool. Both the alternatives were intended to support the 
development  of  new  (own)  diagram  types.  They,  however,  used  different  kinds  of  
configuration files to define the elements to have graphical counterparts and to be used 
to generate a starting point for manual diagram type development (programming). In 
both approaches, the configuration files refer to metamodel concepts so that code 
created based on them refers to code created to correspond to the metamodel concepts.  

As a metamodel for graphical support generation, it would be possible to use both a new 
(MOF) metamodel and UML metamodel so that new concepts would be defined with 
Stereotypes. However, both GEF/GMF and Topcased based approaches are intended for 
building diagrams on (MOF) metamodel elements. In, for example, the diagram 
configuration files of Topcased, diagram elements refer to metaclasses in the (MOF) 
metamodels,  not  to  Stereotypes  that  could  be  applied  to  run-time  instances  of  UML  
metaclasses. Checks for Stereotype applications could be added to the automatically 
generated code manually, in order to support the Stereotype based approach. However, 
it could require error-prone switch-case (or e.g. if-else) structures to query applied 
stereotypes and other similar changes to several places in generated code that could be 
difficult to be kept up-to-date. 

                                                
5 http://wiki.eclipse.org/GEF 
6 http://wiki.eclipse.org/GMF 
7 http://eclipse.org/modeling/ 
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3.3.3 Model Transformation Techniques 

In addition to graphical development, selection between the extension mechanisms 
affects the use of model transformations. Standard QVT model transformations are 
naturally suited for the metamodeling (MOF) based approach. This can be understood 
based on relationships between models, metamodels and model transformations in 
Figure 1 in Section 2.1.4. MOF based metamodels are on layer M2 so that concepts in 
them can be accessed from transformation definitions on layer M1. Profile models with 
Stereotype definitions, however, would be on the same layer with the transformation 
definitions, and could not be accessed from transformation specifications. 

The stereotype applications and tagged values of UML models can be queried from 
transformations with, for example, OCL [56]. However, the use of Stereotypes in 
transformations would require defining e.g. switch-case structures based on stereotype 
and property names. A transformation programmer would need to know the exact 
names of the stereotypes and their tagged values. Programming-time type checks would 
not be available in addition to, for example, auto correction functions. This is because 
the profile models would not be actually used until executing the transformation. With a 
static metamodel, for example, correction functions and consistency checks are 
possible. When compiling a transformation, the contents of it can be compared with the 
names and concepts of the metamodel. 

3.4 UML AP Tool Implementation 

In the tool development, a profound decision was the selection of an existing tool to be 
extended, which was made in order to re-use the support of an existing tool for plain 
UML and SysML.  It  was,  though,  assumed that  the  tool  to  be  extended  should  be  an  
open source tool, so that modifications to existing functionality would be possible, if 
needed. Among suitable tools, the choice was Topcased. At the time of beginning the 
tool development, it was one of few tools supporting both UML and SysML and 
development of new diagram types [P1]. At the time, an alternative would have been the 
Modeling Project of the platform that was based on GEF/GMF techniques. However, in 
addition to UML, Topcased provided extensive support for SysML and was ranked as 
the best available UML tool for Eclipse in a VTT study [62], too. 

The following sub-sections will discuss the tool development from the point of view of 
implementing the modeling concepts (metamodel), graphical support for the new 
diagram types and extension interfaces for model transformations. Support for the use 
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of design patterns and re-use of platform specific blocks will be presented in sub-
sections as well. 

3.4.1 Metamodel Implementation 

The basics of the tool implementation, related to metamodel and graphical support 
development, are discussed in the included publication [P1]. In addition to the selection 
of  an  existing  tool,  an  important  decision  was  the  extension  mechanism to  be  used  to  
implement the new modeling concepts of UML AP. The selected basic mechanism was 
the metamodeling based approach, with MOF. As discussed earlier, the MOF based 
approach has few restrictions when changes to modeling concepts are additions (instead 
of  removing elements, for example), which was the case with UML AP. UML AP with 
its diagram types also required new meta-associations between metaclasses, which 
would have caused challenges with the Stereotype based approach. The metamodeling 
based approach is also well supported related to developing new (own) diagram types. 
The SysML metamodel used by Topcased, for example, has been implemented with 
Eclipse Modeling Framework (EMF) by extending the UML28 implementation of UML 
metamodel, on the platform. 

The majority of the new UML AP concepts have, thus, been defined with EMF, which 
is a MOF implementation on the platform and used by several modeling tools. 
However, in addition to MOF based extensions, some UML AP concepts were 
implemented as Stereotypes. In this way, the concepts (Stereotypes) can be used also in 
UML and SysML models and diagrams without changes to their program code. [P1] 

The developed metamodel, which specifies the new UML AP concepts, is dependent on 
the UML metamodel of the platform (UML2) so that concepts of UML can be used and 
extended by UML AP concepts. In addition, the metamodel extends and is dependent on 
Topcased implementation of SysML metamodel. The MOF-based extension approach 
was facilitated by the availability of the EMF models related to the UML and SysML 
implementations so that they could be referenced from the developed EMF model 
(which was a metamodel from the point of view of the tool development). 

The generated implementation for the (EMF) metamodel is dependent on the respective 
(Topcased and UML2) plug-ins that implement the UML and SysML metamodels. 
Since only new metaclasses were required, instead of modifications to existing ones, the 

                                                
8 http://wiki.eclipse.org/MDT-UML2 
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additions could be realized in a distinct plug-in [P1]. The dependencies between the 
plug-ins implementing UML, SysML and UML AP metamodels are illustrated in Figure 
4 in Section 3.4.2. The figure also illustrates the dependencies between the 
corresponding graphical editors. 

The initial profile implementation, which is described in [P1], has been later extended 
with concepts related to, for example, the modeling of safety aspects, control logic and 
design patterns. These extensions are described in more detail in Chapters 4 and 5 of the 
thesis. These extensions to the modeling concepts have been implemented so that new 
elements have been added to the metamodel. The procedure has been to edit the 
metamodel (the EMF model), to re-generate an EMF generator model (genmodel) and 
to re-generate the implementation code (see Figure 3). After re-generating code, small 
manual modifications have been required related to, for example, the initialization 
process of (Java) classes corresponding to the metamodel elements. 

The extendibility aspect was not included in [P1]. However, according to experience 
gained during the research, it has been possible to further extend and change the profile 
implementation with a reasonable amount of work. When changes have been limited to 
the additions of new metaclasses, old code related to graphical modeling, for instance, 
has also been possible to be re-used without changes. 

3.4.2 Graphical Support for UML AP Diagram Types 

The graphical support of the tool was initially developed to implement the new diagram 
types  of  UML  AP,  namely  Requirements  Specification  Diagram,  Control  Structure  
Diagram and Automation Sequence Diagram [P1]. All these diagram types are also 
needed in the AUKOTON development process.  Requirements Specification Diagrams 
are used during the requirements phase and Control Structure as well as Automation 
Sequence Diagrams during the functional platform independent and platform specific 
design phases. In the included publications, the graphical support development approach 
is discussed in [P1]. After the AUKOTON project and publication [P1], additional 
graphical support has also been developed for Logic Diagrams as well as for presenting 
risks and hazards with the Fault Tree Analysis (FTA) notation [P6]. Support for 
visualizing design patterns has been developed to be used in conjunction to all diagram 
types [P7]. 

At the beginning of the tool development, UML AP did not strictly specify the concrete 
syntax of the new diagram types and graphical presentation of all the elements. Instead, 
the initial specification provided few example diagrams. The intended users of the tool, 
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however, were automation and control engineers that are accustomed to traditional 
diagram  types  of  the  domain.  Accordingly,  the  diagram  types  were  implemented  to  
resemble traditional diagram types of the domain, with the intention to help the intended 
users to familiarize themselves with the tool and the profile [P1]. 

The extended open source UML/SysML tool, Topcased, supports the development of 
new diagram types with specific configuration files, which are in [P1] called generator 
models. They can be used for generating graphical editor plug-ins, plug-ins that 
implement  diagram types  [P1]  as  well  as,  for  example,  plug-ins  that  contribute  to  the  
properties view of the platform. The generated diagram type skeletons can be further 
tailored [P1], for example, to modify the symbols of the model elements in diagrams. 
Assuming that a new metamodel is used as a basis of a new diagram type, Topcased 
configuration files can be used according to the process described in [63] and illustrated 
in  Figure 3. 

The metamodel is  in the process defined with an EMF (ecore) model that  is  used as a 
basis for creating a genmodel and generating the implementing code for the metamodel. 
The genmodel is also required for creating an editor configuration and diagram 
configurations, with which it is possible to define editor properties and diagram types. 
Based on the genmodel, editor and diagram configurations get the information about the 
related metaclasses and to which (Eclipse) plug-ins and (Java) Packages the 
implementing code (for the metamodel) is generated. However, after generating a 
diagram type, for example, the metamodel can be changed and the implementation re-
generated, provided that the classes that the diagram requires are in the same plug-ins 
and Packages. Especially, although UML AP metamodel has been changed, the 
additions of metaclasses have not broken existing diagram type implementations. 
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Figure 3 Graphical tooling development process with Topcased tool. (Modified from [63]) 

With the generation process, editor and diagrams become dependent on the metamodel 
implementations as illustrated in Figure 4. However, UML AP tool editor is also 
dependent on SysML and UML metamodels,  in addition to UML AP metamodel.  In a 
similar manner, the editor of the Topcased SysML implementation is dependent on both 
SysML and UML metamodels. [63] 

 
Figure 4 The dependencies between Topcased UML and SysML editors, UML AP tool editor as 
well as UML, SysML and UML AP metamodel implementations (Modified from [63]) 

3.4.3 Finding, Using and Controlling Model Transformations 

As discussed, the AUKOTON development process requires three kinds of model 
transformations: import transformations, intra-model transformations and export 
transformations. These transformations differ from each other with respect to the 
purpose to which they are used. However, they also accept different parameters. Import 
transformations are targeted to a model Package, export transformations read the 
contents of a model Package and intra-model transformations are targeted between 
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Packages of a model [15]. In order to be able to support e.g. new source information 
formats, transformations should be added to the tool environment in a flexible manner 
[P1]. 

The mechanism to connect transformations to the tool environment is presented in detail 
in publications [P1] and [15]. The extension interface of the tool consists of three well 
defined extension points for the transformations. The extension point mechanism of the 
platform, in short, allows tools and plug-ins to search and consume one another’s 
services without compile-time dependencies from the service consumers to the service 
producers [15]. With the mechanism, a plug-in can define an extension point to which 
other plug-ins provide their services. Defining such an extension point can include, for 
example, the specification of an interface that a plug-in implementing the extension 
must implement to provide the service. The platform, on the other hand, allows plug-ins 
to search and activate other plug-ins that implement extensions to such extension points. 

In UML AP tool, the described mechanism has been used by defining an extension 
point for each type of transformation required by the AUKOTON development process. 
The  tool,  thus,  defines  a  separate  extension  point  for  import,  for  intra-model  and  for  
export transformations. For each extension point, the tool defines a Java interface with 
appropriate operations that are used to control and to target the transformations to user-
selected model packages. The interfaces are presented in Figure 5. In the figure, 
IRequirementImporter, ITransformer and IModelExporter interfaces are related to 
import, intra-model and export transformations, respectively [15]. 

Each  interface  defines  two  operations;  one  for  getting  a  description  of  the  
transformation (to be shown for the user of the tool when selecting a transformation) 
and one for initiating the transformation [15]. The (UML) Packages to which references 
are relayed through the operations are Packages that the user of the tool has selected 
from  the  outline  view  of  the  tool  when  initiating  the  transformation  [P1].  A  relayed  
Package can also be an instance of the Model metaclass, which are used to contain 
whole model structures. In addition, the operations relay references to “traces” and/or 
“src” folders of the (Eclipse) workspace project that contains the model. Those 
references can be used for saving traceability information and for storing generated 
code, for example [15]. 
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Figure 5 Java interfaces related to the extension point for import, export and intra-model 
transformations. 

With the extension interface, controlling model transformations can be done with the 
graphical user interface of the tool while at the same time selecting the parts of models 
to be processed [P1]. The provided references to model Packages do not restrict access 
(from transformations) to the selected Packages only [P1]. Instead, in order to protect 
models from simultaneous modifications, the user interface of the tool is locked when a 
transformation is being performed. However, an approach to implement such a 
restriction  has  been  presented  in  [15].  In  addition,  [15]  discusses  extending  the  use  of  
the transformation-related extension points to other tools and presents a plug-in 
structure for SmartQVT model transformations. The plug-in structure has been utilized 
in code generation used in [P2] and in simulation model generation [P3], [P4]. The 
extension points themselves have been used in [P2] related to all transformation types, 
and in [P3], [P4], [P6], [P7] and [P8] related to export transformations. 

Finding model transformations is automated by the tool. When a user of the tool 
initiates an activity to perform a transformation, the tool uses the platform services to 
find plug-ins that implement extensions to the transformation-related extension points. 
Found plug-ins are activated so that their descriptions can be loaded and provided for 
the user, who can then select between available transformations or choose not to 
perform a transformation. 

3.4.4 Design Patterns in Modeling 

Re-use of designs and solutions is an important means to enhance both the efficiency of 
development work and quality of developed applications.  A means to document proven 
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solutions are design patterns, which capture knowledge for re-use purposes, for both 
expert developers and less experienced ones. In the included publications, the developed 
support for design patterns is presented in [P7]. The work presented in [P8], on the other 
hand, extends the pattern support for safety systems, with the objective to use patterns 
for producing safety documentation. 

UML, with its existing modeling concepts, aims to support the use of design patterns in 
models [P7]. However, the support is restricted by nature and focused on the Classifier 
concepts of UML, leaving other important aspects outside the pattern support. In UML, 
patterns are defined with the Collaboration concept that extends both 
StructuredClassifier and BehavioredClassifier concepts. A pattern is a set of cooperating 
participants, which are Properties of the Collaboration. Pattern instances, on the other 
hand, are presented with CollaborationUses. CollaborationUses are owned by 
Classifiers to the contents of which the patterns are applied [P7]. 

Pattern literature of today, however, is not limited to the contents of Classifiers 
(Classes) only. For example, patterns can be on an architectural level and related to 
organizing an application to layers [64]. This could be in UML models described with, 
for example, Packages or Components, but not with the pattern modeling concepts [P7]. 
For example, a structure in Figure 6 could not be marked as a Layers instance. The 
Packages  (Layer  1,  Layer  2  and  Layer  3)  are  not  UML  Properties  or  contained  by  a  
UML Classifier that  would have to contain a CollaboratioUse element and all  the role 
elements (layers) related to the design pattern instance. In a similar manner, it would not 
be possible to use Collaboration and CollaborationUse concepts to describe the contents 
of a UML class diagram. Class (definitions) would not be Properties or contained by a 
Classifier [P7]. Nevertheless, if design patterns are utilized in a software project, 
documenting their use in models could be of great value. On the other hand, if, for 
example, classes are deliberately designed so that they can be used according to a 
pattern, it should be possible to mark the intentional use of the pattern [P7]. 
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Figure 6 A presentation of Layers pattern with UML class diagram. (from [P7]) 

In addition to the standard approach, many tool vendors have developed pattern support 
in a more ad hoc manner. Magicdraw, for example, enables the use of informal UML 
templates that can be copied to models in order to instantiate patterns. However, as 
discussed in [P7], in this way the information on pattern instances is endangered to 
vanish and pattern occurrences can be difficult to notice for both developers and tools. 
On the other hand, UML concepts are suited to provide only information on solution 
parts of patterns leaving e.g. the problem parts unspecified [P7]. 

The developed pattern modeling approach is presented in detail in [P7]. The approach is 
aimed to be less restrictive than that of UML and to enable the specification of part of 
the information content that UML leaves intact. Specification of contexts and problems, 
which are essential information content of patterns [59], are enabled with text 
(attributes)  in  addition  to  the  names  and  solutions  of  patterns  [P7].  The  metamodel  of  
the pattern modeling concepts is presented in Figure 7 that has been divided into two 
parts. The concepts on the left-hand side are aimed for defining patterns and for 
organizing related patterns whereas the concepts on the right-hand side are aimed for 
marking pattern instances. It is also foreseen that patterns could be defined in specific 
library models in a similar manner than, for instance, stereotypes are defined in profiles 
by domain experts and then used in a number of application models. 
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 Figure 7 Metamodel of the pattern modeling concepts. (from [P7]) 

The Pattern and PatternApplication concepts are aimed for defining patterns and for 
marking pattern instances, respectively. Patterns consist of pattern roles and contain 
textual information, which has been structured based on the canonical form of patterns 
[65] with the addition of consequences of the pattern form in [58]. The Pattern concept 
is extended from the UML PackageableElement concept so that Patterns can be defined 
in Packages or PatternLanguages. Patterns and PatternRoles can also refer to template 
elements, which can be used for automating the application of patterns. 
PatternApplications, on the other hand, are used when applying patterns. As a difference 
with regard to the UML concepts, pattern instances need not be owned by Classifiers 
but Packages, which are used in models in any case. Model elements that play roles in a 
pattern instance can be any direct or indirect contents of the Package, instead of 
properties  of  Classifiers  only.  The  role  elements  are  tied  to  pattern  specific  roles  
(PatternRoles) with RoleBindings [P7]. 

In addition to the concepts, tool support has been developed to instantiate and to 
visualize patterns in models as well as to generate documentation from models in which 
the concepts are used [P7]. Defining a pattern with the concepts has to be done only 
once for each new pattern. However, because configured PatternApplications are 
required for each pattern instance, it is natural that the task should be automated, in 
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order  not  to  require  additional  work  from  developers  [P7].  In  the  tool,  the  task  is  
included in a wizard with which it is possible to create pattern instances, by copying 
role elements from templates or by selecting existing elements for pattern specific roles. 
Markings are created as a by-product of applying patterns with the wizard. 

Pattern markings support the traceability of solutions in models. With specific pattern 
concepts,  it  is  also  possible  to  query  models  on  the  use  of  patterns  and  to  gather  
statistics on their use. For example, in [P7] documentation generation functionality is 
presented that collects information on the use of patterns and their (backward and 
forward) traceability to MS Excel (spreadsheet) documents. Tool support for benefitting 
from design patterns includes also a function to visualize pattern instances in models 
with the same (Collaboration) notation that UML uses. However, to keep the amount of 
details in diagrams sufficient, patterns are highlighted only when requested [P7]. 

An example diagram with a highlighted Observer [26] pattern is presented in Figure 8. 
Diagrams with visualized pattern instances can improve the documentation value of 
diagrams by making use of standard solutions explicit [P7]. With the visualizing support 
for patterns, it is also possible to use existing models as training material so that it is 
easy to find out how and in which situations the patterns have been used. 

 
Figure 8 A visualization of an Observer pattern instance. (from [P7])  

3.4.5 Platform Specific Implementation Blocks  

In addition to design patterns, re-use in the domain can be related to implementation 
blocks that can be collected into libraries and used in different applications. Such blocks 
are often called type circuits. They are often platform specific, so that their utilization 
can be considered enhancing re-use in the functional, platform specific design phase of 
the AUKOTON process. Controllers that implement the well-known Proportional-
Integral-Derivative (PID) control algorithm, for example, are by nature re-usable with 
only changes to their tuning parameters. In the included publications, an overview of the 
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platform specific modeling approach is provided in [P2]. In addition, the approach is 
presented in detail in [51] as a part of the whole AUKOTON process. 

The  purpose  of  the  platform  specific  modeling  phase  (of  AUKOTON)  is  to  detail  
functional, platform independent design to a platform specific level, so that code 
generation can be performed based on the models [P2]. To achieve this, the 
development process relies on platform specific profiles that are developed to support 
control  system  platforms  and  their  existing  collections  of  type  circuits.  The  platform  
specific profiles contain Stereotypes corresponding to the type circuits of the platform in 
question [P2]. Tagged values (properties) are added to the Stereotypes so that they 
correspond to the parameters of the type circuits, and can be set in the models. Lastly, 
the signal interfaces of the type circuits are defined in template AFs with ports so that 
signal interfaces of AFs in application models can be compared with those of the 
templates. 

For example, in the assessment of the AUKOTON development process and tools [P2], 
a type circuit collection AUKOTON DCS was used. The collection included FBs in 
PLCopen IEC 61131-3 XML format and had been modeled as a platform specific 
profile - with stereotypes, tagged values and template AFs. Stereotypes and their tagged 
values related to the AUKOTON DCS collection are shown in Figure 9. Figure 10 
visualizes  the  template  AFs  related  to  LC_3  (Limit  Controller  3)  and  PIDC_2  (PID  
Controller 2) type circuits including the available ports in their signal interfaces. During 
the platform specific assessment phase [P2], the platform independent functional model 
was completed with AUKOTON DCS specific stereotypes and ports. The stereotypes 
were used to map the AFs to the existing type circuits (function blocks). The signal 
interfaces of the AFs were compared with those of the templates and completed to 
correspond to them, when necessary. This is in the tool environment an automated 
function and implemented by automatically copying missing ports and warning about 
additional ones that do not exist in the templates. After performing this, it was possible 
both to use type circuit specific parameters and their port interfaces [51]. 

Based on such platform dependent models, the process of generating executable 
applications is straight-forward. The process includes instantiating (existing) type 
circuits, linking the instances together based on connections in the models and 
specifying their parameters based on tagged values in the models. In general, this 
process is also far less error prone than, for example, constructing applications from 
programming language level concepts [51]. 
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Figure 9 Stereotypes and their tagged values related to the FB collection used in [P2]. (Modified 
from [51]) 

 
Figure 10 Template AFs related to LC_3 and PIDC_2 type circuits that were used in [P2]. 

For [P2], the approach was successfully applied to generating code in PLCopen XML 
format,  with  the  AUKOTON  DCS  type  circuit  collections.  However,  in  addition  to  
producing IEC 61131-3 based PLC applications, an industrially applicable development 
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process should support proprietary DCS platforms and their collections of type circuits 
[P2]. Without resources to implement code generation for various target DCSs, the 
possibility to support DCS platforms has been assessed only based on interviews with 
the participants of the assessment event [P2]. The interviews suggested that the 
approach that is based on stereotypes and ports could be used also for platform specific 
design and code generation for certain proprietary DCS platforms. Identified areas of 
further development included the capability to specify interlocks in a detailed manner, 
replacing  UML  terminology  with  domain  concepts  and  ability  to  visualize  and  edit  
designs at different levels of granularity. These further development areas have also 
been addressed in later work. For example, support for detailed logic diagrams has been 
added [P6] and used also for simulation purposes [P3, P4]. 

3.5 Discussion 

The UML AP tool has been implemented by extending an open source UML/SysML 
modeling tool, Topcased. The majority of the modeling concepts were implemented 
with the MOF based extension approach. However, some UML AP concepts were 
implemented as UML Stereotypes so that they can be used in UML and SysML models 
and  diagrams,  which  are  in  the  tool  environment  re-used  from Topcased.  In  this  way,  
the profile implementation could be kept straight-forward and required meta-
associations between metaclasses could be easily implemented. As a whole, the 
approach proved it possible to extend UML on both M1 and M2 metalevels with 
reasonable resources. 

The approach enables the co-use of modeling languages and profiles so that UML, 
SysML and UML AP concepts are used in the same models. Since only new 
metaclasses were required to implement UML AP, instead of modifications to existing 
ones, the metamodel additions could be realized in a distinct plug-in that extends and is 
dependent on UML and SysML metamodel implementations. The implementation is 
extendable for future needs, in a similar manner than the UML and SysML metamodels 
were extended. It has also been possible to extend the profile implementation along the 
research without changes to, for example, existing diagram types. 

An assessment of industrial applicability of the development process and tool has been 
presented in [P2]. According to the industrial feedback, the process and tools could be 
used for developing industrial DCS based control applications. The process and the 
tools enable automating part of the design activities that are performed currently 
manually but with the cost of introducing an additional work phase with requirements. 
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The use of metamodeling techniques to implement the concepts of the profile enables 
developing model transformations with standard transformation techniques, e.g. QVT. 
While model processing and transformation techniques, e.g. QVT and OCL, would 
enable querying models about Stereotype applications, their support for transformations 
between metamodel concepts includes additional consistency checks. In this way, the 
concepts of the metamodel can be used in the transformation definitions. 

To facilitate the use of model transformations, which are required by the AUKOTON 
development process, the tool defines its own extension interface. The extension point 
mechanism of Eclipse allows tools to search and consume the services of other tools and 
plug-ins without compile-time dependencies to service providers. Especially, to support 
transformations, UML AP tool utilizes the mechanism with three extension points, one 
for each transformation type required by the AUKOTON process. With the mechanism, 
plug-ins implementing transformations can be added to the tool in a flexible manner, for 
example to support new source information formats. Searching and controlling model 
transformations can be done with the graphical user interface of the tool. 

Each extension has been defined with a Java interface that an extending plug-in must 
implement. The interfaces, then, include operations that are required to get information 
about the transformations and to initiate and target transformations to appropriate model 
Packages. The extension interface has been utilized successfully in research related to 
[P2], [P3], [P4], [P6], [P7] and [P8]. 

The design pattern support of the tool has been developed to increase re-use on a 
platform independent level and to complement the pattern support of UML. The need 
for the new pattern modeling concepts originates from the UML pattern support that 
restricts patterns to describe the contents of Classifiers. The pattern literature of today, 
however, is not restricted to such a narrow scope and includes patterns on the 
architectural level, for example. 

The new pattern modeling concepts enable the definition of patterns in specific library 
models and marking of pattern instances in application models. The concepts relieve the 
impractical restrictions of UML concepts. Patterns are not restricted to describe the 
contents of Classifiers but Packages, which are used in models in any case, and patterns 
can consist of instances of practically any metaclass. In addition to the concepts, tool 
support has been developed to instantiate and to visualize patterns in models as well as 
to generate documentation from models in which the concepts are used. Patterns and 
their instances both promote the re-use of known solutions and support traceability 
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between solutions and their use in system designs. This traceability information can be 
queried and collected into MS Excel spreadsheet documents. 

To enable re-use of platform specific implementation blocks, a hybrid modeling 
approach was chosen. Implementation blocks and their platform specific parameters are 
modeled as Stereotypes and tagged values related to the Stereotypes. Automation 
Functions can be applied with (platform specific) Stereotypes to select library blocks to 
be used in the places of the Automation Functions in platform independent models. By 
applying a Stereotype, it becomes possible to set the block specific parameters with 
tagged values. The signal interfaces of the blocks, on the other hand, are modeled with 
template AFs. Automated functions have been developed to compare the interfaces of 
AFs with the interfaces in the templates and to complete them, when necessary, so that 
implementation block specific connections can be used in models. 

With the approach, code generation activity can be implemented to instantiate, connect 
and parameterize blocks according to models. For [P2], for example, a function block 
collection  that  had  been  implemented  with  IEC  61131-3  was  modeled  as  such  a  
platform specific profile. The collection was then utilized for successfully generating a 
function block application in PLCopen IEC 61131-3 XML format. 





 

 

45 

4 Simulations in Model-Driven Development of 
Control Applications 

The general simulation approaches that can be used in MDD to assess the models that 
are used in the process and produced applications include Model-in-the-Loop (MiL), 
Software-in-the-Loop (SiL), Processor-in-the-Loop (PiL) and Hardware-in-the-Loop 
(HiL) simulations [17]. In control application development, the differences between the 
approaches are in the control application (or control system) counterparts that are used 
to control the plant9 (process) parts of the closed-loop simulations. Accordingly, the 
approaches also differ with respect to the nature of problems that they can reveal and 
with respect to the design phase in which it is possible to apply them. 

For example, a MiL simulation using (only) a model of a control application to control a 
plant  model  is  capable  of  validating  the  holistic  control  solution.  SiL,  PiL  and  HiL  
simulations use software generated from the models, generated software with target 
processors and generated software with the entire target control system hardware, 
respectively. In addition to the control solutions, these approaches are able to evaluate 
also other aspects in the designs. However, they also require more design phases (such 
as hardware design) to be completed and thus may not be performed as early during the 
development as MiL simulations. 

Another classification of simulation approaches is related to the amount of simulation 
engines. A closed-loop simulation can be performed within a single simulation engine 
or as a co-operative simulation (co-simulation) by simulating the parts of the overall 
simulation model in different but connected environments. Co-simulation, however, 
naturally requires a mechanism to connect the environments and to replicate the 
simulation commands to them. These tasks are addressed in Functional Mock-up 
Interface (FMI) standard [66] and have been recently approached also with model-based 
techniques [67]. 

In MDD in the domain, the use of simulations has been integrated into several recent 
approaches in order to be able to validate designs early. In [68], Hegny et al. use an IEC 
61499 runtime for simulating both the control application and plant parts of models. The 
behavior of a plant model is described within a composite function block using either a 

                                                
9 Also hybrid plant models that consist of real and simulated parts are possible.  
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timed state chart or an external behavior description, the latter alternative making the 
approach a co-simulation approach. 

Yang and Vyatkin [69], similarly, rely on IEC 61499 but create plant simulation models 
with the use of model transformations, by transforming Matlab/Simulink plant models 
to IEC 61499. They thus enable closed-loop simulations within a single simulation (or 
IEC 61499 runtime) environment. In [35], Vyatkin et al. propose a model-integrated 
design framework. In the framework new systems should be based on intelligent 
mechatronic components that would include software components as well as models 
that enable system simulation and formal verification. The simulation and formal 
verification of control applications are also envisioned in [70], by Vyatkin et al. 

In [71], the aim is to mix real control hardware and software with simulated ones while 
simulating the plant model in another simulation environment. The benefit of the co-
simulation approach is the ability to test early and concurrently with the engineering 
work. In the FLEXICON approach, co-simulations are enabled with Data Distribution 
Service (DDS) middleware between the tools [72], and Common Object Request Broker 
Architecture (CORBA) in the previous version of the approach [39]. In DECOS [73], 
simulations are enabled by the modeling techniques that are used for modeling 
application behavior, e.g. Matlab/Simulink and SCADE. 

Model-based approaches to the simulation-assisted evaluation of control applications 
have also been enabled in commercial products. For example, Beckhoff10 and 
Bachmann11 have products for generating PLC code based on Matlab/Simulink models. 
In application domains other than industrial control, e.g. automotive control systems, it 
has also been common to use simulations and simulation-aided testing within model-
based  development.  A  general  framework  for  and  two  examples  of  use  of  MiL  
simulation and testing have been presented in [74]. A testing environment for embedded 
systems  with  SiL  simulation  has  been  presented  in  [75].  HiL  simulation  and  testing  
have been utilized, for example, in [76] and [77]. 

This Chapter discusses the use of design-time simulations in model-driven control 
application development and is organized as follows. Requirements for the use of 
simulations are presented in Section 3.2. Possible simulation approaches and 
implementation techniques are discussed in Section 3.3. Section 3.4, then, presents the 

                                                
10 http://www.beckhoff.fi/english.asp?twincat/te1400.htm?id=1889849218919049 
11 http://www.mathworks.se/products/connections/product_detail/product_35950.html  
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developed simulation approach including observations from applying it in several 
publications. 

4.1 Requirements for Simulations in Control Application 
Development 

4.1.1 Benefits of Simulations in Control Application Development 

One  of  the  key  promises  of  MDD  is  the  ability  to  automate  simple,  repetitive  design  
tasks with model transformations. However, demanding design decisions over 
alternative solutions to achieve (sometimes informally specified) objectives and product 
characteristics are still made by professional developers. Fortunately, such decisions do 
not need to be made based on developer experience only. Already with more 
conventional control application development approaches, the use of simulations has 
played a significant role in facilitating the decision making [P3]. 

Simulation solutions are also commonly provided by commercial DCS platform 
vendors  [16].  For  PLC  based  control  systems,  on  the  other  hand,  soft  PLC  solutions  
enable the execution of control programs on desktop computers. Benefits of simulations 
have also been reported by several researchers. According to a survey of Carrasco and 
Dormido [16], the benefits of using control systems in simulators before installation 
include improvements to 1) design, development and validation of the control programs 
and  strategies,  2)  design,  development  and  validation  of  the  HMI  (Human-Machine  
Interface) and 3) adjustments of control loops and programs. 

According to Dougall [78], the use of simulations enables better operator training, 
ability to test control programs in smaller modules and the ability to the thorough 
testing of emergency and dangerous situations. In addition, the use of simulations can 
result in shorter start-up times of plants and processes, reduced site time as well as less 
waste of material and end products during the start-ups. Karhela [79] mentions the use 
of simulations for, for example, control system testing, operator training, plant operation 
optimization, process reliability and safety studies, improving plants and processes, 
verifying control schemes as well as for start-up and shut-down analyses. 

As  argued  in  [P3],  many  of  the  mentioned  benefits  of  simulations  are  related  to  
engineering tasks that MDD alone may not affect. MDD can enable the use of intuitive 
models and diagrams as well as model transformations and model checks to automate 
repetitive tasks. However, the use of MDD techniques does not reduce the need to 
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validate and test designs and products. In addition, many of the mentioned benefits of 
simulations (above) are related to tasks that would be beneficial to perform at design 
time, if it were possible to simulate designs. In general, corrections to design flaws are 
often most beneficial to be made as early as possible so that they do not affect adversely 
on later designs and decisions. As a consequence, it is possible that many of the 
mentioned general benefits of simulations could be obtained also by using simulations 
to complement a MDD approach, if it was possible to simulate design models. 

However, by integrating simulations into a MDD process, it could be technically 
possible to simulate earlier. As argued in [P5], the restrictions of early (MiL) 
simulations within a MDD process are related to missing hardware (including, among 
others, the user interface), which complicates, for example, operator training. However, 
control application (MiL) simulations can be carried out already before selecting a 
target platform and performing hardware design. MIL simulations can also be used in 
companies that perform outsourced development tasks and may not have access to the 
control system hardware, even if control hardware design was performed already.  

Following is a brief discussion on the properties of simulations that are useful in MDD 
of control applications to achieve the mentioned benefits. 

4.1.2 Required Properties for Simulations 

The use of simulations should be enabled in MDD of control systems and applications. 
It should be possible to simulate designs in a timely manner and in a closed loop with 
simulation models of the processes to be controlled [P3]. It should be possible to 
acquire prompt feedback about solutions and to compare alternative approaches, 
structures, tunings and, for example, interlocks. Design flaws should be corrected as 
early as possible so that they would not affect adversely subsequent design phases. 
Naturally, the simulation approach should provide support for all the common aspects 
of basic control systems including binary and feedback control, control sequences as 
well as interlocks. 

In MDD, simulation should be an effortless activity [P3]. As the purpose of MDD is to 
improve the efficiency of development work by automating repetitive tasks, it cannot be 
assumed that developers would create simulation models manually. Instead, simulations 
should be possible to be used as a continuous quality assurance method, without 
slowing down development. Because in MDD it is possible to automatically generate 
executable code, it should be possible to generate simulation models as well. The 
simulation models should, thus, be created automatically, as a side product of the 
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development process and based on design models that are created in the development 
process. On the other hand, performing the simulations should not require special 
simulation expertise - skills that all control application developers may not have. 

Simulations should be possible to be performed early in the development process. In 
this way, simulations could facilitate understanding the net effects of requirements that 
originate from the various design phases preceding the application development. 
Developing applications on requirements that originate from various domains of 
engineering is a special characteristic of the domain [P3]. It is vital to notice the effects 
of requirements early so that possible inconsistencies do not cause expensive re-work. 
In a similar manner, simulations could make the effects of changes to high-level models 
visible for developers [P3]. 

In addition to early simulation, the simulation approach should take into account the 
special characteristics of the domain related to re-using implementation blocks. Since 
libraries of existing implementation blocks are commonly used in applications, similar 
libraries should be available for simulations. In this way, platform and vendor specific 
functions and blocks could be validated as part of the design. The correspondence 
between the reusable implementation blocks and their simulation counterparts could be 
verified as well, in order to increase confidence on the results of simulations [P3].  

In case of the AUKOTON development process, the above would mean enabling 
simulations during both functional platform independent and functional platform 
specific development phases (see Section 3.1). Functional models, without platform 
specific blocks, can already contain a significant amount of functionality to be 
validated. With platform specific details, simulations could be used to evaluate the 
platform specific blocks, tunings and predicted performance of control solutions. The 
development process with the required simulation extensions is illustrated in Figure 11. 

However, it is also obvious that all functions and blocks of control applications cannot 
be re-used from libraries. For example, interlocks and sequential control activities are 
often developed specifically for each application and thus cannot be (always) re-used. 
Therefore, the simulation approach should be capable of creating and using new 
simulation blocks in addition to using the librarized ones [P3]. With current UML AP, 
such interlocks and sequences are modeled with Logic and Automation Sequence 
Diagrams, respectively. 
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Figure 11 The AUKOTON development process with the simulation extensions. (Modified from 
[P4]) 

4.2 Considerations on Implementation Techniques 

4.2.1 XiL Simulation Approaches 

As presented, the general approaches for simulations in MDD include MiL, PiL, SiL 
and HiL, which differ from each other with respect to the control system counterparts 
that are used to control the plant simulations. Simulations are also supported by many 
control system platform vendors that enable connecting the control systems to 
simulators [16] in order to support PiL and HiL simulations. In these simulations, 
connections to simulations can be implemented programmatically or via I/O units. It is 
also common for industrial DCS vendors to support the computer execution of the 
control programs to enable SiL simulations. In addition, for PLC based control system 
platforms,  there  are  soft  PLC  solutions  that  enable  executing  the  control  programs  of  
PLC systems on desktop computers and thus SiL simulations [P5]. 

It can be, thus, said that SiL, PiL and HiL simulations are already supported by control 
system vendors. As a consequence, if simulations are to be used in a MDD process to 
develop control applications that are to be used in PLC or DCS platforms, developing 
support for other types of simulations than MiL might not be able to provide significant 
benefits. This is because the other types of simulations are (often) already enabled by 
the control system platforms and usable after generating code [P5]. By enabling the use 
of early MiL simulations, however, it could be possible to validate solutions (at least 
partially) before generating code or even selecting a control system platform and 
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hardware parts of it. As a consequence, in MDD in the domain the focus should be on 
MiL simulations [P5]. 

4.2.2 Number of Simulation Engines 

As presented, a closed-loop simulation can be performed within a single simulation 
engine or as a co-simulation by simulating the parts of the overall simulation model in 
different environments. A MiL simulation can use either of the approaches. However, 
simulation  types  other  than  MiL  are  usually  co-simulations  of  some  kind  so  that  the  
plant parts of the simulations are simulated in environments other than those acting as 
control systems. For example, coupling and synchronization mechanisms are thus 
required to connect the simulations (environments). In the domain, there have also been 
approaches (e.g. [68] and [69]) in which plant models have been provided as such or 
transformed  to  IEC  61499  models  and  coupled  to  control  application  parts.  If  IEC  
61499 is considered as a modeling standard, these approaches can be regarded as MiL 
simulations using a single simulation engine. 

An objective for the simulation approach was that it should not require control 
application developers to have special expertise related to simulations. Co-simulation, 
however, necessarily requires a mechanism for coupling the simulation environments 
and replicating commands of them [P5]. Use of a single simulation engine, without the 
need to couple simulators, can be seen as a less complex approach. However, also in 
case  of  a  single  simulation  engine  the  plant  and  control  system  parts  need  to  be  
connected, if this task is not performed automatically e.g. by a model transformation. 
Because of this possible need for couplings - and inspired by the recent advances related 
to co-simulations - the co-simulation approach will be regarded as an alternative in the 
following sub-section that compares the alternative approaches to implement MiL 
simulations. Such recent co-simulation-related advances include the FMI (Functional 
Mock-up Interface) standard [66] and publication [67] in which model-based techniques 
are used to facilitate the coupling of simulations. 

4.2.3 On Creating Closed-Loop MiL Simulations 

As presented in [P5], in addition to using co-simulation there are several approaches to 
develop MIL simulations to be performed in a single simulation engine. This often 
requires the availability of both control application and plant models in the same 
simulation language. Such simulations can be achieved by 
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 developing both the plant and control application models with the same 
simulation language, 

 transforming both the plant and control application models to the same 
simulation language, 

 transforming the plant model to the (simulation) language used to develop the 
control application model or, 

 transforming the control application model to the (simulation) language used 
to develop the plant model. 

Related to the first alternative, the author is not aware of a language that would be a 
feasible alternative for both plant and control application modeling and would integrate 
well with UML-based MDD techniques. For example, the language would have to be 
processable with (preferably standard) model transformation techniques but also enable 
information transfer and requirement modeling during the early phases of software 
development. On the other hand, the second alternative would require developing and 
keeping up-to-date two possibly complex model transformations. Because of the 
amount of complex transformations, it could also be prone to errors. As a consequence, 
only the third and fourth alternatives appear feasible. Related literature in the domain 
also  includes  examples  on  the  use  of  the  third  alternative,  see  [69]  and  [68].  The  co-
simulation approach (with hardware included) has been used, for example, in [71]. 
Included publications [P3], [P4] and [P5] present and evaluate the work of the author 
that uses the fourth alternative. 

The transformation based approaches (of the list above) and the co-simulation approach 
are compared at a conceptual level in [P5]. The results of the comparison, with respect 
to connectability and transformability requirements that the approaches place on 
languages and tools as well as work related to using simulations, include the following: 

 Simulation engines need to be connectable only in the co-simulation 
approach, in which parts of the overall simulation are simulated in different 
environments. 

 Compared with the transformation based approaches, the co-simulation 
approach may require additional work related to coupling simulations and 
managing simulation cases for several simulation engines. Such simulation 
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cases can evaluate the closed-loop system in different operation points, for 
example. 

 Both control application and plant modeling languages must be transformable 
in the transformation based simulations since they are used either as source or 
target models of the transformations. With the co-simulation approach, the 
languages do not have to be transformable, provided that they are simulatable 
so that the models do not have to be transformed to a simulatable form first12.  

The results are also summarized in Table 2. In the table, PML and CAML refer to Plant 
Modeling Language and Control Application Modeling Language, respectively. 

Table 2 A summary of comparison between co-simulation and transformation based MiL-
simulations within a single simulation engine. (Modified from [P5]) 

Characteristic of the simulation 
approach 

Co-
simulation 

Transformation based 
MiL  with single 

simulation engine 

Requires simulation tool connectability X - 

Requires additional work with 
simulation cases 

X - 

Requires additional simulation 
management 

X - 

Requires the transformability of PML - X 

Requires the transformability of CAML - X 

With respect to the criteria above, the restrictions and requirements of the 
transformation based approaches (to MiL simulation using a single simulation engine) 
are the same. The approaches, though, place different simulatability requirements to the 
modeling languages. The simulatability requirements can also be avoided by using two 
transformations - to transform both plant and control application models to a 
simulatable form. The results of comparing these approaches, with respect to the 
number of required transformations as well as simulatability of languages, include the 
following: 

                                                
12 However,  transformability  of  control  application  modeling  language  can  be  required  by  the  MDD  
process used to develop the control application model. 
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 The approaches to transform plant models and to transform control 
application models require necessarily one transformation. If both models are 
transformed, for example because they are not simulatable, the number of 
required transformations is two. 

 In the approach to transform plant models (to control application models) the 
control application modeling language must be simulatable but the plant 
modeling language does not. In the approach to transform control application 
models (to plant models), the plant modeling language must be simulatable 
but the control application modeling language does not. Transforming both 
the  models  (to  a  simulatable  form)  does  not  require  the  languages  to  be  
simulatable. 

The  results  are  summarized  in  Table  3.  In  the  table,  TPM,  TCAM  and  TPM&CAM  
refer to Transforming Plant Model, Transforming Control Application Model and 
Transforming both Plant Model and Control Application Model, respectively. 

Table 3 A summary of comparison between the transformation based MiL simulations within a 
single simulation engine. (Modified from [P5]) 

Characteristic of the simulation approach TPM TCAM TPM&CAM 

Number of required model transformations 1 1 2 

Requires the simulatability of CAML X - - 

Requires the simulatability of PML - X - 

Based on the comparisons, it is difficult to draw conclusions on which of the approaches 
would be the most recommendable. In practice, also current plant engineering processes 
and possible available process simulation models would be relevant factors. The co-
simulation approach requires more simulation management and coupling work than the 
transformation based approaches. It does not necessarily require model transformations. 
A transformation, however, is required if either the control application or plant model is 
not simulatable. The approach to transform plant models (to control application models) 
requires either simulatability of the control application model or an additional (second) 
model transformation. For example, this second transformation would be required in 
case of UML models that are usually not simulatable. 
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4.3 Model-in-the-Loop Simulating UML AP Models 

The developed approach to simulate UML AP models, which is described in detail in 
publications [P3] and [P4], uses the general Model-in-the-Loop (MiL) simulation 
approach. A single simulation engine is used to simulate both control and plant parts of 
the closed-loop model. A model transformation is used to create a ModelicaML 
simulation model of the control application, which is integrated (by the transformation) 
to an existing plant simulation model. The result is a closed-loop simulation model of 
the controlled plant. With respect to the classification of approaches to create 
simulations, the approach thus falls to the category of transforming control application 
models. 

The following sub-sections will briefly present the simulation language used in the 
approach, ModelicaML, and the approach to create and integrate control application 
simulations to plant simulations. 

4.3.1 ModelicaML as a Target Simulation Language 

Modelica is an object-oriented, equation based simulation language. The basic concepts 
of the language are (simulation) classes. Simulation classes contain properties, 
equations (that determine the values of the properties) as well as connectors with which 
simulation class instances can be connected together. Similarly to object-oriented 
programming languages, Modelica classes can inherit properties and, for example, 
equations of super classes. Simulatable Modelica models consist of simulation class 
instances that are connected together using their connectors. Classes can also consist 
hierarchically of other classes. 

In many tools, Modelica models can be composed by instantiating and connecting 
simulation classes graphically whereas plain simulation classes can be defined with the 
textual syntax of the language [P3]. In addition to object orientation, an important 
feature of Modelica is acausality. Since models are mathematically described by 
equations, instead of, for example, statements that are applied in an order, the order in 
which the equations become defined is usually not relevant [P3]. The use of equations 
also improves the re-use potential of simulation classes since equations do not specify a 
data flow direction [80]. However, in addition to equations the language includes an 
algorithm concept, for performing calculations in which statements are applied in order 
[P4]. 
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ModelicaML, on the other hand, is a UML profile for creating, reading, understanding 
and maintaining Modelica models with UML tools. [20] The profile consists of 
stereotypes and tagged values that correspond to the concepts and keywords of the 
textual Modelica language. With the use of the profile, Modelica simulations can be 
defined in UML models using suitable diagram types. For example, composite structure 
diagrams can be used for representing how a simulation class consists of instances of 
interconnected (other) simulation classes. The behavior of simulation classes can be 
defined e.g. with textual equations or UML state machines, the execution semantics of 
which have been addressed in [81]. 

Choosing Modelica as the target simulation language in the approach is a result of 
several factors. Modelica is genuinely object-oriented similarly to the future 
programming languages of control applications, e.g. the latest version of IEC 61131 
[30]. Applications and simulation models can thus have a similar structure. Modelica 
promotes the use of libraries, so that platform and vendor specific blocks can be re-used. 
Existing model libraries that are part of the language also facilitate the development of 
plant (process) models. Modelica is defined as an open specification. In addition, the 
ModelicaML implementation of OpenModelica [21] has been implemented with the 
same modeling and metamodeling techniques and tools as the UML AP implementation 
[P1]. Both are based on EMF and UML2 plug-ins on Eclipse platform. 

Benefits of the similar background of the implementations include the ability to use 
standard QVT [13] transformations for defining the transformation from UML AP to 
ModelicaML [P3]. The translation of ModelicaML models to textual (simulatable) 
Modelica models, on the other hand, has been made publicly available by 
OpenModelica [21]. 

4.3.2 General Simulation Approach 

The simulation model generation approach assumes that plant models are provided as 
ModelicaML models. In such a model, the main simulation class can be specified, for 
example, with a composite structure diagram (UML) that describes how the system 
consists of its interconnected parts. The parts, instances of lower level simulation 
classes,  can  be  defined  in  the  same  model  or  e.g.  in  library  models.  Both  the  class  
definitions and instances need to reference the ModelicaML profile, which defines the 
ModelicaML stereotypes that map UML concepts to Modelica concepts. The purpose of 
the transformation, then, is to add control application specific simulation classes and 
their instances to the plant model, parameterize the instances and connect the instances 
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to the plant simulation with equations. An example model structure before and after 
applying the transformation is presented in Figure 12. 

 
Figure 12 The transformation adds the control application specific parts to an existing plant model. 
(Modified from [P3]) 

In the process, simulation class counterparts of platform independent Automation 
Functions  (AFs)  are  copied  from  a  library  contained  by  the  tool  [P3].  To  support  
platform specific AFs, the transformation is capable of using external libraries that 
contain simulation class counterparts to such platform specific AFs [P3]. Lastly, to 
support application specific functionalities, the transformation is capable of creating 
simulation class definitions for AFs the functionality of which is described with Logic 
Diagrams [P3] or with Automation Sequence Diagrams [P4]. 

In detail the process that is illustrated in the figure above is presented in [P3]. 
Simplified, the process is performed as follows. 

 The user of the tool initiates the transformation, selects the model Package to be 
exported to the simulation and selects the plant simulation model. 

 ModelicaML class definitions corresponding to platform independent AF 
concepts are copied to the plant model from a library model. 

 Platform specific AFs that are used in the control application model are 
identified based on the platform specific stereotypes that they apply. Simulation 
class definitions corresponding to them are copied to the plant model from the 
profiles that define the (platform specific) stereotypes. 
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 Application specific AFs, which are defined either with Logic Diagrams or 
Automation Sequence diagrams, are identified. Simulation class definitions 
corresponding to them are created. These processes are presented in detail in 
[P3] related to Logic Diagrams and in [P4] related to Automation Sequence 
diagrams. The processes are also briefly described in Sections 4.3.2.1 and 
4.3.2.2, respectively. 

 Instances of simulation classes are instantiated to the plant model according to 
the AFs in the control application models. In the first phase, they become 
properties of, for example, the main simulation class in the plant model. 

 The types of the newly created properties are set so that they become instances 
of the simulation class definitions. 

 The newly created instances of the simulation classes are connected together 
according to the control application model. Parameters, if any, are set based on 
the tagged values of platform specific stereotypes. 

 Simulation class instances that interface with actuators and sensors of the plant 
model are connected to them based on the channel ID attributes of the AFs.  

 Sufficient ModelicaML stereotypes are applied to the created model elements as 
required. For example, instances of simulation classes apply <<Component>> 
stereotype. 

The  process  is  thus  quite  straight-forward  but  sufficient  for  its  purpose  [P5].  The  
simulation approach also partially re-uses work presented in Chapter 3 of the thesis. 
Platform specific simulation class libraries corresponding to platform specific AFs can 
be added to the tool environment, similarly to the libraries of platform specific AFs, see 
3.4.5. In this case, the library models should include the platform specific stereotypes, 
template AFs (for completing interfaces) as well as the simulation class counterparts of 
the blocks. Also the functionality to complete the interfaces of platform specific AFs 
can be used (as presented in 3.4.5) in order to use platform specific ports in models and 
simulations. 

4.3.2.1. Processing of Logic Diagrams 

In UML AP, Logic Diagrams can be used to describe the inner logic of AFs. A 
metamodel presenting the modeling concepts that can be used in the diagrams is 
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presented in Figure 13. The existing (related) UML metamodel concepts are in the 
figure  presented  with  a  gray  color.   As  presented  in  [P3],  all  concrete  AFs  (in  the  
metamodel)  extend  the  abstract  AF  concept  and  are  thus  also  kinds  of  
StructuredClassifiers.  Thus,  they  are  able  to  contain  Properties  and  Ports  as  well  as  
Connectors with which Properties can be connected together. Since the Operations and 
the Constant concept of the metamodel are extended from the Property concept, AFs are 
able to contain instances of them. 

 
Figure 13 The metamodel of the Logic Diagram concepts including related UML metamodel 
concepts. (Modified from [P3]) 

The process of creating Modelica simulation classes based on Logic diagrams is by 
nature simple and described in detail in [P3]. Simplified, for each operation in a diagram 
the transformation creates a variable (Property) with a suitable (e.g. Boolean) data type. 
Equations to determine the values of the variables are then defined based on the 
metaclasses of the operations and Connectors coming into the operations. The 
Connectors can always be followed to other operations, which are in the Modelica 
models represented by other variables, or Ports. Simplified, the transformation is 
performed as follows. 

 A new simulation class definition is created for each AF with a Logic Diagram 
definition. 
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 A Port with the same name and a corresponding type is created (to the class 
definition) for each Port contained by the AF. 

 A variable (Property) with the same name and a corresponding type is created 
(to the class definition) for each LogicalOperation contained by the AF. 

 An OpaqueBehavior element is created to the class definition to contain the 
equations (text) to be created to determine the values of the variables. 

 The equations to determine the values of the variables are created based on the 
metaclasses of the LogicalOperations (e.g. OR) and Connectors coming into the 
Operations. 

 The newly created elements are set to apply sufficient ModelicaML stereotypes, 
e.g. <<Model>>, <<ConnectionPort>> or <<Variable>>. 

In the approach, the values of the variables are thus determined with equations. Since 
equations apply all the time, the order in which the equations become defined is usually 
not relevant. For example, the NOT operations in the Logic Diagram example of Figure 
14 have been transformed to (Boolean valued) Properties the values of which equal to 
logical  not  operations  of  the  values  of  the  Ports  (that  are  connected  to  the  NOT  
operations). However, if Boolean valued loops (inside diagrams) are identified by the 
transformation, they are handled by creating algorithmic statements instead of 
equations. The order in which the statements should be applied is asked from the user of 
the tool. This is an interactive feature of the model transformation [P3]. 

 
Figure 14 An example of transforming Logic Diagram to ModelicaML. (From [P5]) 
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4.3.2.2. Processing of Automation Sequence Diagrams 

In UML AP, Automation Sequence Diagrams (ASDs) can be used to describe the 
sequential behavior of AFs [P4]. A metamodel that presents the essential concepts that 
are used in ASDs is presented in Figure 15. The existing (related) UML metamodel 
concepts are in the figure presented with a gray color. 

 
Figure 15 The simplified metamodel of the Automation Sequence Diagram concepts including 
related UML metamodel concepts. (Modified from [P4]) 

Sequences, which are the root elements of ASDs, consist of Steps that are the basic 
procedural elements in the approach. Similarly to states (of UML state machines) Steps 
contain EntryActivities, StepActivities and ExitActivities that are executed when 
arriving to the Step, during the Step and when exiting the Step, respectively. Steps can 
also reference other (sub) Sequences, which can be defined in other ASDs. Sequences 
can preserve process items and devices for their use with Allocations that are released at 
the end of the Sequences. The execution order of Steps in a Sequence is determined by 
Transitions as well as pseudo steps (which are not shown in the metamodel). Pseudo 
steps include initial and final steps as well as fork and join steps that can be used in a 
similar manner than the corresponding pseudo states of UML state machines. 
Transitions may also contain different kinds of conditions to control when they are 
fired. 

Sequences, thus, represent the sequential behavior of AFs, which are represented by 
Modelica classes in simulations. To simulate the behavior of a Sequence, the 
transformation creates variables and algorithmic code to be owned by the Modelica 
class that corresponds to the AF that owns the sequence. The systematically named 
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variables are used to keep track of the execution of the Sequence. The algorithmic code, 
which utilizes element type specific code templates, on the other hand, changes the 
values of the variables according to the Sequence and performs the Activity code related 
to EntryActivities, StepActivities and ExitActivities. As described in detail in [P4], the 
variables are created according to the mappings in Table 4. 

Table 4 Mappings between UML AP and UML (ModelicaML) model elements (modified from 
[P4]). 

Source model 
(UML AP) 

Target model (UML with ModelicaML) 

Element Element Name Type 

Sequence 
Property Seq. name Boolean 

OpaqueBehavior Seq. name + “Algorithm” - 

Step 
Property Seq. name + Step name Boolean 

Property Seq. name + Step name + 
“Phase” 

Integer 

Transition13 Property Seq. name + Step name + 
“Time” 

Double 

Allocation 

Property Seq. name + Allocation 
name 

Boolean 

Class “Allocations” - 

Property Device ID Integer 

Initial (pseudo step) Property Seq. name + “Initialized” Boolean 

Final (pseudo step) Property Seq. name + Final (step) 
name 

Boolean 

Fork (pseudo step) Property Seq. name + Fork name 
+ “Branch” + # 

Boolean 

Join (pseudo step) Property Seq. name + Join name Boolean 

 

Steps, Allocations, (sub) Sequences and pseudo steps are in the algorithmic code 
handled with “if – else if” constructs so that they can be each entered only once [P4]. 
This is necessary because Modelica models are executed cyclically so that execution 
must continue from the phase in which it ended in the previous cycle. Steps keep a 
record on which Activities have been executed. Allocations are assumed to be next to 

                                                
13 The transformation creates variables for Transitions only if their transition condition is of type timeout. 
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initial (pseudo steps) and are released automatically at the end of the sequence. Fork-to-
join regions are handled with a variable for each branch. For the execution to proceed 
from a Join, all the branches must have reached it. An example illustrating how 
algorithmic constructs are created to simulate a simple Sequence is presented in Figure 
16. 

 
Figure 16 An Automation Sequence Diagram (ASD) and the corresponding Modelica algorithm 
section. (From [P4) 

As presented in [P4], the Modelica code structures resemble the structures that can be 
used for executing UML state machines, see [81] and [82]. The ASD diagram type has 
also been extended from state machines [P4]. However, because of differences between 
the modeling notations, the work related to simulating state machines could not be re-
used directly. For example, Sequences of UML AP can have several branches executing 
concurrently and independently of each other. Sequences can also include Allocations, 
for which there are no corresponding concepts in state machines. Another related 
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notation of UML, activity diagrams, would not enable activities to be broken up e.g. to 
StepActivities and ExitActivities [P4]. 

The restrictions of the developed simulation approach include that Sequences are 
always contained by AFs, so that AFs describe their sequential behavior. However, an 
AF can contain several Sequences that can be executed simultaneously. In addition, it is 
currently required that branches exiting a Fork in a Sequence meet each other in exactly 
one join. Lastly, a restriction in the approach is that it does not support looping so that 
Steps of a Sequence would be executed continuously, several times. However, in 
published simulation experiments, in which Sequences have been used to model e.g. 
start-up sequences and changing operation points, the restrictions have not caused 
difficulties. 

4.3.3 Observations from Applying the Simulation Approach 

As summarized in [P5], the simulation approach has been developed incrementally, in 
an agile manner and published in several articles including [P3] and [P4] as well as [83] 
and [84]. The basic transformation approach, as presented in [P3], has been specified 
with QVT operational mappings language. The executable (Java) transformation code 
that is used in the Eclipse environment was generated with SmartQVT tooling and 
extended with a custom Java class, in order to implement the interactive features of the 
transformation, for example. The transformation was then integrated into the tool 
environment by packaging it to a plug-in that implements an extension to the export 
extension point of the tool. (See Section 3.4.3.) The Logic Diagram modeling concepts 
and  the  diagram  type,  which  was  not  part  of  the  original  UML  AP  tool,  were  
implemented according to the procedures described in Sections 3.4.1 and 3.4.2, by 
extending the metamodel with EMF and by implementing the diagram types with the 
Topcased tooling. 

In the simulation experiments that are presented in the articles ([P3], [P4], [83] and 
[84]) the plant models to be controlled have covered both machinery and process 
industry processes. In terms of numbers of equations, the complexity of the controlled 
processes has varied from a few equations to over 1400 equations, which also 
demonstrates the scalability of the approach to practical, non-trivial processes with 
industrial size and complexity [P4], [P5]. The control applications that have been 
simulated have covered different kinds of control functions including binary valued and 
feedback control, interlocks and sequences. 
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The observed benefits from applying the simulations are summarized in [P5]. The 
simulations have enabled prototyping interlocks and control solutions, comparing 
alternative interlock solutions as well as searching acceptable tunings for controllers to 
achieve sufficient dynamic performance. Simulations have revealed shortcomings in 
requirements and implementations. Lastly, simulations have been used to study 
exceptional and hazardous situations, for example by assessing interlock solutions 
during hazardous set-points. With respect to the common aspects of basic control 
systems,  the  following  sub-sections  summarize  how  they  are  supported  by  the  
simulation approach and in which publications the aspects have been addressed. 

4.3.3.1. Binary and Feedback Control 

Feedback and binary (valued) control structures, for actuators such as motors and 
valves, have been utilized in all the published simulation experiments. The simulated 
structures have been most often control loops consisting of measurement, control, 
output and possibly interlock AFs. In [3], a crane system was driven with three 
feedback-controlled (and interlocked) motors. In [4], the control solution for a pulp 
batch production system included 2 feedback controllers, one of which was binary 
valued. Binary valued controls were also used for several valves, according to a control 
sequence [P4]. In [83] and [84] the plant models were controlled with an interlocked 
feedback control loop and with three individual control loops, respectively. 

Binary and feedback control loops can in the approach consist of both platform 
independent and platform specific AFs, for which simulation counterparts can be re-
used from libraries. In addition, however, binary valued controls can be specified with 
Logic Diagrams, for example to activate or lock actuators in specific circumstances, and 
with Automation Sequence Diagrams, for example to activate or lock actuators 
according to progress of a control sequence. 

4.3.3.2. Interlocks and Safety Functions 

Interlocks are often specific to applications and difficult to re-use. Interlocks are used in 
control systems to protect the systems to be controlled from causing harm to themselves 
or humans [P4]. For example, they can be designed to stop devices and actuators or to 
constrain set-points based on the measured states of the systems. Currently, UML AP 
supports the specification of interlocks with Logic Diagrams that are used by the 
simulation transformation as a basis for creating new simulation classes. Support for 
interlocks was, thus, developed into the language after [P2] in which support for them 
was assessed as an important further development target. In the published simulation 



 

 

66 

experiments, interlocks were defined and simulated in [P3] to constrain the set-points 
for the trolley position and jib angle of a crane.  In [P4],  a Logic Diagram was used to 
specify a temperature controller (thermostat). For [83], Logic Diagrams were used to 
specify alternative interlock approaches for a cart system which were then simulated in 
order to compare their performance. 

In addition to interlocks, Logic Diagrams could be used for the specification of logic of 
safety functions. However, in addition to the actual interlock (and safety function) logic, 
interlocks and safety functions often require locking and releasing outputs to actuators 
and devices. To enable this, platform specific AFs can be defined for actuators so that 
the AFs include interface ports for the signals. 

4.3.3.3. Control Sequences 

In addition to interlocks, also sequential control activities are often specific to 
applications. Sequences are needed by, for example, process industries to perform the 
start-ups of complex processes such as power plants and to drive the processes to their 
designed operation points. In a similar manner, shutting down a process in a controlled 
manner may require changing set-points as well as activating and disabling devices in a 
specific order [P4]. 

On the other hand, batch processes constitute a challenging domain of industrial 
processes. In batch industries, production processes can require, for example, the 
addition of source materials and substances according to the time constraints and 
achievement of defined process states such as temperatures and concentrations. In UML 
AP, sequential control activities can be defined with Sequences that are described with 
Automation Sequence Diagrams (ASDs) and enable an SFC conformant modeling 
notation.  The  execution  of  a  single  Sequence  is  centralized  in  an  AF  so  that  in  
simulations the contents created based on an ASD are placed into the simulation class 
that corresponds to the AF that owns the Sequence.  

In the published simulation experiments, Sequences have been used only in [P4], to 
specify a control sequence for batch processing of pulp. However, as presented in [P4], 
the support for sequences could have been useful also in the other simulation 
experiments that had been published earlier. Sequences could have been used to define 
set-point trajectories to evaluate the controlled systems in different conditions. Without 
the support, the trajectories in e.g. [P3] and [83] needed to be defined manually. 
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4.4 Discussion 

In  MDD  of  control  applications,  simulations  can  follow  MiL,  SiL,  PiL  and  HiL  
approaches. The simulations can use either a single simulation engine or co-simulation. 
However, because of the application domain specific characteristics, in MDD the focus 
should be on MiL simulations. Control applications are commonly developed for (PLC 
and DCS) control system platforms that already support the use of simulations. In order 
to obtain additional significant benefits, in MDD it should be possible to apply 
simulations earlier, before generating code. Practically this means using models of the 
control applications for (MiL) simulation purposes. The use of MiL simulations during 
control application development does not restrict the use of other (later) simulation 
approaches e.g. after hardware design. Instead, by selecting a suitable plant simulation 
language, the plant simulation model can be re-used. 

In MDD in the domain, MiL simulations can be achieved by (co-)simulating the parts of 
the closed-loop system in different, connected simulation engines and by using model 
transformations. Model transformations can be used to, for example, transform control 
application models to plant models or vice versa. Of these approaches, co-simulation 
has been used e.g. in [71] and the approach to transform plant models in [68] and [69]. 
Included publications [P3] and [P4] describe the approach of the author to transform 
control application models to plant models using ModelicaML as the target simulation 
language. The important features of the approach include the ability to use simulation 
during both platform independent and platform specific development phases, so that 
simulation counterparts of platform specific blocks can be used.  

In addition to the mentioned approaches, closed-loop simulations could have been 
developed by modeling both plant and control application models with a (the same) 
simulation language or by transforming both plant and control application models. 
However, these approaches would have restricted suitable modeling languages or 
required developing and keeping up-to-date two complex model transformations.  

The co-simulation approach and the transformation based approaches to develop closed-
loop MiL simulations were compared in [P5]. Based on the comparison, it is not 
possible to provide a clear conclusion on which of the approaches should be used. With 
the co-simulation approach, plant simulation models need not be processable with 
model transformations. However, technically it can be the most demanding approach 
and it can cause additional work with simulation cases. The approach also requires a 
simulatable control application modeling language or a transformation, so that the use 
of co-simulation does not always reduce the amount of required transformations. 
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The transformation based approaches do not require the coupling of simulation engines. 
However, when transforming plant models, the control application modeling language 
must be simulatable or an additional (second) transformation is needed. Without an 
additional transformation, the approach would not support, for example, UML as a 
control application modeling language. Similarly, transforming control application 
models to plant models requires the simulatability of the plant models or an additional 
(second) transformation. However, in the approach, languages such as UML can be 
used for control application modeling provided that it is possible to generate appropriate 
simulation counterparts for the models. In case of UML AP models, which are not 
simulatable as they are, the simulation model generation was possible. 

The benefits of using simulations in control system development have been reported by 
several researchers and include, among others, improvements to design, development 
and validation of control programs and strategies. With simulations, it is possible to 
improve operator training and to test the control system in dangerous situations. As 
suggested in [P5],  it  is  possible that many of the general  benefits  of simulations could 
be obtained also by using simulations in MDD context. With MDD techniques, it is 
possible to automate simple, repetitive tasks. However, the use of MDD does not 
necessarily affect the need to validate designs and decisions. Within MDD context, 
using MiL simulations, it could be, however, possible to simulate earlier because, for 
example, control system hardware design would not have to be completed. 

The restrictions of MiL simulation within MDD context are related to missing 
hardware. Without a realistic UI, for example, the use of simulations to operator training 
could be difficult. However, there should be no reason why early MiL simulations could 
not be used for simulation tasks that do not require hardware as such. For example, 
verification and validation of control logic, strategies and tunings as well as prototyping 
and testing in small modules are possible [P5]. 

As summarized in [P5], the developed simulation approach has been used in the 
development of both machinery and process industry applications. In the published 
experiments ([P3], [P4], [83], [84]), the approach has enabled prototyping, 
experimenting and comparing control and interlock solutions, determining control 
tunings as well as detecting inconsistencies in requirements and designs. It has also been 
possible to study exceptional situations. Similar benefits have been reported in the other 
referred approaches to integrate simulations into MDD in the domain, for example the 
early validation of control applications [68] with reduced time and effort [69]. 
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Yet to be addressed research questions for future research include how to select and 
connect simulated test cases to the MDD process. In order to facilitate simulation-
assisted MDD, it should be possible to increase test coverage by selecting scenarios in a 
smart  and  systematic  manner.  At  the  same  time,  the  process  should  support,  for  
example, traceability between the modeled requirements being tested, the parts of 
design being tested and the test cases. 
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5 Safety in Model-Driven Development of Control 
Applications 

The use of MDD techniques in safety system development has been suggested by few 
researchers. However, the modeling of safety aspects, perhaps in conjunction with a 
more traditional development process, has drawn more research attention. With 
techniques that are commonly used in MDD, e.g. UML and SysML, the safety aspects 
and their modeling have been addressed in several modeling profiles. Such profiles have 
been specified for different sub-domains of safety applications. 

Work related to using model-based techniques in safety system development has been 
carried  out  in  the  DECOS project.  The  project  is  targeted  to  the  development  of  both  
critical and non-critical functions of embedded control systems [85]. In the approach, 
the preferred means for specifying applications and their functionality is SCADE 
language (Safety Critical Application Development Environment) which is based on a 
formally  defined  data  flow  notation.  It  enables  simulation  at  model  level  and  code  
generation that has been certified against IEC 61508. [73] 

In [86], Biehl et al. attempt to integrate safety analysis into the model-based 
development of embedded control applications in automotive industry. The objective of 
the work is to enable early safety analysis. The solution is to translate the concepts of 
the automotive domain to the generic concepts of safety and error analysis domain. In 
[87],  Guillerm  et  al.  discuss  the  use  of  SysML  to  address  requirements  specification,  
traceability as well as verification and validation in a model driven systems engineering 
process. In the paper, they extend SysML with a profile that supports, for example, the 
modeling of risks and requirements as well as traceability between them. 

UML air-worthiness profile, see [88] and [89], extracts the key safety-related concepts 
of  RTCA  DO-178B  standard  into  a  UML  profile  in  order  to  use  them  to  facilitate  
communication between different stakeholders in software development. The standard, 
RTCA DO-178B, is the de-facto standard within the domain of commercial and military 
aerospace systems that contain software. UML safety analysis profile [90] documents 
hazards by presenting their occurrences with the use of Fault Tree Analysis (FTA) 
notation. The notation enables the modeling of condition sequences leading to hazards. 
Faults and hazards can be traced further to design in order to improve traceability. UML 
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and 
Mechanisms (QoSFT) [55], lastly, includes notations to model risk assessments. Special 
attention is paid to the description of the hazards, risks and treatments of the risks. 
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Architecture design is an essential part of safety system development. Software 
architecture is a fundamental organization of a software system as embodied in its 
components, relationships between them and to the environment, and the principles 
guiding its design and evolution [91]. For safety systems, architectures and architectural 
solutions are addressed by several standards. For example, IEC 61508 [1] gives 
guidance for selecting architectural approaches related to fault and error detection and 
handling, timing as well as management of resources, among other aspects. Redundancy 
and redundancy-related design patterns, so that a calculation is performed redundantly 
or observed by another channel to produce a reliable result, are presented both in 
standards and related literature. For example, redundancy solutions are described in the 
6th part  of  IEC 61508.  Publication  [92]  presents  the  design  patterns  of  safety  systems 
including: Homogeneous Redundancy, Diverse Redundancy, Monitor-Actuator and 
Safety Executive patterns. Design patterns that are targeted to basic control and safety 
systems as well as cooperation between them have been presented also in [93] and [94]. 

In addition to architectural patterns, another important aspect related to software 
architectures is the utilization of architectural knowledge during the development of a 
system. Architectural knowledge can be defined as a sum of architectural design and 
architectural decisions, including rationale for the design [95] . Architecture Knowledge 
Management (AKM), on the other hand, includes coordination and management of 
artefacts (e.g. requirements, design patterns and decisions) related to the architecture of 
a system. 

This Chapter discusses extending the information content of models, which are used in 
MDD, with safety aspects. Requirements and objectives for the extensions are specified 
in Section 5.1. Possible modeling notations and techniques are discussed in Section 5.2. 
The developed extensions as well as tool support to generate documentation based on 
the extensions are presented in Section 5.3. 

5.1 Requirements for Modeling Safety Features 

Related to safety systems and applications, this thesis focuses on extending the 
information content of models that are used in MDD with aspects and characteristics 
that are required for safety systems. In addition to critical safety systems, however, they 
can be of importance also for basic control systems. The techniques and solutions that 
improve  safety  and  related  quality  attributes  in  safety  systems  improve  them  also  in  
basic control systems [P8]. Generally beneficial quality attributes that should be taken 
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into account in safety and basic control system development alike include, among 
others, maintainability, security and reliability. 

Safety is also a virtue that should be a priority in the development of any control system 
- including those of processes and plants that are not capable of causing significant harm 
and are controlled by basic control systems only [P8]. On the other hand, even in case of 
potentially hazardous processes that have specific safety systems, the safety related 
functions of basic control systems, e.g. interlocks, can be beneficial. Such functions can 
be developed to treat hazards and their risks and thus constitute non-certified treatments 
to the risks to improve the overall integrity. They could be seen as additional, non-
certified safety barriers [96] or layers of protection [97] in the defense-in-depth 
principle. Functions of basic control systems, however, are not usually critical and their 
operation principles may differ from those of critical safety functions. Whereas the 
(sole) purpose of safety functions is to maintain safety, the safety related functions of 
basic control systems can be related to productivity,  too.  Before hazardous limits,  it  is  
also appropriate to apply different, more complex approaches to react to the deviations. 

Before critical situations, it can be feasible to try to recover from deviation situations to 
maintain productivity. At critical limits, safety functions are often designed to perform a 
controlled shut-down of the plant or process and to de-energize hazardous devices, if 
possible. The shut-down-approach is with many processes both a simple and effective 
approach to achieve a safe state. The downside of the approach is the lost productivity 
of  the  process,  plant  or  machine.  Restoring  productivity  after  a  shut-down  may  also  
require the complex manual operations of the operating personnel. However, in basic 
control systems, the approaches to recover from the deviations can be more advanced 
than in safety systems. There is no need to develop basic control systems according to 
safety standards or to certify them. Especially, before the critical limits, it is not 
necessary to apply a simple approach to guarantee safety. 

In addition to sharing a process to be controlled, basic control system development can 
benefit from information that originates from safety system development. Whereas 
hazards and their associated risks are the basis for developing safety systems, they can 
aid understandability also in case of basic control systems. Hazards and their related 
risks can provide a rationale for the requirements of safety related functions of basic 
control systems [P6]. Identified hazards can point out the ways in which it is possible 
for the systems to cause harm to their environment. Including this information in models 
can improve the awareness of control system developers over the hazards and related 
risks of the controlled systems. 
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The question, whether safety systems could be produced with model-driven techniques 
in future is interesting. Answering the question thoroughly is out of the scope of the 
thesis. Nevertheless, to develop safety functions with MDD techniques, one would have 
to be able to meet the requirements of safety standards and to produce the required 
documentation. Preferably, the documentation should be produced without excessive 
manual work, with MDD techniques. To enable this, the required information would 
need to be in the models. The following sub-sections summarize requirements related to 
the modeling of hazards, risks and use of standard solutions as well as to supporting 
traceability, correctness and completeness in models. 

5.1.1 Hazard and Risk Information 

The  development  process  of  safety  systems,  considering  the  requirements  of  safety  
standards, is risk driven. For example, IEC 61508 [1] is a standard with a risk driven 
development process. After scope definition, the development process starts from the 
identification of hazards and determination of risks. They are followed by the 
specification and allocation of requirements (to treat the risks) and then proceeding 
towards implementations [P6]. The phases of the process build on information produced 
by earlier phases, starting from the hazards. To the different development phases, 
standards suggest development techniques and measures that promote the properties of 
systematic integrity such as correctness and completeness. Traceability should ascertain 
that the hazards are the basis for – and become treated by - the safety functions [P6]. 

Hazards and their associated risks are thus the basis for specifying and understanding 
safety requirements. However, hazards should be in the scope of models also for, for 
example, traceability purposes [P6]. The hazards of the processes to be controlled 
should be visible to developers that use the models in MDD. Individual hazards should 
have identities with which they can be referred to and linked to other engineering 
artefacts in models and in the development process. Risks, which are associated to 
hazards, should be included in the models. They present the significance of the hazards 
with respect to their likelihood and consequences. 

It should be possible to describe, in a structured manner, how hazards can occur. This 
could improve understanding about the hazards themselves and what is required for 
them to be realized. The detailed information on their realization could also facilitate the 
specification of the requirements for the safety (and safety related) functions, and help 
understanding how the functions can prevent the hazardous situations from occurring. 
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5.1.2 Traceability, Correctness and Completeness 

In safety standards, e.g. IEC 61508 [1], a repeating requirement for the phase products 
of development is traceability between them [P6]. For example, safety system 
requirements need to be traceable to both perceived safety needs (hazards) and software 
safety requirements [P6]. Similarly, software safety requirements need to be traceable to 
both design elements that implement the requirements and to test cases evaluating their 
fulfilment. In addition to traceability, repeating requirements for phase products are 
correctness and completeness [P6]. Correctness and completeness are also properties of 
systematic integrity based on which IEC 61508 [1] (in the third part of it) recommends 
many  techniques  to  be  used  and  not  to  be  used  in  different  phases  of  safety  system  
development. 

Based on the traceability information, it should be possible to confirm, for example, that 
all hazards and requirements are addressed (completeness) by the design of a system or 
by  some  part  of  the  design.  In  addition  to  performing  this  (and  similar)  consistency  
checks, the (traceability) information is required for several other purposes, e.g. for 
focusing inspections on correct parts of design. In addition to functional requirements, 
models should address other safety related requirements and their traceability. Similarly 
to functional ones, these requirements – imposed by standards and regulations, for 
example - should be traceable to design artefacts that fulfill them. 

To support correctness, models and diagrams should be intuitive and on appropriate 
abstraction levels. It should be possible to use models with preferably domain specific 
or otherwise intuitive and informative diagram types. For example, requirements should 
be specified in a formal enough, unambiguous manner and be based on concepts that are 
understandable for the developers. However, the current support of UML for 
requirements specification is limited and based on the use case concept, mainly [P6]. 

5.1.3 Use of Standard Solutions 

The development process of safety systems and applications, including solutions, 
techniques and measures to be used during the development is governed by standards. A 
developer of a software part of a safety system should apply standard compliant 
techniques, measures and solutions. However, in addition to using them, a developer of 
such  a  system  must  be  able  to  prove  the  compliance  of  the  system.  This  is  where  
appropriate documentation is needed [P8]. In order to produce the required 
documentation from models with MDD techniques, the information should be in the 
models and it should be possible to be gathered to a suitable form. For example, it could 
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be useful to enable generating (gathering) documentation on whether or not - and which 
- recommended techniques have been used in design and whether or not the techniques 
are appropriate for the safety levels required from the applications. 

It  is  also  possible  that  the  strict  documentation  requirements  of  safety  systems  are  a  
reason for the scarce use of MDD in safety system development. As discussed in [P8], 
the reason is not that standards would not allow the use of MDD approaches that use 
suitable modeling techniques. Instead, for example IEC 61508 recommends automatic 
software generation as an architecture design technique for all safety integrity levels. 
However, in general, models tend to be more applicable to representing solutions than 
the rationale behind them. For example, many basic concepts of UML are similar to the 
concepts of object-oriented programming languages and can be in MDD used as a basis 
for code generation. However, information on why something has been designed in the 
way it has, or that a solution is a standard one, is often missing. Given the strict 
documentation requirements, it is possible that MDD has not seen to offer possibilities 
to improve the efficiency of development [P8]. 

5.2 Considerations on Implementation Techniques 

5.2.1 Modeling of Hazards and Risks 

The reasons to include hazards in scope of modeling are various, including the ability to 
support traceability between them and requirements as well as to improve the 
understandability of requirements. The modeling of hazards, however, is not supported 
by standard UML or SysML. Nevertheless, there are well-known approaches to model 
the occurrences of hazards that could be taken advantage of. Such approaches include 
those of the UML Profile for Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms (QoSFT) of OMG [55] as well as the safety analysis 
profile [90]. In addition, the profile in [98] supports the modeling of hazards with FTA 
models and with Failure Mode, Effects, and Criticality Analysis (FMECA) models. 
However, the work is focused on incorporating safety requirements in software 
architectures and evaluating the architectures. 

In QoSFT [55], the main objective is not to enable the specification of how hazards can 
be realized. Instead, attention is paid on documenting the magnitudes of risks, i.e. their 
likelihoods and consequences, as well as the compromised assets, stakeholders and 
treatments of the risks. Approaches to treat the risks include avoidance, the reduction of 
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likelihood or consequences as well as retaining and transferring the risks. The tracing of 
risks to requirements is not covered in the profile. 

The safety analysis profile [90] covers both the occurrences of hazards and tracing of 
them to requirements. The definition of how hazards can be realized is supported with 
FTA modeling. FTA models can be used also in a quantitative way and they can aid the 
development of safety functions. Safety functions can be designed to stop the fault and 
event sequences that lead to hazards, for example by shutting down hazardous devices, 
so that for the hazards to occur, also the safety functions would have to fail [90], [P6]. 

5.2.2 Requirements and Traceability 

Traceability is a property the achievement of which can be challenging with traditional, 
document based development processes. Traceability between identified hazards and 
requirements, for example, can be supported in a simple case by specifying explicitly 
the unique identifiers of hazards that the requirements have been specified to treat. 
However, references between documents and specifications can be difficult to keep up 
to date when something is changed. In addition, the generation of traceability matrices 
(or other summaries) from the traceability information and searching for possible 
inconsistencies could be difficult to automate [P6]. By including the information in 
models, some of these tasks could be at least facilitated with automated functions. 

However, support for traceability is limited in UML [P6]. A UML profile, SysML, 
covers traceability with specific relation types such as satisfy and verify. Satisfy 
relations can be used between SysML requirements and design artefacts that fulfil them. 
Verify relations can be used between requirements and (SysML) test cases determining 
their fulfilment. Relations of SysML can be also searched from models in order to, for 
example, generate tables or matrices. The SysML traceability concepts do not support 
all the traceability requirements of safety standards but form a basis that can be 
extended [P6]. Extensions have been specified, for example, in the safety analysis 
profile [90] that supports the tracing of hazards to requirements. In addition, the tracing 
of  requirements  to  design  was  supported  with  trace  relations  already  in  the  original  
UML AP specification [52]. 

In addition to traceability, support for requirements specification is limited in UML 
[P6]. Of the concepts of UML, only use cases are intended for specifying interactions 
between systems and their users. However, because of limited information content of 
(UML models of) use cases, they are often accompanied with separate descriptions 
(documents)  on  what  is  required  to  happen.  In  SysML,  requirements  can  be  specified  
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with textual requirement concepts that give requirements exact identities but can hardly 
be characterized as formal. UML AP requirement concepts extend SysML ones with a 
classification based on the basic need and could also be extended with safety related 
information content. With safety related information, they could also enable automating 
various consistency checks. For example, [P6] mentions checking the compliance of 
safety (integrity) levels of requirements that are associated to each other and checking 
that approaches to reduce risks are documented in the models. 

Domain specific requirement specification techniques, which are not related to UML, 
include IEC standards 62424 [53] and IEC 61804 [99]. These standards cover the 
structured presentations of required control functionality and may be familiar to 
professionals in the domain [P6]. In addition, logic diagrams have been traditionally 
used in the domain for the specification of, for example, safety related interlocks [100]. 
As a semi-formal technique, logic diagrams are acceptable for requirements 
specification, in addition to detailed design and architecture design, also from the point 
of view of the safety standards. 

IEC 62424 [53], which is also a supported source information format in the AUKOTON 
development process, defines a specification for the representation of Process Control 
Engineering (PCE) requests. PCE requests can be used in Piping and Instrumentation 
(P&I)  diagrams  and  they  enable  data  exchange  between  P&I  tools  and  control  
engineering tools. IEC 62424 also allows the identification of PCE requests that are 
related to safety and annotating their respective safety levels. The levels can be 
categorized with SILs or Performance Levels (PLs) of EN ISO 13849-1 [101]. 
However, defining precise safety function logic is not supported in IEC 62424. 

IEC 61804 [99], on the other hand, originates from the power generation industrial 
sector and utilizes IEC 61499 FBs for detailed requirements specification. Before using 
the FB language, required control functions are identified and marked in P&I diagrams 
and structured for presentation in control hierarchy diagrams. 

5.2.3 Standard Solutions in Models 

One of the key concepts of MDD is the shifting of development efforts from (written) 
documents  to  models  and  the  ability  to  automate  parts  of  the  model  processing.  For  
special purposes, e.g. safety system development, it could be possible to maintain 
separate documentations. However, this would be against the idea (of MDD) and could 
reduce the potential to benefit from MDD. A more appropriate approach would be to 
include the required information (for producing the documentation) in the models in the 
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first place [P8]. The information on (also) the use of standard solutions and techniques 
should, thus, be in the models. Models should include information on where and how 
specific techniques and solutions have been used. 

However, as discussed earlier in Chapter 3, modeling languages such as UML include 
weak support for standard solutions and, for example, design patterns. Also in general, 
models tend to present rather solutions than rationale behind them [P8]. In another 
publication [102], these challenges are addressed with the means of Architecture 
Knowledge Management (AKM) and use of an Application Lifecycle Management 
(ALM) tool, Polarion14.  Use  of  an  external  tool  (in  addition  to  MDD tools),  however,  
could lead to redundant information [P8]. This is why some documentation 
functionalities presented in [102] have been in [P8] implemented by extending the 
design pattern modeling concepts. In this way, the functionalities have been included in 
the UML AP tool that is used throughout the MDD process. 

Design patterns, with safety related extensions, could be used for documenting the use 
of standard solutions in safety system development [P8]. For example, extensions to the 
pattern concepts could be related to specifying the acceptability of the patterns for 
different safety levels. Design patterns could then be used for modeling and marking 
uses of techniques that standards recommend. For example, in IEC 61508 [1] 
development techniques, measures and solutions can be recommended (R), highly 
recommended (HR), non-recommended (NR) or without a recommendation for each 
SIL  [P8].  For  a  system  of  a  specific  safety  level  (SIL)  a  developer  should  use  
recommended and highly recommended techniques and avoid the use of non-
recommended ones. 

5.3 Safety Related Extensions to UML AP 

5.3.1 Hazard and Risk Information 

The hazard modeling approach that has been integrated into UML AP is presented in 
[P6] and utilizes the well-known Fault Tree Analysis (FTA) notation. FTA modeling is 
also  used  in  both  [90]  and  [98].  FTA  diagrams  allow  depicting  the  occurrences  of  
hazards in a graphical manner. They are analytic and intuitive for both safety system 
and control system developers. Occurrences of hazards can be presented as the logical 

                                                
14 http://www.polarion.com/products/alm/index.php 
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combinations and sequences of faults and other conditions. FTA models could be used 
also for the quantitative analysis of hazards, for example by including probabilities of 
faults and conditions in the models and by applying probability calculus [P6]. 

FTA is supported with a set of modeling concepts that enable depicting fault and 
condition sequences that can lead to hazards. The concepts have been developed to 
extend the UML AP implementation and they are presented in Figure 17, which is based 
on pictures and description in [P6]. Hazards as well as fault and condition sequences 
leading to them are presented with different types of HazardModelNodes. The node 
types include Hazard, RequiredCondition, ResultingCondition, Fault as well as 
LogicalOperations, which are not shown in the figure. In the approach, Hazards include 
attributes  for  the  specification  of  their  associated  risk  values  so  that  risks  cannot  be  
modeled independently from hazards. In this way, it can be easily made sure that each 
Hazard in a model has an associated risk value, so that models are not incomplete with 
respect to this aspect. 

The tracing of hazards to requirements is supported in the approach with the 
RiskTreatment concept. In addition to supporting traceability, RiskTreatments enable 
documenting the approaches to treat the risks. The treatment options, which are based 
on the alternatives in QoSFT profile [55], are in the metamodel specified in the 
RiskReductionApproach enumeration. Hazards can be related to each other with 
different kinds of relations that are classified in the HazardRelationKind enumeration. 
Additionally, the metamodel defines two other enumerations: LikelihoodKind and 
ConsequenceKind. The classification of risks that is supported by the concepts follows 
the qualitative classification in annex B of part 5 of IEC 61508 [1]. With agreed limits, a 
quantitative classification or some other qualitative classification could be supported as 
well. 
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Figure 17 Metamodel of the (FTA) modeling concepts excluding concrete logical operation types. 
(The metamodel is based on the pictures and description in [P6].) 

Thus, instead of a new one, an existing, well-known notation (FTA) was integrated into 
UML AP to be used in the MDD context. This is also in general the approach by the use 
of which MDD could be extended for the needs of safety system development. Instead 
of new (unfamiliar) notations, already recommended ones could be used but in a new 
(MDD) context. In this way, it would be easier for authorities to allow the use of model-
driven techniques in safety system development. However, in the MDD context, it could 
still be possible to benefit from the possibilities to automate model processing. 

As  suggested  in  [90],  the  use  of  FTA diagrams can  also  facilitate  the  development  of  
corrective functions. The functions can often be designed to stop the fault and condition 
sequences that lead to hazardous situations. In this way, for the original hazard to occur, 
also the safety functions would need to fail in preventing the required conditions (of 
hazards) to be realized [P6]. To illustrate the simple idea, consider, for example, the 
simple FTA diagram in Figure 18. In the example tank system of [P6], running pump 
M100 dry can be caused by using the pump when tank B100 is empty. A simple 
approach to prevent the hazard from occurring could be to prevent the required 
conditions from being realized at the same time. For example, this could be achieved 
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with an interlock that would force the pump to shut-down when measured level in the 
tank is below an agreed limit. 

 
Figure 18 An example FTA model related to a tank system used as an example in [P6].   

The FTA-related extensions to the UML AP modeling concepts and diagrams have been 
implemented with EMF and Topcased according to the procedures described in Sections 
3.4.1 and 3.4.2. Tool supported functions that utilize the hazard concepts to automate 
documentation generation and to perform consistency checks will be presented in 
following sub-sections. 

5.3.2 Requirements Modeling 

Functional (UML AP) Automation Requirements are structured concepts with specific 
attributes e.g. for id and source. In a manner similar to AFs, they have been divided into 
a hierarchy, based on the basic need, for example to measure a quantity or to compute a 
control signal [P6]. To model dependencies between required functionalities the 
approach includes RequirementInterfaces. With RequirementInterfaces, it is possible to 
model, for example, a required control functionality being dependent on a required 
measurement functionality, i.e. that a measurement is needed by a control task. 
RequirementRefinements enable including additional information in Requirements. 
They include both a semantic meaning and value, to support various (possibly in-house) 
practices and needs. For example, a refinement could be used to define a measurement 
range related to an analog valued measurement. Two specific RequirementRefinement 
types are also used for including safety-related information in requirements. They are 
presented in Figure 19. 
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Figure 19 The safety related Refinements of UML AP that can refine StructuredRequirements. 
((Modified from [P6]) 

With the first safety related refinement type, TechnologyAllocation, it is possible to 
allocate system safety requirements for E/E/PE (Electrical, Electronic or Programmable 
Electronic) safety systems, for other technology safety systems and for external risk 
reduction facilities. This classification is based on the classification in IEC 61508 [1] 
(part 1) that is used in the safety requirements allocation lifecycle phase. The other new 
refinement, SILRefinement, enables specifying required safety levels (SILs) for 
functional safety requirements. That is, SILRefinements refine functional requirements 
with information on which integrity levels the requirements must be implemented. 

The detailed logic of safety and, for example, interlock requirements can be specified 
with  UML  AP  Logic  Diagrams  that  were  discussed  in  Chapter  4  in  relation  to  
generating simulation classes.  Logic diagrams, as a semi-formal method, are highly 
recommended by IEC 61508 for requirements specification on all SILs [P6]. They 
enable the specification of logic from input RequirementInterfaces to output 
RequirementInterfaces of Requirements. Technically, the use of UML AP Logic 
Diagrams (for this purpose) is in the tool environment possible because the root 
elements of the diagram type are UML Classes15. 

                                                
15 The StructuredRequirement concept extends the SysML Requirement concept that in turn extends the 
Class concept of UML. Similarly, RequirementInterfaces can be used as Ports in Logic Diagrams because 
they extend the UML Port concept. 
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5.3.3 Traceability and Documentation Support 

As presented, UML AP concepts include support for explicit traces between hazards 
and requirements that have been specified to treat the hazards as well as between 
requirements and implementing design elements. Between hazards and requirements, 
the trace concepts are called RiskTreatments. Between requirements and design 
(elements) the concepts are called TraceRelations [P6]. Technically the traces are one-
directional. However, by iterating through traces in a model, it is possible to support 
backward traceability. For example, by iterating through RiskTreatments in a model it is 
possible to find all hazards that are traced to a requirement. 

A RiskTreatment connects exactly one Hazard to exactly one (UML AP) Requirement. 
However, it is possible for a Hazard to contain several RiskTreatments. On the other 
hand, for a Requirement, there can be several RiskTreatments that trace different 
hazards  to  the  Requirement.  In  this  way,  the  treatment  concept  has  been  kept  simple  
although it is still possible to e.g. specify that a Hazard is treated with several safety 
function requirements and that a Requirement (of a safety function) is to treat several 
Hazards. TraceRelations are contained by Requirements (that they trace), in a manner 
similar to RiskTreatments that are contained by the Hazards that they trace. A 
TraceRelation connects a Requirement with a number of implementing elements that 
take part in implementing the Requirement [P6]. 

Both RiskTreatments and TraceRelations are processable with, for example, model 
query and transformation techniques and they support both forward and backward 
traceability. To demonstrate how to benefit from the hazard, risk and traceability 
elements, they are used in the tool environment in several functions that have been 
developed  to  facilitate  the  development  work,  see  [P6]  and  [P8].  Properties  of  
systematic integrity that the functions have been developed to improve include 
correctness and completeness. 

Included publication [P6] introduces traceability matrices that are compiled based on 
the traceability elements. The matrices are compiled (to MS Excel sheets) by collecting 
Hazards (or Requirements) to rows and Requirements (or elements) that they are traced 
to in columns. In addition to presenting the traceability information in a compact form, 
the matrices support completeness. Possibly overlooked hazards and requirements, 
which are not traced further but should be addressed in the design, are in the matrices 
highlighted (warned) with a red color. 
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An example hazard traceability matrix that was used in [P6] is presented in Figure 20. 
In the example below, all Hazards are traced further so that they are not warned (with 
the  red  color)  by  the  tool  [P6].  Such  a  Hazard  (or  a  Requirement)  that  would  not  be  
traced further would indicate either a problem in the design or the model not being up-
to-date. In either case, the situation should be warned by the tool so that it could be 
inspected by a designer. The traceability matrices were in [P6] exported to Microsoft 
Excel sheets. This documentation generation functionality has been later extended with 
documentation support related to design patterns in general [P7] and especially the 
design patterns of safety systems P8]. 

 
Figure 20 An example Hazard traceability matrix from [P6]. 

In addition to traceability and completeness, including safety information in models can 
enable automating various consistency checks. As suggested in [P6], it could be easily 
checked that safety requirements that are related to each other have compatible integrity 
(SIL) refinements. For example, a required measurement that a required safety function 
is dependent on must have an equal or higher integrity than that of the (requiring) safety 
function. Otherwise, the safety function would become dependent on a measurement 
with lower integrity. In a similar manner, it could be easily checked that all 
Requirements are traced to (SysML) test cases and that all RiskTreatments document a 
risk reduction approach, for example. 

5.3.4 Patterns of Safety Systems 

The design pattern approach presented in [P7] and Section 3.4.4 is in [P8] extended for 
the modeling needs of safety systems. As summarized in [P8],  the work is intended to 
facilitate the development of safety systems by supporting traceability between standard 
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(safety)  solutions  and  their  use  in  system  designs,  by  enabling  verification  of  safety  
levels  of  solutions  (in  comparison  to  required  levels)  and  by  guiding  the  selection  of  
techniques and solutions. 

A metamodel presenting both the safety-related and previous pattern modeling concepts 
is presented in Figure 21. In the metamodel, concepts that are additional to the previous 
pattern concepts ([P7]) are highlighted with a gray color. A central new concept in the 
metamodel is SafetyPattern, which is intended for modeling the design patterns of 
safety systems. The applicability of SafetyPatterns can be specified for different safety 
integrity levels [P8]. Similarly to recommended techniques and measures in IEC 61508 
[1], a SafetyPattern can be Recommended (R), Highly Recommended (HR), Non-
Recommended (NR) or with a Non-Specified recommendation (NS) for each SIL [P8]. 
The alternatives in the Recommendation enumeration in the metamodel correspond to 
these alternatives. SafetyPatterns, thus, enable modeling measures, techniques and 
solutions that standards recommend. However, the concept can be used also with 
patterns that are related to safety but for which recommendations are not available in 
standards. 

SafetyPatterns that are related to each other can be collected into collections with the 
SafetyCatalogue concept. SafetyCatalogues are intended to contain patterns that are 
often used together and to which sets of patterns that are used in models can be 
compared. In a catalogue, patterns can be related to, for example, a development phase 
or a specific aspect in design. For example, IEC 61508 [1] includes various lists of 
techniques and measures to be used during different software safety lifecycle phases. 
For software architecture design, for example, the standard mentions 27 techniques, 
some of which are alternatives to each other or non-recommended for specific safety 
levels. [P8] 

In addition to PatternRelations, between SafetyPatterns it is possible to use 
Specialization relations. The background of the concept is that for many architectural 
solutions that safety standards recommend, for instance, there are already published, 
more detailed patterns in literature. With the (Specialization) relation, more specialized 
patterns of, for example, pattern literature can be marked as specializations of the 
SafetyPatterns that the standards recommend. The specialized patterns can then be 
considered as alternatives for the general patterns, for example when comparing the sets 
of patterns (used in models) to SafetyCatalogues. 
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Figure 21 The metamodel of the SafetyPattern modeling concepts. (Modified from [P8]) 

The safety-related pattern modeling concepts enable automating various consistency 
checks, providing recommendations on the use of patterns and improving traceability in 
models. These capabilities are demonstrated in [P8] by extending the documentation 
generation support that has been briefly discussed in Sections 3.4.4 and 5.3.3. The new 
documentation sheets are described in [P8] and they are called Safety Catalogue sheet, 
Safety Catalogue Conformability sheet and Safety Pattern Traceability sheet. 

Safety Catalogue sheets, firstly, enable presenting SafetyCatalogues in a tabular form 
that is similar to the form of the recommendation tables of IEC 61508 [1] (in annex A of 
part three of the standard) [P8]. On one hand, the sheet type is intended to facilitate the 
development of SafetyCatalogues to correspond to recommendations of standards. On 
the other hand, the tabular form can be used during development work when 
considering, for example, which solutions, techniques and measures to use. In the 
sheets, patterns are represented as rows of a table. Separate catalogues are printed to 
separate tables. The order of SafetyPatterns in a table is determined based on relations 
(next) between the patterns. Alternatives are in the tables assigned same numbers but 
different letters to indicate them being alternatives to each other [P8]. 

An example Safety Catalogue sheet from [P8] can be seen in Figure 22. The table 
presents 15 techniques and measures that IEC 61508 [1] recommends for software 
architecture design. Many of the techniques and measures are such that pattern literature 
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already includes specialized versions of them, for example to implement redundancy 
[28] or to recover from faults [29]. 

 
Figure 22 A Safety Catalogue sheet example presenting 15 techniques and measures that IEC 61508 
recommends for architecture design. (Modified from [P8]) 

Safety Catalogue Conformability sheets present SafetyCatalogues, SafetyPatterns of 
which can be found in the model from which the documentation is exported. Patterns of 
the catalogue, to which the model is compared, are presented in rows, in a manner 
similar to the Safety Catalogue sheet. A separate table is printed for each catalogue. 
SafetyPatterns, instances of which can be found in the model, are marked with a gray 
color to indicate traceability. In addition, the table supports correctness by highlighting 
(with color coding) whether the patterns that are used in the model would be appropriate 
for each SIL. Incompatibility can result from both use of a non-recommended 
SafetyPattern or not using a recommended (or highly recommended) SafetyPattern or 
any of its recommended alternatives [P8]. The last rows of the table present the numbers 
of patterns (excluding alternatives) that have been used and that would be recommended 
for each SIL. 

An example Safety Pattern Comformability sheet from [P8] is presented in Figure 23. 
The sheet presents how requirement specification techniques (that are used in an 
example model) conform to a SafetyCatalogue that has been modeled to correspond to 
the recommendations of IEC 61508 for software requirements specification. According 
to the table, the model includes markings of use of semi-formal methods, forward and 
backward traceability as well as use of computer-aided specification tools. According to 
the table, they are recommended for all SILs and it would not be necessary to use other 
techniques and measures in order to conform to the catalogue. 
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Figure 23 A Safety Catalogue Conformibility sheet presenting the usage of requirements 
specification techniques in a model and their conformability to the recommendations of IEC 61508. 
(Modified from [P8]) 

With the information on required safety levels, on traceability from requirements to 
implementations and on solutions used in the implementations, it is also possible to 
check the consistency between them. This is automated in the third new sheet, 
SafetyPattern Traceability sheet. The sheet traces safety-related requirements (that 
include SILRefinements in them) to Packages that contain implementing design 
elements for the requirements and to SafetyPatterns that are used in the Packages [P8]. 
The table presents SILs related to the requirements, integrity levels required from the 
Packages (which are derived from the requirements) as well as recommendations of the 
Patterns for each SIL. Uses of recommended and highly recommended patterns are 
indicated with a green color whereas uses of non-recommended patterns are warned 
with a red color. 

An example Safety Pattern Traceability sheet from [P8] is presented in Figure 24. 
According to the sheet, the model of the example contains two (safety-related) 
requirements of safety level SIL 1. The requirements have been traced to elements 
contained by the Software Safety Requirements and ControlStructures Packages, so that 
the safety levels required from the Packages are the same. Lastly, the sheet presents the 
SafetyPatterns, which are used in the Packages in question, and indicates, with a green 
color, that the patterns are recommended for the safety levels in question. 
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Figure 24 A Safety Pattern Traceability sheet presenting the traceability of the safety requirements 
of an example system to implementing Packages and to SafetyPatterns used in the Packages.  

In addition to the presented sheets, [P8] envisions tool-supported functions that could be 
used in a constructive manner. For example, a guided process could start from modeled 
requirements that would determine required SILs for required functions. A developer 
could then select a SafetyCatalogue to be used to guide the design or a specific design 
phase, for example architecture design. Based on the catalogue selection and required 
SILs, the tool could suggest patterns to be used. In practice, this scenario could be 
implemented as simply as a modification to the Safety Catalogue sheet, by hiding 
inappropriate patterns based on required integrity levels [P8]. 

The new modeling concepts that are required for SafetyPatterns and for the sheets, see 
the metamodel in Figure 21, have been implemented by extending the EMF metamodel 
used by UML AP tool according to the procedure described in Section 3.4.1. The sheets, 
which present safety-related information, on the other hand, have been developed by 
extending the documentation generation functionality that exports the tables to sheets of 
Microsoft Excel documents [P8]. 

5.4 Discussion 

Hazards and their associated risks form the starting point of development of safety 
systems.  In  order  to  improve  the  support  of  UML AP for  safety  system development,  
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the modeling concepts were extended to enable the detailed presentations of hazards, to 
include safety related information in requirements and with support for documenting the 
usage of standard solutions. 

In the hazard and risk modeling approach, the occurrences of hazards can be described 
with the well-known and intuitive FTA notation. FTA models enable depicting the fault 
and condition sequences that lead to the hazards. With the logical combinations of 
conditions, FTA models support the development of corrective functions, which can 
often be developed to stop the condition sequences leading to the hazards. In the 
approach, risk information, including the probabilities and consequences of hazards, is 
included in the hazards as their attributes. The tracing of hazards to requirements and 
further on, on the other hand, is supported with specific traces. RiskTreatments are used 
between hazards and requirements and TraceTelations between requirements and 
implementing design elements. By nature, the traces are one-directional but possible to 
query in order to support both forward and backward traceability. 

Traceability, correctness and completeness are in the approach supported with both 
choices related to modeling notations and automated functions. When applicable, 
decisions on notations, such as the use of logic diagrams, have been made so that they 
are intuitive and informative to developers and comply with recommendations of safety 
standards. Logic diagrams, for example, can be used to depict the logic of safety 
requirements and they are already familiar to control system developers. They are also 
recommended by IEC 61508 and claimed to support several properties of systematic 
integrity, e.g. “correctness with respect to the safety needs to be addressed by software”. 
By using already recommended notations within MDD, the use of MDD techniques 
could also be easier to accept in safety system development. MDD of safety applications 
could, in this way, be seen as an application of existing, appropriate techniques in a new 
(MDD) context. 

By including required, safety related information in models, it is also possible to 
automate the generation of part of the required documentation of safety functions and 
performing various consistency checks. Producing documentation is also a necessity in 
the application domain. Without MDD support, the documentation for certification 
purposes and for authorities, for example, would have to be produced manually. This 
would, however, significantly reduce the potential to benefit from MDD. 

The presented automated functions generate, for example, traceability matrices for 
hazards  and  their  risks  as  well  as  for  requirements.  In  addition  to  presenting  the  
traceability information in an intuitive form, the matrices support completeness by 
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warning developers about possibly overlooked hazards and requirements. Such are 
hazards and risks that are not traced further in the models. Automated consistency 
checks can and have been developed to warn users about possible, incompatible safety 
integrity levels related to requirements and safety system patterns, for example. 

The starting point in the approach to use design patterns for safety system development 
is  that  the uses of patterns represent the design decisions of developers.  As such, they 
should be deliberately marked in models, instead of trying to detect pattern instances in 
models, for example. In this way, reliable pattern information could be also used as part 
of the documentation. The presented SafetyPattern concepts enable modeling techniques 
and solutions that safety standards recommend. SafetyPatterns can have 
recommendations for different integrity levels. SafetyPatterns can also be collected into 
SafetyCatalogues with which it is possible to model recommendation tables of 
standards, for example. 

Based on the SafetyPattern concepts, automated functions have been developed to 
extend the documentation generation possibilities. The functions enable collecting 
traceability information on the use of standard solutions. At the same time, they support 
correctness by comparing patterns that are used in models, and their recommendations, 
to catalogues and to the SILs required from the Packages in which they are used. User 
guidance has also been envisioned to support development work in a constructive 
manner, so that the tool could recommend techniques and solutions to be used, based on 
safety integrity requirements and selections on catalogues. 
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6 Summary of the Included Publications 

The  thesis  includes  eight  publications.  This  Chapter  presents  the  summaries  of  the  
publications and defines the contributions of the author in the publications. 

[P1] 

The paper presents an overview of the AUKOTON development process and UML 
Automation  Profile  (UML AP)  as  well  as  motivates  the  development  of  the  UML AP 
tool.  The  tool  builds  on  Topcased  UML/SysML  toolkit  and  implements  UML  AP  
modeling concepts as metamodel extensions to the UML and SysML metamodel 
implementations that are used by Topcased. The metamodel extensions are defined and 
implemented with Eclipse Modeling Framework (EMF) and graphical support with 
Topcased generators and Java programming. The concrete syntaxes of the new diagrams 
resemble traditional diagrams used in the domain. The tool utilizes the plug-in 
architecture of the Eclipse platform and implements a plug-in interface for finding and 
using model transformations that are required in model-driven development. 

The author is the main author of the paper and responsible for the tool development in 
general. The development approach presented in the paper has been developed as a 
collaborative effort. The profile (UML AP) version supported by the original version of 
the tool had been previously developed at TUT in ASE. 

[P2] 

The  paper  presents  the  results  of  the  industrial  assessment  of  the  AUKOTON  
development process and tools. The assessment was organized as a one-day event for 
industrial partners of the (AUKOTON) research project. In the event, industrial 
professionals utilized the developed process, modeling concepts as well as tools in an 
application development project and were observed and interviewed by researchers to 
collect qualitative material. According to the results, the techniques and tools could be 
successfully used in automation application development. The development process and 
tools were seen to automate some tasks that are currently performed manually. 
Interlocks were identified as an area for further improvements. 

The author is the main author of the paper and responsible for the tool development in 
general. The development process has been a collaborative effort, the contributions of 
the author being in functional and platform specific modeling phases. The second author 
of the paper is the main responsible one for the research methodology used in the 
assessment event. The third author of the paper is the main responsible one for the 
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description of the industrial development process. The arrangements of the assessment 
have been a collaborative effort. 

[P3] 

The paper presents a method for transforming UML AP control application models to 
ModelicaML form to enable their simulation. The approach is targeted to model-in-the-
loop simulations using a single simulation engine and it aims to transform and append 
control application models to plant simulation models. This enables design-time, closed-
loop simulations of controlled processes in order to obtain the benefits of simulations 
early in the development process. The developed model transformation is implemented 
with QVT model transformation languages and packaged to a plug-in that connects to 
the tool platform with the extension interface of it. The case study used in the paper 
evaluates the interlock and control behavior of a controlled crane system. 

The author is the main author of the paper and responsible for planning the paper, 
implementing required software prototypes, preparing and performing the reported 
simulations as well as writing the paper. 

[P4] 

The paper extends the simulation approach [P3] to modeling and simulation of 
sequentially executed control activities – Automation Sequences. The modeling 
approach is compared with UML state machines and the simulation approach extended 
from Modelica simulation of state machines. The paper completes the support of the 
simulation approach for all four aspects of basic control systems: binary and feedback 
control, sequential control and interlocks. The case study presented in the paper is 
related to paper industry.  As a simulated process, it is the largest that has been so far 
used to evaluate the simulation approach. Based on the case study, it is argued that the 
approach scales to non-trivial industrial applications. 

The author is the main author of the paper and responsible for planning the paper, 
implementing required software prototypes, preparing and performing the reported 
simulations as well as writing the paper. 

[P5] 

The paper presents a conceptual comparison of possible simulation approaches in 
model-driven development of automation and control applications. Additionally, the 
paper summarizes the observations from three simulation experiments in which the 
developed simulation approach has been used. In the comparison, the paper takes into 
consideration the benefits, restrictions and numbers of required simulation engines 
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related to simulation approaches. The influence of the domain and the practice of 
utilizing existing control system platforms are discussed. Related to the simulation 
approach of the author, the paper compares perceived benefits to those anticipated based 
on literature. According to the results, the approach is applicable to both machinery and 
process industry applications. In addition to the general benefits of simulations, the 
approach has enabled prototyping, experimenting and comparing control and interlock 
solutions. Furthermore, by enabling simulating early in the development process the 
approach detects inconsistencies in requirements and design. 

The author is the main author of the paper and responsible for planning the paper, 
setting up and performing the comparison of the simulation approaches as well as 
writing the paper. 

[P6] 

The paper proposes model-driven development techniques as a means to facilitate the 
development of safety-related applications. UML Automation Profile is extended to the 
modeling of risks and hazards as well as to presenting how hazardous situations can 
occur. The information content is completed with traces to support traceability between 
design and development artifacts. Modeling concepts are rationalized to facilitate the 
understanding of software developers over the problem area and thus correctness of 
design. Model checks are used to support completeness so that risks, hazards and 
requirements are not overlooked later in design. Correctness, completeness and 
traceability are discussed with respect to their definitions in IEC 61508 (functional 
safety) standard. 

The author is the main author of the paper and responsible for planning the paper, 
implementing required software prototypes as well as writing the paper. 

[P7] 

The paper presents an approach to model design-patterns and mark design pattern 
instances in models. The approach utilizes metamodel extensions for the both purposes 
and enables design pattern definitions to be collected to model libraries. The paper 
proposes the use of design patterns for documentation purposes in MDD and argues 
why design patterns could be especially valuable in MDD. In the presented approach 
patterns can be both traditional programming language level patterns as well as more 
general solutions, mainly describing the roles of entities in the patterns. A model 
transformation is developed that utilizes patterns to produce traceability documentation 
from models. 
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The author is the main author of the paper and responsible for planning the paper, 
implementing required software prototypes as well as writing the paper. 

[P8] 

The paper extends the design pattern modeling approach for SafetyPatterns - patterns of 
safety systems. Metamodel extensions are developed for specifying recommended 
safety levels for patterns and for organizing safety patterns to safety pattern catalogues. 
Such catalogues can be developed to correspond to recommendations of safety 
standards. Automated tool support is developed for checking the compliance of patterns 
(that are used in models) to safety levels required from the modeled applications. The 
tool support also enables comparing the models of applications to safety catalogues in 
terms of safety patterns in order to reveal inconsistencies and to suggest patterns that 
could be used. 

The author is the main author of the paper and responsible for planning the paper, 
implementing required software prototypes as well as writing the paper. 
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7 Conclusions 

The thesis discusses the use of MDD in automation and control application 
development. To study, whether or not their development could benefit from MDD, the 
thesis focuses on research topics that are related to modeling and developing tool 
support for modeling the applications, ability to integrate simulations into MDD and 
ability to include safety-related information in models. This Chapter summarizes the 
thesis, the research questions and the limitations of the work, and outlines future work. 

7.1 Thesis Summary 

The  AUKOTON  model-driven  development  process,  which  is  used  as  a  basis  to  be  
extended in the work, is introduced. Requirements for UML AP implementation and 
MDD tool support are derived from practical needs and special characteristics of the 
domain, including the re-use of platform specific solutions. UML, for which UML AP 
is an extension, can be extended for special purposes with two extension mechanisms. 
UML includes a built-in stereotype mechanism but can be extended also by extending 
the metamodel of the language with the use of MOF, on metamodeling layer M2.  

The MOF based approach is selected for UML AP implementation. It provides stability 
for graphical tooling development and does not restrict the additions of metaclasses and 
meta-associations. At the same time, it enables the use of standard model transformation 
languages to implement model transformations. Open source modeling tools on Eclipse 
platform, which can be extended in order to re-use their support for plain UML and 
SysML, provide natural support for the MOF based approach. The tool used as a basis 
in UML AP tool implementation is Topcased. The three types of transformations that 
are required by AUKOTON can be added to the tool in a flexible manner using the 
Eclipse extension point mechanism and controlled with the user interface of the tool. 

The re-use of existing solutions is in the approach supported with respect to both 
platform specific and platform independent modeling. Design patterns can be defined 
with specific pattern modeling concepts and their instances marked in models. 
Automated functions provide support for instantiating and marking patterns in models, 
for visualizing patterns in models and diagrams and for generating traceability 
information and statistics on the use of patterns. Platform specific blocks can be 
modeled in platform specific profiles that consist of stereotypes, tagged values and 
template AFs with block specific interfaces. With this information available in models, 
using platform specific blocks in code generation is straight-forward. 
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In order to support early testing and validation as well as to facilitate decision making, 
simulations are applied. Transformation assisted use of model-in-the-loop simulations 
within a single simulation engine is justified to enable simulating early but without 
requiring unnecessary simulation expertise of developers. A model transformation is 
developed that creates ModelicaML simulation counterparts of control application 
models and integrates them into existing plant (simulation) models. The results of the 
integration, ModelicaML simulation models of closed-loop systems, can be simulated 
using e.g. OpenModelica (open source) tools. 

The simulation approach supports both platform independent and platform specific 
functions and is capable of creating application specific simulation classes based on 
Logic and Automation Sequence diagram definitions of AFs. The approach supports the 
different aspects of basic control systems: binary and feedback control, sequential 
control and interlocks. Observations from applying the simulation approach are 
presented. The size and complexity of the controlled processes have varied up to 1400 
equations for a closed-loop system and demonstrated the scalability of the approach to 
non-trivial processes with industrial size and complexity. The simulations have enabled 
prototyping interlock and control solutions, revealed shortcomings in requirements and 
designs and enabled studying hazardous situations. These observed benefits are similar 
to those reported in literary. It is possible that many general benefits of simulation could 
be obtained also in MDD context but earlier than with more traditional simulation 
approaches. 

The modeling approach is extended to include information that would be required for 
safety applications. The modeling of hazards, how they can be realized and their 
associated risks are supported with fault tree modeling. Fault trees are analytic and 
intuitive for both basic control and safety system developers. Their use can also 
facilitate the development of corrective functions, which can be designed to stop the 
fault and condition sequences that lead to hazardous situations. Hazards can be also 
traced to requirements that have been specified to treat them. 

UML AP requirement concepts as well as the pattern modeling concepts are extended 
with safety-related information. Requirements can be refined with information on which 
safety level they must be fulfilled and which techniques, e.g. electrical, electronic or 
programmable electronic safety systems to use. Design pattern modeling concepts 
include SafetyPatterns, which are design patterns of safety systems and can include 
recommendations for applications of different levels. SafetyPatterns can be collected 
into catalogues to model recommendation tables of safety standards, for example. 
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The safety-related extensions are utilized by functions that gather traceability 
information and documentation to spreadsheets and at the same time automate checks of 
consistency. Hazards and their risks are traced to requirements and further to design that 
fulfils the requirements. Requirements that are not traced further to implementing 
design elements are identified automatically to improve completeness. Correctness is 
supported by, for example, consistency checks between used safety patterns and safety 
levels required from the applications. When appropriate, modeling techniques have been 
selected so that they comply with safety standards. 

7.2 Research Questions Revisited 

The research questions RQ1-3 are in the thesis addressed and discussed in Chapters 3, 4 
and 5, respectively. Following is a summary of answers to the research questions. 

RQ1: How to develop support for domain-specific, UML based modeling in control 
application development? How to develop support for and gain benefit from applying 
design patterns in models? How to enable and gain benefit from re-using platform 
specific blocks in modeling? 

While the stereotype mechanism of UML would enable light-weight modifications, the 
use of MOF to extend the language metamodel on metamodeling layer M2 has no 
restrictions when domain-specific concepts are extensions to those of UML. Models 
conforming to MOF based metamodels can be processed with standard (QVT) model 
transformations so that references from transformation definitions to metamodels can be 
checked at compile-time. The MOF based extension approach is also supported by 
many open source tools, for example on Eclipse platform, so that graphical support for 
the domain concepts can be developed on top of an existing tool. 

When design patterns are not restricted to the contents of Classifiers only, as in the 
UML approach, they can be supported by specifying and implementing suitable pattern 
concepts with, for example, the MOF based extension approach. With specific concepts 
for specifying and instantiating patterns, it is possible to develop automated support for 
using and benefitting from patterns. For example, applying patterns can be facilitated by 
the tool, pattern instances can be visualized for e.g. teaching and documentation 
purposes, and the traceability of solutions supported by analyzing patterns instances. 

Design patterns can improve the re-use of platform independent design. However, in the 
domain an even more important characteristic is the re-use of platform specific 
implementation blocks, e.g. type circuits. To benefit from existing blocks in MDD, it 
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would need to be possible to use the blocks in the models so that the blocks could be 
instantiated to applications, parameterized and connected by code generators. In the 
developed approach, this is realized with an approach that uses stereotypes and their 
tagged values for identifying and parameterizing blocks as well as template AFs and 
their ports for the specification of block interfaces. Automated functions of the tool 
enable completing the interfaces of AFs to correspond to those of the blocks, when 
applying platform specific stereotypes. 

RQ2: How can model-in-the-loop simulations be integrated into MDD of automation 
and control applications with UML based modeling? What are the requirements and 
constraints for selecting the simulation approach to be followed? How can simulations 
with the selected approach benefit MDD? 

The developed transformation assisted simulation approach enables the use of MiL 
simulations early and using a single simulation engine, thus relieving developers from 
connecting simulation models and engines. To take into account the special 
characteristic of the domain related to re-use, the approach enables the use of simulation 
class libraries, in addition to creating new simulation classes based on Control Structure, 
Automation Sequence and Logic diagrams.  Simulations can be used during both 
platform independent and platform specific phases of AUKOTON. The simulation 
transformation has been implemented with QVT and connected with the tool with use of 
the  Eclipse  extension  point  mechanism.  The  approach  supports  all  the  four  aspects  of  
basic control systems: binary and feedback control, sequential control and interlocks.  

The supremacy of any simulation approach over others cannot be claimed based on the 
presented material. However, as simulations are already, in general, supported by 
control system vendors, to gain benefit from integrating simulations into MDD one 
should apply the MiL approach so that simulations could be used before generating 
code. The transformation assisted and co-simulation approaches to MiL simulations 
have varying requirements and constraints related to the simulatability and 
transformability of models, numbers of required transformations, the connectability of 
simulations and management of simulation cases, for example. With different 
techniques for e.g. modeling, MDD approaches can justifiably utilize different 
simulation approaches. 

MDD techniques can be used for automating information transfer and repetitive tasks. 
The techniques, however, may not reduce the need to test, validate and compare 
designs, which are tasks to which simulations have been applied. MiL simulations may 
not provide all the benefits of simulations. However, they can be used early for 
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simulation tasks that do not require control system hardware. The developed simulation 
approach has been used in the development of both machinery and process industry 
applications. It has enabled prototyping and comparing control and interlock solutions, 
searching for control tunings and detecting inconsistencies in requirements and design. 
The approach has also enabled studying exceptional situations in a safe manner. 

RQ3: How can the safety of control applications be supported in MDD? How can risk 
and hazard information be integrated into modeling? How can traceability, correctness 
and completeness be supported in models? How can the use of design patterns support 
documenting the safety features of control applications? 

The techniques and solutions that improve safety and related quality attributes in 
traditional safety system development can improve them also in MDD. The information 
content of models can be extended to take into account requirements of safety standards 
related to, for example, traceability. With the safety information available in models, 
MDD techniques can be used for gathering the information to documentation and for 
automating consistency checks to promote properties such as traceability, correctness 
and completeness. When appropriate, modeling methods to be integrated into MDD can 
be selected according to recommendations of safety standards. 

The modeling of hazards and their associated risks, which is the starting point in safety 
system development, is supported in many published extensions to UML. The UML AP 
approach uses the well-known FTA notation. The FTA modeling concepts have been 
implemented with MOF as metamodel extensions and given graphical tool support 
based on Topcased tool. With respect to the data content of models, hazards are 
traceable to requirements that have been specified to treat them. 

Design patterns can be used to document practices and solutions to recurring problems 
also in safety system development. With specific safety pattern modeling concepts, 
patterns can include recommendations for applications of different safety integrity 
levels. Patterns, which are applied to models, and their recommendations for different 
levels can be compared with safety levels that are required from the applications. By 
modeling recommended techniques and measures as SafetyPatterns and 
recommendation tables as SafetyCatalogues, it is possible to automate checking whether 
or not recommended patterns have been applied and if not, which patterns should be 
applied  to  comply  to  a  standard.  In  this  way,  SafetyPatterns  can  be  used  to  guide  the  
development. 
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7.3 Limitations and Future Work 

The methods and techniques that are proposed in the thesis have been implemented on a 
prototype level, mainly on the open source Eclipse platform. The results obtained with 
constructive research, i.e. the solutions, methods, and techniques, have been assessed 
mainly experimentally and in a qualitative manner, to answer the research questions. 
However, the improvements obtained with the incrementally developed prototypes 
suggest their suitability and potential for improvements also in production use. 

Assessing  the  results  quantitatively,  to  obtain  measures  of  their  applicability  to  
industrial problems and ability to increase efficiency, for example, would require their 
implementations in commercial quality tools. Developers would have to work with the 
tools and methods in a number of projects in order for the assessment results not to 
become biased by the developers being more experienced with their current tools and 
practices16. On the other hand, assessing the industrial applicability of the techniques 
with surveys would require the designer of the surveys to foresee all the relevant factors 
and the answerers to foresee the difficulties and benefits of techniques that they are not 
yet familiar with [P2], [103]. In [P2], this problem was solved by familiarizing industry 
professionals with the techniques with an example modeling project and by using two 
complementary methods for collecting qualitative material: participatory observation 
and interviewing. Apart from the results of the AUKOTON project, most developed 
research artefacts have been assessed by the author only, in example case studies 
reported in the included publications. 

An important task in the future work would thus be to acquire industrial feedback about 
the industrial adoption potential of the techniques and their ability to facilitate the work 
of developers. Because of the number of implemented complex tools and techniques, an 
assessment event similar to the one used for [P2] could, however, require several days 
from industry professionals in order to familiarize them with the techniques. Another 
alternative to gather feedback and directions for improvements could be to work with a 
problem of industrial origin and to demonstrate work phases for professionals in order 
to provide a basis for discussion and interviewing. This approach could benefit from 
improvements to the code generator and from additional platform specific libraries of 

                                                
16 It is even possible that in order to get non-biased results, the developers would have to be trained for 
the techniques during their early careers. 
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the  tool  environment,  so  that  an  industrial  control  system platform could  be  used  as  a  
target. 

The code generation support that has been developed into the tool environment should 
be updated to exploit the most recent advances in the modeling and simulation 
capabilities and to include I/O mappings. For example, Logic diagrams and Automation 
Sequence Diagrams, which are supported by the simulation integration, should be 
supported also by code generation. Simulation-assisted MDD would benefit from the 
ability to select test scenarios in a smart and systematic manner, based on, for example, 
requirements or hazards of the controlled process. At the same time, MDD techniques 
should support traceability between the tests and related model elements. 

In addition, in order to assess industrial applicability and potential of the techniques, 
code generation support should be developed for an industrial control system platform. 
The type circuits of the platform should be possible to use in both application code and 
simulation models. With these future enhancements, it appears that control application 
development could benefit more from the developed MDD approach. 
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Abstract 
 

The development of modern distributed automation 
applications is challenging and present development 
practices contain manual transferring of informal 
information from one phase to another. Our research 
aims to overcome some of these challenges by 
integrating concepts from modern object-oriented 
design, model-driven development and high-level 
modeling potential of the UML automation profile into 
a seamless development path from PI-diagrams to 
control software. This paper presents a prototype of a 
control engineering tool that supports the UML 
automation profile and is intended to cover part of the 
development chain. The tool was implemented on the 
Eclipse platform and it utilizes various open source 
tools and frameworks to enable also usage of UML 
and SysML in modeling work. The implemented tool 
can be extended by transformation tools capable of 
processing requirements of the control system and 
PIM-model of the designed control software. 
Keywords: automation, control, MDE, UML profile, 
modeling tool. 
 
 
1. Introduction 
 

Automation is important in manufacturing for 
various reasons, such as achieving or enhancing the 
quality and flexibility of industrial production and the 
safety and efficient use of manufacturing equipment. 
Strict requirements concerning dependability, safety 
and various other quality issues are consequently laid 
on the systems. The fundamental role of automation 
applications is in the measurement and control of a 
system or process, usually leaving for humans only the 
overall supervision of the integrated and distributed 
automation system. 

Software has an essential role in developing modern 
industrial automation applications. In the recent years, 
the challenges in software development for automation 
systems have increased, because the systems have 
become more and more complex while competition 
within the automation industry has tightened. In order 
to maintain competitiveness, automation system and 
application vendors have been forced to increase both 
the efficiency and openness of the development 
process. 

A potential solution is the use of high-level domain-
specific modeling languages and tools that are capable 
of capturing the essential concepts of modern, complex 
automation applications. Key issues for such languages 
are the capability of the modeling language to address 
the safety- and mission-critical properties of 
automation systems. Preferably, the language shall be 
such that it can exploit the appropriate concepts and 
notations of generic information system modeling, i.e. 
UML and relevant profiles. As a result, a high-level 
modeling language, based on UML V2 and suitable 
UML profiles, provides substantial potential for 
modeling automation applications in an efficient and 
vendor independent way. 

The tools shall give support for the entire 
application development life cycle – starting from 
manufacturing oriented requirements and proceeding 
via platform independent architectural considerations 
of an automation application to the platform specific 
and device oriented implementation. 

This paper will first consider domain-specific 
languages as well as UML profiles and metamodels in 
section 2, Related work. It will then discuss in section 
3, the concept of a seamless development process of 
automation applications, which we in TUT (Tampere 
University of Technology) are developing within the 
so called AUKOTON project, in collaboration with 
automation companies, VTT (Technical Research 
Centre of Finland) and HUT (Helsinki University of 



Technology) in Finland. Section 4 gives an overall 
view of the automation profile and section 5 of the 
Automation Profile Tool (AP-Tool), both developed in 
TUT / ASE (Department of Automation Science and 
Engineering). Section 6 gives more details of the 
present AP-Tool. Section 7 concludes the research 
work and discusses future work to enhance the profile, 
the AUKOTON chain and the tool. 
 
2. Related work 
 

Domain-specific languages and DSL development 
methods raise the level of abstraction in software 
development and problem solving by leveraging 
domain-specific concepts and practices as a modeling 
or programming language. Contrary to general-purpose 
programming languages, such as C and Java, domain-
specific programming languages are dedicated to a 
particular problem domain, thus making it easier to 
solve problems while enhancing properties such as 
quality and reliability among others. As a drawback the 
design and implementation of domain-specific 
programming languages is challenging and requires a 
lot of effort and consideration.  

However, by using a domain-specific language, 
problems can be solved on a higher abstraction level 
with concepts and practices of the specific domain, that 
is to say in a more problem-oriented manner. This does 
not only increase productivity but also makes reuse of 
solutions more feasible and most importantly enables 
domain experts to work with familiar building blocks 
and notions. 

In the area of automation and control applications 
as well as many other specialized domains there are 
recurring concepts and structures that encourage the 
use of domain-specific modeling and programming 
languages. In contrast to more general modeling (e.g. 
UML) and traditional software development, the DSL 
methods not only bring the elements of a particular 
domain but they may also restrict development to a 
very narrow realm in that domain. A common trend 
with systems in general is increased complexity and a 
strong need for integration on all levels. This calls for 
modeling various objects and systems on different 
levels of abstraction and the ability to easily extend 
modeling and development to new concepts and 
related systems. Besides the domain-specific concepts 
in the multidisciplinary area of automation and control 
applications there is also a need for extendibility and 
more general modeling and development capabilities. 

In recent years, there has been wide industrial and 
academic interest in UML profiles and their usage in 
development and design work. An example of 
industrial interests is the profile produced by the 

AUTOSAR project. The UML profile for AUTOSAR 
is intended to provide a precise and pragmatic mapping 
between concepts of the UML 2.0 and the AUTOSAR 
metamodel [1].  

 An example of usage of UML in the automation 
domain is the work carried out by Thramboulidis and 
Tranoris who have integrated UML and the function 
block concept of the automation domain by 
introducing a set of transformation rules to generate 
function block applications from UML models [4]. 
Thramboulidis has also introduced a hybrid approach 
combining UML and the function block concept for 
distributed control system development. The study also 
examined applicability of the standardized UML 
profile for Schedulability, Performance and Time to 
the proposed development process [5]. Compared to 
our work, the studies carried out by Thramboulidis et 
al. rely more on general modeling capabilities of UML, 
instead of common modeling elements and 
terminology of the automation domain. 
 
3. AUKOTON development chain 
 

The AUKOTON project introduces a development 
chain for industrial software development, the 
AUKOTON chain, which utilizes advanced practices 
with formal requirement description, profile assisted 
UML modeling and automatic code generation. 

Our observations during interviews and previous 
studies with automation and control engineering 
professionals indicate that current practices contain 
stages in which informally represented information is 
transferred from one phase to another. These stages 
contain a lot of manual work and are therefore prone to 
error while requirements and additional information 
needed to satisfy the required functionality is 
supplemented. Another important observation is 
companywise varying development processes and the 
lack of common application modeling concepts. As a 
result interoperability suffers between development 
processes of different companies, the design process 
becomes platform dependent early in the development, 
and the reuse of solutions is difficult.  

The seamless AUKOTON development chain 
combines foremost industrial practices with object-
oriented design and concepts from model-driven 
development (MDD). AUKOTON aims to 
conceptualize a structured and formal representation of 
initial requirements and source information as well as 
design requirements, architectural descriptions, and 
information concerning implementation details to 
automatically build a running application. Compared to 
traditional application development practices the 
AUKOTON chain highlights the importance of 



platform independent modeling, automatic transfer of 
design information, such as process instrumentation 
lists, and late binding of platform specific 
implementation details, in order to enhance 
productivity, solution reuse and software quality. 

MDD and Model Driven Engineering (MDE) put 
emphasis on the use of models as primary engineering 
artifacts in the development process. These models are 
then refined from one stage to another either in a user 
assisted manner or automatically. The background data 
traditionally guides decisions made during each phase 
but it may also contain information that can be 
automatically processed and transferred to the next 
design phase. For automation and control applications 
this could be for instance connections between 
different parts of the system or selecting a particular 
low-level function block for the target DCS 
(Distributed Control System) based on information in 
initial P&I diagrams. 

Model transformations are an essential part of the 
MDE concept and usually related to metamodeling 
methods. Model transformations take source models as 
input and produce target models as a result. These 
models typically conform to given metamodels that 
can be understood as higher level models that define 
the semantics and the syntax of a modeling language. 

The AUKOTON chain consists of a starting data 
phase where initial requirements and background 
information from sources such as P&I diagrams, 
process descriptions, and instrumentation lists are 
gathered into a formal structured representation. In the 
following phase where most of the actual design work 
is done the UML automation profile (UML AP) is 
utilized (see section 4). The UML modeling results in a 
platform independent model (PIM) that is used as a 
source model in the transformation in the final stage. 
The PIM can be tagged with stereotypes to indicate 
additional information needed for the transformation 
that produces a platform specific model (PSM) of the 
application. The PSM is a representation of the 
application based on building blocks and constructs of 
the target control platform and is used to generate the 
final executable application. The AUKOTON chain 
described is illustrated in figure 1.  

In order to support the development process 
presented a tool based on the Eclipse framework has 
been developed. At this moment the tool implements 
the UML automation profile concepts and supports 
application modeling covering requirements, 
application functionality, devices and resources as well 
as application architecture and distribution. In addition, 
the tool offers well-defined extension points for 
integration to plug-ins that fulfill the rest of the 
AUKOTON chain (see figure 1). By using this type of 

a loosely coupled tool chain, responsibilities can be 
shared conveniently and the approach can easily be 
adapted to, for instance, new target platforms.  
 

  
Fig. 1. The AUKOTON chain utilizes current 

practices with formal requirement description, 
UML modeling and automatic code 

generation. 
 
4. The UML automation profile 
 

The main principles of the UML automation profile, 
which is specified in detail in [3], are presented in this 
section as background information for the tool 
presentation in sections 5 and 6. The utilization of the 
relevant existing UML profiles is also indicated. The 
automation profile is divided into several areas of 
responsibility, each covering an important automation 
domain specific aspect. Such a division is made in 
order to allow easier management and further 
enhancement of the profile. In addition, the designers 
using the profile will be able to easily adopt and utilize 
only those parts of the profile, found relevant for the 
needs of the application. 

The profile is organized into four independent 
subprofiles, as depicted in Fig. 2. Case problems that 
represent typical (but still as diversified as possible) 
automation applications have been utilized as test cases 
for the profile. 
 

 
Fig. 2. The high-level organization of the 

UML automation profile. 



The profile consists of stereotypes, tagged values 
and constraints, which are the principal means for 
introducing domain-specific concepts and their 
semantics into the language. The stereotypes are 
extended, as extensively as possible, from feasible 
elements of the UML Real-Time Profile, SysML and 
UML Profile for Quality of Service and Fault 
Tolerance. 

The Requirements subprofile provides means for 
organizing the original requirements in a graphical 
fashion. The graphical representation is lightweight by 
emphasizing the relations between requirements and 
giving only a summary for each requirement. This 
summary allows identifying, rationalizing, 
categorizing and shortly describing the requirement. 
The requirement specification diagram specializes the 
requirement diagram of SysML. The purpose of the 
diagram type is to enable specifying automation 
application’s requirements and linking requirements to 
actual model structures and design decisions. 

The AutomationConcepts subprofile provides 
support for specifying various kinds of functionalities 
and capabilities common in the applications of the 
automation domain. One of the key concepts of the 
subprofile is the automation function that includes a 
category of common domain-specific functionalities. 
The functionalities covered in this subprofile include 
control of devices, sequential control, handling of 
events and alarms, as well as executing simulations. In 
addition, the subprofile supports the specification of 
control algorithms and integrating them with control 
functionalities. 

The AutomationConcepts subprofile approaches 
control functions with the so-called control structure 
diagram, based on the SysML block definition 
diagram, that illustrates a control structure, or a set of 
structures, by linking the control outputs, inputs and 
algorithms together. 

Automation applications often perform sequential 
control activities, such as start-up or shutdown 
sequences or batch automation sequences, which 
consist of activities initiated by measured state or 
timing conditions. Sequential control consists of a 
collection of sequential steps (or procedural elements) 
using which, a specific control task is executed. 
Indeed, this subprofile defines an automation sequence 
diagram, based on UML state machines, that allows 
the building of sequences from state-like steps, each 
with dedicated tasks executed when the step is entered, 
exited or during the step. 

The DistributionAndConcurrency subprofile 
supports the specification of so-called automation 
components, from which an automation application 
software is composed, and the deployment of these 

components to active resources, such as controllers. 
Each resource may execute several components, thus 
supporting the distribution models of industrial 
standards. In order to allow communication between 
the components over the network in a transparent 
manner, the profile allows the utilization of several 
common communication patterns, including the 
publisher-subscriber and client-server patterns. 

Another issue addressed in this subprofile is 
concurrency that causes the need for mutual exclusion 
and synchronization. The subprofile allows protection 
of resources with mutual exclusion mechanisms. 
Synchronization mechanisms may also be specified. 
For covering general concurrency issues, the package 
depends on the concurrency subprofile of the UML 
RT-profile. 

The DevicesAndResources subprofile provides 
support for interfacing with various kinds of 
automation devices by specifying device interfaces and 
I/O operations in a platform and hardware independent 
manner. A device interface includes only the necessary 
information for identifying and interacting with the 
device, such as an identifier and type of the hardware 
interface. The subprofile also takes into account that 
interaction with a device may take place with any 
number of signals. Therefore, a device interface 
contains a set of ports, each transferring a single 
signal. 
 
5. UML AP Tool design approach 
 

The design and implementation work of a tool 
supporting the UML automation profile, the UML AP 
Tool, was initiated and influenced mainly by two 
factors. Firstly, the UML automation profile was 
designed to be used by automation and control 
engineers to design and to specify automation 
applications. Tool support was needed to further 
improve and to experimentally estimate the automation 
profile. Secondly, the AUKOTON chain requires tool 
support for the automation profile as two stages of the 
modeling chain use concepts of the profile. Moreover, 
the AUKOTON chain requires support for other 
functionalities regarding the model driven 
characteristics of the tool chain.  

Besides defining a high-level modeling language 
for software-oriented applications in the automation 
domain, the automation profile also makes demands to 
tools supporting it. In addition to the profiles own 
concepts, practical usage of the profile requires tools to 
enable the use of any diagram type or modeling 
concept of UML and SysML [3]. Even though the 
profile defines three new diagram types, not all of the 
concepts of it are intended to be used in the new 



diagram types only. For example, most of the concepts 
defined in the DevicesAndResources sub-profile fit 
most naturally as stereotypes to specialize semantics of 
the modeling concepts of UML and SysML. These 
concepts do have specialized semantics, for example 
regarding to roles in certain design patterns, and 
usually sets of attributes related to the semantics but 
their structural characteristics are not rich enough to 
model all the desired aspects of the application. 

The automation profile defines most of the concepts 
needed in its diagram types but does not actually 
specify the concrete syntax of the diagram types and 
graphical presentation of the elements. The intended 
users of the tool, however, are automation and control 
engineers accustomed to traditional diagram types of 
the automation domain. Because of this, the diagram 
types were chosen to be implemented to resemble these 
traditional diagrams with the intention to help intended 
users to familiarize themselves with the tool. 

There are several structural similarities between the 
three own diagram types of the automation profile and 
certain diagram types of UML and SysML. Despite the 
similarities, some of the concepts needed in the 
aforementioned new diagram types have structural 
features that do not fit to the UML metamodel. That is 
to say, implementing these concepts requires at least 
new meta-associations, in addition to defining 
stereotypes, to be added to the metamodels of UML 
and SysML.  

The light weight profile mechanism of UML is 
based on stereotypes that can be used to specialize 
semantics of the modeling language concepts. 
Stereotypes may also define tagged values (attributes) 
that can be used to parameterize semantic 
characteristics of the stereotypes. Stereotypes cannot, 
though, be used in a way that would contradict with 
the semantics of the UML metamodel [2]. The UML 
super structure specification, for example, denies 
stereotypes to be used to insert new meta-associations 
between metaclasses and adding new metaclasses, 
which is exactly what the precise implementation of 
the automation profile would require. Fortunately, 
there are no such restrictions imposed to possible 
modifications to be done on the MOF-based (Meta 
Object Facility) M2 metamodel layer on which the 
abstract syntax of UML is defined.  

These aspects imply that in the automation profile 
implementation some of its concepts require 
modifications on the M2 metamodel layer while others 
are more naturally supported with stereotypes which 
are modeling-time constructs. This, of course, has 
influence on implementation techniques. Additionally, 
the implementation, including metamodel 
implementation, needed to be tightly integrated to an 

existing UML/SysML tool as it would require an 
excessive amount of development work to implement 
also UML and SysML support from scratch.  

Mostly because of these needs to integrate the tool 
to an existing tool and to modify the metamodel being 
used, the tool was chosen to be implemented on the 
Eclipse platform. On the Eclipse platform, there exists 
a variety of open source UML/SysML tools which also 
use the same open source implementation of the UML 
metamodel, org.eclipse.uml2. The UML metamodel 
implementation is itself based on the open source 
Eclipse Modeling Framework (EMF) that can also be 
used to make further additions to the metamodel. 
Eclipse and EMF are also a good choice considering 
the AUKOTON chain and its need for M2M (model to 
model) transformations. There are several 
transformation tools supporting EMF, such as 
SmartQVT and Atlas Transformation Language 
(ATL). 

The AUKOTON tool chain, as presented in section 
3 and Fig. 1, processes the model of the application to 
be implemented and its requirements on four layers of 
abstraction. Two of these four representations of the 
system use concepts defined by the automation profile 
and needs the support of the UML AP Tool. In 
addition, the tool needs to support importing 
requirements from design phases and tools preceding 
software design and exporting models to code 
generators.  

By using so called extension points, import and 
export functionalities can be integrated to the tool and 
activated from the user interface of the tool which is 
more convenient than using entirely independent tools. 
The same user interface can also be used to select the 
parts of the model that will be processed in the 
transformation. 

 
6. UML AP Tool development 
 

The UML AP Tool is a result of design and 
implementation work based on features and 
requirements presented in the previous section. The 
present version of the tool was finished during spring 
2008 but the tool will be further developed during the 
AUKOTON project because of the needed 
enhancements to the profile and additional features 
needed to support the AUKOTON chain. 

The tool was implemented on the Eclipse platform 
to extend the open source Topcased UML/SysML tool 
(one of the few tools supporting UML, SysML and 
further diagram development at the time the 
development work was started). The Topcased tool 
also supports implementing own diagram types on 
EMF-based metamodels. The support includes 



generator models for generating skeletons of graphical 
editors and diagram type implementations which can 
be easily modified and integrated to the Topcased tool 
environment. 

As presented in section 5, the implementation of the 
automation profile required also modifications to the 
implementation of the metamodel used by the tool. In 
this case these modifications were restricted to 
additions of new metaclasses and meta-associations 
corresponding to concepts defined by the automation 
profile. Additions could be realized in a distinct plug-
in that is only dependent of the existing 
implementations of UML and SysML metamodels, the 
org.eclipse.uml2 and the org.topcased.sysml. 

Both of the extended metamodel implementations 
are based on the Eclipse Modeling Framework (EMF) 
which was also used to implement the additional parts 
of the metamodel. The additions, new meta-
associations and metaclasses extending metaclasses of 
UML and SysML, were specified in an ecore model 
(MOF-like metamodel in EMF) which was further 
used to generate implementing Java classes and 
Eclipse plug-ins. Concepts not realized with 
metamodel extensions are supported with light weight 
UML profile consisting of stereotypes corresponding 
to the concepts of the profile. In the present version of 
the UML AP Tool, the modeling-time profile is also 
imported automatically to all new models in order to 
ease usage of the stereotypes.  

The UML AP Tool consists of seven Eclipses plug-
ins, each implementing part of the functionality of the 
whole application. The plug-ins follow Topcased’s 
naming convention and they are presented in Fig 3 that 
also presents the most important (but not all) couplings 
of the plug-ins to the extended Topcased tool and to 
the Eclipse platform. 

Fig. 3. The seven plug-ins of the UML AP Tool 
and the most important couplings to the 

extended Topcased tool and the platform. 

The central plug-in in the picture, and in the context 
of the tool, is the plug-in implementing the additions to 
the metamodel, org.topcased.uml_ap. Plug-in 
org.topcased.uml_ap.editor is a simple tree editor 
capable of handling models conforming to the 
metamodel.  

The org.topcased.modeler plug-in is the graphical 
editor plug-in of the tool. In addition to basic graphical 
editors functionality, the modeler plug-in also defines 
its own extension points of the tool to enable external 
transformation plug-ins usage from the tool. The 
modeler plug-in is based on the graphical editor 
generation of Topcased’s and is basically a GEF 
(Graphical Editing Framework) editor.  

The own extension interface of the tool, defined by 
the modeler plug-in, consists of import and export 
extension points. Performing the import functionality 
can be initiated by the user of the tool and the user may 
also select the desired RequirementDefinition from 
tools Outline view and the desired import 
implementation from the list provided by the tool. The 
export extension point is technically very similar to the 
import extension point and allows exporting Packages 
(UML::Package) or elements of any type extending the 
Package type.  

Both the import and the export extension points 
allow mediating references to elements of the 
processed model and initiating the import or export 
functionality, respectively. The mediated parts of the 
model, however, are not separated from the whole 
model. Because of this, the choice to use the 
referenced element and children of it or the whole 
model is eventually a choice to be made by the import 
or export tool. This also enables modification of the 
existing requirement hierarchy instead of creating a 
new one every time the import functionality is 
performed.  

The last three plug-ins of the UML AP Tool, 
org.topcased.modeler.requirementspecificationdiagram
, org.topcased.modeler.controlstructurediagram and 
org.topcased.modeler.automationsequencediagram, 
implement the new diagram types of the automation 
profile: requirement specification diagram, control 
structure diagram and automation sequence diagram, 
respectively. The diagram types are registered to be 
used by the Topcased tool and graphical editors by 
defining an extension to the extension point 
org.topcased.modeler.diagrams (see Fig. 3). Extending 
this extension point includes specifying a diagram type 
specific configuration class and metaclasses that can 
act as root elements of the diagrams.  

The first new diagram type, the requirement 
specification diagram, is aimed to enable modeling of 
automation application requirements and linking of 



these requirements to actual design decisions. The 
diagram was implemented to resemble the class 
diagram, as can be seen in Fig. 4, since there wasn’t 
any well known graphical representation of 
requirements in the automation domain to be used as a 
starting point. 

The requirements in the Fig. 4, as well as modeling 
elements in figures 5 and 6, are related to a laboratory-
scale process for simulating pulp batch cooking. The 
pulp process includes both continuous control tasks 
and discrete sequential control and is therefore a good 
example to be sketched with the new diagram types. 

 

 
Fig. 4. Functional requirements of the Mini 
Pulp Process control application presented 
with the Requirement Specification diagram. 

 
The second new diagram type, the control structure 

diagram, enables modeling of automation applications 
structure and control activities with use of function-
block-like AutomationFunctions. In addition to 
AutomationFunctions, the diagram type allows the use 
of SysML block definition diagram concepts to enable 
modeling of AutomationFunctions coupling to the 
whole control systems and I/O functionality. An 
example of a control structure diagram can be seen in 
Fig. 5. AutomationFunctions defined by the 
automation profile are presented as blocks that can be 
linked together with ports and connections.  

 

 
Fig. 5. Pressure control loop of the Mini Pulp 

process control application presented with the 
Control Structure diagram. 

 

The third new diagram, the automation sequence 
diagram, enables modeling of sequentially executed 
control activities. Sequences consist of Steps, 
Interlocks (representing exceptional Steps), 
Allocations and sub-Sequence references that are 
executed in order determined by Transitions and 
Exceptions. The graphical presentation of the diagram 
type is mostly implemented to resemble traditional 
sequential function chart (SFC) diagrams of the 
automation domain. An example of such automation 
sequence diagram can be seen in Fig. 6. 

 

 
Fig. 6. Part of the impregnation sequence of 

the Mini Pulp Process control application 
presented with the Automation Sequence 

diagram. 
 
7. Conclusions and further development 
 

This paper has presented an overview of the UML 
automation profile and the AP-Tool. The former is a 
UML-based high-level modeling language for 
software-oriented applications in the automation 
domain, the latter is an Eclipse plug-in for supporting 
efficient use of the profile. 

The current version of UML (UML V2) has 
sufficient potential for modeling tasks in the domain. 
Thus, the new language is implemented as an UML V2 
profile which utilizes three existing UML profiles, 
namely SysML, UML Real-Time Profile and UML 
Quality of Service and Fault Tolerance Profile. The 
profile itself covers the most common essential aspects 
of automation applications, namely requirements, 
automation concepts, distribution and concurrency, as 
well as automation resources and device interfaces.  

A model-driven approach for developing 
automation and control applications offers many 
possibilities to improve the development process. 
Although there are still issues that require 
consideration, this seems like a feasible approach that 



is worthwhile studying. By bringing domain-specific 
concepts to the application design process problems 
can be solved by domain experts with familiar 
elements on a higher level compared to traditional 
approaches. 

The implemented tool support for the UML 
automation profile proved it possible to extend UML 
on both M2 and M1 metamodeling layers and to 
implement new diagram types conforming to the 
extended metamodel with reasonable resources. The 
tool fulfills common functionalities of modeling tools 
and is technically implemented to utilize the plug-in 
architecture of Eclipse and various open source tools 
and frameworks, such as, the Eclipse Modeling 
Framework. The utilized plug-ins were found useful 
and well-working in their intended usage.  

The prototype tool was also tested and evaluated by 
a few automation researchers from Tampere University 
of Technology and Helsinki University of Technology. 
According to the feedback, the new diagram types 
were considered fairly easy to draw and the tool 
performed modeling and drawing work rather well. 
Most of the difficulties that came to light were related 
to unfamiliarity of certain concepts of SysML and to 
the usage of UML profiles and stereotypes. It was also 
stated that the tool should include more user 
supporting functions as, for example, the use of 
stereotypes may be unfamiliar to automation and 
control engineers. 

The AUKOTON approach and the tool chain 
presented is being further developed and evaluated in 
co-operation with our research partners and industry 
professionals. Although the tool chain has not yet been 
fully implemented and evaluated, it appears that the 
AUKOTON approach may provide improvements 
related to efficiency and productivity of automation 
application design and to quality and maintainability of 
automation applications. 

The future work concerning the automation profile 
is focused on one hand to enhancing the Automation 
concepts subprofile with new algorithms and the 
DevicesAndResources subprofile with embedded 
device constraints. On the other hand, already in the 
ongoing work within the AUKOTON-project, the 
upper level requirements, given according to the new 
automation requirements standard (IEC-62424) will be 
integrated to the Requirements package of the 
automation profile. 

Within the AUKOTON chain, partial code 
generation will be developed to facilitate run-time 
function block execution (IEC-61131) based on the 
specifications with the automation profile. Moreover, 
design wizards with smart design support functionality 
will be developed to help the use and dissemination of 
the profile within automation design community. 
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Challenges in software development for automation and 
control have increased because of various reasons, including the 
size of applications and competition within the industry. A 
potential solution could be the use of a model-driven engineering 
approach to facilitate the development process and design 
information flow. Despite the wide interests towards model-
based techniques in the automation domain, the authors have 
not been able to find a complete, tool supported UML based 
MDE approach, the industrial relevance of which would have 
been systematically assessed. In this paper, we intend to assess 
the suitability and usefulness of the AUKOTON development 
process and tools to development of industrial automation and 
control applications. To study these questions, we organized a 
laboratory project, in which industrial professionals used our 
development process and tools, and used qualitative research 
methods for gathering the industrial feedback. 

 

I. INTRODUCTION 

The present implementation techniques and practices of 
automation and control system implementations highlight the 
importance of software, i.e. the automation and control 
applications, as essential parts of the systems. Partly due to 
this, the challenges in software development for automation 
systems have increased. The systems have become more and 
more complex, while at the same time the competition and 
need for co-operation within the industry have become 
prevalent.  This has forced the organizations to increase both 
the efficiency and openness of the development process. 

A potential solution to the challenges could be the use of a 
high-level domain specific language accompanied with a 
model-driven engineering (MDE) approach and a tool 
environment supporting both of them. A development 
approach with such characteristics has been proposed in the 
AUKOTON project. The modeling concepts are based on the 
UML Automation Profile [1] defining the concepts for 
modeling the requirements, functionality and architecture of 
automation and control applications. The basics of the MDE 
approach, as well as the supporting tool environment, have 
been discussed in [2] and [3]. The latter paper also discusses 
the technical foundation for defining and implementing the 
transformations required by the development process. 

However, adoption of MDE technology can be a difficult 
step for companies, especially since the scope of changes to 
current industrial development processes is unknown. This 

paper studies the adoption possibilities of the AUKOTON 
development process and tools and their ability to facilitate 
development work. A research methodology for involving 
professionals in this assessment is applied to this study. 

This paper is organized as follows. Section 2 reviews 
research related to model-driven engineering of automation 
and control applications and presents our research questions. 
Research methodology for involving professionals and 
collecting empirical material is described in section 3. 
Current industrial development practices are discussed in 
section 4. Section 5 presents the case study and the gathered 
empirical material. The empirical material is analyzed against 
our research questions in section 6. Section 7 presents 
conclusions on the industrial adoption potential of the 
AUKOTON model driven engineering approach. 

II. RELATED WORK AND RESEARCH QUESTIONS 

The idea of model-driven engineering (MDE) and related 
approaches, e.g. Model-Driven Development (MDD), Model-
Driven Software Development (MDSD) and Model-Driven 
Architecture (MDA), is to use models as primary engineering 
artifacts in the development process. In the process, models 
are gradually refined towards the executable application, 
either automatically and/or in a user-assisted manner. Model 
transformations are used to process models and to produce 
revised models from existing ones. Models, associated to 
model transformations and used during the development, 
usually conform to UML or some domain specific languages 
(DSLs) that can be either based on or independent of UML. 
Tool support for the processes exists on several platforms, 
such as Eclipse [16], for both the modeling [12], [13] and 
transforming [14], [15] purposes. 

In addition to the AUKOTON project, the use of MDE in 
the automation domain has been recently proposed by several 
projects and papers. The approach of the MEDEIA project, as 
discussed in [17],[18] and [19], is based on Automation 
Components that are characterized to be composable 
combinations of embedded hard- and software including 
integrated simulation, verification and diagnostics services 
and which can be deployed to hardware with code generation. 
However, to the authors of this paper it remains unclear 
whether or not the maturity of the developed tools enable 
their practical assessment and whether or not the applicability 



of the approach has been evaluated with industry 
professionals. Moreover, the focus of the project is in 
embedded control systems. 

Model-driven development of distributed industrial control 
applications have been studied by Tranoris and 
Thramboulidis [20]. The proposed process addresses the 
requirements and analysis of industrial process measurement 
and control systems (IPMCS) using UML, and the design and 
deployment by means of the function block (FB) construct of 
IEC 61499. Model transformations are used between IPMCS-
UML metamodel and IPMCS-IEC61499 function block 
metamodel, that both were defined in order to enable the use 
of model transformations and the development process is 
supported by the CORFU engineering support system. 
However, the authors of this paper are not aware of the 
development process and tools being assessed with industry 
professionals. 

The suitability of modeling approaches and notations for 
model-driven development of industrial, distributed control 
systems has been studied in [21]. The evaluation of the 
modeling languages, which included mainly conventional 
modeling notations, such as, algebraic models, sequential 
function charts, IEC 61499 FBs and class and state diagrams, 
was based on modeling needs of the domain with respect to 
degree of formality, availability of analysis techniques and 
tools, expressiveness of requirements and availability of 
exchange formats. The evaluation, however, was not related 
to any specific MDE approach and the evaluation did not 
cover the industrial usefulness of any MDE approach per se.  

Despite the wide interest towards model-driven methods in 
the domain, the authors have not been able to find any 
systematical assessment of industrial applicability of an MDE 
approach with capabilities to produce industrial automation 
applications and to automate part of the development work. 
The aim of this paper is to fill this gap by assessing the 
AUKOTON development process and UML AP Tool with 
domain-professional in the development of a small-scale 
industrial automation application.  

Our research questions are 1) do the process and tool chain 
support the information content and development activities 
needed to produce industrial automation and control 
applications and 2) are the tools and the approach able to 
automate part of the development work that is done manually 
in current industrial practice. To study the questions, we 
organized a laboratory project in which industrial 
professionals used our process and tool chain to develop an 
application. Qualitative empirical material on their experience 
was gathered to answer the research questions above. Other 
MDE approaches on the domain, such as those cited above, 
were excluded from the study because of the tight schedule of 
the event and because the expertise of the authors that 
organized the event was in the AUKOTON development 
process and tools. 

III. RESEARCH METHODOLOGY 

A. Choice of method 
For the purpose of assessing the industrial adoption 

potential of technology that is not yet in industrial use, such 
as the AUKOTON tool chain, most research methods are not 
applicable [4][11]. Surveys require considerable a priori 
knowledge of the phenomenon under study, so they are 
problematic for obtaining industrial feedback from 
technology that is not yet in industrial use. The designer of 
the survey would need to anticipate all the relevant factors 
and the answerers would need to foresee the difficulties and 
benefits of a technology that they are not familiar with [11]. 
Case studies can only be undertaken when a technology is 
being piloted in a company. This approach usually results in 
documenting innovations of industrial origin [4]. 

Few researchers have addressed the problem of evaluating 
DSLs and their supporting tools. A company pilot of a DSL is 
described in [24], but our goal is to evaluate a DSL with 
professionals before it gains sufficient maturity to be piloted. 
A solution to the problem of evaluating the performance of 
DSL models on various targets is described in [22]. This is an 
example of DSL evaluation that does not involve 
professionals. Experiences from having end users evaluate a 
DSL have been described in the context of the printing and 
graphics arts industry [23]; the paper only presents the results 
of the evaluation without describing the method for obtaining 
them, but it is clear from the results that the empirical 
material was qualitative. Qualitative methods are applicable 
for problems that have received little academic attention, so 
that the researcher is not able to specify the relevant variables 
beforehand [11]; since obstacles to industrial adoption of 
MDE-based control engineering approaches are not well 
known, qualitative methods were chosen in our research. 

Since surveys, case studies and industry pilots are not 
applicable in our case, 8 professionals from 4 different 
companies were invited to participate in a one-day project 
using the AUKOTON tool chain on university premises. 
Research arrangements for this are described in the next 
section. 

B. Research arrangements 
Two methods are used for collecting empirical material in 

this research: participatory observation and interviewing. The 
arrangements are based on our experience in using these 
methods on two similar one-week projects in 2005 [10] and 
2006 [9].  

Participants use the AUKOTON development process and 
tools to develop a control system in a university PC-class. 
Appropriate guidance is provided in order to complete the 
small application with new tools during a one-day event. 
Guidance is given by researchers working in industrially 
familiar roles of lead engineers and technical specialists. 
These researchers have the dual role of collecting qualitative 
empirical material, and making field notes of problem 
situations in which their assistance is required. In this way, 
empirical material is focused on interesting problem 
situations; our earlier experience with the conventional 
participatory techniques was that most of the material simply 
confirms that participants were following instructions 
successfully [9]. 



With the research design described in this paper, 
researchers are continuously involved in recording situations 
in which participants need external help, and every such 
situation results in a qualitative field note. This arrangement 
is also very acceptable for industrial participants who can be 
uncomfortable having their activities observed and noted 
down, since the involvement of field-note taking researchers 
is visible to participants only as technical assistance. 

One of our previous events [10] used recorded and 
transcribed semi-structured qualitative interviews according 
to the method proposed by [8]. Our discovery from the 
analysis of the transcripts was that despite the great volume of 
material and the significant effort in performing the 
transcripts, only a limited number of technically interesting 
observations were made by the interviewees. Since the 
participants had no previous experience with the tool, they 
were often not able to recall specific technical details that 
they had worked on only a few hours before the interview. In 
this situation, all the legitimate interviewing techniques, such 
as probing questions and follow-up questions [6] were of 
little use due to the fundamental problem of the interviewee 
not remembering sufficient details. 

These problems were avoided with the interviewing 
strategy described here. A single interviewer is responsible 
for a small number of participants, and at the end of each 
phase in the workflow, a set of questions is asked from each 
of these participants regarding the workflow phase that was 
just completed. The questions concern the problem that the 
participant had recently worked on, and they can refer to the 
tool that is in front of them. The researcher will then note 
down compact detailed observations instead of producing 
hundreds of pages of interview transcripts from which only a 
minor part will be chosen for detailed analysis, as in 
conventional interviewing techniques [8]. This interview 
structure of asking the same questions after each workflow 
phase, and from each participant, results in a high level of 
comparability [6] in the material. Before the event, 
researchers visited each company for a full day interview 
about current industrial practice, which was structured 
according to the tasks in the development process and the 
related artifacts. 

The resulting empirical material consists of qualitative 
notes collected by several methods: participatory observation, 
qualitative interviewing during the event and qualitative 
interviewing in companies before the event. The use of 
several empirical methods to study the same phenomena is 
advocated as it “will provide a richer picture of the events 
and/or issues than will any single method” [7, p. 163]. The 
methodological challenge is to link these three data sets 
together to support analysis. Our solution for this and the 
benefits of each of these 3 methods are described below. 

Participatory observation complements the interviews 
during the event. In both cases, the researcher making the 
note also records the workflow phase and the name of the 
participant. Cross comparison of interview notes to any 
problem notes for the same person and phase suggest if 
interview statements were prompted by misunderstanding of 
the AUKOTON development process or a genuine 

understanding of the approach and its limitations. Interview 
statements were full of company specific jargon, so the 
meaning of terms could be discovered by referring to the task 
and activity descriptions of the corresponding company 
interview. 

IV. INDUSTRIAL DEVELOPMENT PROCESS 

This chapter describes the industrial design work flow and 
related design artifacts, based on interviews of six companies 
involved in process and automation design projects. The aim 
of the chapter is, thus, to position the control application 
engineering phase in industrial projects and to discuss the 
production of the design information that the AUKOTON 
development process and control application engineering 
phase in general use as source information.  

Process control system design for process plants involves 
co-operation between teams and disciplines from process 
design, facility design, electrical design, instrumentation 
design and automation design. Instrumentation is often 
considered as a part of automation design. Automation design 
takes requirements and input information from the other 
mentioned areas of engineering and produces a functional 
process control application. In the Finnish process industry 
domain, the automation design is, typically divided in three 
main phases: preliminary design, basic design and detailed 
design. Depending on the project, each phase may be 
outsourced separately.  

Main purpose of preliminary design is to provide the 
necessary information about major cost factors for making the 
investment decision. Thus, the phase resembles the feasibility 
study; however, the companies favor the term preliminary 
design. Similar phase is carried out also in other engineering 
areas. Preliminary automation design collects requirements 
and other source information from other engineering 
disciplines and the end customer. Customers may supply 
general design guidelines, standards and preferred device 
suppliers and technology selections. Process engineering 
provides a preliminary version of a P&I diagram, verbal 
process descriptions and a preliminary list of instruments 
(loop list). An updated loop list is received later from 
instrument designers. Electrical design provides a list of 
motors and other devices with significant power 
consumption. This enables estimation of required I/O points, 
which is used to evaluate the cost of the automation system. 
The structure of the automation system is documented in an 
automation description document. The produced artifacts are 
textual documents and updated spreadsheets, which provide 
source information for the basic design phase. 

The basic design produces procurement specifications for 
the automation system. These are used when requesting 
quotations from automation suppliers. The I/O list is created 
on the basis of the process engineering’s loop list, instrument 
list and motor list. When the automation system supplier is 
selected, more detailed technical information about the 
communication is accumulated in the I/O list. The Process 
engineering provides reference designations of the loops and 
functional descriptions of the process. An important 
workflow event is the control approach meeting between 



process designers and basic designers. There may be several 
iterations of these meetings; first, emphasis is on 
understanding source information and later on presenting and 
validating basic design’s design decisions and documents. 
The basic design produces design documents such as control 
diagrams and regulation diagrams (e.g. logic, interlock and 
sequence diagrams) and loop wise functional descriptions.  

Control diagrams specify the analog control logic solution 
to be implemented, in order to manage the process in normal 
conditions and keeping it stable. One control diagram shows 
only a relevant section of the process equipment and its 
logical control solution using signal wires and calculation 
symbols. According to interviewees, control diagrams may 
use vendor neutral logic or vendor specific concepts if the 
automation system supplier has been selected. Regulation 
diagrams specify binary logic and sequential control for 
moving the process between operational states (e.g. start-up 
and shut-down of a sub-process), applying group control for 
several devices (e.g. synchronized operations) and handling 
abnormal conditions (e.g. interlocks). Similar to control 
diagrams, also regulation diagrams may use supplier specific 
or neutral logic and concepts. 

V. THE ASSESSMENT 

The activities performed during the assessment were 
divided to 6 phases: control approach discussion, source 
information inspection, requirement import and elaboration, 
functional design phase, platform specific design phase and 
PLCopen XML export. Model transformations were used for 
creating the requirement and functional models and to export 
PLCopen XML presentation of the application. Three of the 
phases: requirement import and elaboration, functional design 
phase and platform specific design phase, are integral parts of 
the AUKOTON development process presented in Fig. 1. The 
intention of the rest of the phases was to introduce the process 
to the developers and to be able to classify problem notes to 
more specific phases of the assessment event. 

During the control approach discussion, the developers 
were introduced to the laboratory process, the source 
information documents and the approach for dividing the 
functionality to control loops. The information was presented 
by the lead engineers and consisted of a piping and 
instrumentation diagram (P&ID) presenting the physical 
process and spreadsheet documents of the I/O connections 
points and the required interlockings.  

The laboratory process is presented in Fig. 2. The 
controlled process variables were the levels of water in tanks 
B100 and B200, water flow from tank B100 to B200, water 
temperature in tank B100 and pressure in tank B300. The 
control application was required to utilize both binary and 
analogue valued sensors and actuators, protect 

instrumentation from misuse with interlocks and use 
controllers also in cascade control structures. Thus, the 
application covered the basic tasks of typical automation and 
control applications. Some of the interviewed developers 
were also able to identify a project with similar automated 
process from their work history. 

After the discussion, the developers started working 
independently by continuing their study of the source material 
and then performing the actual development activities. In 
order to accomplish the development task during the one-day 
event, part of the required models and corresponding visual 
diagrams were given to the developers so that the diagrams 
could be used as parts of the design and as examples during 
the creation of the diagrams that the developers were 
responsible for. Guidance for the development approach and 
the tool were given as an instruction document and as help 
features integrated to the tool. The tool and its wizards 
partially automated some tasks, such as applying platform 
specific details to the models. 

The AUKOTON tool chain produces application code in 
the PLCopen IEC 61131-3 XML format utilizing a pre-
defined set of function blocks (FBs) called AUKOTON DCS 
(Distributed Control System) library. However, in addition to 
being able to produce IEC 61131-3 based PLC applications, 
an industrially applicable development approach should be 
able to support proprietary DCS platforms and their existing 
function block types. However, without resources to 
implement mappings for various target DCSs, the possibility 
to support various proprietary DCS platforms was assessed 
only based on interviews of the participants. 

A. Requirement import and elaboration 
The intention of the first actual development phase of the 

AUKOTON development process, requirement import and 
elaboration, is to import the source information and 
requirements to the tool environment. Source documents were 
imported as structured requirements presenting needs to 
interface with sensors and actuators of the process or to 

Fig. 2.  The laboratory process automated during the assessment event. 

Fig. 1.  An overview of the AUKOTON development process. 



compute control or interlocking signals, as presented in [3]. 
During the phase, the developers used two automatic import 
transformations to import the I/O connections points and the 
interlockings as system requirements, re-structured the 
requirements to new requirement categories, visualized the 
requirement model in requirement specification diagrams and 
added the requirements for controllers manually. 

During the phase, a total amount of 20 problem notes, 
about 2/3 of the total number of problem notes, was gathered. 
The problems included, for example, developers forgetting to 
import a source information document or being unable to 
identify or find certain imported elements from the views of 
the tool. This could be due to several reasons. Firstly, current 
development practices of industrial automation applications 
do not usually contain phases corresponding directly to the 
requirement phase. Consequently, the developers may not 
have been able to identify a development phase of industrial 
projects that could be compared to the requirement phase in 
order to understand its purpose and the activities. Secondly, 
the requirement phase was the first phase during which the 
developers used the UML AP tool that most of the developers 
were not familiar with before the assessment. So, one factor 
behind these problems was the unfamiliarity of the tool and 
Eclipse platform. However, already during the functional 
design phase during which the actual activities with the tool 
were quite similar, such problems were avoided. 

B. Functional design 
The intention of the functional design phase of the 

development process is to produce a functional model of an 
application that fulfills the requirements and that could be 
later refined with platform specific details. During the phase, 
the developers used an automatic transformation for creation 
of the functional model (Automation Functions) based on the 
requirement model presenting the user-modified source 
information, visualized the functional model with control 
structure diagrams and could then refine and inspect the 
functional design. Automation Functions (AF) could be 
characterized as platform independent, abstract FBs 
representing different kinds of measurement, actuation, 
control and interlocking functionalities that can be combined 
and connected together for modeling of the whole application 
[3]. During the phase, only one problem note was reported 
and it reported difficulties to open a model. 

Based on the interview notes gathered after the functional 
design phase, a majority of the developers agreed that the 
platform independent design could be completed for, at least, 
some proprietary DCS platforms. However, it was pointed out 
that more specific concepts, such as logic operations allowing 
the modeling of interlocking logic, would be needed to 
specify interlockings in industrial projects. This information 
was suggested to be added in diagrams specifying the inner 
logic of the interlocking Automation Functions (see [1]). 
Another piece of information that would be needed for certain 
platforms was the specification of the execution order of the 
AFs that are eventually transformed into FBs. In case of 
PLCopen IEC 61131-3, this information was not needed 
because the Multiprog tool could decide the order after the 
code generation. 

Some developers also suggested presentation of control 
and interlocking functionalities in different diagrams in order 
to aid the understandability of the design. Technically, such 
views could be created with the tool but creation of them is 
not automated and they were not used during the assessment. 
However, the separation of such aspects might be beneficial 
already during the requirements specification phase. In 
addition, some developers suggested improving the graphical 
presentation of the models. Vocabulary of the model 
elements, as well as graphical presentation, should be more 
familiar to automation engineers and the UML specific details 
and vocabulary should be hidden from the developers. 

C. Platform specific design and PLCopen export 
The intention of the platform specific design phase is to 

produce a platform specific model based on which the 
application code could be automatically generated. During the 
phase, the platform independent functional model was 
completed with platform specific (AUKOTON DCS library) 
stereotypes and ports. The stereotypes were used to map the 
AFs to existing FBs so that modeling of the implementation 
of the AFs was not needed. The signal interfaces of the AFs 
(presented as ports) were completed to correspond to those of 
the existing FBs by (automatically) checking that all the ports 
of the FBs were present in the model and by warning about 
additional ports not defined by the actual, implementing FBs. 

The interview notes gathered after the completion of the 
phase supported our understanding that the stereotypes and 
ports based approach could be used also for completing the 
platform independent design for certain proprietary DCS 
platforms. However, the possibility for detailed-enough 
specification of the interlockings was still seen to be missing 
which could reduce the usability of the approach. The missing 
details included priorities, delays and detailed specification of 
the inner logic of the interlocking Automation Functions. It 
was also estimated that the basic control functionality 
(without interlockings) forms approximately 80-90% of the 
amount of code in typical customer projects.  

Finally, the developers performed the automatic code 
generation and could visualize the program with Multiprog, a 
tool with PLCopen IEC 61131-3 XML import/export 
capability. No problem notes were reported during the code 
generation. 

VI. RESULTS 

This section presents the results of the assessment based on 
the problem and interview notes gathered during the event. 
The discussion has been structured based on the research 
questions presented in section 2. Subsection A discusses the 
question of whether the process and tool chain enable the 
development of industrial automation applications for 
proprietary DCS platforms. The discussion will consider both 
the developers’ ability to use the development process and 
tools and the possibility to use this MDE technique to 
generate applications to the proprietary DCS platforms that 
are currently used by automation system vendors.  

Subsection B addresses the second research question - 
whether the approach and the techniques could automate part 
of the development work that is usually done manually in 



current industrial practice. However, also in case of the 
second research question, the ability to automate part of 
AUKOTON development process may not automatically 
prove the industrial capabilities. Instead, in order to assess 
industrial applicability, aspects such as inconsistencies 
between industrial development workflow and that of the 
AUKOTON development process should be taken into 
consideration. However, because of the size of the developed 
application, such aspects can only be assessed based on the 
results of interviewing industrial professionals. 

A. Ability to produce industrial  automation applications 
During the development activities, a total of 30 problem 

notes were gathered. The numbers of problem notes gathered 
during the phases of the assessment are: control approach 
discussion (1), source information inspection (3), 
requirements import and elaboration (20), automation 
functions (1), platform specific design (2), PLCopen XML 
export (0). In addition, 3 problem notes were gathered that 
cannot be linked to any specific development phase. Fig. 3 
presents the distribution of problems based on the 
development phases.  

As presented in previous section, at least some of the 
problems during the requirements phase may have been 
caused by the unfamiliarity of the tool and the platform. This 
assumption is also supported by the division of problems 
based on the types of problems, shown in Fig. 4. For 
example, the total amount of problems related to finding and 
creating elements and using the Eclipse views were 2, 3 and 
3, respectively. Problem notes in these categories reported 

difficulties to find or notice elements and element creations in 
the outline view of the tool. In addition, some problem notes 
reported difficulties to joint-use the graphical diagrams and 
the outline view, and to comprehend the correspondance 
between the elements of the views. Because such features are 
quite common in UML tools, those tools and the Eclipse 
platform have probably been unfamiliar to the developers. In 
addition, the distribution in Fig. 4 indicates difficulties 
interpreting source data. However, 6 of those 7 problem notes 
were more like comments regarding the laboratory process 
and its documentation, such as, presentation of the cascade 
control loop in the P&ID. 

As the total amount of developers was eight, the average 
sum of problem notes per developer is approximately four 
that could be considered relatively small. In addition, a 
majority of the developers were able to finish the 
development and perform code generation during the one-day 
event. The interview notes gathered after the platform 
specific modeling phase supported our understanding that 
proprietary DCS platforms with existing collections of FBs 
(excluding interlocks), that have been used successfully in 
industrial scale projects, could be supported with the process 
and tools. Thus, although the Eclipse platform and UML 
based modeling may be unfamiliar to automation 
professionals, such techniques and tools could possibly be 
successfully used in automation application development. 

B. Ability to automate part of the development work 
The question of whether the approach can automate some 

development tasks that are carried out manually in current 
practices proved to be more complicated. Based on the 
interview notes, the approach was seen beneficial as “the 
current industrial practice can be seen as collecting pieces of 
design information and acting on unstable information”. The 
AUKOTON development process, on the other hand, was 
seen to proceed in a more straightforward way from abstract 
levels to more concrete design. The most important 
improvement offered by the approach was the partially 
automated shifting from process and basic automation design 
based requirements to application development. However, 
somewhat similar intermediate techniques, such as, 
spreadsheet macros are already in use to automate, for 
example, parameter updates in design. Secondly, it was seen 
that transformation techniques could be used for automating 
information transfer between development phases in order to 
reduce both workload and errors.  

Based on the interviews, the ability to partially automate 
the development may not be automatically generalizable to 
the present development practices used within the industry. In 
case of the AUKOTON development process, the automated 
creation of functional model structures was made possible by 
detailed requirement specification models; the creation of 
such models would require additional work compared to the 
current development practices. Based on the interviews, the 
information content of the requirement models is gathered 
also in the present practices but not as formally and not 
necessarily during an individual development phase dedicated 
for the requirements as in case of the AUKOTON process. 

Fig. 3.  Division of problem notes by development phase. 
  

Fig. 4.  Division of problem notes by types of problems. 



Instead, according to an interviewee, in their development 
practice, the source information from process engineering is 
used for creation of control, interlocking and regulation 
diagrams that are used as inputs for the application 
development. As such, the requirement models of the 
AUKOTON approach does not correspond to any of the 
aforementioned diagrams but to unified version of them. An 
interviewee suggested providing control and interlocking 
views to this unified model. With such an approach, the 
requirement model within the tool could still be as unified as 
in the case of the present approach although different views 
would be used for depicting, for example, the control and 
interlocking aspects. 

VII. CONCLUSIONS 

As a conclusion to the first research question, the results of 
the development task and the interviews suggest that the 
approach could be used for development of industrial DCS-
based applications. Three areas of further development were 
identified. Firstly, the capability to specify interlockings 
should be enhanced. Secondly, UML related terminology and 
notations should be replaced with terms and symbols that are 
familiar to professional automation engineers. Thirdly, 
visualization and editing of designs at different levels of 
granularity is needed. 

As a conclusion to the second research question, the 
interviews suggest that some design activities of present 
development practices could be automated but with the cost 
of introducing an additional but at least partially automated 
work phase with requirement models. In addition, industrial 
application of the development approach might require 
changes to industrial development practices. Additional 
activities would be required especially for unifying the source 
information in order to create a starting point for the 
application development. Nevertheless, the total amount of 
development work could still be smaller because also the 
present development practices require unification of the 
design later during the application development. Estimating 
the quantitative net effect on development work, however, 
requires further research. Comparisons to industrial practice 
are only meaningful after the MDE tools mature to 
commercial quality. In addition to the AUKOTON project, 
model-driven methods have been recently proposed by 
several projects in the automation domain. Despite the 
process and tools used during the reported assessment were 
specific to the AUKOTON project, the authors hope that part 
of the industrial feedback could be of use also for the other 
projects. 
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The scope and responsibilities of control applications are increasing due to, for example, the emergence of industrial internet. To
meet the challenge, model-driven development techniques have been in active research in the application domain. Simulations
that have been traditionally used in the domain, however, have not yet been sufficiently integrated to model-driven control
application development. In this paper, a model-driven development process that includes support for design-time simulations
is complemented with support for simulating sequential control functions. The approach is implemented with open source tools
and demonstrated by creating and simulating a control system model in closed-loop with a large and complex model of a paper
industry process.

1. Introduction

Model-driven development (MDD) is a system and software
developmentmethodology that emphasizes the use ofmodels
during the development work. In MDD, models conform to
modeling languages that have formal metamodels, for exam-
ple, unifiedmodeling language (UML). In addition tomanual
development work, models can be processed with model
transformations that revise existing and create new, refined
models. The use of transformations may automate error-
prone tasks such as importing information to models from
preceding development phases and tools. Design models can
be used for generating code or to analyze the developed
systems. Automated model checks may reveal problems and
inconsistencies in models and between phase products.

The mentioned benefits of MDD are related to develop-
ment tasks that are repetitive and simple enough to be treated
with preprogrammed rules. However, MDD has not been
able to, and probably cannot, automate all the complex tasks
in system and software development. Demanding design
decisions over alternative solutions to achieve (sometimes
informal) objectives and product characteristics need to be
made by professional developers. However, although genuine

design decisions cannot be automated, developers do not
always have to rely solely on their experience. For example,
simulation is a technique that has been traditionally used
in the domain within control algorithm development and
control system testing.

Automation and control system development is also an
application domain in which the use of MDD techniques has
been researched extensively during recent years. However,
despite the research activities and the tradition of using
simulations, ability to simulate early software design models
has not yet been sufficiently addressed in the domain.

In their previous work, the authors have developed a
simulator integration [1] to the tool-supported Aukoton
MDD process [2] for automation and control applications.
The approach is based on UML Automation Profile (UML
AP) [3]. It enables modeling and simulation of cyclically
executed control functions including feedback and binary
control as well as interlocks (interlocks are used in control
systems to protect the controlled processes from causing
harm to themselves or personnel, e.g., by forcing actuators to
safe states based on measured states of the processes).

The simulation support is intended to be usable during
both platform independent and platform specific modeling
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Figure 1: The MDD process with simulation extensions.

phases of the development process; see Figure 1. During the
platform independent phase, it is possible to, for exam-
ple, evaluate alternative control approaches, structures, and
interlocks. During the platform specific phase, the approach
enables the evaluation of platform specific functions, tunings,
and predicted overall performance of the system. Technically
the approach utilizes model-in-the-loop simulations so that
UML AP control system models are transformed to Modeli-
caML models. In this paper the approach is complemented
by enabling simulation of sequential control activities. The
activities are modelled with Automation Sequences of UML
AP and visualized with Automation Sequence Diagrams.

The contributions of this paper are as follows. The mod-
eling notation is discussed in comparison to the well-known
statemachine notation of UML. An approach that enables the
simulation of control sequences in a state-machine-like form
is presented and implemented as amodel transformation.The
approach is integrated to the previous simulation integration.
The approach is applied to batch control of a paper industry
process.

The rest of this paper is organized as follows. Section 2
reviews work related to the use of MDD and simulations in
the industrial control domain. In Section 3, the previouswork
is introduced briefly, which is necessary for understanding
how the new work integrates to it. Section 4 discusses the use
of control sequences in process industry, presents the UML
AP approach to modeling control sequences, and presents
the model transformation to create simulation models. In
Section 5, before discussion and conclusions, the approach is
applied to an illustrative pulp batch processing system.

2. Related Work

The use of model-driven techniques has been researched
extensively in the domain of industrial control during recent
years. Modeling of requirements, architecture, and details
of control applications has been seen as an important part
of design processes and as a means to cope with the ever-
increasing size and complexity of the applications. Many of
the recent approaches have also integrated simulations to

the development processes in order to be able to test early and
concurrently to the development work.

In addition to industrial control, MDD with simulation
features has been applied to control system development for
automotive and other embedded applications. The general
simulation approaches that can be applied when models are
used for generating code include model-in-the-loop (MiL),
software-in-the-loop (SiL), processor-in-the-loop (PiL), and
hardware-in-the-loop (HiL) simulations [4]. The approaches
differ in the control system configurations that are used to
control plantmodels in closed-loop simulations. Examples on
use ofMiL, SiL, andHiL simulations in the embedded system
domain include [5] that describes a general framework for
and two examples of use of MiL simulation. A testing envi-
ronment that uses SiL simulations is presented in [6]. HiL
simulation and testing have been utilized, for example, in [7–
9].

Another classification of simulation approaches is related
to the amount of simulation engines. Simulation of a con-
trolled system, with a model of a process to be controlled
and a model of a control system, can be performed within a
single simulation engine or as cosimulation. In cosimulation,
the models are simulated within different but connected
environments. This requires a mechanism to synchronize
the simulations including their values and states. Commands
and functions, for example, running, replaying, freezing, and
loading states (see [10] for a list of basic simulation functions)
must be replicated to all used engines.

The management and coupling of cosimulations have
been recently addressed with FMI standard [11] and also
with model based techniques [12]. However, the area of
expertise of control application developers may still not be in
simulation techniques. As a consequence, the use of a single
simulation engine can be considered more recommendable.

In the industrial control domain, MAGICS approach for
MDD of industrial process control software is presented in
[13]. As amodeling notation the approach utilizes ProcGraph
that has been implemented on the Eclipse platform on top of
Eclipse Modeling Framework (EMF). The approach utilizes
several diagram types including Entity Diagrams (ED), State
TransitionDiagrams (STD), and StateDependencyDiagrams
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(SDD), of which STD is suitable for modeling sequential
behavior.The approach enables the generation of executables
but does not address simulations.

The FLEXICON project studied the integration of Com-
mercial-Off-The-Shelf tools, including MATLAB/Simu- link
and ISaGraf, to support the development of control appli- ca-
tions formarine, automotive, and aerospace systems [14].The
approach uses cosimulation, which is enabled by DSS (data
delivery service) middleware between the tools.

Vyatkin et al. [15] developed a model-integrated design
framework for designing and validating industrial automa-
tion systems. It is based on the Intelligent Mechatronic Com-
ponent (IMC) concept and the use of IEC 61499 architecture.
New systems are developed from IMCs that are integrated
together and with their models enable formal verification,
closed-loop MiL simulation of IEC 61499 models and code
deployment.

The approach of the MEDEIA project [16] builds on use
of several model types as well as bidirectionalmodel transfor-
mations. The process supports the use of closed-loop MiL
simulations which are based on use of an IEC 61499 environ-
ment. Simulation models of the process parts are in the
approach defined with either timed state charts or external
behavior descriptions (external simulation tools).

The abovementioned standard, IEC 61499 [17], is a
specification and modeling language for industrial control
applications. It extends the function block concept of another
IEC programming language, IEC 61131-3 [18], with event
driven execution and support for distribution of applications.
With an appropriate tool support, IEC 61499 models can also
be used for simulation purposes.

The simulation approach in [19] is based on mixing real
control hardware with simulated one while simulating the
plant in another (SIMBA 3D) environment.The benefit of the
cosimulation approach is the ability to test early, by executing
already implemented parts and simulating the rest.

The simulation approach closest to our work has been
recently presented in [20]. In a manner similar to [15, 16]
IEC 61499 is used for simulation purposes also in [20]. Model
transformations are used for creating IEC 61499 plant models
fromMATLAB/Simulink plant models to obtain closed-loop
behavior within a single (MiL) simulation environment.

Difference from the work to be presented, the referred
simulation approaches in the domain ([14–16, 19, 20]) do
not address modeling and simulation of sequential control
separately from, for example, stabilizing feedback control. In
[13] the sequential control aspect is addressed with respect
to modeling. However, simulation of the models is not
suggested. The use of simulations can thus be assumed to be
possible no earlier than after code generation.

On the other hand, the referred development approaches
that support simulations rely either on cosimulation ([14,
19]) or use of IEC 61499 as a simulation language ([15,
16, 20]). The use of IEC 61499 to simulations was not a
viable alternative in this work to be presented because it
is not used in the MDD process [2] that is extended with
simulations. On the other hand, UML AP models that are
used in the development process are not simulatable as such.
The use of cosimulation would thus have either required

a transformation to a simulatable formor delayed simulations
to simulating plant models with produced executables. These
reasons, however, apply to a number of MDD processes with
nonsimulatable modeling languages such as UML and UML
profiles.

Other works related to sequential control with model-
based characteristics include [21] that presents an approach
to transform Grafcet [22] models to Mealy machines for
testing purposes (Grafcet is a conventional means to specify
control sequences). Execution semantics of Sequential Func-
tion Charts (SFC) [18] have been addressed in [23]. The SFC
notation is part of IEC 61131-3 [18] and based on the earlier
version Grafcet.

In the simulation approach to be presented, the tar-
get simulation language is Modelica [24] with Modelica
Modeling Language (ModelicaML) [25] as an intermediate
language. Modelica is an object-oriented, equation based
simulation language. The basic concepts of it are simulation
classes that contain properties, equations, and connectors.
Similarly to classes of object-oriented programming lan-
guages, Modelica classes can inherit properties (and equa-
tions) of parent classes. Simulatable Modelica models consist
of instances of the classes that are connected together with
their connectors. ModelicaML [25], on the other hand, is
a UML profile for Modelica. It consists of stereotypes and
tagged values that correspond to the key words and features
of Modelica and enable modeling of Modelica models with
UML tools. ModelicaML models are not simulatable as such
but can be transformed to simulatable Modelica form with
OpenModelica tools [26]. For simulating Modelica models
there are both open source (e.g., OpenModelica [26]) and
commercial tools (e.g., Dymola [27]) available.

The ModelicaML (profile) implementation uses UML2
plugins on the Eclipse platform which are built on Eclipse
Modeling Framework (EMF) implementation of OMGMeta
Object Facility (MOF). The ModelicaML implementation is
thus technically similar to the UML AP implementation [28]
that is used in this work for control system modeling. It
has been implemented by extending UML2 and Topcased
SysML metamodel with EMF. This similar background of
the tools enables implementing the transformation from
UML AP to ModelicaML using standardized QVT (Query/
View/Transformation) languages [29] and their open source
implementations on the Eclipse platform.

3. On Simulating Control Application Models

The objective of integrating simulations toMDD for automa-
tion and control applications is to support design-time
quality assurance activities. It should be possible to compare
alternative control approaches and structures and tunings
as well as interlocks. Design flaws should be found and
corrected as early as possible and to the extent possible so that
they would not affect adversely subsequent design phases.
By enabling simulation of design-time models, it could be
also possible to obtain at least part of the general benefits
of simulations before implementation of the applications.
Such general benefits include, for example, improvements
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to the design, development, and validation of the control
programs, as reported in [10].

Without specific support for sequential control, the
approach to create simulation models from UML AP models
has been presented in [1]. In UMLAP, the modeling concepts
for functional modeling are automation functions (AFs)
that have been divided to a hierarchy of measurements,
actuations, controls, and interlocks. Measurement and actu-
ation AFs are interfaced with sensors and actuators of the
controlled processes while performing conversions of signals
to and from engineering units. Control AFs perform compu-
tation of control signals according to control algorithms.The
purpose of interlock AFs is to compute releasing and locking
signals for actuators and devices. AFs interchange signals and
information with ports.

The transformation for simulating functional UML AP
models (that consist of AFs) creates and appends simulation
counterparts of the AFs toModelica plant simulationmodels.
For platform independent AFs, the transformation utilizes
a library of predefined simulation counterparts (classes) of
them. To support platform and vendor specific AFs, the
transformation is capable to utilize external libraries of
simulation classes. To support application specific AFs, for
example, interlocks that require tailoring for each application,
the transformation is capable to create simulation classes
based on logic diagram descriptions of AFs [1]. The process
described in this paper is an equivalent approach to create
new simulation classes but based on Automation Sequence
Diagrams instead of logic diagrams.

Thedecision to usemodel transformations in thismanner
was made because UML AP models, as they are used in the
tool, are not simulatable as such. Transforming plant models
to the control application models would not have enabled
closed-loop simulation, for example, in [16, 20] in which (IEC
61499) models were simulatable. In a similar manner, use
of cosimulation as in [14, 19] would have required transfor-
mation to a simulatable form before applying cosimulation.
Additionally, the cosimulation approach would require addi-
tional work; see Section 2, related to, for example, coupling
simulations skills that not all control application developers
can be assumed to have.The approaches to obtain closed-loop
simulations by transforming plant models, by transforming
control application models, and by using cosimulation have
also been recently compared in [30].

An example structure of a plant model before and
after executing the transformation that appends the control
application specific parts to it is illustrated in Figure 2. Before
executing the transformation, the model contains simulation
class definitions of the parts of the plant and a description
of how the interconnected instances of the classes form the
system model. This part of the model, referred to as the
original process model, is circled with blue, dashed line.
The transformation (1) copies and creates new simulation
class definitions based on the control system model, (2)
creates instances of the classes according to the control system
model, and (3) couples the required instances of the classes
to the original model. In the figure, the newly created parts of
the model are circled with red, dashed line.

4. Modeling and Simulation of
Control Sequences

Control sequences are needed by process industries to per-
form start-ups of complex processes, for example, power
plants or paper machines and to drive them to their designed
operating states. In a similar manner, shutting down a
process in a controlled and energy efficient manner may
require changing set-points of process variables and shutting
down devices and sub-systems in a specific order. On the
other hand, batch processes constitute a challenging part
of industrial processes. In batch processes production of
the end products may require, for example, addition of
sourcematerials and substances according to time constraints
and achievement of defined process states, for example,
temperatures and concentrations.

The UML AP approach to modeling sequential control is
based on (automation) sequences that have been developed
to enable a SFC-conformant modeling notation within UML
AP models. Sequences are modelled with a domain specific,
new diagram type, Automation Sequence Diagram (ASD).
Graphically the ASD notation resembles both the state
machine and activity modeling notations of UML.

4.1. Description of the Modeling Notation. Sequences that are
described in ASDs consist of Steps that are basic procedural
elements in the approach (e.g., upper level batch recipe steps
or device level controls). Similar to states of UML state
machines, Steps contain Entry, Step, and Exit Activities that
are executed when arriving to the Step, during the Step
and when exiting the Step, respectively. In addition, Steps
may reference other Sequences that can be defined with
other ADSs. This is an equivalent characteristic to composite
states of UML. Containing activities and referencing a sub-
Sequence are exclusive alternatives for a Step. In addition to
basic Steps, Sequences may contain Allocations. Allocations
are intended for reserving process items and devices for the
Sequences that they appear in. When used, Allocations are
next to initial Steps in the Sequences.

The execution order of Steps within a Sequence is deter-
mined by Transitions that may contain different kinds of
conditions that control when a Transition is fired. First, the
condition can be a Boolean condition that explicitly specifies
a Boolean valued condition based on, for example, values of
the variables of the AF that contains the Sequence. Secondly,
a condition can be a timeout condition specifying how long
the Transition must wait after the execution of the previous
Step is finished. Additionally, the Transition can be a one shot
Transition which is fired immediately after the previous Step
has been executed.

In addition to Steps, Allocations, and Transitions, Se-
quences contain initial and final as well as fork and join Steps.
They can be used in a similar manner that the corresponding
pseudostates of UML state machines, that is, to control the
execution of Sequences. Use of initial and final Steps is also a
necessity in each Sequence because whether a transition may
occur from a Step to another is not always dependent (only)
on the conditions of the Transitions.
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Figure 2: The transformation adds the control system specific parts to an existing model of the physical process.

Consider, for example, the two example diagrams in
Figure 3. The figure also illustrates the graphical represen-
tation of initial and final Steps, (basic) Steps, Steps that
reference sub-Sequences, forks, joins, and Allocations. In
the Sequence at the left-hand side, all the Steps reference
sub-Sequences that consist of Steps and possibly other
sub-Sequences. For example, the WLF (White Liquor Fill)
Sequence in the right-hand side diagram is referenced from
the third Step in the left-hand side diagram.

Because the Transitions in the Sequence at the left-hand
side are one shot Transitions, it is obvious that whether a
Transition can fire is also dependent on the completion of
the referenced Sequences. Referenced Sequences need to have
performed their control activities in a similar manner as in
SFCs [18], which is a domain specific notation based onwhich
the ASD notation has been developed. For a Transition to be
fired from a Step referencing a sub-Sequence, the referenced
Sequence must have reached its final Step. This is a clear
semantic difference of the notation in comparison to UML
state machines.

Some other obvious differences to UML state machines
are also visible in Figure 3. The first Step in the Sequence
on the right-hand side is an Allocation. In the example, the
allocated process parts are (tanks) T100, T300, and T400 as
well as (pump) P100. (In UML state machine diagrams, there
are no similar concepts.) After the first of the fork Steps,
the transition condition on the right-hand side is of type
timeout with value “1” indicating that the Transitions must

wait 1 (sec) after the execution reaches the fork. In UML state
machines the semantics of the timeouts is slightly different
since the waiting time of UMLAP Transitions starts from the
completion time of the Step preceding the transition.

Lastly, as can be seen in the example Sequence at the right-
hand side in Figure 3, Sequences may have several branches
executing at the same time. In UML state machines, an
analogous feature would be the possibility for a system to be
in two (or more) states at the same time. This requires using
composite states, each within a region of its own.

Another modeling notation of UML that the ASD nota-
tion resembles (both graphically and semantically) is the
activity diagram notation that would enable concurrent
Sequences of activities and explicit constraints on flows but
no timing constraints. However, UML activities cannot be
broken up to concepts corresponding to Entry, Step, and
Exit Activities of Steps. Activity diagrams may additionally
contain decision nodes for which there are no corresponding
concepts in ASDs. Lastly, activity diagrams usually describe
workflows of entire systems, whereas in UML AP Sequences
are used to describe sequential behavior of individual AFs.

Because of the mentioned conceptual differences to the
modeling notations of UML that have similar appearance, it
was not possible to use directly research work that has been
previously done to enable their simulation.

4.2. Model Transformation for Simulating Sequences. In gen-
eral,Modelica is an equation based language so that the values
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Figure 3: Automation sequence diagrams illustrating a sequence and a referenced subsequence of it.

of variables ofModelica models are determined by equations.
However, in addition to the equations that apply all the time,
the language includes an algorithmic concept for calculations
in which statements are applied in an order. Algorithms are
also the constructs of the language that the transformation
uses for simulating the Sequences.

The simplified (hiding unnecessary details) metamodel
of the ASD diagram type is presented in Figure 4. In the

metamodel, Sequence is extended from the UML state
machine. The Step and Allocation concepts are extensions
of UML state. Entry, Step, and Exit Activities are extended
from the UML activity concept and contained by Steps with
metamodel properties of UML State (that are hidden from
the figure). In addition to the concepts that are shown in
the figure, ASDs may contain instances of the mentioned
pseudostates of UML, namely, initial, join, and fork states
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Figure 4: Simplified metamodel of the ASD diagram type with relations to the UML metamodel.

(Steps) as well as final states. Transitions between Steps,
Allocations, and pseudo Steps are modelled with a Transition
concept that has been extended from UML Transition.

To simulate the behavior of Sequences, they are used
as a basis for creating variables and algorithmic code. The
systematically named variables are used to keep track of the
execution, whereas the algorithmic code changes the values
of the variables. The (Entry, Step, and Exit) Activity code
of Steps is also included in the algorithms. The variables,
which are created to be owned by a Modelica class that
corresponds to the AF that owns the Sequence, are created
as follows. For the sequence that an ASD represents, and, for
each sub-Sequence that is referenced from the Steps of the
Sequence, a Boolean variable with the same name than the
name of the Sequence is created. These variables are used to
indicate the execution of the Sequence being in the Sequence
or sub-Sequence in question. In addition, exactly one UML
OpaqueBehavior for each highest level Sequence is created to
contain the algorithmic code to be generated.

For each Step in a Sequence, the transformation creates
two variables. First is a Boolean variable with a name
consisting of the name of the Sequence and the name of the
Step. The second variable is an Integer variable with a name
consisting of the name of the sequence, the name of the Step,
and “Phase” literal.The Boolean variables are used to indicate
the execution of the Sequence being in the Step in question,

whereas the Integer variables keep track of which Activities
(Entry, Step, or Exit) have been executed in a Step.

For (exactly one) initial Step in a Sequence, the trans-
formation creates a Boolean variable with a name consisting
of the name of the Sequence and “Initialized” literal. For a
final Step in a Sequence, the transformation creates a Boolean
variable with a name consisting of the name of the Sequence
and the name of the final Step. These variables indicate
whether or not the execution has reached the initial and final
steps in question.

For each fork-to-join region the transformation creates a
Boolean variable with a name that consists of the name of the
fork, the name of the join, and “Region” literal. In addition,
a Boolean variable is created for each branch going out from
the fork and coming into the (exactly one) join. The names
of these variables consist of the name of the fork (Step) and
the number of the branch. The variables corresponding to
the branches are used in guard conditions for exiting the join
(Step), whereas the other variables are used to indicate the
execution of the Sequence being in the fork-to-join region.

For Transitions, the transformation creates variables only
if their transition condition is of type timeout. In this case,
the name of the real valued variable consists of the name of
the Sequence, the name of the Step from which the transition
starts, and “Time” literal. These time variables keep track of
completion times of the Steps that the Transitions exit from.
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Table 1: Mappings between UML AP and UML (ModelicaML)
metamodel elements.

Source model
(UML AP) Target model (UML with ModelicaML)

Element Model
element Element name Element

type

Sequence Property Seq. name Boolean
Opaque
Behavior

Seq. name +
“Algorithm” —

(UML) Initial
(pseudostate) Property Seq. name +

“Initialized” Boolean

Step

Property Seq. name +
Step name Boolean

Property
Seq. name +
Step name +
“Phase”

Integer

(UML)
FinalState Property Seq. name +

FinalState name Boolean

(UML) Fork
(pseudostate) Property

Seq. name +
Fork name +
“Branch” + #

Boolean

(UML) Join
(pseudostate) Property

Fork name +
Join name +
“Region”

Boolean

Transition Property
Seq. name

+ Step name +
“Time”

Double

Allocation
Property Seq. name +

allocation name Boolean

Class “Allocations” —
Property Device ID Integer

Lastly, for the Allocations, the transformation generates a
record (class) and a property for each individual device ID
that becomes reserved in the Sequences owned by the AF.The
mappings between UML AP and UML metamodel elements
are also presented in Table 1.

Some of the algorithmic constructs that are created based
on the ASDs are illustrated in an example in Figure 5. First,
a when-construct is created that is executed only once at the
7 start of the simulation (“when initial() then”). It sets all the
Boolean phase variables (Steps, pseudo Step, Allocations, and
sub-Sequences) to false.The Integer variables related to Steps
are set to 0 to indicate that no activities have been performed.
The Integer variables related to Allocations are also set to 0,
to indicate that no allocations are active. The initialization
code is created only for each highest level Sequence, not for
referenced sub-Sequences.

Steps, Allocations, sub-Sequences, and pseudo Steps are
handled with conditional (if-else if) code blocks that can be
all entered only once. This is necessary because Modelica
models are executed cyclically. In a cycle the execution must
continue from the phase to which the execution ended in
the previous cycle. For example, arriving to the allocation
phase in the example is enabled in the initialization phase
and disabled in the allocation phase, which in turn enables
the next phase.

Entry, Step, and Exit Activities are executed only once so
that when arriving to a Step, the Entry Activity is executed
first in addition to changing the phase value to 1. Next,
Step Activity is executed and the phase value set to 2. The
execution of the Exit Activity and setting the phase variable
to 3 waits until the transition condition (if any) to next Step
in the Sequence is satisfied so that the transition can occur
immediately after performing the Exit Activities. If the Step
in question does not contain Entry, Step, or Exit Activities,
the corresponding algorithmic code only changes the value
of the phase variable.

Allocations are assumed to be next to initial Steps
in Sequences. They are intended to model allocations of
devices that have IDs corresponding to the ID variables of
Allocations. For Allocations, the algorithmic code increases
(by one) the variables of the record that correspond to
the allocated IDs. At the end of Sequences, allocations are
relieved by decreasing the values of the variables by one. In
the simulations, the Allocations thus do not force execution
to wait but only warn about double allocations, which are
indicated by the values of the variables becoming greater than
1. Such problems can then be inspected by developers.

Fork-to-join regions are in the approach handled by
creating variables for each branch in the region.The branches
may execute independently of each other but for a transition
to exit a join Step, all branches must have reached the join.
This condition is used as an exit guard for the join, in addition
to possible transition conditions related to the transition
exiting it.

In the approach, the Modelica code structures resemble
the structures in [31] that are used for Modelica simulating
state machines. The most notable differences are as follows.
Steps or sub-Sequences that are next to another sub-Sequence
are not enabled until the sub-Sequence reaches its final Step.
This prevents a transition in a higher-level sequence to fire
before the final Step is reached. The phases of Steps, that
is, whether the Entry, Step, and Exit Activities have been
executed, are recorded with Integer variables. The transition
conditions to exit Steps are used inside the Steps as guards
for shifting to the Exit Activities and enabling the next
Step/sub-Sequence. In Allocations that do not have activities
the transition conditions are similarly used as conditions to
enable the next Steps or sub-Sequences. In referenced sub-
Sequences, the next Steps or sub-Sequences are enabled in
the final Steps. Lastly, in case of a transition containing a
timeout condition, a real valued time variable is created for
the previous Step the value of which is set to equal the
completion time of the previous Step, pseudo Step, or sub-
Sequence. The time variables can be used in the transition
conditions as illustrated in Figure 5.

4.3. Constraints and Assumptions. In development of the
modeling and simulation approach, a decision was made that
Sequences must always be owned by AFs. In this way, the
variables and algorithmic code corresponding to a Sequence
can be created for a Modelica class corresponding to the
AF that owns the Sequence. In the approach a Sequence
thus describes the sequential behavior of the AF that owns
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SequenceAllocation :
SubSequence :
//SubSequence-related variables 
SequenceStep2 :
SequenceStep2Phase :
SequenceFinalStep :

end when;
if not SequenceIntialized then

SequenceIntialized :
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end if;
 SequenceAllocation then

//Allocation code here
if not pre(SequenceAllocation) 

SequenceAllocation :
SubSequence :

end if;
else if SubSequence then

//SubSequence-related algorithm code 
else if SequenceStep2 then

if pre(SequenceStep2Phase) =

=
//Entry activity code
SequenceStep2Phase := 1; //Entry done

//Step activity code
SequenceStep2Phase := 2; //Step done

//Exit activity code
SequenceStep2Phase := 3; //Exit done
SequenceStep2 :
SequenceFinalStep :

end if;
else if thenSequenceFinalStep

SequenceFinalStep :
Sequence :
//A next Step/Sequence would be enabled here
//Allocations releasing code here

end if;

SequenceAllocationTime : = time;
end if;
if time > SequenceAllocationTime +1 then

then

else if pre(SequenceStep2Phase) == 1 then

else if pre(SequenceStep2Phase) == 2 and 
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If

then
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here. . .

Figure 5: An automation sequence diagram with a corresponding (Modelica) algorithm section.

the Sequence. A Step being executed in a Sequence is a Step
of theAF. For control or other signals to be forwarded to other
AFs, the AF must be connected to them with use of ports in
the interfaces of the AFs. The execution of a single Sequence
is thus centralized in an AF. However, an AF may contain
several Sequences. On the other hand, a control application
model may contain several AFs that define Sequences so
that at runtime there would be several Sequences executing
concurrently and independently of each other.

The properties that are created for implementing the
sequential behavior (see previous section) become the prop-
erties of the (ModelicaML) class that is created to correspond
to the AF. The properties are necessary for implement-
ing the dynamic behavior, by controlling the execution of
algorithmic statements. During simulation, however, they
also indicate the execution of the Sequence. For example,
the Boolean valued properties created to correspond to
Sequences (and its possible sub-Sequences) have value true
only when the execution is in the sub-Sequence in question.
This feature has been used, for example, in Figure 9 in which
the upper plot presents the sub-Sequences of a pulp batch
processing Sequence.

There are also restrictions related to the use of Sequences
in the approach. Currently, for the simulation transformation
to work properly, fork-to-join regions must be balanced so
that branches exiting a fork meet each other in one join. On
the other hand, the transformation does not support loops
within Sequences so that a Step could be entered more than
once in a Sequence. It is also assumed that a Sequence always
contains an initial Step and at least one final Step.Whether the
restrictions related to initial and final Steps hold is checked
before performing the transformation.

4.4. Implementation of the Approach. The transformation
for simulating Sequences was implemented by extending
the previous version of the transformation [1]. In addition
to Control Structure and logic diagrams that were sup-
ported by the previous version, the transformation processes
Sequences contained by AFs to properties and algorithm
sections of Modelica classes. The core of the transformation
was written with the QVT (Query/View/Transformation)
operational mappings language [29] and the executable Java
code generated with the SmartQVT tool. The generated Java
transformation class was complemented by extending it with
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Figure 6: P&I diagram of the pulp production process.

a manually written class. It takes care of, for example, the
creation of tagged values of stereotypes and other tasks that
are hard to express with QVT languages. To enable launch-
ing the transformation with the graphical user interface of
the supporting UML AP tool [28], the transformation was
packaged to an Eclipse plugin. The plugin architecture and
integration to the tool was implemented as outlined in [32].

5. Illustrative Example

The example system to be used in this paper is a laboratory
scale pulp processing plant the piping and instrumentation
(P&I) diagram of which is in Figure 6. The plant includes
3 storage tanks, a boiler, 2 pumps, 2 control valves, 13
solenoid valves, and piping that enable pumping fluid from
any tank to the boiler and via boiler back to any of the
tanks. The tanks contain instrumentation to measure liquid
levels in them, temperature in tank T100, and pressure in
boiler T300.The process is used to simulate batch processing
of pulp which is located in the boiler and processed with
process substances (impregnation liquor, black liquor, and
white liquor) according to timing, pressure, and temperature
constraints. In specific phases of the processing sequence,
feedback control is required to control the temperature of the
white liquor (in tank T100) and pressure in the boiler (T300).

To enable the simulation of the process with a modelled
control solution, the process was modeled withModelicaML.
This included defining simulation classes for the physical
parts of the process including tanks, boiler, pumps, solenoid
valves, control valves, pipes, and pipe crossings with 3 and
4 inlets. Tanks keep record on liquid levels and temperatures
inside them. For temperature equations, idealmixing of fluids

is assumed.The liquid flows in pipes and in control valves that
are proportional to constants measured from the process and
to square roots of the pressure differences between the ends of
the pipes/valves. Pumps increase the pressure in their output
sides and solenoid valves stop the liquid flows regardless of
the pressure differences.

The simulatable ModelicaML model was then defined
by creating instances of the classes and connecting them
together according to the connections in the physical process.
This was done with a structured class diagram. A small part
of the diagram, related to the surroundings of the tank T400,
is presented in Figure 7.

The control solution for the batch process is illustrated
with Figures 8 and 3. Figure 8 presents a (UML AP) Control
Structure Diagram of the control solution. It contains binary
and analogue valued input and output AFs for interfacing
with the sensors and actuators of the process. The Sequence
is implemented within the MPPSequence AF that controls
some actuators directly and uses controllers for controlling
T300 pressure (by throttling valve V104) and T100 tempera-
ture with heater E100. To illustrate how logic diagrams and
ASDs are used to define behavior of AFs, the figure has been
complemented with the MPP Sequence and a logic diagram
definition of the temperature controller.

The other illustrating figure (Figure 3) was used as an
example earlier and illustrates the MPPSequence and one of
the sub-Sequences of it,WhiteLiquorFill.MPPSequence con-
sists of 5main phases: Impregnation, BlackLiquorFill,White-
LiquorFill, Cooking, and Discharge. During the phases,
the boiler is filled with impregnation liquor and pressur-
ized, filled with black liquor that replaces the impregnation
liquor (BlackLiquorFill), filled with white liquor that replaces
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Figure 7: A part of the ModelicaML plant model.
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Figure 8: Modeling of automation sequences integrates to previous work with control structure and logic diagrams.

the black liquor (WhiteLiquorFill), heated to cooking tem-
perature and pressurized (Cooking), and finally drained back
to white liquor tank T400 (Discharge). WhiteLiquorFill, on
the other hand, opens valvesV301, V401, V102, andV304, and
pumps liquor until the level in tank T400 exceeds 0.2 (m).

In order to obtain simulation results of a closed-loop
system, the developed transformation was used to transform

and connect the control system model to the plant model.
Practically this included selecting the simulator export func-
tionality of the tool and the (target)ModelicaML plant model
file. After performing the transformation, the model was
simulated with OpenModelica [26] tools. The ModelicaML
model was first transformed to Modelica code and then
loaded to the simulator environment. Initial values for



12 Advances in Software Engineering

1

0.8

0.6

0.4

0.2

0

50 100 150 200 250 300 350

50 100 150 200 250 300 350

Ac
tiv

e s
eq

ue
nc

e p
ha

se

Time (s)

Time (s)

Plot by OpenModelica

Impregnation
BlackLiquorFill
WhiteLiquorFill

Cooking
Discharge

LI100
LI200

PI300
LI400

 b
oi

le
r p

re
ss

ur
e (

ba
r)

Ta
nk

 le
ve

ls 
(m

) a
nd

0.25

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

Figure 9: Simulation results plotting active phases of the sequence,
levels in tank T100 (LI100), T200 (LI200), and T400 (LI400) as well
as pressure in boiler T300 (PI300).

the plant, for example, levels and temperatures in the tanks,
were defined in the process model. For different simulations
they could have been changed at this point too.

A plot illustrating the results from simulating the Se-
quence is shown in Figure 9. The main phases are plotted
in the upper part of the figure, a value being one indicat-
ing execution of the phase in question. The lower part of
the figure plots the levels of liquor in tanks T100 (LI100),
T200 (LI200), and T400 (LI400) and pressure in tank T300
(PI300). According to the results, the control solution includ-
ing the Sequence works as intended. Processing liquors are
used in the correct order and the boiler pressurize, during
black liquor fill and cooking phases.

The values shown in the figure were selected for plotting
after performing the simulation. The simulator keeps record
on all variables related to a simulation. Any other set of
variables related to an aspect in the process or in the control
solution, for example, functioning of a controller, could have
been selected for plotting as well.

6. Discussion

This paper has addressed the issue of simulating sequen-
tial control activities within MDD of control applications.

The approach integrates to the previous work of the authors
and enables the use of Automation Sequence Diagrams
(ADSs) of UMLAP to define sequential behavior of Automa-
tion Functions for simulation purposes. The transformation
to simulatable ModelicaML form was implemented with
open source modeling and model transformation (QVT)
tools on the Eclipse platform. The ASD diagram type that
is in the approach used for modeling sequential control has
been extended from UML state machine diagrams. However,
because of significant differences in execution semantics of
state machines, it was not possible to rely on existing work
[31] related to simulating them in Modelica form.

The benefits from using Modelica (ML) as the (target)
simulation language of the approach included the ability
to use standard model transformation techniques. Modelica
is also an object-oriented simulation language, which was
taken the advantage of mainly in development of the plant
simulation model. From the point of view of simulating the
control application, however, object-oriented features were
not used. As a consequence, it is expected that the presented
approach could be used also with other simulation languages
that can be accessed with model transformations, for exam-
ple, Simulink. An approach to execute Sequences without
equation based, acausal execution semantics of Modelica
could also be similar to the one presented in this paper.
Algorithmic constructs were used also in case of Modelica
instead of equations that apply all the time.

The novelty of the simulation approach is in the ability
to simulate control application models at design time, before
IEC language [17, 18] implementations of the applications.
Closed-loop MiL simulations are created with model trans-
formations so that a genuine simulation language (Modelica)
is used for simulating both plant and control application
models. Other MDD approaches in the domain (in which
simulations have been supported) have utilized IEC 61499
as a simulation (in addition to implementation) language
[15, 16, 20] or relied on the use of cosimulation [14, 19]. On the
other hand, sequential control as a special aspect of control
systems has been addressed only in [13] but not with respect
to simulations. With the work presented in this paper and
[1], the simulation approach covers all the common aspects of
basic control systems including binary and feedback control,
sequential control, and interlocks.

An issue that is not yet addressed in the approach [1] is
delays in control systems hardware, for example, networks
in distributed control systems. However, the objective of the
approach is to enable simulations early, already before, for
example, finishing control system hardware design. On the
other hand, effects of delays and, for example, random noise
in instrumentation can be included in the models, in simula-
tion classes of sensors and actuators of the process. It is also
assumed that, for example, delays in typical control system
hardware are less significant than those in instrumentation.

Support for model-based control software development
is also part of some commercial products. For example,
B&R (Automation Studio) [33] and Beckhoff (TwinCAT 3)
[34] support the development of control applications in
MATLAB/Simulink environment and generating executable
(PLC) code based on the models. As a difference to such
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products, the work presented in this paper intends to support
simulations in an MDD approach in which all models are
not simulatable. Instead, models are developed gradually
from requirements towards executable applications using
model transformations for shifting between models and,
for example, importing source information to models. In
addition, the models cover special needs such as traceability
between requirements and design artifacts that are becoming
more and more important in the domain.

To illustrate the simulation approach, it was applied to
simulation of a controlled pulp batch production process. For
the case study, the pulp production process was modelled
withModelica. Flow, pressure, and temperature equations for
all the plant components in themodel led to the total number
of equations for the closed-loop system to be approximately
1400. As such, the closed-loop system was the largest that has
been utilized in the simulation experiments of the approach
so far. It also demonstrates the scalability of the approach for
practical, nontrivial simulation needs.

7. Conclusions

MDD techniques are under active research in the application
domain of industrial control systems. However, despite the
research activities, and the tradition of using simulations,
simulations have not yet been sufficiently integrated to MDD
in the domain.

In MDD, it is possible to utilize model transformations
for obtaining simulation models already before programmed
implementations of the applications. This possibility should
be taken advantage of. Control applications models should
be evaluated in a timely manner and in closed-loops with the
models of the processes to be controlled. In order to relieve
control application developers from the task of coupling
simulation engines, the simulations should follow themodel-
in-the-loop approach using a single simulation engine.

The presented approach complements the simulation
approach of the authors with the possibility to simulate
sequential control activities in conjunction to feedback and
binary control as well as interlocks. The new work has
been targeted for the sequences of process and batch indus-
try. However, control sequences can be beneficial also in
simulations of other kinds of processes. For example, in a
previous simulation experiment [1], the set-point trajectories
to evaluate a control system in different conditions needed to
be defined manually. With the work presented, the set-point
trajectories can be included in Sequences of the models.

According to our experiences, the simulation approach is
useful in revealing defects in control algorithms, structures,
and tunings. The simulations can be performed already at
design time and so that decisions made in a development
phase can be evaluated before they affect decisions in later
phases. By creating simulationmodels with automatedmodel
transformations, simulations can be used as a continuous,
design-time quality assurance method. This can be done
without causing excessive additional workload to developers.

It is also expected that the task of developing models of
the processes to be controlled with Modelica becomes easier

and more attractive for industry in near future. This is due to
improvements in libraries of simulation classes, theModelica
standard library, from which it is possible to compose plant
models. It is also a clear benefit of Modelica that it includes
support for standard and user/company specific libraries.
Modelica is already supported by both commercial and open
source tools that can be used by both industry and academy.
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Press, 2009.

[26] OpenModelica, https://www.openmodelica.org/.
[27] Dassault Systemes, Dymola, http://www.3ds.com/products-

services/catia/capabilities/systems-engineering/modelica-sys-
tems-simulation/dymola.
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Abstract 

This article focuses on integration of simulations to 
model-driven engineering (MDE) of automation and 
control systems and applications. MDE offers means to 
automate repetitive design tasks and thus improves the 
efficiency of development work. However, it does not 
reduce the need for genuine decisions of professional 
developers to challenging design tasks. Formerly, the 
decision making has been facilitated with separate 
process simulations to predict the characteristics of 
controlled processes. This paper presents and evaluates 
a new way to seamlessly integrate simulations to early 
phases in MDE of control applications. On one hand, we 
argue why and how simulations should be organized in 
MDE in the domain. On the other hand, we present and 
summarize observations from the experiments in which 
our simulation approach has been used. 

 

1. Introduction 

This article focuses on integration of simulations to 
model-driven engineering (MDE) of automation and 
control applications. MDE is a system and software 
development methodology that emphasizes the use of 
models and model transformations instead of, for 
example, textual documents. In MDE, models conform 
to formally specified modeling languages such as UML 
(Unified Modeling Language) and are processed with 
model transformations. Models contain the design 
information for both development and documentation 
purposes. Model transformations, on the other hand, 
enable processing of models to create and update models 
as well as code implementations. 

Model transformations may automate importing 
information to models from models of preceding 
development phases, e.g. process design, and their tools. 
Design models can be used for creating analyzable 
models that can be studied using application domain 
specific tools. Automated model checks may reveal 
problems and inconsistencies in models and between 
modeled phase products of the development process. The 
mentioned benefits of MDE are mainly related to 

automating repetitive tasks that are time-consuming but 
possible to handle with pre-defined rules that can be 
programmed to model checks or transformations. 

However, the use of MDE has not been able to 
automate all the complex design and development tasks. 
Demanding design tasks and decisions over alternative 
solutions to achieve (sometimes informally) specified 
objectives and system characteristics need to be made by 
professional developers. Nevertheless, developers do not 
always have to rely solely on their experience on design 
tasks. Simulations have enabled comparing alternative 
solutions and predicting the characteristics of systems 
and controlled processes based on models and partially 
implemented systems in conjunction to models. 

Despite the research activities to utilize MDE 
techniques - and the long tradition of using, e.g. 
Matlab/Simulink based techniques - simulations have not 
yet been sufficiently integrated to MDE in the domain. 
Because models can be used for automating generation 
of code, it should be also possible to generate simulation 
models to be used with simulation models of the 
processes to be controlled. In this way, MDE could 
provide even more benefits compared to traditional 
control application development approaches. By 
applying model transformations to generation of 
simulation models, simulations could be made a part of 
continuous development-time quality assurance work. 

In our previous work, we have developed simulation 
integration [1] to our tool-supported MDE approach [2] 
for control applications of both process industry and 
machinery systems. The integration covers modeling and 
simulation of cyclically and also sequentially [3] 
executed control functions that can be librarized for later 
use and to support use of vendor specific libraries. The 
modeling in the approach is based on UML Automation 
Profile (UML AP) for which we have developed tool 
support on Eclipse platform. The integration is based on 
Modelica and model transformations for creating 
ModelicaML (Modelica Modeling Language) simulation 
models. An example industrial process from our latest 
study is presented in figure 1. 

The contributions of this article are to assess the 
benefits of integrating simulations to MDE in the 
automation domain and to evaluate and compare our 
simulation approach to other approaches. Related to 
using simulations in general, we argue why MDE in the 



automation domain should focus on Model-in-the-Loop 
(MiL) simulations. We point out the benefits of early 
MiL simulations in comparison to simulation approaches 
enabled by control system platforms and compare 
alternative approaches to implement MiL simulations. 
Related to our approach specifically, we present lessons 
learned and observations from several simulation 
experiments in which we have modeled control systems 
for both industrial processes and machinery systems. 

The rest of this paper is organized as follows. In 
section 2, we present work related to integrating 
simulations to MDE and using simulations in MDE of 
automation and control systems. In section 3, we argue 
why MDE in the domain should focus on MiL 
simulations, compare early MiL simulations to other 
possible simulation approaches, and compare alternative 
approaches to implement closed-loop MiL simulations. 
Before concluding the paper, in section 4 we briefly 
present our tool-supported simulation approach and the 
observed benefits of it in three simulation experiments. 

 

Figure 1. The pulp batch production 
process used as an example process in [3] 

2. Related work 

General simulation approaches that can be utilized in 
conjunction to MDE include model-in-the-loop (MiL), 
software-in-the-loop (SiL), processor-in-the-loop (PiL) 
and hardware-in-the-loop (HiL) simulations [4]. These 
approaches are in [4] addressed in development of 
embedded systems. In MDE of automation and control 
systems and applications the differences between the 
approaches are in the control system configurations used 
to control the plant simulation models. For example, in 
MiL a model of the control system/application is used 
whereas SiL, PiL and HiL utilize generated software, 
generated software with target processor and generated 
software with entire target hardware, respectively. 
Accordingly, they also differ in the nature of defects that 
they are capable to reveal. For example, MiL simulations 
evaluate the conceptual control solutions and cannot 
reveal problems related to software-hardware integration 
whereas HiL simulations (with the target hardware) can. 

Similar simulation approaches, except MiL, can also 
be utilized in conventional control system development. 
For example, HiL simulation can be used to test a 

control application with its target hardware regardless of 
the development process of the software application. 
Support for the simulation approaches is also nowadays 
provided by major proprietary DCS (Distributed Control 
System) vendors as presented in [5]. 

Another classification of simulation approaches is 
related to the amount of simulation engines. Simulation 
of a controlled system, i.e. a system including a process 
to be controlled and a control system can be performed 
within a single simulation engine or as a co-operative 
simulation (co-simulation). In co-simulation, parts of the 
overall system are simulated within (2 or more) different 
but connected environments. The approach, however, 
requires a mechanism for coupling the simulation 
environments and replicating commands of them. See [5] 
for a list of basic simulation functions. 

Integration of simulations to MDE of control software 
has been common in the application domains of 
embedded and automotive software. For example, [6] 
describes a general framework for, and two examples of 
use of MiL simulation. In [7] a testing environment for 
embedded systems is presented which utilizes TTCN-3 
notation in test specifications and SiL simulation for 
executing the tests. HiL simulation and testing have been 
utilized for example by Short and Pont [8], Schlager et 
al. [9] and Stoeppler et al. [10].  

In the domain of industrial control, integrating 
simulations to MDE approaches has not been a principal 
goal. However, such work has been presented at least in 
[11], [12] and [13]. In addition, in [14] Ferrarini and 
Dede have presented a co-simulation approach in which 
the aim is to test already implemented parts of control 
systems and applications while simulating the rest. The 
approach uses HiL simulation but does not confine to 
MDE techniques for acquiring simulation models. 
Instead, it is targeted to provide support for flexible co-
use of already programmed and simulated control 
functions with a plant simulation model. 

Yang and Vyatkin in [11] utilize MDE techniques the 
aim being to create IEC 61499 Function Blocks (FB) 
models from Simulink models in order to verify control 
applications which are also developed with IEC 61499. 
Hegny et al. in [13], similarly, create IEC 61499 plant 
models which are described either with timed state charts 
(conforming to a project specific metamodel) or external 
behavior descriptions, which make the approach a co-
simulation approach. In [12] the approach of Vyatkin et 
al. is based on composing applications from intelligent 
mechatronic components that should include models and 
with model transformations enable development-time 
verification and simulation of the applications. 

3. Comparison of simulation approaches 

The purpose of this section is to discuss, compare and 
evaluate at a conceptual level the possible simulation 
approaches in conjunction to MDE of control systems 



and applications. In the discussion, we take into account 
their special characteristics. Some of the characteristics, 
in addition to arguing why MDE in the domain should 
concentrate on MiL simulations, will be discussed first 
in section 3.1. In section 3.2, we discuss the applicability 
of MiL simulations over target platform specific 
simulations. In section 3.3 we compare the alternative 
approaches to implement MiL simulations including 
their benefits, disadvantages and restrictions. 

3.1. Simulations in MDE of control applications 
The development of control systems and applications has 
several characteristics that also affect the MDE of them 
and how the development process could utilize 
simulations. To our work, the most important are: 
• Many industrial vendors of control system platforms 

already support connecting the control systems to 
simulators [5] to support PiL and HiL simulations, 
depending on whether the connections to plant 
simulators are implemented directly or via I/O units. 
Similarly, it is common for industrial DCS vendors 
to provide support for computer-execution of the 
control programs to enable SiL simulations. For 
PLC-based (Programmable Logic Controller) 
control systems there are soft PLC solutions that 
enable running programs on desktop computers.  

• Industrial control system development utilizes, to 
the extent possible, librarized blocks for interfacing 
with the instrumentation of the processes and 
implementing control algorithms. In some 
companies in the domain, even metrics on use of 
librarized blocks have been used to characterize the 
composed applications. [15]. 

As a consequence of the characteristics, we argue the 
following. 1) If MDE techniques are used for developing 
control applications to be used in PLC or DCS platforms, 
developing support for other types of simulations than 
MiL might not be able to provide significant benefits 
since the other simulation types are already enabled by 
the platform vendors and usable after generating code. 
The focus should, thus, be in MiL simulations.  2) Since 
applications are composed of re-usable library blocks, 
simulation counterparts of the blocks could be librarized 
as well and used in MiL simulations. Re-using well-
tested, parameterizable simulation blocks could support 
the confidence in the results of MiL simulations but also 
simplify the generation of models. Simulation model 
generation should, thus, be capable of re-using libraries 
of either simulation or implementation blocks. 

 However, there are several approaches to perform 
MiL simulations in MDE. A closed-loop simulation can 
be a co-simulation in which the model of a control 
system/application and that of the system to be 
controlled (plant model) are simulated in different but 
connected environments. Alternatively, the simulation 
can be performed within a single simulation engine. 

This, however, usually requires availability of both the 
control system and plant models in same simulation 
language. In practice, this would require: 

• control system model and plant model being 
developed with a (same) language that can be 
simulated or 

• plant model being transformed to the modeling 
language used to develop the control system model 
which must be possible to simulate or 

• control system model being transformed to the 
modeling language used to develop the plant model 
which must be possible to simulate or 

• both the control system and plant models to be 
transformed to a simulation language. 

Of these approaches, the last one is arguably the most 
laborious one and prone to errors since it requires 
developing and keeping up-to-date two possibly complex 
model transformations - like in implementing both the 
second and third alternatives. On the other hand, related 
to the first approach, the authors are not aware of a 
language that would support well both the development 
of simulation models of complex industrial processes 
and software applications. Additionally, it would need to 
integrate well with other functional and non-functional 
information required in MDE of control applications. 

Consequently, practical alternatives to enable closed-
loop MiL simulations of controlled systems in MDE in 
the domain are to use co-simulation or transform either 
the plant model to the language used in control system 
model or the control system model to the language used 
by the plant model. Of the approaches presented in the 
related work section, [11] and [13] have chosen the 
approach to transform plant models. In [14] the approach 
utilizes co-simulation but with hardware included (HiL). 
The approach to transform control system models is - 
according to the knowledge of the authors - utilized only 
in our work, in the automation domain. The first and last 
approaches in the bullet list above have not been used. 

3.2. Comparing MiL simulations to target platform 
specific simulations 

Use of simulations in automation and control system 
development, in general, is not a new idea. Simulation 
solutions are provided by commercial DCS vendors [5] 
and for PLC based control systems, e.g. soft PLC 
solutions enable execution of control programs on 
desktop computers. Benefits of applying simulations 
have also been discussed in several articles. 

In [16] the author compared I/O simulation approach 
to the traditional approach of performing control system 
testing only on-site with the actual controlled processes. 
According to the article, the use of simulations results in 
shorter start-up times as well as less waste of end 
products during the start-ups. Use of simulations enables 
better operator training, ability to test control programs 



in smaller modules, and the ability to thorough testing of 
emergency and dangerous situations. 

In his doctoral thesis [17], Karhela mentioned the use 
of simulations to control system testing, operator 
training, plant operation optimization, process reliability 
and safety studies, improving processes, verifying 
control schemes and strategies, and start-up and 
shutdown analyses. According to [5], the benefits of 
using control systems in simulators before installation 
include improvements to 1) design, development and 
validation of the control programs and strategies, 2) 
design, development and validation of the HMI (Human-
Machine Interface) and 3) adjustments of control loops 
and programs. Simulations have thus benefitted control 
system and application development even before 
applying model-driven engineering techniques. 

In the referred approaches utilizing simulation within 
MDE, see section 2, the number of anticipated benefits 
of simulations is smaller. However, their authors can be 
assumed to have compared their approaches and the 
benefits implicitly to simulations enabled by the target 
platforms. Nevertheless, in [13] the objective is to enable 
early control application development, when the plant or 
equipment is not physically built-up, as well as detection 
of inconsistencies and missing requirements. 

In [11], the approach is motivated by the ability to 
provide necessary plant models to be used in simulations 
to validate distributed systems compliant with IEC 
61499. Additionally, the article mentions easy re-use of 
Simulink blocks as IEC 61499 function blocks, potential 
to improve performance with distributed computation 
and reducing conflicts between the natures of the two 
models (IEC 61499 and Simulink). However, the latter 
advantages are related to use of IEC 61499, not to use of 
simulations. In [12] simulations are seen to enable 
prototyping and verification of applications, although 
formal verification methods are seen necessary to 
complement simulation techniques. 

To summarize the claimed benefits, it is clear that 
many of them could be achieved also with simulations 
enabled by control system platform vendors but not as 
early. However, the other way round, there should be no 
reason why early MiL simulations could not be used for 
simulation tasks that do not require control hardware. 
For example, verification and validation of control 
strategies, schemes and tunings, prototyping, and testing 
in small modules should be possible. But because MiL 
simulations do not require either the physical plant or 
control system hardware design to be finished, it is clear 
that they can be performed earlier. 

The inexistence of control hardware in the 
simulations is also related to another potential benefit. 
Since the hardware is not needed, simulations could be 
applied also in companies performing out-sourced design 
tasks, which would be a significant benefit in networked 
business environments. Lastly, it should be noticed that 
using MiL simulation early in the design process does 
not restrict the use of other simulation approaches i.e. 
SiL, PiL and HiL later in the process. By selecting a 
suitable plant modeling language for MiL simulation, it 

is also possible that the plant model could be re-used in 
simulations enabled by the control system platform. Our 
own observations from applying transformation-assisted 
MiL simulations will be presented later in section 4. 

3.3. Comparison of MiL simulation approaches 
A clear conclusion of the earlier section 3.1 was that 

if simulations are integrated to MDE of control 
applications they should follow the MiL simulation 
approach. However, as discussed, there are at least 3 
practical approaches for obtaining MiL simulations, 
which have been used in the domain. The approaches are 
next compared taking into account the restrictions that 
they place on the modeling languages to be used, the 
amount of required model transformations as well as the 
difficulty of managing simulations, tools and cases. 

3.3.1. Co-operative MiL simulation. In the co-
simulation approach, the parts of the closed-loop system, 
plant model and control system model are simulated in 
different simulation engines. An obvious advantage of 
the approach is the possibility (freedom) to choose a 
plant modeling (simulation) language that is not possible 
to process with transformations. The language must be 
supported by a simulation engine that can be connected 
to another engine (simulating the control system model). 
With such an engine it is, however, likely that the plant 
simulation model can be re-used in possible later, 
platform specific simulations. 

If a product of the MDE process is simulatable, co-
simulation may also be possible to implement without 
additional model transformations.  However, if the MDE 
process utilizes, for example, UML (or any non-
simulatable language), simulating a modeled control 
solution requires transforming the solution to a 
simulation language. So, whether the co-simulation 
approach reduces the amount of required model-
transformations is also dependent on the modeling 
languages used in the MDE process. Accordingly, the 
reliability of simulation results may or may not be 
dependent of the correctness of a simulation 
transformation. Support for re-using libraries requires in 
the approach re-usability either in the modeling tool or in 
the transformation that may be required for simulating 
design models.  

Technically the co-simulation approach may be the 
most complex one. Values and states of connected 
variables and engines as well as simulation commands, 
e.g. running, freezing, stepping, replaying and working 
in slow and fast modes need to be replicated to both (or 
more) environments. In addition, if simulations are to be 
used to evaluate the behavior of the controlled system in 
several simulation cases, e.g. in several operation points 
or exceptional situations, initial values for the simulation 
cases must be managed for all the used simulation 
engines. Consequently, depending on the intended use of 
simulations, we argue that the co-simulation approach 



may lead to difficulties in managing all the required 
simulation cases and information related to them.  

3.3.2. Transforming plant models. Compared to the 
co-simulation approach, the obvious benefit of the 
approach of transforming plant models is that simulation 
cases and initial values to evaluate the control system in 
different situations have to be defined only for one 
engine. There is also no need to replicate simulation 
commands and states of several simulation engines.  

In the approach, the plant models do not necessarily 
have to be simulatable but they must be possible to 
process with model transformations. However, a model 
transformation is inevitably necessary for transforming 
the plant model to the modeling language used in control 
system models. The correctness of simulation results is 
also dependent on the correctness of the transformation. 
On the other hand, either the language used in the MDE 
process to develop the control system/application model 
has to be simulatable or an additional (second) 
transformation is required to create a control system 
simulation model before transforming the plant model.  
In practice, this would mean two additional model 
transformations. Without an additional transformation, 
UML and related MOF-based, non-simulatable 
languages (e.g. SysML) would be out of the question. 
Support for (simulation) libraries could be in the 
approach implemented by supporting models of 
implementation blocks – or by using libraries in the 
second simulation transformation.  

In practical implementations of the approach, see [11] 
and [13], the control application modeling language has 
been IEC 61499 which is simulatable. However, since 
IEC 61499 is close to PLC programming languages, the 
approach is also close to the approach of using SiL 
simulations after generating code. For example in [13] 
several model transformations are already used before 
obtaining IEC 61499 models. Lastly, a concern with the 
approach is that although IEC 61499 is simulatable, 
genuine simulation tools dedicated to simulation, instead 
of distributed control software development, may still be 
more suitable for managing and executing complex 
simulations than software development tools are. This 
concern, however, is also related to the co-simulation 
approach if a simulation transformation is not used. 

3.3.3. Transforming control application models. 
Compared to the co-simulation approach, the approach 
of transforming control application models, again, 
requires a model transformation. The approach also 
provides the same advantages than the approach of 
transforming plant models. Simulation cases have to be 
defined only once and there is no need to replicate 
simulation states, values and commands. 

However, compared to the approach of transforming 
the plant models, this approach does not suffer from the 
need to develop control system models with a 
simulatable language. Consequently, for example, UML 
and SysML can be used in addition to languages such as 

IEC 61499. Correctness of the results of simulations is 
dependent on the correctness of the simulation 
transformation, however, as we have shown the 
approach enables re-use of simulation blocks [1] which 
can be seen as a means to improve the reliability of 
simulation results. Lastly, the closed-loop simulation can 
be executed in a genuine simulation tool supporting the 
language used to develop the plant model, if such a 
modeling language has been selected for plant modeling. 

Practical restrictions for selecting modeling and 
simulation languages apply though. In order to apply the 
approach, both the control system and plant modeling 
languages must be possible to process with model 
transformations. The modeling language used in the 
plant model must also be simulatable. However, both 
plant and control system models must be possible to 
process with model transformations also in the case of 
transforming plant models - in order to create and 
append plant models to control system models. On the 
other hand, if control systems are developed using MDE 
techniques, the control system models must be 
processable with model transformations in any case so 
that this restriction applies also to the other approaches. 
The restrictions of the approach of transforming control 
application models are thus tighter than in case of co-
simulation but related to plant modeling only. 

3.3.4. Summary of the comparison. A summary of the 
results of comparing the alternative approaches to obtain 
MiL simulations in MDE of industrial control 
applications is presented in table 1. In the table, co-sim. 
refers to co-simulation, TCSM to the approach of 
Transforming Control System Models and TPM to 
Transforming Plant Models. CSML and PML refer to 
Control System and Plant Modeling Languages. 

Co-simulation places least restrictions on possible 
modeling and simulation languages because plant 
models do not necessarily have to be accessible with 
model transformations. However, simulation technically 
the approach is the most complex one, it may lead to 
difficulties in managing simulation cases and it either 
requires the control system modeling language (CSML) 
to be simulatable or an additional model transformation 
for creating one. If a transformation is not developed, it 
may require the control system to be simulated in a 
software development tool, instead of a simulation tool. 
However, in this case the results of simulations are not 
dependent of correctness of simulation transformations, 
as is the case in the transformation-assisted approaches. 

The two transformation-assisted approaches do not 
require coupling simulation engines, states or 
commands. However, the approach of transforming plant 
models is more restricting than the approach to transform 
control system models. Either the control system model 
must be simulatable or the control system model must be 
first transformed to a simulatable form, with an 
additional (second) model transformation. In addition, if 
a transformation is not developed, the approach may 



require the control system to be simulated in a software 
development tool, instead of a simulation tool. All the 
approaches enable re-use of simulation blocks, either at 
modeling level or with use of simulation block libraries. 
Consequently, this feature is not included in the table. It 
is also natural that if a simulation approach requires a 
transformation, the correctness of the results is 
dependent on correctness of the transformation. Thus, 
this feature has not been repeated in the table, in addition 
to listing the numbers of additional transformations 
required in the approaches. 

Table 1. Results of comparing alternative approaches 
to MiL simulations in MDE in the automation domain 

  co-sim. TPM TCSM 
Enables use of genuine 
simulation tools ?/X ? X 
Simulation tools must be 
connectable. X - - 
Number of additional 
transformations 0/1 1/2 1 
CSML must be simulatable X/- X/- -  
PML must be simulatable X - X 
Additional work with 
simulation cases X - - 
Additional simulation 
management work X - - 
PML must be 
transformable - X X 
CSML must be 
transformable X X X 

4. Observations from applying the approach 

In our work, the objectives of developing the 
simulation integration have been early, development-
time simulation of applications and the resulting 
capabilities to test, compare and prototype control 
applications and functions. Design flaws should be also 
corrected as early as possible so that they would not 
affect adversely on subsequent design phases. Naturally, 
this requires prompt feedback about the designs that can 
be in the automation domain acquired with simulations. 

The approach to create simulation models from UML 
AP models is transformation-assisted and has been 
developed and published gradually. We started from the 
core concept and support for librarized simulation blocks 
[18], developed support for using logic diagrams to 
model and simulate application specific blocks, e.g. 
interlockings [1], and lastly focused on automation 
sequences [3] that are necessary in shifting between 
operating points and for start-up and shut-down analyses. 
In detail, the approach has thus been presented in [18], 
[1] and [3]. With respect to the possible MiL simulation 
approaches in MDE that were discussed in section 3, the 
approach falls to the MiL category using single 
simulation engine and transforming control system 

models to plant models. The approach also enables the 
use of libraries of existing simulation blocks. 

4.1. Simulation experiments 
So far, the simulation approach has been used in 3 

published or to-be-published simulation experiments that 
have covered both process industry as well as machinery 
processes. On the other hand, the experiments have 
covered different types of control functions that are 
needed in the domain. Basic feedback control, firstly, 
has been utilized in all the simulation experiments. 
Interlockings, secondly, have been used to enable and 
disable devices and to restrict set-points of controllers in 
both machinery- and process-industry-related 
simulations. Sequences and binary controls, lastly, have 
been used in the latest simulation experiment related to 
batch production of pulp.  

In the first simulation-related publication [18], we 
modeled and simulated a control application for a heated 
water supply system. The control application consisted 
of three control loops, each containing an interlocking 
and controlling one of the controlled variables of the 
process that is presented in figure 2. The simulation 
counterpart of the control system was in this experiment 
composed solely of librarized simulation blocks that 
were coupled together and parameterized by the 
transformation according to the control system model. 

 

 

Figure 2. The heated water supply system 
used as an example process in [18] 

In [1] the process to be controlled was a mechanical 
cart system that is presented in figure 3. The cart system 
was moved with an electrical motor, stopped with brakes 
and must be kept outside forbidden areas regardless of 
the set-point from a higher level control system. The 
control system model contained both librarized blocks 
and application specific interlocking blocks. Alternative 
solutions to keep the cart in its allowed area regardless of 
the value of the non-restricted set-point were defined 
with a logic diagram implementation of our tool and 
evaluated by using the transformation to simulation 
models and simulating the designs. 



 

Figure 3. The mechanical cart system used 
as an example process in [1] 

Lastly, in [3] the example process was a batch process 
system, the piping and instrumentation diagram of which 
is presented in figure 1 in section 1. In this experiment, 
in addition to feedback control, we modeled also a 
control sequence that was used to control the execution 
of the batch and to control individual devices. Compared 
to the other simulation experiments, the total process 
model was also the largest that we have used, so far. 
Including both the equations caused by the control 
system and those of the plant, the total amount of 
equations in the model was over 1400. (Modelica is an 
equation based language.) Of these equations, a large 
proportional were trivial; however, the plant model alone 
still contained approximately 50 differential equations 
and several hundred complex algebraic equations. 

4.2. Benefits of early MiL simulations 
In the simulation experiments we have covered all the 

common aspects of basic control systems: binary control, 
feedback control, sequential control as well as 
interlockings. Based on the experiments, they can be also 
used concurrently. For example, set-points of feedback 
controllers as well as binary control commands can be 
given in sequences concurrently to interlockings that 
enable and disable devices and controllers.  

On the other hand, in addition to processes of 
different industries, the modeling and simulation 
approach has scaled well to processes of industrial size 
and complexity. In the latest modeling and simulation 
experiment, the total amount of equations related to the 
closed-loop system was over 1400. Although such an 
amount of equations would not necessarily enable 
modeling of large processes such as paper machines, it 
would enable quite detailed modeling of partial process 
industry processes or mechanics of machinery systems. 

With respect to benefits of applying simulations, in 
[18] and [1] we prototyped several different interlocking 
and control solutions. Related to interlockings, the latter 
publication contains a comparison of two solutions and 
results of their simulations. Tunings of e.g. PID 
controllers to obtain acceptable dynamic behavior have 
also been searched for all the published experiments. As 
such, the approach has shown to enable prototyping and 
comparing alternative approaches and tunings to 
implement control and interlocking functions. 

Related to revealing inconsistencies and missing 
requirements, we have been able to notice shortcomings 
in requirements and implementations. Especially, related 

to the batch process experiment [3] we developed the 
control solution and sequence step by step and simulated 
the phase products. For the incomplete phase products, 
the simulation results clearly indicated missing parts of 
the sequence as well as controllers which led to stopping 
of the execution of the batch sequence or temperatures 
and pressures to rise above their desired values. 

Lastly, according to our results, MiL simulations can 
be useful also in testing exceptional situations. 
Activations of interlockings due to hazardous set-points 
have been successfully tested in several experiments 
including the ones published in [18] and [1]. Safety 
studies related to changes in the physical processes could 
be implemented easy as well. For example jams of 
valves or motors could be tested by presenting the timed 
changes in dynamics in the process models while using 
the simulation approach in a normal way since the 
control application parts are only added to the process 
model. As such, we regard the MiL approach suitable 
also for safety studies which was one of the general 
benefits of simulations mentioned in [16] and [17]. 

To draw conclusions on the experiments, we have 
demonstrated the suitability of the approach to processes 
of different industries and of industrial size. In our 
experiments, the simulation approach has been found 
useful in comparing and prototyping alternative control 
and interlocking approaches, testing sequences as well as 
finding acceptable controller tunings. Simulations have 
helped finding missing implementations and 
requirements as well as testing exceptions that could be 
dangerous to test with actual physical processes.  

5. Conclusions 

In this paper, we have discussed and compared 
approaches to integrate simulations to model-driven 
engineering of industrial automation and control 
applications. If simulations are used in an MDE process, 
they should follow the Model-in-the-Loop approach 
(MiL). Other types of simulation are supported by PLC 
and DCS platform vendors and are applicable after 
generating code. Because applications are already often 
composed of re-usable implementation blocks, re-use 
should be also enabled in simulations in order to 
improve the reliability of the simulations. 

The conclusions of comparing MiL simulations to 
using target platform specific simulation tools were that 
most of the general benefits of use of simulations can be 
also obtained by integrating early MiL simulations to an 
MDE process. The restrictions of early MiL simulations 
are related to missing hardware, which may complicate, 
for example, operator training. However, without 
hardware, MiL simulations can be performed prior to 
choosing target platform and performing hardware 
design. MiL simulations could also be used in companies 
performing out-sourced development tasks and it may be 
possible to re-use plant models in later simulations, too. 



We also compared the conceptual approaches to 
implement MiL simulations with the conclusion that all 
the approaches have both benefits and disadvantages 
over each other. Co-simulation, firstly, does not require 
model-transformations provided that the control system 
modeling language is simulatable. However, it requires 
more work in configuring simulation cases and engines. 
Of the transformation assisted approaches, transforming 
plant models may be less restrictive related to modeling 
languages. However, it requires an additional model 
transformation if the control system modeling language 
used in the MDE approach is not simulatable and may 
lead to using software development tools to system 
simulation, instead of genuine simulation tools. 

The simulation approach of the authors falls to the 
MiL category and uses model transformations to create 
and append control application specific parts to the plant 
models. According to results obtained with three 
published simulation experiments, the approach suits for 
both machinery and process industry applications. It has 
also been used beneficially in simulation of a large 
process industry process. The general benefits of 
simulations obtained so far are similar to those 
anticipated by other researchers. Our approach has 
additionally enabled prototyping, experimenting and 
comparing control and interlocking solutions, searching 
controller tunings and detecting inconsistencies in 
requirements and design. Related to general benefits of 
simulations, we have also used MiL simulations to 
evaluating control and interlocking solutions during 
exceptions. The simulations have been possible to 
implement early and without either the physical 
processes or the expensive control system hardware. 
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Abstract 

Model-based techniques have been recently the topic 
of numerous publications in different domains. In 
addition to producing revised models and executable 
applications, model-based techniques could also aid the 
understandability of design and consistency between 
design artefacts. These properties are also focal to 
development of safety-related applications, in addition to 
the ability to produce documentation about the systems. 
In this paper, we strive to create a new model-based 
approach for development of safety-related applications 
by integrating risk analysis techniques and modeling 
notations from several related languages and standards. 
The notations and their characteristics are compared to 
the requirements of the vital functional safety standard, 
IEC 61508, and illustrated with an exemplary modeling 
case. 

1. Introduction 

The idea of focusing to models in development of 
systems and software applications has recently been the 
topic of numerous publications in several domains, 
including industrial control engineering. Due to the 
interests and publications, there are also several 
acronyms related to the concept, some of which are 
already registered trademarks of organizations that have 
pioneered in utilizing and standardizing the approaches. 
For example, Model-Driven Architecture (MDA) is a 
trademark of OMG that also maintains the specifications 
of modelling (UML, SysML), metamodeling (MOF) and 
transformation (QVT) languages that can be used in 
conjunction to MDA. 

The idea of model-based development and related 
approaches, e.g. MDA and model-driven engineering 
(MDE), is to use models as primary engineering artefacts 
during the development of applications. In the domain of 
systems engineering, model-based systems engineering 
(MBSE) refers to applying models as part of the systems 
engineering process in order to support analysis, 
specification, design and verification of the system being 
developed [1]. However, in systems engineering, the 

main focus of model-based methods may not always be 
in producing more accurate models or executable 
applications based on models but also to aid the analysis, 
understanding and documentation of the systems. In 
development of software applications, it has been more 
natural to target to the ability to automatically utilize 
models and specifications in production of revised 
models and executables. 

The authors of this paper have taken part in 
development of an approach, and tools supporting the 
approach, to automatically utilize models in 
development of industrial control applications. The 
approach developed during the AUKOTON project has 
been presented in detail in [2] and consists of three 
modelling phases during which the requirements, 
functionality and platform specific details are specified. 
The modelling concepts used during the development are 
based on UML automation profile (UML AP) [4] and 
enhancements to the profile developed during the 
AUKOTON project. The assessment of industrial 
applicability of the AUKOTON approach has been 
presented in [3]. 

However, more attention could be paid on analysis of 
models and producing documentation (potentially for an 
in-house design knowledge repository) about the 
applications. In some model-based development 
approaches, documentation may not have been a focal 
asset also because of some common trends in software 
engineering. For example, agile development processes 
are focusing on the ability to react to changes and value 
working software above extensive documentation. These 
purposes are probably beneficial in development work 
that is based on changing user requirements. 

In development of mission-critical and safety-critical 
systems and applications, requirements are based on 
hazard and risk analysis and are not likely to change that 
often. In addition, documentation is still of importance 
because of the need to be able to prove characteristics of 
the systems. Development of safety-critical applications 
(conforming to safety standards) is required to produce a 
vast amount of documentation about the systems and the 
development activities used. It is thus an interesting 
question, whether or not also development of safety-



critical applications, requiring thorough analysis and 
documentation, could benefit from application of model-
based techniques. 

Whereas safety-critical applications are often quite 
small compared to, for example, ordinary industrial 
control applications, in the development of them there 
might not be need to automate processing of bulk 
information. Instead, the development of safety-critical 
applications could benefit more from aiding 
understandability of the system being built, the hazards 
related to the system, traceability between design 
artefacts and the ability to run analysis model-checks and 
generate documentation about the system. In this paper, 
we discuss the possibilities to support development of 
safety-related software applications with model-based 
development (MBD) techniques by extending our 
AUKOTON approach. Specifically, we focus on 
modelling of information that supports the understanding 
of hazards, safety requirements specification, and 
detailed design. 

The development process and essential requirements 
of the vital functional safety standard, IEC 61508 [5], are 
discussed in section 2. Section 3 focuses in modelling 
needs and possible notations to be used. In section 4, we 
discuss the concept of risk and hazard modelling. 
Section 5 focuses on requirements modelling. In section 
6, before presenting related work and concluding the 
paper, we develop an exemplary modelling project 
utilizing the developed modelling concepts for the 
physical process presented in figure 1. 

 

Figure 1. An exemplary physical process 
for the modeling example in section 6. 

2. Development of safety critical systems 

IEC 61508 is an international standard of functional 
safety of electrical/electronic/programmable electronic 

safety-related systems. The standard consists of seven 
parts that focus on different aspects of development of 
safety-related systems including, for example, general 
requirements and software requirements. The current 
version of the standard has been published in 2010. [5] 

IEC 61508 is of special importance as a functional 
safety standard because of several reasons. Firstly, the 
standard has been renewed a short while ago. 
Consequently, for example, the list of recommended 
actions and techniques should be as modern as 
applicable. Secondly, one of the purposes of IEC 61508 
is to facilitate development of industry specific 
standards, which increases its importance. Such industry 
specific standards include, for example, IEC 62061:2005 
in machinery. Finally, according to our interviews during 
the Ohjelmaturva project with several Finnish and 
international companies in mobile working machines 
domain, IEC 61508 may be the most difficult safety 
standard to be used in the development. Partly this is 
because of the vast amount of requirements and 
techniques, partly because of the difficulty of applying 
some of the required techniques. 

According to the standard, the lifecycle of safety-
related system starts from concept definition. Concept 
definition is followed by overall scope definition, hazard 
and risk analyses, overall safety requirements 
specification, safety requirements allocation, planning 
phases, realization phases of safety related systems of 
various implementation techniques, and so on. The 
development of software parts of systems is covered 
mainly in the part 3 of the standard. It includes software 
safety requirements specification, validation planning, 
design and development, integration of software and 
hardware, operation and maintenance procedures 
specification, and validation. [5] The standard is built so 
that the most natural way to fulfill the requirements 
would be to utilize the traditional V-model development 
process. However, the standard allows any development 
process to be used, provided that the requirements of the 
standard are fulfilled. Thus, also agile processes could be 
used, but, according to [6], problems may arise because 
of lack of ability to provide necessary documentation. 

IEC 61508 is a risk-driven standard. After scope 
definition, the actual development process starts from 
identification of the hazards and estimations of risks, 
followed by specification and allocation of requirements 
and then proceeds towards implementation. The latter 
phases of the process are built on information produced 
by the former phases. To the different development 
phases, the standard suggests means to make sure that 
the actual risks are taken care of and that the system will 
function in a proper way. Traceability requirements 
ascertain that the risks and hazards are the basis for 
development of the safety-related functions - the process 
is thus risk-driven.  Recommended techniques, on the 
other hand, ascertain that the functionality is specified 
and implemented correctly. 



2.1. Traceability 
In IEC 61508, a repeating requirement for phase 

products of safety-related system development is the 
consistency and traceability between them. For example, 
system level requirements must be both backward 
traceable to the perceived safety needs and forward 
traceable to software requirements. Architecture design 
must be traceable to safety requirements, software design 
must be traceable to safety requirements and design 
specifications must be traceable to test specifications. [5] 

In traditional, document-based development of 
systems and applications, the traceability between the 
development artifacts may be difficult to fulfill. For 
example, traceability between identified hazards and 
software safety requirements could be supported by 
specifying (explicitly) the unique identifiers of the 
hazards that the requirements have been specified for. 
Similarly, requirements could be linked to software 
safety functions and architectural decisions by specifying 
the IDs of them. In addition, hyperlinks between the 
specifications in same or different documents could be 
defined to aid the discovery of the artefacts related to 
each other. However, documents are still difficult to 
keep up-to-date when something is changed and they 
don’t support impact analysis. In addition, generation of 
any kind of summary about the traceability, such as a 
traceability matrix, or searching for hazards that have 
not been addressed by any requirement, would be very 
difficult. 

2.2. Correctness, completeness and unambiguousness 
Some other repeating requirements for different phase 

products of safety-related software development are, 
according to IEC 61508, correctness, completeness and 
unambiguousness. To achieve the correctness and 
freedom from faults, the standard recommends, for 
example, application of formal or semi-formal 
techniques during, for example, requirements 
specification and detailed design phases. However, even 
the standard admits that application of formal methods 
may complicate the achievement of the understandability 
requirement. [5] 

Indeed, formal methods are, according to the 
knowledge of the authors, often not familiar to 
developers of software applications in industrial control 
and machinery. However, in order to develop safe 
systems, the requirements need to be specified strictly 
and in an unambiguous manner. Instead of formal 
methods, the design specifications could be also based 
on semi-formal, domain specific concepts, that would 
fulfill the requirements of the standard. In the domain of 
industrial control, logic diagrams have been traditionally 
used for specification of control approaches and safety-
function-like interlockings. Such specifications present 
requirements but also, in some cases, detailed design and 
are both familiar to developers and, at least, a semi-
formal approach.  

Specifying requirements has been found difficult in 
software engineering in general. Author of [7] has 
analyzed the quality of produced software in about 
12500 projects from year 1984 to 2008 and the defects 
delivered (and removed) during the projects. According 
to the survey, in best-in-class-quality, a main portion of 
defects delivered were related to defects in requirements 
specification, partly because defects in requirements are 
difficult to discover.  

One effective means to aid and improve requirement 
specifications could be the use of inspections. In model-
based development, inspection-like activities could be 
supported by presenting both the hazards and 
requirements in same models than design and by linking 
them together. By doing so, the developers of the system 
could always follow the requirements to the hazard 
model when in doubt. In addition, for example, definers 
and implementers of safety functions could be instructed 
to always check the consistency between the artefacts 
before writing a single line of specification or code. By 
doing so, the consistency would be checked several 
times during the development by different people, 
including developers of safety requirements, 
implementers and testers, just to name a few. Visibility 
could thus aid both correctness and completeness. 

3. Model-based approach to safety 

In MBD, models are used as primary development 
artefacts instead of, for example, documents. In MBD of 
safety-related applications, the applications should, 
accordingly, be developed by utilizing models but also 
considering the requirements of safety standards. Thus, 
when applying MBD techniques to development of 
safety-related systems, attention should be paid on the 
documentation needs. In our opinion, the special needs 
are the properties discussed in 2.1 and 2.2: traceability, 
correctness, completeness and unambiguousness. 

Traceability, in this case, refers to traceability 
between all the phase products such as hazards, 
requirements, and detailed design artefacts. In software 
engineering, the most used modelling language is UML. 
However, UML does not address the traceability 
explicitly with any modelling concept. In contrast, a 
UML profile SysML defines concepts for defining 
relations (traces) between requirements and design 
artefacts and between requirements and test cases. These 
concepts do not cover all the traceability requirements of 
IEC 61508 but form a foundation that could be further 
extended. However, supporting traceability would also 
require including more concepts, such as hazards in the 
scope of modeling.  

In addition to traceability, there are several reasons to 
add hazards to the scope of models. As discussed in 2.2, 
the hazard information could be made visible and 
available for the developers in order to aid the 



understandability of the requirements and design. 
Consistency between design artefacts could be inspected 
by different developers to aid the correctness and 
completeness of requirements. Similarly to traceability, 
hazards are not covered by UML. There are, however, 
reported approaches to cover structured presentations of 
hazards, such as, the safety analysis profile [8] and the 
approach of the UML Profile for Modeling Quality of 
Service and Fault Tolerance Characteristics and 
Mechanisms (QoSFT) [9]. 

Requirements specification may be the most critical 
part of development of complex systems.  Requirement 
specifications should, on one hand, be formal enough to 
fulfil the requirements of standards but also be based on 
concepts familiar to developers. However, for example 
UML defines only use case concept for stating 
(functional) requirements. In addition, SysML defines a 
set of textual requirement specification concepts but they 
can hardly be characterized as formal. In the domain of 
industrial control, there are also standards related to 
functional requirements, including IEC 62424 [14] and 
IEC 61804 [12]. These standards are more familiar to the 
developers in the domain but also enable structured 
presentation of required functionality and coupling to the 
instrumentation of the system.  

In our approach, we pursue to integrate modeling 
notations from several languages in order to facilitate the 
development of safety-related software applications with 
model-based techniques. In more detail, we aim to 
enhance traceability, correctness, completeness and 
unambiguousness of design with models. The modeling 
languages and notations of interest include: UML, 
SysML [11], safety analysis profile [8], QoSFT profile 
[9], IEC 62424 [14] and IEC 61804 [12]. These 
languages and notations will be next discussed from the 
point of view of modeling hazards, requirements and 
detailed design with the aim of collecting practices to be 
used in modeling in conjunction to UML AP. 

4. Risk and hazard modeling 

Currently, modeling of hazards and risks is not 
covered by many modeling languages or profiles in 
software engineering. In the approach of [10], the focus 
is in incorporating safety requirements in software 
architecture and evaluations of the architectures based on 
safety analysis methods. The developed metamodels 
include FMECA (Failure mode, effects and criticality 
analysis) and FTA (fault-tree analysis) metamodels. 

In QoSFT profile [9], the main objective of the 
modeling may not be in detailed specification of how the 
hazards may occur. Instead, it is focused on factors 
determining the magnitudes of risks (likelihood, 
consequences), compromised assets, stakeholders, and 
the treatment of risks. Treatment approaches include: 
avoiding risk, reducing its likelihood or consequences, 

and retaining and transferring the risks. Tracing of risks 
to requirements is not covered by the profile. 

In safety analysis profile [8], both the occurrences of 
hazards and tracing hazards to requirements are covered. 
To the definition of occurrences of hazards, the profile 
suggests the use of FTA that can be also used in a 
quantitative way. Another benefit of FTA is that it can 
aid the design of safety functions. Safety functions can 
be designed to disjoint the fault or event sequences 
leading to the hazards so that for the hazards to occur, 
also the safety functions would need to fail. 

To support the documentation of hazards, we suggest 
a combination of the modeling notations. FTA, 
suggested by both [8] and [10], is a very analytic 
technique and also enables quantitative analysis of 
hazards. To support traceability, it should be possible to 
trace hazards to requirements. However, in addition to 
tracing the hazards to requirements, it would be 
beneficial to document the approach to handle the risks, 
similarly to the approach of QoSFT profile. 

The following (partial) metamodel, presented in 
figure 2, has been defined to fulfill the above mentioned 
needs. However, properties supporting quantitative 
analysis, such as, mean time between failures (MTBF) 
and for example logic operators supporting FTA, such 
as, OR and NOT, have been left out of the figure. The 
hazards and event sequences leading to hazards can be 
presented with FTA elements: Hazard, Required and 
Resulting Conditions, Fault and logical operations (not 
shown in the figure). Risk treatments specify the 
approaches to treat the risks and link them to 
requirements. Hazards can be related to each other with 
different kinds of relations and Faults can be linked to 
modeled hardware (SysML) or software (UML) 
elements causing the fault. 

 

Figure 2. Part of the developed hazards 
metamodel. 



5. Requirements and design 

As presented earlier UML does not contain concepts 
for stating explicit requirements. Use cases can be used 
for presenting interactions between users and systems 
but they usually require additional textual descriptions to 
enable specification of what exactly happens. In 
addition, other modeling concepts, such as classes and 
state machines, can be used in analysis phases but the 
diagram point of view is often in solutions instead of 
requirements. By use of SysML [11], requirements can 
be specified with requirement concepts that include text 
and id attributes. Traceability of requirements is in 
SysML supported by traces that can be used for tracing 
requirements to implementing elements and test cases. 
Traces can also be searched from models, for example 
with model checkers, in order to generate traceability 
documentation or to search for overlooked requirements. 
However, SysML requirements can hardly be 
characterized as formal.  

In the industrial control domain, there are at least two 
standards that address the functional requirement 
specification issue: IEC 62424 [14] and IEC 61804 [12]. 
IEC 62424 defines a specification for presentation of 
requirement-like process control engineering (PCE) 
requests in piping and instrumentation diagrams (P&ID) 
and enables data exchange between P&ID tools and 
control engineering tools in order to optimize the 
engineering process. The standard also allows 
identification of requests (requirements) that are related 
to safety and definition of the corresponding SIL or PL 
levels. Another advantage is the direct linking to devices 
and instruments of the process. However, IEC 62424 
does not allow definition of safety function logic that 
would be advisable from the point of view of IEC 61508. 

IEC 62424 is also part of AutomationML which is 
focused on data exchange and the integration of 
engineering disciplines in development of manufacturing 
systems. The information addressed by the language 
includes manufacturing system topology, geometry, 
kinematics, and control behavior. [15] 

IEC 61804 originates from power plant industrial 
sector and aims to utilize IEC 61499 function blocks 
(FB) for specification of functional requirements. 
Process flow diagrams are first used to identify the 
process elementary operations. The required (control) 
functions are then identified and marked in P&I 
diagrams, structured to sets and presented in control 
hierarchy diagrams. Finally, the details of the required 
functions are specified by using a vendor neutral (but 
unambiguous) FB language. [12] Similarities between 
61804 and 62424 include, at least, tight integration to 
instrumentation, which could aid the understandability of 
requirements. Neither standard, however, addresses the 
traceability to implementation although shifting to 
implementing function blocks may be straightforward. 

In UML AP, requirements are structured concepts 
with attributes for id, description, priority, rationale and 
source. Concepts are divided to a hierarchy based on the 
basic viewpoint, such as, to interface with sensors or to 
interlock devices. The required information interchange 
between required functions can be modeled with port-
like requirement interfaces. By connecting safety and 
control function requirements to requirements presenting 
needs to interface with the instrumentation, the interfaces 
also enable modeling of the integration to 
instrumentation. Requirements can be traced to 
implementing model elements with requirement traces 
(similar to the traces of SysML). To enable definition of 
safety requirements, it was seen that support for 
modeling of unambiguous interlocking logic (like in IEC 
61804), required SIL (or PL) levels and allocation of 
requirements to different implementation techniques 
would be needed. 

Figure 3 presents part of the additions to requirement 
metamodel of UML AP, detailed diagrams of which are 
presented in [2]. In UML AP, requirement refinements 
are used to define additional information to 
requirements. In case of safety requirements, such 
refinements could be related to required SIL (or PL) 
level, or in early stages of requirements specification, the 
(allocated) implementation technology for the 
requirements. Logic operation library was also defined to 
enable the definition of exact logic. The logic concepts 
are currently applicable in internal block diagrams that 
can be used to depict internals of requirements in our 
tool environment. 

 

Figure 3. Part of the additions to the UML 
AP requirements sub-profile. 

In this paper, our main focus has been in modeling 
hazards and requirement information. The reason is that, 
in our opinion, those aspects are the ones that are 
difficult to cover in modeling with current languages. 
However, commonly used modeling languages, such as, 



UML could be used in detailed design at least if the 
system is to be implemented with general purpose 
programming languages. UML can be seen as a semi-
formal method so it also fulfills the requirements of IEC 
61508 (table B.7 of part 3). In addition to detailed 
design, UML and SysML are suitable for depicting 
software and system architectures with, for example, 
component, block and deployment diagrams. 

 The functional modeling concepts of UML AP, 
Automation Functions, are related to function-block-
based development. FB languages (with defined subsets) 
are also highly recommended to all SIL levels by IEC 
61508. The current version of the profile also enables 
detailed definition of interlocking and safety function 
logic, which was seen to be missing in the assessment of 
the previous version [3]. To achieve this, we have 
enabled the use of logic library that was discussed earlier 
also in specification of inner logic of Automation 
functions. The justification is that logic diagrams are 
closely related to (highly) recommended programming 
languages, fulfill the required formality, are familiar to 
developers and thus aid unambiguity. 

6. A modeling example 

The purpose of this section is to provide an exemplary 
utilization of the developed modeling concepts. In the 
following subsections, we present a model describing 
hazards related to a simple process and how the 
modeling concepts can be used in specification of 
requirements and traceability between the hazards and 
requirements. 

6.1. Hazard model 
The system of interest is visualized in figure 1. The 

system constitutes a simple, closed system providing hot 
pressurized water for the supplied process, and consists 
of two storage tanks for hot liquid, a boiler, two pumps 
for pumping the water between the tanks, and a few 
valves and sensors. The system is capable of causing 
harm to the environment, at least, by overflowing from 
the tanks B100 and B200 and by leaking from the 
pumps, which may be caused by damaging the pumps by 
running them dry.  

The occurrences of hazards of overflowing of tank 
B200 and running pump M100 dry are presented in 
figure 4 (drawn with the UML AP Tool). In this case, the 
occurrences of the hazards do not require faults in the 
system. Instead, overflowing of B200 requires that water 
is pumped to the tank with the tank being already full. 
Pump M100 running dry requires that the pump is used 
while B100 is empty. Both hazards are traced to 
interlocking requirement I-M100 (Interlock for M100), 
as indicated with the risk treatments, with the goal to 
avoid the risk. Details of the hazards: likelihoods, 

consequences and resulting risk values are not shown in 
the simplified figure below. 

 

Figure 4. Hazards related to tank B200 and 
pump M100. 

In a similar way, overflowing of tank B100 can be 
caused by pumping water to it (through boiler and 
supplied process) while the tank is already full and the 
pump M200 running dry by using it while tank B200 is 
empty. However, another way in which tank B100 can 
overflow is to drain additional water to it with use of 
valve Y101 when the tank is full. The occurrences of 
these hazards that can be treated by interlocking pump 
M200 and valve Y101 are shown in figure 5. 

 

Figure 5. Hazards related to tank B100 and 
pump M200. 

6.2. Requirements 
The interlocking requirement related to pump M100 

is presented in its context and with details in figures 6 
and 7, respectively. As seen in figure 6, the interlocking 
requires information about the levels of water in tanks 
B100 and B200, so the requirement is related to the 



corresponding measurement requirements and also to the 
requirement of controlling pump M100 (not shown in the 
figure). Because of relatively small amount of energy 
handled in the process, the SIL levels for the required 
functions were set to 0 which means that they are non-
safety-critical interlocking requirements. Actual, 
required interlocking logic for pump M100 is presented 
in figure 7: the pump is locked (disabled) if the water 
level in B100 is below 0.1 or the level of water in B200 
is over 0.9, so that the condition sequences in figure 4 
are disjoint. The notation in figure 6 is discussed in more 
detail in [2]. 

Similarly, interlocking for the pump M200 can be 
required to stop the pump if the water level in B200 is 
below 0.1 or the level of water in B100 is over 0.9. The 
latter condition can be used also in the interlocking for 
Y101 (I-Y101) to close the valve. These interlocks are 
not shown in the figures.  

 

Figure 6. Interlocking requirement for M100. 

 

Figure 7. Detailed logic of Interlocking 
requirement M100. 

6.3. Traceability 
The example process covered in this paper is 

relatively small but illustrates the use of FTA and 
requirement concepts discussed earlier, in conjunction to 
UML AP. In the model, identified hazards are linked to 
functional requirements with risk treatments that also 
specify whether the requirement represents a required 
safety function and with the risk reduction approach (in 
the example: avoid). With the requirement trace concepts 
of UML AP [2], the requirements could be further linked 
to implementing (modeled) elements that could be 

related to both architecture and detailed design. In 
addition, SysML defines (verify) relations to be used 
between requirements and test cases. As a whole, the 
approach thus supports traceability between hazards, 
requirements, architecture, detailed design and test cases. 

As the traceability is defined with explicit traces, it 
can also be analyzed automatically. Currently, our tool 
environment supports exporting traceability matrices 
(Microsoft Excel sheets) presenting the traceability 
between identified hazards and requirements and also 
between requirements and (detailed or architectural) 
design elements. When creating a hazard trace table, the 
hazards are first collected to a list. The corresponding 
requirements are identified and listed based on the risk 
treatments and finally the information content is 
exported to Excel sheets by adding a row for each hazard 
and a column for each requirement a hazard is traced to. 
Finally, the requirements that a hazard is traced to can be 
indicated by marking the columns of the requirements. 
In the process, hazards that are not traced to any 
requirements are highlighted with red color in order to 
warn the user about possibly overlooked hazards. An 
example of an automatically generated traceability 
matrix related to the hazards and requirements discussed 
earlier is shown in figure 8. 

 

Figure 8. An automatically generated 
traceability matrix from hazards to 
requirements. 

Similarly to the hazard traceability matrix, 
requirement traceability matrices can be automatically 
constructed between requirements and other model 
elements. In the implementation, the main difference is 
that instead of risk treatment elements, the table is 
constructed based on trace requirements elements of 
UML AP. In addition, because the trace relations of 
SysML define explicitly the client and supplier elements, 
they could also be used in creation of similar tables. 
However, the use of SysML traces is not yet automated 
in our modeling tool. 



Model checks could also be easily added to the tool 
environment to perform various checks. For example, 
requirements that are coupled together must have 
matching SIL refinements, all requirements must be 
traced to test cases modeled with SysML, and risk 
treatments must document the risk reduction approaches, 
just to name a few. This kind of checks could ease the 
developers work by identifying possible flaws in the 
models. Consequently, their main purpose could be to 
support the developers during the actual development 
work whereas the traceability information could be 
useful both during the development and after it. In more 
detail, during the development the traceability matrices 
could aid the understandability and inspections of design 
and after it by storing the valuable traceability 
information. 

7. Related work 

In addition to the approach outlined in this paper, 
supporting development of safety-related software with 
model-based techniques has been studied also by other 
researchers. In [16], Guillerm et al. discuss the use of 
SysML to address requirements definition, traceability as 
well as verification and validation in system engineering 
process. In the paper, they propose the use of UML and 
SysML in requirements definition and extend the 
languages with stereotypes related to documenting risks. 
However, the information  model does not address the 
modeling of how the hazardous situations occur which 
would be required to understand how the required safety 
functions are to treat the risks, for example, by 
interrupting fault sequences leading to hazardous 
situations. 

In the approach presented in [17], Biehl et al. attempt 
to integrate safety analysis to model-based development 
in automotive industry. They automate translation from 
EAST-ADL2 to HiP-HOPS with 2-phased 
transformation in order to automate performing of 
safety-analysis on refined models with minimal effort. 
However, in the approach the focus is in automating the 
safety analysis, not in using and understanding the 
information produced by safety and hazard analysis in a 
constructive way, as is in our approach. 

The UML Profile for developing Airworthiness-
Compliant SafetyCritical Software [18] intends to extract 
the key safety-related concepts from RTCA DO-178B 
standard into a UML profile and to use them to facilitate 
the communication between different stakeholders in 
software development. One of the purposes of the 
profile, to make requirements more understandable to all 
stakeholders, is similar to that of our approach. 
However, we aim to do it by describing the occurrences 
of hazards to the control and safety software engineers 
and by enabling semi-formal specification of 
requirements with notations familiar to engineers and 

explicit traces between hazards and requirements, where 
as the concepts of the airworthiness profile are extended 
from the airworthiness standard. 

8. Discussion and conclusions 

It might be beneficial if both the basic control systems 
and the safety-related systems could be developed with 
similar or same tools. The industrial trend is moving 
towards model-based techniques also in development of 
safety-related systems. For example, IEC 61508 states 
that automatic software generation may aid 
completeness, correctness and freedom from intrinsic 
design faults in architecture design. As a consequence, 
the issue of how to develop safety-related systems with 
model-based techniques is important. 

Unification of the development tools and notations 
could benefit both the development of basic control 
systems and safety-related systems. For example, 
developers would be capable of developing both kinds of 
systems and understand the couplings between the 
systems. Development of basic control systems could 
also benefit from the ability to generate documentation 
from design that would be necessary to support model-
based development of safety-related systems. It could 
also lead to unification of basic control systems and 
safety systems into single systems. 

In this paper, we have discussed the development of 
safety-related systems and applications from the points 
of view of both IEC 61508 standard and model-based 
development. In model-based development of safety-
related applications, documentation is a focal asset that 
must be addressed. To achieve at least part of the goals 
of the standard including traceability, correctness, 
completeness and unambiguousness, we have studied 
modelling notations that could be used in modeling of 
hazards and requirement. In order to provide an 
exemplary model utilizing the concepts, the new 
modelling concepts were added to the UML AP Tool. 
Our approach to fulfil the mentioned goals of the 
standard with the modelling concepts and features is 
summarized in table 1. 

Property Supporting modelling features 

Traceability Traces and traceability matrices 
between modelling artefacts. 

Correctness Formal and semi-formal 
notations, visibility of hazards 
and requirements to developers. 

Completeness Traceability and model checks 
to make sure that requirements 
and hazards are not overlooked. 

Unambiguousness Semi-formal and user-familiar 
modelling notations. 

Table 1. Summary of goal properties and 
supporting modeling features. 



One issue in shifting towards model-based techniques 
is that in development of safety-related systems, tools 
should be either verified or proven in use. Verification of 
a complete tool set supporting model-based development 
would be a vast project. Collection of usage data, 
however, could be possible from the development of 
basic control systems that often include safety-function-
like interlockings. From the point of view of the authors, 
the main difference between interlockings and safety 
functions is that interlockings are not certified. 
Consequently, they can be designed to be more complex. 
However, the basic needs may be very similar to those of 
safety functions. 

The authors acknowledge that the proposed 
methodology and the modeling concepts still require 
further development and exemplary modeling cases with 
which they can be assessed and further developed. The 
development of safety-related applications could also 
benefit from simulation capabilities. The approach 
presented by the authors in [13] could be integrated to 
development and design-time verification of alternative 
approaches to achieve safety. With such a development 
approach, it could be possible to run test-like simulations 
to test the approach to achieve safety. In our future 
projects, we will collaborate with the industry in order to 
gain deeper insight about re-occurring safety needs. 
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Abstract: Design patterns document solutions to recurring design and development challenges. UML, as the de-facto 
modeling language in software development, aims to support defining and using patterns in models. 
However, as is demonstrated in the paper, the support is not sufficient for all kinds of patterns and all 
meaningful ways to use patterns. In this paper, the use of design patterns is suggested for documentation 
purposes in Model-Driven Development. The pattern support of UML is complemented with an approach 
that does not constrain the structures that can be used in patterns. The approach, which is tool supported in a 
model-driven development environment for control applications, also enables specification of part of the 
information content of patterns that UML leaves intact. The developed tool support includes instantiating 
and highlighting patterns in models and gathering of traceability information on use of patterns. 

1 INTRODUCTION 

Design patterns document proven solutions to 
challenges that keep arising in design and 
development work. Patterns capture expert solutions 
for reuse purposes for both expert developers and 
less experienced ones. In UML modeling, support 
for using patterns is only partially enabled by the 
language. The support for the use of patterns is 
based on Collaboration and CollaborationUse 
concepts (OMG, 2011) that have been developed 
along the entire language specification from 
parameterized collaborations (Sunyé et al., 2000). 

However, in addition to the standard approach, 
many tool vendors, e.g. No Magic (No Magic, 
2014), have implemented additional pattern support 
in a more ad hoc manner. Such support for patterns 
is in many tools based on informal UML templates 
that can be copied into design models to create 
instances of the patterns. In addition, copying the 
templates may utilize wizards that enable modifying 
pattern occurrences to specialized forms, by e.g. 
selecting existing elements to pattern-specific roles. 

However, without referencing pattern definitions 
the information about the occurrences is endangered 
to vanish. With application specific names of e.g. 
properties, classes and interfaces, the occurrences 
are difficult to notice later for both developers and 
the tools. To avoid losing this information, patterns 

should be modeled and their occurrences marked in 
the models. 

With its concepts, UML aims to support the 
definition of patterns in library models and their 
instances in models. It appears that the collaboration 
concepts of UML have been designed with 
traditional GoF (Gang of Four) (Gamma et al., 1994) 
patterns in mind: with focus on co-operating objects 
as properties of classes. However, as will be 
demonstrated, the UML concepts may not be 
sufficient for all kinds of patterns and foreseeable, 
meaningful ways to use patterns. Nevertheless, when 
patterns are utilized in software projects, 
documenting their use in models could be of great 
value. Especially this is the case with development 
processes that emphasize the use of models, e.g. 
Model-Driven Development (MDD). 

In addition to solutions, design patterns include 
textual information about, for example, their 
contexts and the problems being solved. In 
(Alexander, 1979), the pattern concept is defined as 
a three-part rule expressing a relation between a 
context, a problem and a solution. A design pattern 
defined with the UML concepts, however, is likely 
to provide only information about the solution part 
of the pattern leaving the other important aspects 
unspecified. 

This paper addresses the aforementioned issues. 
A pattern modeling approach is presented, which is 
less restrictive than that of UML and enables 
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specification of part of the information content that 
UML does not address. The approach is tool 
supported in UML AP (UML Automation Profile) 
tool environment (Vepsäläinen et al., 2008) for 
MDD of control applications. The contributions of 
this paper are as follows. A set of concepts for 
defining and using design patterns is presented and 
rationalized. The benefits of the concepts are pointed 
out and compared to pattern support in UML. The 
use of patterns and pattern markings is proposed to 
benefit development work, documentation and 
learning of developers within MDD. 

The rest of this paper is organized as follows. 
Section 2 reviews work related to modeling and 
facilitating the use of design patterns in UML 
context. Section 3 outlines and discusses how the 
use of patterns could benefit specifically MDD. The 
means of UML to define and use patterns are 
presented in section 4, in addition to pointing out 
shortcomings in the support with use of well-known 
example patterns. Section 5 presents a new approach 
to model patterns and pattern instances and 
illustrates the tool support developed based on the 
concepts. Before conclusions, section 6 discusses the 
work presented and future work to be done. 

2 RELATED WORK 

The roots of design patterns, as a concept, lie in 
building architecture and work of Alexander, see 
(Alexander et al., 1977) and (Alexander, 1979). In 
software development, the use of patterns began to 
gain popularity after publication of the Gang of Four 
(GoF) patterns (Gamma et al., 1994), in which the 
application area was object oriented programming 
and software, but not so much modeling. However, 
support for patterns was also developed to UML. 

In addition to area of expertise, e.g. building and 
software engineering, design patterns vary in their 
abstractness and levels of details specified. For 
example, (Lasater, 2010) describes patterns as 
design tools to improve existing code whereas 
(Buschmann, 1999) focuses on architectural 
patterns that can have varying implementations. 
Patterns for safety systems development can be 
found e.g. in (Rauhamäki et al., 2013), the patterns 
mainly describing roles of elements. 

The need for automated tool support to define 
and use design patterns in models has been 
identified by several researchers. Support has also 
been developed for specifying patterns, identifying 
pattern instances, detecting parts in models where 

patterns could be used as well as for instantiating 
and visualizing patterns. 

(France et al., 2004) presents a formal pattern 
specification technique that is based on UML. It is 
intended for specifying design patterns and checking 
conformance of pattern instances to their 
specifications. In (France et al., 2003), automatic 
transformations are developed for refactoring 
patterns into models. The approach is based on 
specifications of pattern-specific problems, solutions 
and problem-to-solution transformations. 

Detection of points in models where design 
patterns could be used has been studied, among 
others, in (Briand et al., 2006). In the paper, 
detection rules are specified with OCL (Object 
Constraint Language) and combined with decision 
trees. Detecting design pattern instances has been 
studied in (Tsantalis et al., 2006) the approach being 
based on representing both the models and patterns 
with graphs and applying graph similarity scoring. 

Automating application and evolution of design 
patterns has been proposed and studied in (Dong and 
Yang, 2006), (Xue-Bin et al., 2007) and (Kajsa and 
Majtás, 2010). In (Dong and Yang, 2006), QVT 
(Query/View/Transformation) transformations are 
developed for evolving pattern applications to new 
ones, e.g. adding new observers to an Observer 
pattern instance. (Xue-Bin et al., 2007) uses XSLT 
(Extensible Stylesheet Language Transformations) 
for pattern-specific transformations to add patterns.  
The work in (Kajsa and Majtás, 2010) utilizes model 
transformations that are guided with UML 
stereotypes to mark the points to which the patterns 
should be added. 

Visualizing design patterns in model diagrams 
has been addressed in (Dong, 2002) and (Jing et al., 
2007). (Dong, 2002) presents several notations to 
highlight and distinguish patterns and pattern-related 
elements in diagrams. Among them is the 
collaboration notation that is also used in this paper. 
In (Jing et al., 2007), a UML profile is developed for 
specification of pattern roles that elements in pattern 
occurrences play. Based on the profile, the authors 
have developed a web service tool that integrates to 
e.g. Rational Rose to visualize patterns. 

3 DESIGN PATTERNS TO 
FACILITATE MDD 

Design patterns provide many general, well-known 
benefits to development work. For example, they 
encapsulate knowledge and experience, provide 
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common vocabulary for developers and enhance 
documentation of designs (Agerbo and Cornils, 
1998). 

More recently, design patterns have been seen to 
mark points in which developers have been 
potentially faced with challenges. Design patterns 
can be considered as predefined, reusable design 
decisions. However, they may require configurations 
for specific applications (Jansen and Bosch, 2005). 
Patterns are proven and general whereas design 
decisions are more tentative, specific to an 
application and also possible to be choices between 
solutions (Harrison et al., 2007), e.g. patterns. By 
marking a design pattern instance, a developer thus 
not only instantiates and configures a solution but 
marks a challenge and documents a decision. 

The use of patterns in models can thus extend the 
documentation value of the models with 
architectural knowledge. However, especially 
patterns could be valuable in MDD in which the 
purpose is to shift development efforts from 
documents to models. To demonstrate this point, we 
discuss their use to a few selected purposes. 

Patterns can be used to gather statistics. When 
patterns are marked in models that are used 
throughout the development process, it is possible to 
gather statistics on the use of the patterns. Pattern 
markings promote traceability between the solutions 
(of the patterns) and their use in software products. 
It is possible to study and compare work and 
preferred solutions of developers. Companies and 
teams can set up rules for using patterns in order to 
unify designs. For example, it could be agreed that a 
specific kind of challenge is always solved with a 
standard way in applications of a specific domain. 

Also metrics could be defined to evaluate 
software products in an application domain or work 
of different developers. Extensibility and 
modifiability, for example, are quality attributes that 
many classic design patterns aim to improve. As a 
consequence, it is possible that similar software 
products could be compared in terms of preferred 
quality attributes by comparing the patterns and 
amount of patterns used in the products. 

Design patterns can promote learning of new 
developers, too. When best practices and expert 
solutions are documented as patterns and pattern 
instances marked in design models, the models can 
be used as training material. New developers can 
look for pattern instances, in which kinds of contexts 
they have been used and how they have been used 
by experienced developers. Optimally, design 
pattern instances could be highlighted in models and 
diagrams in order to ensure their discovery. 

Diagrams with pattern annotations could also be 
used as parts of written documents when copied to 
such documents, when necessary. 

It can be argued that the mentioned benefits are 
not restricted to the use of patterns in MDD only. 
However, the benefits from increasing the 
documentation value of models are of special 
importance in MDD. This is because one of the 
objectives of MDD is to gain benefits by changing 
the focus of development efforts from documents to 
models. If the aim is not to produce written 
documents in which challenges, decisions and 
solutions could be included, the only places where 
they can be added are the models. 

On the other hand, in development practices 
other than MDD there may not always be need to 
model all parts of the developed systems. If all parts 
and aspects are not modeled, being able to produce 
e.g. statistics from models may not result in 
unbiased information on use of patterns. It is 
possible that the results from systematic use of 
patterns in models could be more usable in MDD 
context than with traditional development processes. 

4 SUPPORT FOR DESIGN 
PATTERNS IN UML 

In UML, patterns are defined with the Collaboration 
concept that extends both the StructuredClassifier 
and BehavioredClassifier concepts, similarly to the 
Class concept of the language. A pattern is a set of 
cooperating participants that are owned by a 
Collaboration instance as its properties, similarly to 
properties of a class. For each pattern-specific role 
there should be a property owned by the 
Collaboration. Required relationships between the 
participants are specified with connectors between 
the properties. The features required from the 
participants are defined by the classifiers (e.g. 
classes or interfaces) that are used as types of the 
properties. 

Pattern instances are represented with the 
CollaborationUse concept. A CollaborationUse 
represents an application of a Collaboration (pattern) 
to a specific situation. CollaborationUses are owned 
by classes to contents of which the Collaborations 
(patterns) are applied. Contents (properties) of the 
applying classes are bound to roles (properties) of 
the Collaborations with Dependencies that are called 
role bindings. The entities (properties) playing the 
roles in the pattern instances must be owned by the 
classifiers owning the CollaborationUse elements. 
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Graphically, Collaborations and 
CollaborationUses can be defined in composite 
structure diagrams (CSDs). In case of defining a 
Collaboration (pattern) the root element of the 
diagram is the Collaboration, whereas in case of a 
CollaborationUse the class owning it. In other 
diagrams, CollaborationUses can be visible in 
compartments related to the applying classes, if 
supported by the tool being used. 

4.1 Challenges with the UML Pattern 
Modeling Approach 

The approach of UML for defining and using design 
patterns is formal and well-defined.  However, when 
compared to, for example, literature presentations of 
many well-known patterns, the UML concepts 
cannot be used in a literature prescribed way. A 
CollaborationUse cannot be used e.g. in a class 
diagram describing classes of a package because in 
that case the participants would be classes (instead 
of properties) and owned by a package (instead of a 
class). For example a set of classes as in Figure 1 
could not be marked as an Observer (Gamma et al. 
1994) pattern instance. 
 

 

Figure 1: A class diagram illustrating the Observer pattern. 

A rationale for claiming that the familiar 
structure in the figure cannot be an Observer 
instance could be that a class diagram does not yet 
indicate definite occurrence and use of instances of 
the classes in the pattern-specific way. Instead, the 
UML approach would be to define another class, 
create instances of the classes (of the figure) as 
properties of the other class and connect them to use 
the services of each other. Graphically this could be 
done with CSDs. 

CSDs were not available at the time e.g. 
Observer pattern was authored, which is a possible 
explanation for the tool support to differ from the 
literature (or vice versa). However, from a pragmatic 
point of view, it may not be worthwhile to require 
definition of the class instances in CSDs because 
CSDs are not used as commonly (e.g. in industry) as 
class diagrams are. On the other hand, if a developer 
deliberately designs classes so that they can be used 

according to a pattern, it should be possible for her 
to mark the decision, e.g. for documentation 
purposes. 

Another example related to the lack of pattern 
modeling capabilities in UML is related to 
architectural patterns. A well-known example of 
such a pattern is the Layers pattern (Buschmann, 
1999). An intuitive means to illustrate the use of 
Layers in a UML model could be to present the 
packages and classes that an application is built of in 
a layered-like orientation as in Figure 2. One could 
also use component diagrams and arrange the 
components to a layered like orientation, like in 
(Buschmann, 1999) pp.35. However, neither of these 
approaches could be marked as a Layers instance. 
Packages, that class and component diagrams are 
used to describe, are not classes and thus cannot own 
CollaborationUses. And if they could, the packages 
and components would not be properties of a class. 

 

 

Figure 2: A layered architecture pattern illustration in a 
class diagram. 

Observer and Layered Architecture patterns were 
used as examples above because of their familiarity. 
However, they are not the only patterns that may be 
difficult to apply in UML models. When patterns 
and pattern instances are defined and applied as 
contents of classifiers, use of patterns to describe 
aspects other than those related to classes and 
properties becomes difficult. Especially this can be 
seen to restrict the support for architectural patterns. 

Related to pattern languages, UML does not 
define means to specify relations between patterns. 
According to the language specification (OMG, 
2011), Collaborations can extend others. However, 
there is no means to specify, for example, that after 
applying a pattern it could be advisable to apply 
another, related pattern. 

Lastly, the means of UML for defining 
information content of patterns other than solutions, 
e.g. context and problem, are limited. The 
Collaboration concept does not include textual or 
other kinds of properties for such purposes. 
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5 A NEW PATTERN MODELING 
APPROACH 

Generally, the concepts that can be used in models 
conforming to a modeling language are defined in 
the metamodel of the language. The concepts 
available in UML models, for example, are defined 
in the UML metamodel (OMG, 2011) which in turn 
has been defined with use of Meta Object Facility 
(MOF). The metamodel of the new pattern modeling 
concepts, with relations to existing UML concepts, 
is presented in the next sub-section. 

5.1 Metamodel for Defining, Marking 
and using Design Patterns 

What pieces of information a pattern is obviously 
required to include are a name (identifier), problem 
(that the pattern solves), context (in which the 
pattern can be applied) and the solution, as also 
suggested in (Alexander, 1979). On the other hand, 
as argued in the previous section, the modeling 
approach should not restrict the nature of solutions 
in patterns. Practical patterns may consist of 
practically any modeling elements, e.g. components 
or class definitions. It should also be possible for 
other modeling elements than classes to contain 
elements that are parts of a pattern instance. 

The basic concepts of the new pattern modeling 
approach are depicted in Figure 3 that has been 
divided into two parts. The concepts on the left-hand 
side are aimed for defining patterns whereas the 
concepts on the right-hand side for using and 
marking patterns instances. Although they are part 
of the same metamodel, it is assumed that design 
patterns could be defined in specific library models 
(preferably by experienced developers) and their 
instances used in application models (of the systems 
being modeled). Similar division of concepts exists 
already in UML related to profiles and stereotypes. 
Stereotypes are defined by experts in profiles and 
then used in a number of application models. 
Although stereotypes can be considered as tools for 
design work and altering the semantics of modeling 
elements, they are defined in UML models similarly 
to the concepts that they specialize. 

The Pattern and PatternApplication concepts are 
aimed for defining patterns and pattern instances, 
respectively. Their UML counterparts are the 
Collaboration and CollaborationUse concepts. 
However, instead of defining (only) contents of a 
classifier, Patterns contain textual information which 
has been structured based on the canonical form of 

patterns (Appleton, 1997) with addition of 
Consequences from the Alexandrian form 
(Alexander et al., 1977). 

The Pattern concept is extended from the UML 
PackageableElement concept so that Patterns can be 
defined within package hierarchies. The main 
contents of Patterns are PatternRoles that are used to 
specify structural and behavioral roles specific to the 
Patterns. Multiplicities define the limitations to 
numbers of modeling elements playing the roles in 
pattern instances. PatternRoles can also refer to 
template elements that are specific to the roles. Their 
purpose is to enable development of tool support to 
facilitate the creation of pattern instances. 

 

 

Figure 3: The metamodel of the new pattern modeling 
concepts; UML concepts are highlighted with grey color. 

RoleBindings are owned by PatternApplications 
and they bind pattern instance specific elements to 
the roles of the patterns. The metaclasses of bound 
elements are not restricted since (concrete) elements 
of UML all extend the abstract Element concept that 
is used as the type of the meta-reference. The same 
applies to SysML and UML AP modeling elements 
in the supporting tool; they can be used in patterns 
and pattern instances as well. 

PatternLanguage concept is a lightweight 
approach to pattern languages, allowing patterns to 
be organized into hierarchies. With PatternRelations, 
patterns can be organized into (pattern) sequences 
describing meaningful orders of using patterns, and 
sequences combined to simple languages. Relations 
also allow the specification of alternatives, patterns 
requiring other patterns and patterns that conflict 
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with each other. This aspect is yet to be defined in 
more detail. 

The major differences of the approach in 
comparison to plain UML are as follows. The roles 
of patterns have been separated from their template 
elements in the template packages. Pattern 
definitions may contain textual information. The 
model elements playing the roles in patterns and 
their instances are not restricted to be instances of 
any specific UML (or e.g. SysML) metaclass. 
Lastly, PatternApplications are owned by packages 
that are used in models in any case.  

The concepts relieve the restrictions of UML so 
that, for example, the patterns presented in section 
4.1 could be marked as instances of suitable pattern 
definitions. Since elements playing roles in a pattern 
need not be properties, for example class definitions 
of Figure 1 - or some other variation of the pattern – 
could be marked as an Observer pattern instance. A 
structure like that could also be marked as a pattern 
instance regardless of whether the constructs would 
be defined in the same or different package. It would 
only affect to which package should own the 
PatternApplication element. Constructing patterns 
from classes, packages and components is also 
possible, which would enable marking the structure 
of Figure 2 as an instance of the Layers pattern. 

As a downside, the approach is less formal than 
that of UML. Because of the freedom to define 
patterns to consist of any elements, it is more 
difficult to confirm correctness of pattern 
applications, for example. Since the approach does 
not restrict the elements that play roles in a pattern 
instance to be owned by a single model element, it is 
also possible for pattern instances to disperse to 
several places in models due to, for example, model 
refactoring. That is, although simple checks of 
consistency can be automated with e.g. the 
multiplicity restrictions more responsibility over 
correctness of pattern definitions and instances is left 
for developers in the approach. 

Another restriction of the approach is related to 
the portability of it to other tools, which is caused by 
the metamodel additions that the approach requires. 
This aspect is discussed in more detail in section 6. 

5.2 Illustrative Example 

To demonstrate the use of the concepts, they are 
used in an example to define Observer pattern and to 
apply it to a model. The starting point in the example 
is a situation in which a PressureControl class would 
need to be made capable of receiving notifications of 
new (pressure) measurements from a 

PressureMeasurement class. A class diagram 
illustrating this starting point is shown in Figure 4. 
 

 

Figure 4: An example diagram before applying a pattern. 

In order to apply Observer (Gamma et al., 1994), 
it needs to be first defined with the presented 
modeling concepts. A tree view of a model defining 
the pattern with the concepts is shown in Figure 5. 
The pattern is in the example defined in a Package 
that contains the Pattern element (Observer) as well 
as a template Package. The pattern includes roles 
related to it (Observer, Subject and 
ConcreteObserver). The classes and interfaces of the 
template package were illustrated in Figure 1; they 
also define several operations that are hidden from 
the figure below. Textual information related to the 
pattern, e.g. context and problem, is stored in the 
properties of the Pattern element. 

 

 

Figure 5: A tree view of Observer definition with the 
modeling concepts. 

The example class diagram, after applying the 
pattern, is illustrated in figure 6. The diagram also 
illustrates how the pattern instance is visualized with 
the collaboration notation. The modifications from 
applying the pattern include addition of an interface 
(Observer), an interface realization as well as several 
operations specific to the role elements in the 
pattern, e.g. update(). These elements have been 
added based on the template elements illustrated in 
Figure 1.  

Another view to the results is presented in figure 
7 that illustrates the references between the model 
trees related to the pattern definition and pattern 
instance. The operations and other added model 
elements are contained in the model in a similar 
manner than any model elements. The information 
about the pattern instance, on the other hand, is 

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

282



 

stored in a PatternApplication element. The 
PatternApplication contains the RoleBindings that 
link the pattern instance specific elements to the 
general roles of the pattern definition. 

 

 

Figure 6: A visualization of an Observer pattern instance. 

 

Figure 7: References from a pattern instance to definition. 

5.3 Tool Support for using Patterns 

With the tool support, the purpose has been to 
facilitate the use of patterns and to demonstrate the 
benefits from their use. The metamodel extensions 
to UML AP and UML modeling concepts, see 
Figure 3, were defined with Eclipse Modeling 
Framework (EMF) that is a Meta Object Facility 
(MOF) implementation used by the UML AP tool 
(Vepsäläinen et al., 2008). In addition to 
implementing the concepts, tool support has been 
developed to instantiate and to visualize patterns in 
models as well as to generate documentation from 
models. Of these functions, first two have been 
implemented with the core of the tool whereas the 
latter extends the documentation generation work in 
(Vepsäläinen and Kuikka, 2011).  

5.3.1 Instantiating Patterns 

Compared to instantiating patterns from templates in 
an ad hoc manner, the use of the presented concepts 
requires additional work. Defining patterns with the 
Pattern and PatternRole elements has to be done 
only once for each pattern. PatternApplications, 
however, need to be created and configured for each 
new instance. As such, it is natural that this task 
should be facilitated with tool support. In the tool, 

this task has been integrated to a wizard. Compared 
to existing pattern wizards in UML tools, the novelty 
of the wizard is in managing the new concepts. 

The process of instantiating patterns is performed 
as follows. The user of the tool initiates the wizard 
from a tool menu. As a response, the tool scans 
through available pattern libraries in order to find 
available patterns. New libraries can be added to the 
tool by registering them with an (Eclipse) extension 
point developed for this purpose. 

The user of the tool is provided with a list of 
available patterns. When selecting a pattern to apply, 
part of the textual information (problem, context and 
solution) related to the patterns is visible to the user, 
as illustrated in Figure 8. After selecting a pattern, 
the pattern (definition) that should be referenced by 
the PatternApplication to be created is known. In 
case of the design diagram root element being a 
package, the PatternApplication to be created can be 
owned by the package. Otherwise, it can be created 
to be owned by the package closest to the diagram 
root in the model hierarchy. The wizard proceeds to 
processing (iterating through) the pattern roles. 

For each role, the wizard enables the user to 
select an existing element from the active diagram to 
act in the role. If the pattern in question defines a 
template, it is also possible to copy an element for 
the role from the template. For PatternRoles that the 
user has either selected an element for or copied it 
from the template, the wizard creates RoleBindings 
that bind the elements to the roles of the pattern. In 
case of using existing elements in roles of a pattern, 
their contents (elements owned by them) are 
compared and completed to correspond to those of 
the templates by copying missing contents. 

Technically the wizard has been implemented so 
that it only collects the information from the user 
whereas actual model changes are performed at once 
after completing the wizard. The purpose of this is to 
enable possibility to collect model modifications to a 
single (undoable) command. However, currently 
undoing a pattern application requires manual work. 

It is also possible to modify pattern instances 
after creating them. PatternApplications and 
RoleBindings can be selected from the outline view 
and modified with the properties view of the tool. 
Elements related to a pattern instance can also be re-
organized and it is possible to apply more instances 
of compatible patterns. Information on which 
elements are part of a pattern instance is stored in a 
PatternApplication specific to the instance and the 
RoleBindings of it. They are not affected by 
additions of new elements or simple changes to the 
bound elements, e.g. re-naming or moving them. 
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Figure 8: The pattern information page of the wizard. 

5.3.2 Visualizing Patterns 

Although pattern instances are always visible in the 
outline view of the tool, they are not visible in 
diagrams by default. This is rational since the 
amount of details in a diagram should be relatively 
small to keep it understandable. Patterns can also be 
considered as explanatory information that may not 
be required all the time. However, when pattern 
applications are necessary to be shown, e.g. for 
documentation or teaching purposes, it should be 
possible to visualize them in diagrams. 

Visualization of a pattern is initialized from a 
menu of the outline view of the tool while at the 
same time selecting the PatternApplication to be 
shown. As a response, a dotted ellipse shape with 
lines to the model elements playing the roles in the 
pattern instance is created. The ellipse represents a 
PatternApplication (pattern instance) and contains 
the name of the pattern (definition). Connections to 
the role elements show the names of the 
corresponding pattern roles. 

The graphical presentation of pattern instances is 
similar to CollaborationUses in CSDs, with addition 
of <<PatternApplication>> to distinguish between 
them. An example graphical presentation of an 
Observer pattern application was presented in Figure 
6. In the figure the pattern has been applied to a 
client application model so that the names of the 
concrete classes are different from the names of the 
template classes, which were shown in Figure 1. 

5.3.3 Patterns as a Part of Documentation 

One of the main motivations of this work has been 
to use patterns for documentation purposes in MDD. 
Since design patterns and design pattern instances 
are modeled with dedicated elements, it is possible 
to track the design patterns that are used in a model 
of an application as well as the number of instances 
of the patterns. Since PatternApplications are owned 

by packages, it is possible to trace the parts of 
models in which a design pattern is used. Starting 
from packages, it is again possible to track the 
patterns that are used in the packages.  

Exporting documentation is initiated by the user 
of the tool that selects the root of the model from the 
outline view, selects export functionality and then 
traceability information. First sheets of the generated 
(Microsoft Excel) spreadsheet are described in 
(Vepsäläinen and Kuikka, 2011) whereas last two 
are dedicated to design patterns. 

The first of the new sheets lists the design 
patterns that are used in a model. The sheet is 
collected by searching all PatternApplication 
instances in the model. The number of instances for 
each design pattern (definition) as well as the total 
amount of patterns are calculated and shown. With 
traceability matrices, the sheet presents package to 
design pattern traceability (the patterns that are used 
in each package), design pattern to package 
traceability (in which packages each design pattern 
is used) and lastly design pattern to element 
traceability. In the latter matrix, each design pattern 
instance is traced to all elements that play roles in 
the instance. An example sheet presenting 
traceability for the pressure sensor example of 
Figure 6 is presented in Figure 9. 

 

 

Figure 9: An exemplary automatically generated 
traceability sheet. 

The second of the new sheets focuses on design 
patterns themselves. At the beginning of the sheet a 
list of patterns, instances of which can be found 
from the model, is repeated with the amount of 
pattern instances. After this table, the sheet presents 
printouts of information for each design pattern used 
in the model including context, problem, forces, 
solution (textually), consequences, resulting context, 
example, and known usage. 
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6 DISCUSSION AND FUTURE 
WORK 

This paper has discussed the use of design patterns 
in UML based modeling and their potential benefits 
in model-driven development. Shortcomings in 
UML design pattern support have been pointed out 
and an additional set of modeling concepts has been 
presented. 

The need for a new approach to utilize patterns 
in models originates from the UML pattern 
modeling concepts that restrict patterns to describe 
contents of classifiers. The information content of 
actual published patterns, however, is not restricted 
to such a narrow scope. Patterns may not always 
concern concrete programming language level 
aspects and their information content is not restricted 
to solutions only. For example, solutions of patterns 
may consist of packages, components or even use 
cases. In addition, patterns include information 
about their contexts and problems for which the 
patterns provide the solutions. 

The presented, simple set of modeling concepts 
enhances the UML limitations by enabling patterns 
to include textual information and to consist of 
practically any elements that a pattern author finds 
useful. As a downside, the approach leaves more 
responsibility over the correctness of patterns and 
pattern applications to developers. The portability of 
the approach to other tools is also questionable, 
which is caused by metamodel modifications. 

The approach introduces new metaclasses to the 
MOF based UML metamodel so that implementing 
the approach in other tools would require similar 
additions. The other extension mechanism of UML, 
light weight profiles that consist of stereotypes, 
however, would not have enabled all the required 
additions. According to the UML specification 
(OMG, 2011), stereotypes cannot be used to insert 
new metaclasses or metareferences between existing 
metaclasses, for example. With stereotypes (without 
new metaclasses), it would have been possible to 
include the textual information in the Collaboration 
concepts of UML. However, CollaborationUses 
would still be owned by classes and their other 
specified constraints would still apply. 

In future work, it is our intention to focus on 
safety related patterns, examples of which can be 
found e.g. in (Rauhamäki et al., 2013). Safety related 
systems constitute an application domain in which 
documentation is of special importance. This is 
because of the need to justify the safety of the 
developed applications against safety standards. For 
software safety functions, the standards focus on 

development methods, practices and solutions that 
are recommended for different levels of safety. On 
the other hand, safety standards require traceability 
between requirements, design, implementations and 
test cases, among others. This is the problem domain 
that we foresee to be possible to facilitate with safety 
pattern modeling and extending the presented 
documentation generation work. 

7 CONCLUSIONS 

Design patterns document solutions and capture 
expert knowledge to recurring challenges in design 
and development work. The scope of design patterns 
that can be found from literature varies in terms of 
area of expertise and abstraction level. Many 
patterns present rather conceptual solutions than 
solutions that could be copied or modeled always in 
the same way. However, although the UML 
concepts have been enriched along the development 
of the entire language, the pattern support is still 
restricted to collaborating properties of classes. 

In this work, the issue has been addressed by 
defining and implementing a set of pattern modeling 
concepts that can be used to complement the UML 
concepts. The approach is not restricted to modeling 
of classifiers only but enables patterns to consist of 
practically any modeling elements that an author of 
a pattern finds useful. 

Tool support for automating the use of the new 
concepts has been developed for instantiating 
patterns, visualizing patterns in diagrams as well as 
collecting documentation and statistics from models. 
The tool and concepts have been used by researchers 
working in the project. They have been found useful 
and will be used to gather more use experience in 
software engineering courses at the department of 
Automation Science and Engineering at Tampere 
University of Technology. 

The tool supported functionalities are also related 
to the way in which design patterns could be used to 
facilitate model-driven development. Patterns enable 
including additional documentation to models. 
Patterns enrich models with information on 
challenges, points of decisions as well as traceability 
between solutions and their use in specific 
applications.  Visualizing patterns in diagrams may 
both support learning of developers and increase the 
value of diagrams in written documents. Knowledge 
on pattern use can be gathered to statistics to 
compare applications and work of developers. 
Patterns and rules for using them can also be used to 
unify work of developers in teams and companies. 
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Abstract— Design patterns capture named solutions to 
recurring challenges in development work. With an 
appropriate, non-restrictive tool support, design patterns could 
also improve the documentation value of models in model-
driven development. This paper extends the design pattern 
modeling approach of UML Automation Profile with safety-
related information and suggests the use of patterns in models 
to document safety aspects. The modeling concepts are tool 
supported. In the paper, the concepts are used for exporting 
safety-related documentation. The documentation can be used 
to guide the selection of development techniques as well as to 
perform consistency checks with respect to safety integrity 
levels that are required from modeled applications. 

Keywords-Model-Driven Development; Design Pattern; 
Safety. 

I.  INTRODUCTION 
Design patterns document solutions to recurring 

challenges in design and development work. As a concept, 
design pattern was introduced in the work of Alexander 
[1][2] related to building architectures. In software 
development, design patterns began to gain popularity after 
the publication of the Gang of Four (GoF) patterns [3] that 
were targeted to object oriented software engineering. 
Support for the use of patterns was also developed to Unified 
Modeling Language (UML). Today, UML is the de-facto 
software modeling language. With domain specific profiles, 
UML is also the modeling basis of many Model-Driven 
Development (MDD) approaches. However, the support for 
design patterns in UML is still focused on describing 
contents of UML Classes. 

The  idea  of  MDD  is  to  use  models  as  the  primary  
engineering artefacts during the development of software 
systems. Models describe the systems and applications from 
different points of view and on different abstraction levels. In 
MDD, the development often starts from high abstraction 
level models, e.g., Computation Independent Models (CIM) 
as in Model Driven Architecture (MDA) [4]. Model 
transformations are used between the models to ensure their 
consistency and to produce refined models based on the 
earlier ones. Models also document the developed systems. 
However, in specific application domains the required 
information content of documentation is governed by 
regulations and standards, in addition to development needs. 

Safety-related systems and applications constitute such a 
domain. The development process of safety applications as 
well as solutions and techniques to be used during the 
process is governed by standards, e.g., IEC 61508 [5]. In 
addition to using standard-compliant techniques, a developer 
of such a system must be able to prove the compliance of it. 
This is where the relevant documentation is needed. 

The use of MDD to safety system development has been 
suggested by few researchers and even less MDD has been 
taken to industrial practice. The reason is not that safety 
standards would not allow the use of MDD techniques. 
Instead, for example “automatic software generation” is 
recommended as an architecture design technique by IEC 
61508 [5]. Possible explanations for the scarce use of MDD 
techniques in the application area are, however, the strict 
documentation requirements. It is possible that given the 
strict  requirements,  MDD  has  not  been  seen  to  offer  
possibilities to improve the efficiency of the development. 

The purpose of this paper is to extend a design pattern 
modeling approach of UML Automation Profile (UML AP) 
[6] to safety patterns. Safety patterns are design patterns that 
are applicable for safety-related systems and include 
additional information related to safety. They can be used by 
exporting documentation from models of the developed 
systems in which the patterns are used. The documentation 
generation is intended to facilitate development work by: 1) 
supporting traceability between applicable safety solutions 
and their use in systems, 2) enabling verification of safety 
levels of patterns in comparison to required safety levels and 
3) guiding the selections of techniques and solutions. 

The rest of this paper is organized as follows. Section 2 
reviews work related to design patterns and use of design 
patterns in models and model-driven development. Section 3 
recapitulates the recent pattern-related work that is extended 
in the paper. Sections 4 and 5 present the safety-related 
extensions to the pattern concepts and the developed tool 
support, respectively. Before conclusions, Section 6 
discusses the work and the relevance of safety aspects in 
control system development in general. 

II. RELATED WORK 
Support for using design patterns in UML models is in 

the language based on Collaboration and CollaborationUse 
[7] concepts that are suitable for presenting patterns inside 
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UML Classes. The concepts have been developed along the 
language itself from parameterized collaborations that were 
utilized in, e.g., [8]. In addition to the standard approach, 
however, many tool vendors have developed additional 
pattern support in a more ad hoc manner. For example, 
MagicDraw [9] enables the specification of model element 
templates and copying the templates to models to instantiate 
patterns. Without pointing out pattern instances, however, 
the information on the occurrences is endangered to vanish. 

To enable precise but practical use of patterns in UML, 
France et al. [10] have developed a pattern modelling 
approach using UML. Precise specification of pattern 
solutions is seen to enable tool support for building solutions 
from pattern specifications and for verification of the 
presence of patterns in design. In the approach, an overall 
pattern specification consists of a structural pattern 
specification specifying the class diagram view of the 
solution, and a set of interaction pattern specifications that 
specify the interactions in the pattern solutions. 

Approaches to apply and evolve design patterns to UML 
models have also been developed with use of model 
transformations [11][12][13][14] using 
Query/View/Transformation (QVT) and Extensible 
Stylesheet Language Transformations (XSLT) techniques. 
Detection of design patterns in models, on the other hand, 
has been studied for example with use difference calculation 
[15], graph matching [16], graph similarity scoring [17], as 
well as graph decomposition and graph isomorphism [18].  

In the approach of the authors, the novelty is neither in 
the approach to transform patterns into design nor in 
detecting pattern instances. Instead, a starting point in the 
work is that uses of patterns are design decisions that should 
be deliberately documented by marking the patterns. On the 
other hand, attention is paid to the questions how the pattern 
markings could be used to produce documentation in general 
and in safety-related application development in particular. 

For safety-related systems, design patterns have been 
specified, for example, related to redundancy. In [19], 
Douglass presents 4 patterns to implement redundancy or 
redundancy-like behavior so that a task is performed in 
different channels or that another computing channel is used 
to observe the behavior of the main channel. Also IEC 61508 
[5] in the 6th part of it presents several M out of N solutions 
in which the idea is to perform a calculation redundantly and 
to use voting to acquire a reliable result for it. 

In the tables of recommended techniques and measures 
for software architecture design (annex A), IEC 61508 [5] 
also refers to a wide range of solutions that already have 
corresponding patterns in pattern literature. For example, the 
standards suggest the use of (different kinds of) redundancy 
[19], backward recovery (from faults) [20][21] and cyclic 
program execution [19]. Another example on use of patterns 
in the domain is related to documenting recurring arguments 
of safety cases in order to systematically collect and gain 
benefit from arguments of previous projects [22]. 

MDD of safety systems has been studied in the DECOS 
project [23] that is targeted to development of both critical 
and non-critical functions of embedded control systems. In 
the approach, the preferred means for specifying application 

functionality is Safety-Critical Application Development 
Environment (SCADE) which is based on formally defined 
data flow notation and enables simulation at model level and 
code generation. 

UML based modelling and development of safety 
applications has also been facilitated with UML profiling 
techniques. In [24] the approach is based on extracting key 
concepts  of  a  safety  standard,  RTCA  DO-178B,  to  
stereotypes with which it is possible for software developers 
to include safety-related concepts and properties in models. 
It can be assumed that such models suit well also for the 
purpose of producing documentation. However, we regard 
the work presented in this paper as an important complement 
to the approach. Whereas UML stereotypes are applied to 
single modelling elements, with patterns it is possible to link 
several elements in designs to patterns and roles of them. 
This is needed in order to characterize how a number of 
elements are used together to perform a task. 

III. NEED FOR PATTERNS IN MDD 
The key concept of MDD is to shift the development 

efforts from written documents to models that are used 
throughout the development process. For special purposes, 
e.g., safety system development, it could be possible to 
maintain separate documents. However, that would require 
additional work and could significantly reduce the potential 
to benefit from MDD. In a sense, it would also be against the 
central idea in MDD. A more appropriate approach would be 
to include the documentation in the models, in the first place. 

A possible challenge in this objective is that models, in 
general, tend to be more applicable for representing solutions 
than rationale behind them. For example, many of the basic 
concepts of UML are similar to concepts of object oriented 
programming languages. UML models can be well used to 
answer the question how to implement, e.g., a class or a 
program. In the MDD context, it is even possible to generate 
code from models to avoid the manual programming work. 
However, information on why something has been designed 
in the way it has, is often missing. This information could be 
crucially important for, e.g., quality assurance and 
maintenance purposes. 

Design patterns are a possible solution to improve the 
situation. Patterns document named, proven solutions that 
are well-known among developers and suited for solving 
recurring challenges and tasks. They are structured so that 
they consist of named parts that have responsibilities in the 
solutions. The solutions that patterns include may have 
crucial advantages. The use of design patterns and pattern 
instances in MDD and models could thus increase the value 
of models significantly. Patterns could 1) indicate the use of 
standard solutions in systems and specifications, 2) mark 
potential challenges (that are treated with the patterns), 3) 
make design more understandable (because of the use of the 
known solutions) and 4) clarify the roles of model elements 
in design, just to name a few benefits. In specific application 
areas, e.g., safety system development, the use of patters 
could even automate tasks and checks that are currently 
performed manually. 

234Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



 

 

A. Design Patterns in UML 
In UML, pattern definitions and pattern instances are 

defined with the Collaboration and CollaborationUse 
concepts of the language, respectively. Similarly to the Class 
concept, Collaboration extends the StructuredClassifier and 
BehavioredClassifier concepts. A pattern definition is in the 
language a set of cooperating participants that are Properties 
of a Collaboration. In a similar manner Properties can be 
owned by Classes. The features that are required from the 
participants are defined by the Classifiers that are used as 
types of the Properties. Graphically Collaborations can be 
presented in composite structure diagrams in which 
participants of a pattern are connected with Connectors. 

A CollaborationUse represents an application of a pattern 
to another Classifier (Class). The CollaborationUse must be 
owned by the Class to the contents of which it (the pattern) is 
applied. Properties of the applying Class can be bound to the 
roles of the Collaboration with Dependencies. The entities 
playing the roles must be owned by the same Class instance 
that owns the CollaborationUse. In short, with the UML 
pattern concepts, patterns are seen to describe contents of 
Classifiers. 

Pattern literature of today, however, is not restricted to 
contents of UML Classifiers only. For example, many well-
known patterns such as the Layers pattern [25] (and many 
other architectural patterns) are intended to clarify the 
division of systems to, e.g., Components or Packages. 
However, marking the occurrence of such patterns may not 
be possible with the UML concepts. This is because 
Packages are not Properties or necessarily owned by Classes. 
With application domain specific extensions, the support for 
patterns in UML becomes even more constraining. In order 
to benefit from the use of patterns in MDD, a new approach 
to define and mark patterns in models is required. The 
approach should restrict neither the types of elements that 
play roles in patterns nor the types of elements to contents of 
which patterns can be applied. 

B. The New Pattern Approach 
The developed pattern modelling approach [6] uses a set 

of concepts that have been developed for defining patterns 
and marking pattern instances in models. In the approach, 
pattern instances are not owned by Classes but Packages that 
are used in models in any case. The elements playing pattern 
specific roles in pattern instances can be any direct or 
indirect contents of the Packages and instances of any 
metaclass, instead of Properties only. Pattern definitions 
include textual properties that are essential information 
content in patterns. Lastly, the element roles in pattern 
definitions are separated from the template elements that are 
used in automating the application of patterns. 

The approach is tool-supported including functions for 
instantiating patterns, exporting statistics and traceability 
information related to the use of patterns as well as for 
visualizing patterns in diagrams [6]. Patterns are instantiated 
to models with the use of a wizard that performs pattern 
specific modifications to the models, according to user 
selections. Markings of pattern instances are also created 
automatically by the wizard. 

Statistics and traceability information on patterns can be 
exported to MS Excel files. Statistics include lists of design 
patterns that are used in a model including the number of 
instances for each pattern. Patterns are traced to Packages 
with traceability matrices to indicate the patterns that are 
used in each Package and vice versa. Visualizing patterns in 
diagrams utilizes the Collaboration notation of UML and 
presents pattern instances with dotted ellipses. Model 
elements that play pattern specific roles in the instances are 
connected to the ellipses with dotted lines. The tool support 
for the use of patterns can be used in any UML, Systems 
Modeling Language (SysML) or UML Automation Profile 
(AP) models and diagrams in UML AP research tool [26]. 

IV. SAFETY PATTERN METAMODEL 
With extensions to safety aspects, the purpose has been 

to experiment how design patterns could specifically support 
documentation of safety applications. Most importantly, the 
extensions to the pattern modeling concepts, see Figure 1, 
include a specific SafetyPattern. SafetyPatterns are design 
patterns that have been identified to be related to safety. To 
distinguish the concepts that are used for defining patterns 
from those used to mark pattern instances, the Figure has 
been divided to two parts. The new (in comparison to [6]) 
concepts are in the Figure high-lighted with grey color. 

A SafetyPattern is, thus, a design pattern that has been 
identified to be related to safety and that may have 
recommendations for applications of different safety levels. 
With safety systems, we refer to systems that perform safety 
functions the correct operation of which is required to ensure 
the safety of a controlled process. The safety levels in the 
metamodel correspond to the 4 Safety Integrity Levels 
(SILs) in IEC 61508 [5]. In general, a SIL determines the 
probability of correct functioning of a safety function, SIL1 
being the lowest and SIL4 being the highest level. For 
traditional, e.g., electrical safety systems it is possible to 
determine SILs statistically. However, due to the systematic 
(vs. random) nature of software faults, the statistics approach 
cannot be applied to software. For new software components 
there would not even be statistics available. In IEC 61508, 
this problem is solved by focusing on development 
techniques and solutions the use of which are documented. 
For each SIL and for each development phase, the standard 
specifies a set of techniques that can be highly recommended 
(HR), recommended (R) or non-recommended (NR) or with 
non-specified recommendation (NS). The alternatives in the 
Recommendation (enumeration) in the metamodel 
correspond to these alternatives. 

The purpose of the SafetyCatalogue concept is to collect 
together (from various pattern sources) related 
SafetyPatterns. Catalogues contain patterns that should be 
used together and to which sets of patterns that are used in 
models can be compared. Patterns in a catalogue can be 
related to, e.g., a phase in development or a specific purpose. 
For example, IEC 61508 [5] includes lists of techniques to be 
used during specific software development phases. For 
software architecture design, for instance, the standard 
mentions 27 techniques and/or measures, some of which are 
non-recommended or alternatives to each other. 
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An example Safety Catalogue sheet can be seen in Figure 
2 that presents a part of a printout of a catalogue of 
techniques or measures that IEC 61508 recommends for 
software architecture design. In the table, patterns can be 
highly recommended (HR), recommended (R) or non-
recommended (NR) or with non-specified recommendation 
(NS). To avoid repeating a table of the standard, the table 
includes only 15 techniques that have been modeled as 
patterns. By looking at the table, however, it also becomes 
clear that pattern literature already includes specialized 
versions of many of the techniques, for example to 
implement redundancy [19]. 

B. Safety Catalogue Conformability Sheet 
Whereas the purpose of the Safety Catalogue sheet is to 

enable presenting catalogues of SafetyPatterns, the purpose 
of Safety Catalogue Conformability sheets is to present how 
a set of SafetyPatterns (that are used in a model) conforms to 
a SafetyCatalogue. Similarly to the previous sheet, the 
conformability sheet serves both the guidance and 
documentation purposes. In addition, the table presents to 
which SILs the set of SafetyPatterns would be applicable. 

The sheet is compiled as follows. In a similar manner 
than in the case of the previous sheet, the SafetyCatalogues 
related to the model are collected to a list from which the 
user may select the desired ones. General structure of the 
sheet is similar to the previous sheet. However, the 
SafetyPatterns of the catalogue that are used in the model are 
indicated with light grey color. In addition, the table presents 
whether the set of (used) patterns is compatible with each 
SIL. Compatibility of the used patterns is illustrated with 
green color and incompatibility with red color. 
Incompatibility can result from both using a non-
recommended pattern or not-using a recommended (or 
highly recommended) technique or any of its alternatives. 

The last two rows of the table also present the numbers of 
patterns (excluding alternatives) that would be recommended 
for each SIL and how many of them have been actually 
applied. As such, the table also answers the question how 
many techniques (more) should be applied in order to 
conform to the catalogue for each SIL. 

 

 
Figure 3.  An example generated Safety Catalogue Conformability sheet. 

An example Safety Catalogue Conformability sheet can 
be found in Figure 3. It presents the conformability of 
SafetyPatterns used in an example model to the software 
safety requirement specification techniques of IEC 61508 [5] 
that have been modeled as a SafetyCatalogue. According to 
the table (grey highlighting), it can be seen that a semi-
formal modeling technique has been used, the software 

safety requirements specification supports both backward 
and forward traceability and that computer-aided 
specification tools have been used. The table also illustrates 
(with green color) that these choices are applicable to all 
SILs. In addition to the techniques used, it is not necessary to 
use any other technique (for requirements specification). 

C. Safety Pattern Traceability Sheet 
While patterns can have recommendations for different 

levels of safety, it is also possible to check their conformance 
to safety levels required from the safety functions. The 
purpose of the safety pattern traceability sheet is to trace 
safety requirements (of UML AP) to Packages that contain 
implementing design elements for the requirements and to 
SafetyPatterns that are used in the Packages. In addition to 
traceability, the table presents the safety levels (SIL) related 
to the requirements, Packages as well as recommendations of 
the Patterns for each level. Similarly to the previous sheet, 
the use of recommended or highly recommended patterns is 
indicated with green color whereas the use of non-
recommended patterns is warned with red color. 

The sheet is compiled as follows. Safety-related (UML 
AP) requirements and their respective safety integrity levels 
are collected to a list. The Packages that contain 
implementing design elements for the requirements are 
identified based on TraceRelations (of UML AP). The 
SafetyPatterns, instances of which can be found from the 
Packages, are identified based on PatternApplications. The 
traceability table is printed.  In the table, traceability between 
a requirement and a Package is presented with an arrow ( ). 
SILs for the Packages are determined by finding the highest 
SILs from the requirements that are traced to the Packages. 
Traceability between a Package and a SafetyPattern used in 
the Package is, again, presented with the arrow symbol. 

 

 
Figure 4.  An example generated Safety Pattern Traceability sheet. 

An example Safety Pattern Traceability sheet can be 
found in Figure 4. According to the table, it can be seen that 
the example model contains 2 requirements of safety level 
SIL1: P100 protection and P100IR. The former one (a 
general safety function requirement) is traced to “Software 
Safety Requirements” Package and the latter one to 
“ControlStructures” Package. SILs required from the 
Packages (their contents) come from the requirements, both 
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being SIL1. Moreover, the sheet presents that the use of 
“Automatic software generation” has been marked in 
ControlStructures Package and Semi-formal methods, 
backward traceability, forward traceability as well as 
computer aided specification tool in the Software Safety 
Requirements Package. According to the table (color 
coding), the techniques are recommended for the safety 
integrity level (SIL1) required from the Packages. 

VI. DISCUSSION 
This paper has presented an approach to extend the 

information content of design pattern concepts of UML AP 
with safety aspects. The new concepts enable specifying the 
applicability of SafetyPatterns, i.e., design patterns of safety 
systems, to applications of different safety integrity levels. In 
addition, SafetyPatterns can be collected to SafetyCatalogues 
with which it is possible to model both recommendations of 
safety standards and custom catalogues of SafetyPatterns. 

To illustrate the use of the concepts, the paper has 
presented 3 example documentation sheets. The sheets were 
generated automatically based on a library model containing 
two SafetyCatalogues and a model utilizing the patterns of 
the catalogues. The first of the sheets presented one of the 
catalogues. The other two sheets presented compliance of a 
model (of a developed systems) to the other catalogue. The 
new information content of SafetyPatterns was in the sheets 
used for automating identification of safety-related patterns 
and consistency checks with respect to safety levels. The 
sheets, thus, documented rather the developed systems than 
SafetyPatterns themselves. In the developed metamodel, 
SafetyPatterns share most of their information content with 
the design pattern modeling concepts that are used in [6]. 

The authors believe that the possibility to export 
documentation from models is a future research topic within 
MDD research. Moreover, it could improve the applicability 
of the MDD techniques to safety system development.  This 
is because safety applications cannot be used in practice 
without appropriate documentation. Without automated 
support for producing documentation, it would have to be 
produced manually. On the other hand, by automating even 
part of the work, it would be possible to obtain additional, 
MDD specific benefits in the application area. 

When developing safety applications with MDD 
techniques, the development process should be supported. A 
tool should assist developers by pointing out the issues that 
need to be addressed, by presenting the alternatives (when 
appropriate) and by documenting the decisions for later use. 
For example, the supported process could start from modeled 
requirements that determine the required integrity levels. A 
developer could select a SafetyCatalogue to be used to guide, 
e.g., architecture design. Based on the selection and required 
integrity levels, the tool could suggest patterns to be used. In 
practice, this scenario could be supported with only a small 
modification to the Safety Catalogue sheet, by hiding 
inappropriate patterns based on required integrity levels. 

Work that aims for guiding development work in MDD 
has been previously carried out by the authors also based on 
use of an Architecture Knowledge Management (AKM) 
platform [28]. Use of an external tool, however, may lead to 

redundant information. On the other hand, it is believed that 
documentation and guidance support should be available for 
both architectural and detailed design levels. Thus, it is 
feasible to integrate the required support in one tool, which is 
used throughout the MDD process. 

A challenge in developing guidance for MDD is that 
development processes, techniques and solutions vary 
between companies and between controlled processes. The 
approach presented in this paper could improve the situation. 
Documentation sheets can be developed to support various 
purposes and processes, not only the ones presented in this 
article. In addition, by using, e.g., the SafetyCatalogue 
concept, the generated sheets and their contents are also 
dependent of the catalogues to the contents of which the 
models are compared. Thus, to support another kind of a 
development process or other techniques, one could specify 
other catalogues to which the models would be compared. 

The authors regard safety aspects important for also basic 
control systems that are not critical. Safety is an issue that 
should be taken into account in development of any control 
system. Safety standards state their recommendations on 
techniques, measures and solutions based on evidence on 
their usefulness. It is likely that adopting selected techniques 
and measures from safety system development, e.g., 
traceability could also improve the quality of basic control 
systems. This could in turn improve the productivity of the 
controlled processes at least in application domains in which 
the development processes are not strictly governed. 

On the other hand, considering selected aspects of safety 
standards in development of basic control systems could 
shorten the gap between the systems. Safety systems and 
basic control systems are currently not only separated from 
each other but also developed with different development 
processes and tools and often by different teams. It is 
possible that professionals are not even aware of the 
practices in the other teams. Because the development of 
safety systems is regulated by authorities, the only possibility 
to shorten the gap would be to adopt suitable practices of 
safety system development to basic control system 
development. 

VII. CONCLUSIONS 
Design patterns document solutions and capture expert 

knowledge to recurring challenges in design and 
development work. On one hand, design patterns support the 
re-use of design by preserving named, proven solutions to 
recurring challenges. However, they can also increase the 
documentation value of models that usually tend to present 
design solutions rather than rationale behind the solutions. 
With use of patterns, designs become easier to understand 
and the roles of design elements clear for possible third 
parties that use the documentation. Especially the use of 
patterns could benefit MDD in which the idea is to use 
models for both development and documentation purposes. 

In  this  paper,  a  set  of  pattern  modeling  concepts  was  
presented that enable increasing the information content of 
design patterns with applicability to safety integrity levels. 
The new concepts enable constructing catalogues of safety-
related patterns with which it is possible to model 
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