

Tampereen teknillinen yliopisto. Julkaisu 1303
Tampere University of Technology. Publication 1303

Timo Vepsäläinen

Model-Driven Development of Control Applications:
On Modeling Tools, Simulations and Safety

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 5th of June 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3528-4 (printed)
ISBN 978-952-15-3536-9 (PDF)
ISSN 1459-2045

iii

Abstract

Control systems are required in various industrial applications varying from individual
machines to manufacturing plants and enterprises. Software applications have an
important role as an implementation technology in such systems, which can be based on
Distributed Control System (DCS) or Programmable Control System (PLC) platforms,
for example. Control applications are computer programs that, with control system
hardware, perform control tasks. Control applications are efficient and flexible by
nature; however, their development is a complex task that requires the collaboration of
experts and information from various domains of expertise.

This thesis studies the use of Model-Driven Development (MDD) techniques in control
application development. MDD is a software development methodology in which
models are used as primary engineering artefacts and processed with both manual work
and automated model transformations. The objective of the thesis is to explore whether
or not control application development can benefit from MDD and selected
technologies enabled by it. The research methodology followed in the thesis is the
constructive approach of design science.

To answer the research questions, tools are developed for modeling and developing
control applications using UML Automation Profile (UML AP) in a model-driven
development process. The modeling approach is developed based on open source tools
on Eclipse platform. In the approach, modeling concepts are kept extendable. Models
can be processed with model transformation techniques that plug in to the tool. The
approach takes into account domain requirements related to, for example, re-use of
design. According to assessment of industrial applicability of the approach and tools as
part of it, they could be used for developing industrial DCS based control applications.

Simulation approaches that can be used in conjunction to model-driven development of
control applications are presented and compared. Development of a model-in-the-loop
simulation support is rationalized to enable the use of simulations early while taking
into account the special characteristics of the domain. A simulator integration is
developed that transforms UML AP control application models to Modelica Modeling
Language (ModelicaML) models, thus enabling closed-loop simulations with
ModelicaML models of plants to be controlled. The simulation approach is applied
successfully in simulations of machinery applications and process industry processes.

Model-driven development of safety applications, which are parts of safety systems,
would require taking into account safety standard requirements related to modeling

iv

techniques and documentation, for example. Related to this aspect, the thesis focuses on
extending the information content of models with aspects that are required for safety
applications. The modeling of hazards and their associated risks is supported with fault
tree notation. The risk and hazard information is integrated into the development
process in order to improve traceability. Automated functions enable generating
documentation and performing consistency checks related to the use of standard
solutions, for example. When applicable, techniques and notations, such as logic
diagrams, have been chosen so that they are intuitive to developers but also comply with
recommendations of safety standards.

Keywords: control application, model-driven development, modeling, simulation,
safety

v

Preface

The research, on which this thesis builds upon, has been carried out at the Department
of Automation Science and Engineering at the Tampere University of Technology
(TUT). The research work was conducted between 2008 and 2014 as part of several
joint-funded research projects in collaboration with Tekes the Finnish Funding Agency
for Innovation, other research institutes as well as both Finnish and international
companies. During the years 2012-2015, the funding of TUT President’s Doctoral
Program made it possible to focus on the thesis work with less project pressure.

For being able to finish this thesis, I must thank several people. First and foremost, I
would like to thank the supervisor of my studies, Professor Seppo Kuikka, for the
possibility to work in the Automation Software research group and for all the guidance
during the work. Without the support and trust, completing this thesis would not have
been possible.

I want to thank Professor Georg Frey from Saarland University and Research Professor
Tommi Karhela from the VTT Technical Research Centre of Finland for the preliminary
examination of the thesis and for the remarks and feedback. I want to thank Professor
Georg Frey and Professor Kauko Leiviskä from the University of Oulu for acting as
opponents in the public examination.

I would like to thank the professors, colleagues and the personnel of the Department of
Automation Science and Engineering for the pleasant and motivating working
environment. Especially I would like to thank the members of the Automation Software
research group with whom I have had the pleasure to work. I want to thank Dr. David
Hästbacka, Lic.Sc. Outi Rask, Jari Rauhamäki and Petri Kannisto but also the former
members of the group. I would also like to thank the colleagues and friends from Aalto
University and VTT Technical Research Centre of Finland. With many of these people,
I have also had the honor to co-author publications.

Thanks also to my friends for helping me forget the work and studies every once in a
while. Finally, I am grateful to my parents for their support and encouragement during
my M.Sc. and doctoral studies that turned out to take quite some time.

Lempäälä, 4th May 2015

Timo Vepsäläinen

vii

Contents

Abstract .. iii
Preface ... v
Contents... vii
List of Included Publications ... xi
List of Abbreviations ... xiii
List of Figures ... xv
1 Introduction .. 1

1.1 Background ... 1
1.2 Research Questions ... 3
1.3 Scope of the Thesis .. 3
1.4 Research Methodology .. 4
1.5 Contributions of the Thesis .. 6
1.6 Organization of the Thesis ... 7

2 Technological Background ... 9
2.1 Modeling and Model-Driven Development .. 9

2.1.1 Model-Driven Development .. 9
2.1.2 UML and SysML ... 10
2.1.3 Metamodels and Meta Object Facility .. 10
2.1.4 Model Transformations and QVT .. 11

2.2 Simulations ... 12
2.2.1 Overview ... 12
2.2.2 XiL Simulations... 12
2.2.3 Modelica and ModelicaML .. 13

2.3 Safety .. 13
2.3.1 Overview ... 13
2.3.2 IEC 61508 ... 14
2.3.3 Systematic Safety System Development and Patterns 14

3 Tool Support for Model-Driven Development of Control Applications 17
3.1 AUKOTON Development Process .. 18
3.2 Requirements for Modeling and Model Processing Support in MDD of

Control Applications ... 21
3.2.1 Modeling Concepts and implementations ... 21
3.2.2 Graphical Support .. 22
3.2.3 Model Transformations .. 23
3.2.4 Design Patterns .. 24
3.2.5 Platform Specific Implementations .. 25

viii

3.3 Considerations on Implementation Techniques .. 25
3.3.1 Extension Mechanisms of UML and MOF Based Languages 25
3.3.2 Graphical Diagram Development on Eclipse Platform 27
3.3.3 Model Transformation Techniques .. 28

3.4 UML AP Tool Implementation .. 28
3.4.1 Metamodel Implementation ... 29
3.4.2 Graphical Support for UML AP Diagram Types 30
3.4.3 Finding, Using and Controlling Model Transformations 32
3.4.4 Design Patterns in Modeling .. 34
3.4.5 Platform Specific Implementation Blocks .. 38

3.5 Discussion ... 41
4 Simulations in Model-Driven Development of Control Applications 45

4.1 Requirements for Simulations in Control Application Development 47
4.1.1 Benefits of Simulations in Control Application Development 47
4.1.2 Required Properties for Simulations ... 48

4.2 Considerations on Implementation Techniques .. 50
4.2.1 XiL Simulation Approaches ... 50
4.2.2 Number of Simulation Engines .. 51
4.2.3 On Creating Closed-Loop MiL Simulations 51

4.3 Model-in-the-Loop Simulating UML AP Models .. 55
4.3.1 ModelicaML as a Target Simulation Language 55
4.3.2 General Simulation Approach .. 56
4.3.2.1. Processing of Logic Diagrams ... 58
4.3.2.2. Processing of Automation Sequence Diagrams 61
4.3.3 Observations from Applying the Simulation Approach 64
4.3.3.1. Binary and Feedback Control ... 65
4.3.3.2. Interlocks and Safety Functions ... 65
4.3.3.3. Control Sequences ... 66

4.4 Discussion ... 67
5 Safety in Model-Driven Development of Control Applications 71

5.1 Requirements for Modeling Safety Features .. 72
5.1.1 Hazard and Risk Information ... 74
5.1.2 Traceability, Correctness and Completeness 75
5.1.3 Use of Standard Solutions .. 75

5.2 Considerations on Implementation Techniques .. 76
5.2.1 Modeling of Hazards and Risks ... 76
5.2.2 Requirements and Traceability ... 77
5.2.3 Standard Solutions in Models .. 78

ix

5.3 Safety Related Extensions to UML AP .. 79
5.3.1 Hazard and Risk Information ... 79
5.3.2 Requirements Modeling ... 82
5.3.3 Traceability and Documentation Support ... 84
5.3.4 Patterns of Safety Systems ... 85

5.4 Discussion ... 90
6 Summary of the Included Publications .. 93
7 Conclusions ... 97

7.1 Thesis Summary .. 97
7.2 Research Questions Revisited .. 99
7.3 Limitations and Future Work ... 102

Bibliography .. 105
Publications ... 115

xi

List of Included Publications

The thesis is based on the following publications referred to as [P1] to [P8].

[P1] Vepsäläinen, T., Hästbacka, D., Kuikka, S. (2008) Tool Support for the UML
Automation Profile - for Domain-Specific Software Development in
Manufacturing. Proceedings of the 3rd International Conference on Software
Engineering Advances. Sliema, Malta, October 26-31, 2008, pp. 43-50. DOI:
10.1109/ICSEA.2008.22

[P2] Vepsäläinen, T., Sierla, S., Peltola, J., Kuikka S. (2010) Assessing the
Industrial Applicability and Adoption Potential of the AUKOTON Model
Driven Control Application Engineering Approach. Proceedings of the 8th
IEEE International Conference on Industrial Informatics. Osaka, Japan, July
13-17, 2010, pp. 883-889. DOI: 10.1109/INDIN.2010.5549626

[P3] Vepsäläinen, T., Kuikka, S. (2014) Integrating Model-In-the-Loop
Simulations to Model-Driven Development in Industrial Control.
SIMULATION: Transactions of the Society for Modeling and Simulation
International. DOI: 10.1177/0037549714553229

[P4] Vepsäläinen, T., Kuikka, S. (2014) Model-Driven Development of
Automation and Control Applications - Modeling and Simulation of Control
Sequences. Advances in Software Engineering, Vol. 2014. DOI:
10.1155/2014/470201

[P5] Vepsäläinen, T., Kuikka, S. (2013) Benefit From Simulating Early in MDE of
Industrial Control. Proceeding of the 18th IEEE International Conference on
Emerging Technologies and Factory Automation. Cagliari, Italy, September
10-13, 2013, pp. 1-8. DOI: 10.1109/ETFA.2013.6647961

[P6] Vepsäläinen, T., Kuikka, S. (2011) Towards Model-Based Development of
Safety-Related Control Applications. Proceeding of the 16th IEEE
International Conference on Emerging Technologies and Factory
Automation. Toulouse, France, September 5-9, 2011, pp. 1-9. DOI:
10.1109/ETFA.2011.6058979

[P7] Vepsäläinen, T., Kuikka, S. (2014) Design Pattern Support for Model-Driven
Development. Proceedings of the 9th International Conference on Software
Engineering and Applications. Vienna, Austria, August 29-31, 2014, pp. 277-
286. DOI: 10.5220/0004990002770286

[P8] Vepsäläinen, T., Kuikka, S. (2014) Safety Patterns in Model-Driven
Development. Proceedings of the 9th International Conference on Software
Engineering Advances. Nice, France, October 12-16. 2014, pp. 233-239.

xiii

List of Abbreviations

AF Automation Function
ASD Automation Sequence Diagram
ASE Automation Science and Engineering (a department at TUT)
AKM Architecture Knowledge Management
ALM Application Lifecycle Management
CORBA Common Object Request Broker Architecture
DCS Distributed Control system
DDS Data Distribution Service
DSL Domain Specific Language
EMF Eclipse Modeling Framework
FB Function Block
FMECA Failure Mode, Effects, and Criticality Analysis
FMI Functional Mock-up Interface
FTA Fault Tree Analysis
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
HiL Hardware-in-the-loop (simulation)
HMI Human-Machine Interface
IEC International Electrotechnical Commission
I/O Input/Output (transfer of data to and from application)
MDA Model-Driven Architecture
MDE Model-Driven Engineering
MDD Model-Driven Development
MiL Model-in-the-loop (simulation)
MOF Meta Object Facility
ModelicaML Modelica Modeling Language
OCL Object Constraint Language
OMG Object Management Group
PID Proportional-Integral-Derivative
PiL Processor-in-the-loop (simulation)
PL Performance Level
PLC Programmable Logic controller
P&I Piping and Instrumentation (diagram)
QoSFT Quality of Service and Fault Tolerance Characteristics and

Mechanisms (profile)
QVT Query/View/Transformation
SiL Software-in-the-loop (simulation)
SIL Safety Integrity Level
SFC Sequential Function Chart
SysML Systems Modeling Language
UI User Interface
UML Unified Modeling Language

xiv

UML AP UML Automation Profile
TUT Tampere University of Technology
XiL Model/Software/Processor/Hardware-in-the-Loop (simulation)

xv

List of Figures

Figure 1 The relationships between metamodels, transformation definitions, models and
model transformations. .. 12

Figure 2 The AUKOTON development process proceeds from requirements to
executable applications through the requirement, functional and platform specific
development phases. ... 19

Figure 3 Graphical tooling development process with Topcased tool. (Modified from
[63]) .. 32

Figure 4 The dependencies between Topcased UML and SysML editors, UML AP tool
editor as well as UML, SysML and UML AP metamodel implementations (Modified
from [63]) ... 32

Figure 5 Java interfaces related to the extension point for import, export and intra-model
transformations. .. 34

Figure 6 A presentation of Layers pattern with UML class diagram. (from [P7]) 36

Figure 7 Metamodel of the pattern modeling concepts. (from [P7]) 37

Figure 8 A visualization of an Observer pattern instance. (from [P7]) 38

Figure 9 Stereotypes and their tagged values related to the FB collection used in [P2].
(Modified from [51]) ... 40

Figure 10 Template AFs related to LC_3 and PIDC_2 type circuits that were used in
[P2]. .. 40

Figure 11 The AUKOTON development process with the simulation extensions.
(Modified from [P4]) .. 50

Figure 12 The transformation adds the control application specific parts to an existing
plant model. (Modified from [P3]) .. 57

Figure 13 The metamodel of the Logic Diagram concepts including related UML
metamodel concepts. (Modified from [P3]) ... 59

Figure 14 An example of transforming Logic Diagram to ModelicaML. (From [P5]) .. 60

Figure 15 The simplified metamodel of the Automation Sequence Diagram concepts
including related UML metamodel concepts. (Modified from [P4])............................. 61

Figure 16 An Automation Sequence Diagram (ASD) and the corresponding Modelica
algorithm section. (From [P4) ... 63

xvi

Figure 17 Metamodel of the (FTA) modeling concepts excluding concrete logical
operation types. (The metamodel is based on the pictures and description in [P6].) 81

Figure 18 An example FTA model related to a tank system used as an example in [P6].
 ... 82

Figure 19 The safety related Refinements of UML AP that can refine
StructuredRequirements. ((Modified from [P6]) .. 83

Figure 20 An example Hazard traceability matrix from [P6]. 85

Figure 21 The metamodel of the SafetyPattern modeling concepts. (Modified from [P8])
 ... 87

Figure 22 A Safety Catalogue sheet example presenting 15 techniques and measures
that IEC 61508 recommends for architecture design. (Modified from [P8]) 88

Figure 23 A Safety Catalogue Conformibility sheet presenting the usage of
requirements specification techniques in a model and their conformability to the
recommendations of IEC 61508. (Modified from [P8]) ... 89

Figure 24 A Safety Pattern Traceability sheet presenting the traceability of the safety
requirements of an example system to implementing Packages and to SafetyPatterns
used in the Packages. .. 90

1

1 Introduction

This Chapter introduces the topics of the thesis and provides an introduction to the
background and motivation of the work. The Chapter is organized as follows. First, the
background of the thesis, the research questions and the research methodology are
presented. They are followed by the contributions, before outlining the organization of
the thesis.

1.1 Background

Control systems are required in various applications ranging from individual and small-
scale machines to extensive manufacturing plants and enterprises. The systems are
required to control and supervise machines and processes in a timely and efficient
manner while at the same time optimizing their productivity and guaranteeing the safety
of their environment and operating and maintenance personnel. Currently, an essential
role as an implementation technology of such systems is played by software control
applications that are often executed on Distributed Control System (DCS),
Programmable Logic Controller (PLC) or embedded platforms.

Control applications, computer programs that perform control tasks, are fairly efficient
and flexible by nature. A single processing unit with a control application can control
and supervise a number of complex processes, sub-processes and devices. Processing
units can be connected together to control ever-larger processes while their applications
exchange real-time information on the measured properties and statuses of the
processes. To adapt to changing needs and specifications, the dynamic behavior of a
controlled system can be flexibly altered by changing the parameters and operating
points of the control application or by updating it entirely or partially. However, while
the applications have become essential parts of the systems, at the same time the
efficiency of their development process has become an essential competitiveness factor
in the domain.

Development of a control system for an industrial plant, for example, is a complex
endeavour. It requires the collaboration of experts and information from various
domains of expertise. Control system development, and control application
development as part of it, requires and integrates information from process, electric,
hydraulics, safety and chemical engineering, for example. Some of these engineering
disciplines may also require information from control application development.
However, in a common case it is the control application that can and need to adapt to

2

requirements and conditions from the other disciplines. To cope with the amount of
information and requirements, the use of models – to complement or to substitute
written documents - has been studied in the domain. However, models and modeling
concepts alone are not the answer. They need appropriate, flexible tool support for
performing the required engineering activities within a model-driven development
process.

Modeling concepts developed for the needs of automation and control domain need to
be supported by a modeling tool, including their possible relations to the concepts of
more general purpose modeling languages: UML and SysML. UML and SysML based
modeling techniques that have been widely used in MDD are a sound alternative for
also control applications and enable modeling from the early stages of development.
The models need to be processed with model transformations to automate repetitive but
error-prone tasks and in order to streamline information transfer from and to the related
engineering disciplines. Especially at the early stages of adopting MDD technologies to
practical use, modeling concepts need to be implemented in a flexible manner for future
needs. Re-use of existing knowledge and design information has to be supported in
models in order to obtain the benefits of re-using application blocks, which is already
reality in control application development.

Using models as primary artefacts during development offers possibilities that are
beyond the capabilities of current control system and application development practices.
Models that are formal enough can be analyzed and studied either alone or together with
the models of the processes to be controlled. In control algorithm design, simulation is a
technique that has been traditionally used to study and experiment possible control
approaches, structures and tunings. However, traditionally the activity has been
separated from the basic control application development. Simulation studies have been
possible only after developing the applications, by executing them in conjunction to the
models of processes to be controlled.

If models are to be used as the primary engineering artefacts, they should also serve
documentation purposes for which information is currently produced mainly with
manual work. Safety related systems, especially, constitute an area of applications in
which documentation is of special importance because of the need to be able to prove
the compliance of the produced applications to standards and to convince the authority
of the correctness of the application. However, it is also an area of applications that
could especially benefit from the use of models. Models could enable automated

3

consistency checks during design and transferring the design information to a form in
which it answers the relevant questions.

The motivation of the thesis is to study how control application engineering could be
facilitated by extending a Model-Driven Development (MDD) approach. The thesis
focuses on concepts and tool support for modeling, model processing, integrated
simulations and safety-related information in models.

1.2 Research Questions

The thesis explores whether or not the control application development can benefit from
MDD and selected technologies enabled by it. To answer this general question, the
thesis focuses on a set of smaller research topics. They are related to modeling and
developing tool support for modeling the applications, ability to integrate and gain
benefit from integrating simulations into MDD and ability to document safety-related
information on control applications in models. These research topics are divided into
three groups of questions hereafter referred as RQ1-3.

1. How to develop support for domain-specific, UML based modeling in control
application development? How to develop support for and gain benefit from
applying design patterns in models? How to enable and gain benefit from re-
using platform specific blocks in modeling?

2. How can model-in-the-loop simulations be integrated into MDD of automation
and control applications with UML based modeling? What are the requirements
and constraints for selecting the simulation approach to be followed? How can
simulations with the selected approach benefit MDD?

3. How can the safety of control applications be supported in MDD? How can risk
and hazard information be integrated into modeling? How can traceability,
correctness and completeness be supported in models? How can the use of
design patterns support documenting the safety features of control applications?

1.3 Scope of the Thesis

The thesis discusses the use of MDD and techniques enabled by it in automation and
control application development. The main focus of the thesis is on whether and how
control application development could be enhanced with MDD techniques and how the
required tool support can be implemented with the use of standard techniques.

4

Related to implementing the domain specific modeling concepts and tool support for a
MDD process, the thesis studies and uses standardized modeling, metamodeling and
model processing techniques. Graphical support for the modeling concepts, which is in
current modeling tools often implemented on top of the information content layer, is not
considered in detail in the thesis.

In the thesis, simulation is considered as a means to evaluate and compare control
application designs. It is also a technique that is already in use in the domain; however,
not necessarily during basic control application development. Simulations are widely
used in control algorithm development and in, for example, control system testing after
the development. In the thesis, the use of simulations as well as techniques and
approaches to create closed-loop simulations are discussed with focus on the software
development phase. However, especially related to interlock functions the distinction
between algorithm and software development is sometimes difficult to make.

Related to safety aspects and safety related information in models, the thesis focuses on
extending the information content of models with IEC 61508 [1] as a reference. The
purpose is to develop the MDD process and concepts in a direction in which they could
fulfill more of the requirements of the safety standard. However, with discussion on
documentation, the author does not want to claim that safety systems should or should
not be developed with MDD techniques only. Nevertheless, in order to develop safety
systems with MDD techniques, it would be vital to be able to fulfill the relevant
documentation requirements with MDD.

1.4 Research Methodology

The research methodology of the thesis is the constructive approach of design science.
According to Iivari [2], design science research has been applied in computer science,
software engineering and information systems for decades producing e.g. new
architectures, languages and algorithms. It is the rigor of constructing IT artifacts that
distinguishes the design science from the practices of building IT artifacts and to
demarcate the two there are two options. The essence of information systems can lie in
the scientific evaluation of the artifacts or in a reasonable rigorous constructive research
method for building the artifacts. [2]

According to Crnkovic, the key idea of constructive research is the construction based
on the use of existing knowledge in novel ways and possibly adding new links. The
construction proceeds through design thinking to the projections of future solutions.
Conceptual and other knowledge gaps are filled with purposefully tailored building

5

blocks to support the whole construction. When a construction, theoretical or practical,
differs profoundly from pre-existing ones, it constitutes a new reality against which pre-
existing ones can be examined and understood [3].

According to Hevner and March [4], the purpose in design science is to create
innovations or artifacts that embody ideas, practices, capabilities, and products that are
required to efficiently accomplish the analysis, design, implementation and use of
information systems. According to [4], the output artifacts of research include
constructs, models, methods and instantiations. However, due to the range of output
research artefacts in reported research, a more expansive view of the artifacts can
include any designed solution that solves a problem in a given context [5].

The main research steps applied in the research are as follows:

1. Tool support for the domain specific modeling concepts of UML Automation
Profile is developed while taking into account the needs of the application
domain related to the re-use of application blocks, for example. The industrial
applicability of the model-driven development process and tools as a part of it
are assessed.

2. The use of design-time, closed-loop simulations is investigated to facilitate
control application development. Methods are developed for generating
simulation models from UML Automation Profile models and to integrate the
models in a novel manner to plant simulation models. General approaches to
closed-loop simulations in MDD in the domain are compared.

3. The use of design patterns is studied to enhance the re-use of existing design
solutions. Modeling concepts and tool support are developed for specifying
design patterns, marking and visualizing design pattern instances, applying
design patterns as well as for using patterns to produce documentation from
models.

4. The modeling concepts are extended to enable the specification of how the
hazards associated with the controlled systems may occur. Traceability,
correctness and completeness are improved within models with safety aspects in
mind.

The evaluation of the results is performed in each step with respect to the fulfillment of
requirements, comparison to the state-of-the-art as well as evaluation of improvements
in comparison to the state-of-the-art.

6

1.5 Contributions of the Thesis

The scientific contribution of the thesis and included publications to the research
questions are following.

RQ1 Modeling and model processing

 Development of a modeling tool, by extending existing open source modeling
tools and frameworks, so that modeling concepts are implemented on metamodel
level. The models are extendable and they can be processed with standard
model transformation languages.

 Qualitative assessment of industrial applicability of the experimental MDD
development process and tools as a part of it.

 Development of an approach to specify design patterns and mark design pattern
instances in UML, SysML and UML Automation Profile (UML AP) models to
support the learning of developers, the traceability of solutions and producing
documentation from models.

 Development of a method and tool support for modeling control application
implementation block libraries with stereotypes and model libraries so that code
generation can utilize existing blocks within produced executables.

RQ2 Simulation of design models

 Development of an approach to transform UML AP control application models
to existing Modelica Modeling Language plant simulation models to enable
design-time closed-loop simulations.

 Extending the simulation approach to cover the aspects of basic control systems
including feedback control, binary control, sequential control as well as
interlocks.

 Comparing the transformation assisted approaches to closed-loop simulations in
MDD in control application development. Assessment of benefits of design-time
simulations based on case studies and literature.

RQ3 Modeling safety features

7

 Specification of modeling concepts to describe how hazards, related to a
controlled system can occur, to extend the documentation value of the models
and to support the traceability of requirements.

 Development of documentation exporters to support correctness, completeness
and traceability in MDD and in models.

 Extending the design pattern modeling concepts for the patterns of safety
systems and developing methods to use the concepts in generating safety
documentation from models and guiding development work.

1.6 Organization of the Thesis

The research questions, RQ1-3, are addressed in separate Chapters of the thesis and in
the included publications as indicated in Table 1. The publications appear in the table in
the order of their importance related to the research questions.

Table 1 the included publications, the research questions and their presentation in the thesis.

Research Question Publications Thesis Chapter

1 Modeling and model processing P1, P2, P7 3

2 Simulation of design models P3, P5, P4 4

3 Modeling safety features P6, P8, P7 5

Chapter 2 introduces the technologies and standards that have been applied in the thesis
and in the included publications. The general purpose technologies are in the thesis
applied to model-driven development of control applications. The standard introduced
in Chapter 2 is a functional safety standard that has been used as a normative reference
when extending the information content of models to safety aspects. The means to
support domain-specific modeling with focus on the re-use of both design patterns and
concrete implementation blocks and automated model processing are discussed in
Chapter 3. Simulations and techniques to enable and benefit from simulations of design-
time models in model-driven development are discussed in Chapter 4. Extensions to
modeling concepts and model processing tools for supporting safety related information
in models are presented and discussed in Chapter 5. Chapter 6 provides a summary of
the included publications. Chapter 7 concludes the thesis with the re-examination of the
research questions and an outlook of future research.

9

2 Technological Background

The focus of the thesis is in model-driven development (MDD) of control applications.
Control applications are software parts of control systems which perform control tasks.
In industry, the control applications are typically executed in Distributed Control
System (DCS), Programmable Logic Controller (PLC) or embedded platforms. They are
used in the real-time control of processes of various kinds ranging from mobile working
machines and platforms to, for example, chemical industry and power production plants.
In addition to real-time control, the control applications of this kind can include, among
others, monitoring and safety features. However, safety critical control functions the
sole purpose of which is to guarantee the safety of the processes to be controlled are
typically implemented in dedicated safety systems. The role of (basic) control
applications, on the other hand, is to keep the processes in their normal, profitable
operation regions. The focus of the thesis is in the basic control systems.

Following is a brief introduction to the technologies and methods that are used in the
thesis and included publications to enable or to facilitate the development of control
applications with the use of models.

2.1 Modeling and Model-Driven Development

2.1.1 Model-Driven Development

Model-Driven Development (MDD) is a software development methodology that
emphasizes the use of models as primary engineering artefacts during the development
of applications. Acronyms related to MDD include, among others, model-driven
engineering (MDE) and model-driven architecture (MDA) [6], the latter being a
registered trademark of Object Management Group (OMG). In MDD, models of
different phases and accuracy levels are used to contain the information about the
system (application) during the development of it. The models, starting from, for
example, requirement models, are developed, elaborated and refined with automated
model transformations and manual work. The role of the transformations is often in
automating the creation of later phase models based on former ones. In software
development, the goal of the development process is often an executable application,
which (or part of which) can also be possible to be produced automatically with one
type of model transformations, with code generation.

10

2.1.2 UML and SysML

Unified Modeling Language (UML) is a software modeling language that defines both
the information content of modeling elements and the graphical notation of diagrams
conforming to the language. The first official version of the language was adopted by
OMG in 1997 [7]. A major improvement to the language was version 2.0 that included
improvements and clarifications to the metamodel and semantics of the language [8].
The metamodeling technique used to specify the UML metamodel is Meta Object
Facility (MOF) [9], which has also been specified by OMG. The current officially
adopted version of UML is 2.4.1 [10], [11].

UML is currently the de-facto modeling language for the modeling of software systems
and applications including their requirements, structure and behavior. The modeling
concepts of the language are closely related to concepts in object-oriented programming
languages. However, the language can and has been used to describe the aspects of e.g.
procedural PLC applications. UML has been designed to be extendable for special
purposes and needs of specific applications domains. For example, SysML [12] has
been developed for systems engineering purposes with the use of the profile mechanism
of UML. The mechanism utilizes stereotypes to alter the semantics of the elements. In
addition to the profile mechanism, an alternative to extend UML is to apply
metamodeling, by extending the modeling elements of the language with the
metamodeling technique (MOF) that has been used to specify them in the first place.

Systems Modeling Language (SysML) [12] is another graphical modeling language
specified by OMG, for systems engineering purposes. The language has been defined as
an extension to UML, by re-using parts of UML (UML4SysML), altering parts of UML
and adding new modeling concepts and diagrams. Whereas UML is software centric,
SysML is less restrictive related to the implementation of the models. Blocks of the
language, which correspond to UML classes, are suitable for representing hardware
blocks and parts of systems, for example.

2.1.3 Metamodels and Meta Object Facility

The modeling concepts that can be used in models conforming to a modeling language
are defined in the metamodel of the language. Metamodels, thus, define the concepts
available for modeling including their properties and other information content as well
as relations to other concepts. In addition to defining modeling languages, metamodels
can be used when defining model transformations between languages.

11

Models conforming to a modeling language are instances of the metamodel of the
language similarly to metamodels being instances of metametamodels, which can be
used to define metamodeling languages. The metamodel of UML, for instance, has been
defined with MOF. MOF, on the other hand, defines itself so that a metametamodeling
language has not been needed for defining MOF. With respect to metamodeling layers,
real world objects can be described being level M0 and instances of model elements on
level M1. Models on level M1 are instances of metamodels on level M2 whereas
metamodels on level M2 are instances of metametamodels on level M3.

2.1.4 Model Transformations and QVT

Model transformations are processes that are used to ensure, by modifying one or more
models, that the models processed by the transformations are consistent with each other.
Model transformations can be further divided into model-to-model transformations,
which are used between models, and model-to-text transformations, which are used to
create text (e.g. code) based on models. Model-to-model transformations are thus
processes that create or update models or parts of models based on the same or other
models or parts of them. Model transformations can be performed automatically, by a
computer program, or manually with operations that are manually performed by a
modeler. In model-driven development, a common goal is to automate model
transformations that are repetitive, which reduces the amount of required manual work
and potential for errors.

Query/View/Transformation (QVT) [13] is a model-to-model [14] transformation
language that has been specified by OMG for defining transformations between models
that conform to modeling languages that have been defined with MOF. The language
specification defines three distinct languages: Core, Relations and Operational
Mappings. By nature, Core and Relations languages are declarative whereas Operational
Mappings language is imperative. With respect to the metamodeling layers, QVT
language can be regarded to be on layer M2, similarly to UML metamodel, for example.
Individual model transformation (specification) instances are on level M1 and utilize the
concepts of the source and target metamodels on layer M2. Executable model
transformations, which are instances of their specifications, manipulate models and
modeling elements on layer M1. The metamodeling layers as well as relationships
between metamodels, models, transformation definitions and model transformations are
illustrated in Figure 1 that has been modified from [15].

12

Figure 1 The relationships between metamodels, transformation definitions, models and model
transformations.

2.2 Simulations

2.2.1 Overview

Computer simulation is a technique that can be used to imitate the operation of a
process or system based on a model of the process or system in order to predict, study or
explain the behavior of it. In control system and application development, simulations
can be used e.g. in the design and validation of control programs, strategies and human-
machine interfaces before installing the complete systems [16]. In control application
development, a closed-loop simulation requires a simulation model of the system to be
controlled and a component acting as the control system in the simulation.

A closed-loop simulation can be executed within a single simulation engine or as a co-
operative simulation (co-simulation). In the latter approach, two or more simulation
engines are connected together and execute the parts of the simulation model. For
example, the parts can be a simulation model of the system to be controlled and the
model of the control system and/or application controlling the former one.

2.2.2 XiL Simulations

XiL simulations refer to the 4 simulation approaches that can be used in conjunction to
model-based development: model-in-the-loop (MiL), software-in-the-loop (SiL),

13

processor-in-the-loop (PiL) and hardware-in-the-loop (HiL) simulation [17]. In MDD of
control applications, these approaches differ in the control system configurations used to
control the simulation model of the process to be controlled.

In MiL, a model of the control system and or application is used whereas SiL, PiL and
HiL utilize software generated from the model, generated software with its target
processor and generated software with the entire target control system hardware,
respectively. Similar simulation approaches, except MiL, can be used to test control
applications in more conventional application development processes. HiL simulation,
for example, can be used to test a control application with its target control system
hardware regardless of the process to develop the application.

2.2.3 Modelica and ModelicaML

Modelica is a non-proprietary, object-oriented, acausal language for the modeling of
heterogeneous physical systems [18], [19]. It supports the use of libraries and multi-
domain modeling so that the modeled systems may include, among others, mechanical,
electrical and control subsystems. Modelica models are mathematically described with
differential, algebraic and discrete equations [19]. Modelica models can be defined both
textually and graphically, depending also on tool support.

ModelicaML is a UML profile that has been developed to enable creating, reading,
understanding and maintaining Modelica models with UML tools. [20] The profile uses
a subset of UML concepts and defines a set of stereotypes, with stereotype specific
tagged values, that are given semantics by the Modelica language. The profile has been
implemented on Eclipse platform based on UML2 implementation of the UML
metamodel. The profile is currently tool supported so that ModelicaML models can be
transformed to textual Modelica code and simulated with a Modelica tool [21].

2.3 Safety

2.3.1 Overview

Safety can be defined as freedom from an unacceptable risk. The risk concept can be
defined as a combination of the probability of occurrence of harm and the severity of
the harm [1]. Functional safety is part of the overall safety relating to the system of
interest (equipment under control and its control system) that depends on the correct
functioning of the electrical/electronic/programmable electronic safety-related systems
and other risk reduction measures. [1]

14

A practical definition for software safety, provided in [22] is: features and procedures
that ensure that a product performs predictably under normal and abnormal conditions.
The likelihood of an unplanned event occurring is minimized and its consequences
controlled and maintained; thereby preventing accidental injury or death, whether
intentional or unintentional [22]. In the automation and control domain, the safety of the
controlled plants, processes and machines often needs to be ensured by functional safety
systems that perform safety functions and include software parts.

2.3.2 IEC 61508

IEC 61508 [1] is an essential standard in the domain of functional safety. The standard
has been renewed a short while ago, in 2010, so that with respect to its
recommendations the standard is still as modern as applicable. The standard is a basis
for several sector specific standards, e.g. IEC 62061 in machinery [23] and IEC 61513
for nuclear power plants [24], which increases its importance. IEC 61508 covers the
functional safety of systems containing electrical, electronic and/or programmable
electronic systems. Software applications as parts of the programmable electronic
systems are covered in the third part of the standard. The standard defines an overall
lifecycle model for safety functions, according to which they can be specified,
developed and maintained.

The standard has been built so that a natural way to fulfil the requirements of it would
be to utilize the traditional V-model development process. However, provided that the
requirements are fulfilled, any development process can be used [P6]. Safety functions
that consist of electrical parts, for instance, are treated by the standard based on the
probabilities of correct operation. However, because of the systematic nature of
software faults, in case of software safety functions the standard focuses on software
development techniques and measures. It guides their selection as well as the
information content of documentation that must be produced to develop certifiable
applications to safety systems. In the thesis, the standard and the requirements of it are
used as a basis for extending the information content of models of basic control systems
with safety aspects and features.

2.3.3 Systematic Safety System Development and Patterns

Generally, the concepts of safety and reliability are well understood in relation to, for
example, electronic components. However, software safety and reliability form a
discipline that is well understood by few [22]. Unlike hardware, software does not
break, fail or wear out over time. The causes of software failures are systematic, not

15

random [22]. Because of the enormous state spaces of digital systems, it is also possible
that only a small part of causes of the failures can be exercised with testing [25].

System safety, in contrast, integrates management, hazard analysis and design
approaches to a planned, disciplined and systematic approach to prevent or reduce
accidents throughout the system lifecycle. System safety attempts to predict accidents
before they occur and to eliminate or prevent hazardous states. The primary concern in
system safety is, thus, the management of hazards in a controlled and systematic
manner. [25]

In software engineering, design patterns are a means to systematically re-use well-
known, proven solutions. Each design pattern systematically names, motivates and
explains a design solution that addresses a recurring problem or challenge in system
designs [26]. For safety systems, suitable design patterns can be found from both
standards and related literature. For example, IEC 61508 (in the third part) lists
architectural approaches and solutions, many of which have been presented in a more
detailed manner in pattern literature. For example, the standards suggest the use of
redundancy [27], backward recovery from faults [28], [29] as well as cyclic program
execution [27].

17

3 Tool Support for Model-Driven Development of
Control Applications

The use of models and model-driven development techniques has drawn extensive
research attention in the domain of automation and control systems during the past few
years. The modeling of software applications and systems, including their requirements,
has been seen as an integral phase in development and as a means to cope with the
increasing size and complexity of the applications. Such work has been published
related to both IEC 61131-3 [30] and IEC 61499 [31] based control system platforms.
Of these languages, IEC 61131-3 is a standard that defines five PLC programming
languages. The languages include Function Block (FB) diagram, structured text,
sequential function chart, ladder diagram and instruction list. IEC 61499, on the other
hand, extends the FB concept of IEC 61131-3 with event-driven execution and support
for distributing FBs in de-centralized execution environments.

With IEC 61499 [31] as a target language, Thramboulidis and Tranoris have studied and
developed tools [32] and an engineering process [33] for distributed control applications
using UML to present requirements and design before implementations. The approach
of the EU MEDEIA project [34] builds on the use of Automation Components and bi-
directional model transformations between models. Automation Components are
described as composable combinations of embedded software and hardware. Vyatkin et
al. [35] have developed a model-integrated design framework for automation and
control applications that is based on an intelligent mechatronic component concept and
use of the IEC 61499 architecture. Of the referred approaches, [34] and [35] discuss also
how design models could be simulated, which is the topic of Chapter 4 of the thesis.
Other approaches related to combining the use of IEC 61499 and UML in the domain
include the work of Dubinin et al. [36], Hussain and Frey [37] as well as Panjaitan and
Frey [38].

Related to IEC 61131-3 [30] as a target language, FLEXICON project, see [39] and
[40], has integrated a combination of commercial off-the-shelf tools for supporting
software development of both basic control and safety related control systems.
MAGICS approach [41] aims at non-device-centric abstractions and support for PLC
(IEC 61131-3) code generation that is claimed to be missing from many approaches.
The approach ([41]) also addresses sequential control activities. Related to generating
PLC code from models, mappings between UML and IEC 61131-3 as well as the earlier

18

version of it have been presented by Witsch and Vogel-Heuser [42] as well as by Vogel-
Heuser and Witsch [43].

Use of design patterns in the domain has not been addressed in many MDD approaches.
However, Witsch and Vogel-Heuser in [42] envision collecting known solutions to
pattern catalogues in order to improve their re-use, motivated by the object-oriented
extensions to IEC 61131-3. For example, implementing a structure such as the one in
Observer design pattern [26] requires object-oriented features of programming
languages. In application domains other than industrial control, techniques and support
related to design patterns have been developed to specify patterns [44], to apply and
evolve patterns to models [45], [46], to detect pattern instances [47], to detect points in
models where patterns could be applied [48] as well as to visualize pattern instances in
models and diagrams [49], [50].

This Chapter discusses the development of tool support for domain specific modeling
and MDD in automation and control domain. The AUKOTON MDD process, which is
to be supported, is introduced briefly in Section 3.1. Domain requirements for the tool
are presented in Section 3.2. Possible implementation techniques are discussed in
Section 3.3. Section 3.4, then, introduces the developed UML AP tool and discusses
choices related to the development of it.

3.1 AUKOTON Development Process

AUKOTON is a development process for automation and control applications that was
developed during AUKOTON project. In detail, the process has been presented in [51].
However, it has been discussed also in the included publications [P1] and [P2]. The
development process aims to apply model-driven development technologies to control
application development while at the same time taking into account domain specific
practices related to, for example, the re-use of existing implementation blocks. The
process emphasizes the importance of platform independent modeling, automated
transfer of design information and late binding of platform specific details. The
objectives are to enhance productivity, solution re-use and software quality [P1].

The modeling basis in the process is UML AP [52] that covers the essential concepts of
modern, complex automation applications. The profile was further developed during the
project with respect to both requirement modeling and functional modeling concepts.
The development process, see Figure 2, applies models in three phases. The names of
the phases are requirement import and elaboration; functional, platform independent
design; and functional, platform specific design.

19

Figure 2 The AUKOTON development process proceeds from requirements to executable
applications through the requirement, functional and platform specific development phases.

During the requirements phase, UML AP requirement concepts are used to describe the
required functionality as well as non-functional properties of the applications. Part of
the information can be imported to the phase from source information documents e.g.
IEC 62424 [53] Piping and Instrumentation (P&I) diagrams or MS Excel spreadsheets
that can be produced e.g. by the process and instrumentation design. Spreadsheets, with
company specific practices, are also commonly used in industry [P2]. Such documents
can contain vital information about required control functions as well as connection
points in the processes to be controlled for controls and measurements. The Imported
requirements, as well as other intermediate products of the development process, can be
inspected and refined by developers in order to add information and decisions that are
not automated. The requirements are described mainly with the structured Automation
Requirement concepts of the profile but also informal textual requirements can be used.

During the functional, platform independent design phase, the functionality of the
applications is specified in a platform independent manner but so that it can be later
refined with platform specific details [P2]. The purpose is to increase the re-use
potential of models so that design work could be re-used also in projects that are
targeted to other control system platforms. During the phase, the modeling concepts of
interest are the Automation Function (AF) concepts of the profile (UML AP).

The central AF concept has been further divided into a hierarchy of different kinds of
measurements, actuation, control and interlock functions. AFs represent individual
pieces of the applications. They could be characterized as platform independent,
abstract type circuits (function blocks) representing different kinds of measurement,
actuation, control and interlock functions that can be combined and connected together
to compose an application [P2]. However, for each AF, there can exist several concrete
type circuits - possibly on different platforms - that could be used to implement the
functionality. That is, AFs neither identify the type circuits to be used nor restrict the
selection of the target platform. AFs exchange information with Ports that specify both

20

their types and roles, from the point of view of the AFs. For example, it is possible to
define a Port to be intended for relaying measurement information.

During the functional, platform specific phase, the purpose is to detail the platform
independent design for a chosen platform so that the application code can be generated
[P2]. Appropriate AFs (of the platform independent model) are tied to platform specific
implementation blocks to be used in the final applications. The connection interfaces of
the AFs are completed to correspond to those of the blocks and the required parameters
of the blocks are set. For example, for the assessment of the development process and
tools [P2], a set of type circuits that had been developed as IEC 61131-3 FBs was
modeled as an AUKOTON DCS collection. The collection was used for the generation
of an executable application in PLCopen IEC 61131-3 XML format [P2].

In the development process, see [51] and [P2], model transformations are used between
source information documents and requirement models, between requirements models
and functional platform independent model and between platform specific models and
executables. Between platform independent and platform specific modeling phases, the
process uses an interactive model transformation that reads and modifies a single model.
Thus, three types of transformations are required by the process: 1) import
transformations that import information to a model or a model Package, 2) intra-model
transformations that read and modify Packages of a model and 3) export transformations
that produce e.g. documentation files or parts of executables based on models or
Packages. All the transformations are automatic; however, after executing
transformations the resulting models can be edited manually. The transformations
produce rather starting points for manual work than complete phase products of the
development phases.

A single modeling tool is used throughout the AUKOTON process. The tool shall
support the entire application development process starting from manufacturing oriented
requirements and proceeding via platform independent design to platform specific
implementations. During the process, the tool must enable the use of the required
diagram types and concepts of UML AP. During the requirement import and
elaboration, the process utilizes mainly Requirements Specification Diagram. During
the functional modeling phases, the diagram types of interests are Control Structure
Diagram and Automation Sequence Diagram, both of which may not always be
required, depending on the modeled application.

21

3.2 Requirements for Modeling and Model Processing
Support in MDD of Control Applications

3.2.1 Modeling Concepts and implementations

The use of the AUKOTON development process in control application development,
with domain specific modeling concepts, requires tool support for the entire application
development lifecycle. Support shall start from source information and requirements
and proceed, via platform independent, architectural considerations, to the platform
specific implementation. [P1] Development of a MDD tool with consideration for
domain requirements and practices was, thus, an important research task from the
beginning of this research. Tool support was also required to further improve and to
experimentally estimate the profile (UML AP) that had been previously specified [P1].
The development work begun in the AUKOTON project, during which UML AP was
initially applied to MDD. Thereafter, tool development has been an on-going activity
during which both the modeling concepts and techniques to benefit from models have
been further developed.

Applying MDD techniques also requires taking into account various application domain
specific and other requirements and characteristics. These requirements are briefly
discussed in this and following sub-sections related to the modeling concepts and their
implementation techniques, development of graphical tool support, use of model
transformations as well as re-use of design patterns and concrete implementation blocks.

UML AP, in its initial form [52], was partially extended from the suitable concepts of
SysML [12], the UML Profile for Schedulability, Performance and Time [54] as well as
UML Profile for Quality of Service and Fault Tolerance [55]. Although the profile
defines new diagram types, not all the concepts of it are intended for them [P1]. Instead,
many of the extended concepts are intended for UML and SysML diagram types in
which they can be used as stereotypes, so that practical use of parts of the profile
requires support for UML and SysML. It was, thus, a clear requirement that the profile
implementation should be based on an existing UML/SysML tool to enable the co-use
of the languages without developing UML and SysML support from scratch [P1].
However, significant parts of the concepts of the profile are new, specific to the domain
and intended to be used in new, domain specific diagram types. (The new diagram types
are intended to describe the requirements of control applications, control structures as
well as sequentially executed control activities.)

22

In addition to be used with UML, the UML AP modeling concepts were required to be
extendable and flexible for future needs; so that the profile and concepts could be
further developed [P1]. Modeling languages undergo major changes infrequently so that
their implementations do not need to be updated every day. Changing the metamodel of
a tool does not need to be as easy as modifying a graphical application model. However,
changes need to be realizable with a reasonable amount of work. UML AP has also been
further developed during the research to enable e.g. modeling control logic and hazards.
The fulfilment of the extendibility requirement has thus been evaluated during the
research.

3.2.2 Graphical Support

Implementing UML AP required implementing the new graphical diagram types. The
new diagrams resemble domain specific diagram types and notations and are thus
intuitive for domain professionals. For example, the Automation Sequence Diagram
type is based on the Sequential Function Chart (SFC) notation which is part of IEC
61131-3 [30]. The purpose of the (intended) resemblance is to make it easier for domain
professionals to familiarize themselves with UML based modeling and tools. With a
Domain Specific Language (DSL), problems can be solved with domain concepts, on a
high level of abstraction and in a problem-oriented manner. However, as a drawback,
design and implementation of a DSL require a lot of effort and consideration [P1].

Graphical support development requires the stability of modeling concepts. On Eclipse
platform, with existing open source tools, the supported approach to build graphical
modeling support is to develop diagram types on top of a model layer, in a layered like
architecture. In this way, graphical code manipulates models that are on a lower level.
Graphical diagrams need the information content of models and their metamodel level
properties. As a consequence, code related to implementing graphics often requires
changes when the model code (metamodel) is changed1. Changes, however, are not
required on a daily basis and it should not be possible to cause changes to metamodel
e.g. by accident.

1 Graphical tool support development is in this thesis addressed only to the extent to which graphical tool
development is affected by choices in modeling concept implementations.

23

3.2.3 Model Transformations

In MDD, model transformations are the means to reduce the amount of manual
development work and to automate tasks that are repetitive enough to be treated with
programmed rules. Transformations can be used in importing information to models
[P1, P2], transferring information between modeling and development phases [P2],
generating code [P1, P2] and generating documentation from models [P6, P7, P8].
Transformations and related techniques, e.g. QVT and Object Constraint Language
(OCL) [56], can be used to query models and to automate consistency checks [P6]. It is
also possible to use model transformations for creating simulation models that can be
used to assess designs in a timely manner [P3, P4, P5].

The models that are used in a MDD process thus need to be processable with
(preferably standard) transformation techniques. OMG, for example, has specified three
QVT [13] model transformation languages for which there are open source
implementations on Eclipse platform, e.g. SmartQVT2. Transformations should be
integrated into the MDD environments so that all transformations could be searched and
controlled in an agreed manner, with a graphical user interface of the tool. However,
similarly to graphical modeling support, model transformations often need to undergo
changes when modeling concepts change. On the other hand, to support e.g. new source
information formats or control system platforms, the integration must be loose and
adaptable [P1]. It must be possible to add, remove and replace transformations in a
flexible manner. It cannot be assumed that all transformations that may be required in
future would be known or would have been known.

Transformations, thus, differ from each other by their basic purpose. However, they also
accept different parameters, which must be taken into account in the development of the
transformation support mechanism [P1], [15]. For example, in the AUKOTON process,
code generators usually only read source models whereas intra-model transformations
both read and modify parts of a model. On the other hand, to import information to a
requirement Package from several sources, for example, it must be possible to target
transformations to the selected Packages of a model. [15]

2 http://sourceforge.net/projects/smartqvt/

24

3.2.4 Design Patterns

The efficiency of control application development work is becoming a more and more
important competitiveness factor in the domain. A means to improve the efficiency of
the work is facilitating the re-use of work and solutions. In the domain, such solutions to
re-use can be concrete, platform specific implementations and blocks, the re-use of
which is already common. However, re-use should be supported also with respect to
general, platform independent solutions and structures. Due to the lack of acknowledged
methods for supporting the platform independent development [57], for instance, their
re-use has not been as common as in the case of platform specific design.

Design patterns, see [58] and [59], are a means to re-use platform independent solutions.
A design pattern represents a relation between a context, a problem and a solution [59].
Patterns document proven solutions to recurring challenges in design and development
work and capture expert knowledge for re-use purposes, for both expert developers and
less experienced ones [P7]. In the domain, an example of a design pattern could be
organizing a measurement, a controller and an output to a control loop.

Patterns have names that are known to developers so that their use aids communication.
They provide vocabulary for developers, enhance documentation and encapsulate
knowledge and experience. [60] A design pattern instance marks a point in which a
developer has been potentially faced with a challenge (that the pattern addresses).
Pattern instances represent design decisions to use patterns, with pattern specific
potential benefits and drawbacks. The use of patterns could thus be of great value and
extend the documentation value of models towards architectural knowledge. Especially
this could be useful in MDD that emphasizes the use of models instead of (written)
documents. If documents are not used in a development process, the only places where
the information can be added are the models [P7].

To benefit from patterns, a non-restrictive pattern modeling approach is required. UML,
as the de-facto software modeling language, aims to support patterns with its
Collaboration concepts. However, as presented in [P7], a pattern modeling approach
should not restrict the nature of solutions in patterns. Patterns should be able to consist
of any modeling elements such as class definitions or components, not only the
properties of UML Classifiers, as is the case in the UML approach [P7]. On the other
hand, it should be possible for other modeling elements than Classifiers to contain
elements that play roles in pattern instances [P7]. To systematically use and benefit
from the use of patterns, it should also be possible to collect patterns to libraries as
suggested e.g. in [42].

25

Automating the application of patterns to models could be a useful feature. However,
even without it, patterns could be used to document recurring solutions and their use for
e.g. documentation and traceability purposes. Pattern concepts should also enable
generating traceability information and statistics on their use. It should be possible to
visualize patterns in models and diagrams so that they could improve the documentation
value of the diagrams and learning of developers. With an appropriate tool support,
patterns could also enable comparing applications in terms of re-use as was done e.g. in
[61] with respect to the re-use of platform specific engineering work. [P7]

3.2.5 Platform Specific Implementations

In addition to platform independent models and solutions, re-use can be related to
platform specific blocks. The re-use of implementation blocks, e.g. type circuits that
perform control algorithms or interface with the sensors and actuators, is a special
characteristic of the domain. As such, it needs to be taken into account when developing
tool support for the AUKOTON development process. As argued in [57], DCS
platforms capture the results of years of development and well-tested features that are
worth supporting. Ability to re-use existing, tested and known blocks could increase
quality and reduce the amount of repeated work also within MDD.

To enable the re-use of implementation blocks, it should be possible to refine platform
independent design to platform specific design. In the AUKOTON process, parts of
platform independent models need to be possible to be refined to platform specific ones
that are then used in executables. In order to use code generation to produce
applications, the required information should be available in models. That is, it should
be possible to use the platform specific features of implementation blocks, e.g. interlock
ports, and it should be possible to set platform specific properties in models.

3.3 Considerations on Implementation Techniques

3.3.1 Extension Mechanisms of UML and MOF Based Languages

UML can be extended with two distinct approaches: by using the built-in, stereotype
based profile mechanism of it and by extending the metamodel of the language with the
use of Meta Object Facility (MOF) [9]. MOF is the metamodeling technique that has
been used in the first place to define the metamodel of UML. These two approaches
were also the practical alternatives for implementing the UML AP modeling concepts

26

[P1]. However, the mechanisms differ in terms of modifications that they enable and in
terms of required work.

With the built-in (light-weight) mechanism, extensions are defined as Stereotypes that
can be used to specialize the semantics of the modeling concepts of the language.
Stereotypes can also define tagged values, which are attributes with basic data types.
The tagged values can parameterize the semantic characteristics of the Stereotypes.
Stereotypes, however, cannot be used in a way that would contradict with the UML
metamodel [10]. For example, the use of Stereotypes to insert new metaclasses or meta-
associations between metaclasses is prohibited. This is a clear restriction of the
approach, since some of the concepts required by the new UML AP diagram types have
structural features that do not fit the UML metamodel. Implementing these concepts
requires at least new meta-associations, in addition to defining Stereotypes [P1]. In the
MOF-based approach, there are no such limitations related to the addition of new
elements [P1], [10]. Removing existing metamodel elements from an extended tool,
however, could be difficult if the concepts were implemented with program code in an
extended tool.

Both the extensions mechanisms are, to some extent, tool-supported. The Stereotype
based mechanism, for example, is supported by standard tools such as Magicdraw3 and
Topcased4 so that no programming work is required. Stereotypes can be defined in
profile models that are referenced by application models in which the Stereotypes are
used. In this way, models with domain specific extensions can be portable to other tools
(with compatible file formats). However, UML profile models cannot define new
graphical diagram types in typical tools. (Although new diagram types are sometimes
described in written profile specifications such as that of SysML [12].) As a
consequence, to support new diagram types, programming work is often required in any
case. On the other hand, with special diagram types, models may not be portable to
other tools regardless of the implementation technique of the modeling concepts.

The metamodeling based approach often requires additional programming work
(compared with the Stereotype based approach) since modifications to the metamodel
require changes in program code. For example, new metaclasses usually require
implementing code for them so that the new code is coupled to implementations of

3 http://www.nomagic.com/products/magicdraw.html
4 http://www.topcased.org/

27

existing metaclasses. Metamodel modifications can also affect adversely on the
portability of models. It is possible that models containing instances of new metaclasses
cannot be opened in other (standard) tools. However, as mentioned, with new diagram
types this can be the case regardless of the modeling concept implementation technique.
This is because the models would include information related to the new diagram types
and elements in them.

3.3.2 Graphical Diagram Development on Eclipse Platform

At the time of AUKOTON project and beginning of the tool development, there were at
least two alternative tool families that supported graphical tool development. These
alternatives were: 1) the use of Graphical Editing Framework (GEF5) and Graphical
Modeling Framework (GMF6) of Eclipse Modeling Project7 and 2) the use of Topcased
as the extended base tool. Both the alternatives were intended to support the
development of new (own) diagram types. They, however, used different kinds of
configuration files to define the elements to have graphical counterparts and to be used
to generate a starting point for manual diagram type development (programming). In
both approaches, the configuration files refer to metamodel concepts so that code
created based on them refers to code created to correspond to the metamodel concepts.

As a metamodel for graphical support generation, it would be possible to use both a new
(MOF) metamodel and UML metamodel so that new concepts would be defined with
Stereotypes. However, both GEF/GMF and Topcased based approaches are intended for
building diagrams on (MOF) metamodel elements. In, for example, the diagram
configuration files of Topcased, diagram elements refer to metaclasses in the (MOF)
metamodels, not to Stereotypes that could be applied to run-time instances of UML
metaclasses. Checks for Stereotype applications could be added to the automatically
generated code manually, in order to support the Stereotype based approach. However,
it could require error-prone switch-case (or e.g. if-else) structures to query applied
stereotypes and other similar changes to several places in generated code that could be
difficult to be kept up-to-date.

5 http://wiki.eclipse.org/GEF
6 http://wiki.eclipse.org/GMF
7 http://eclipse.org/modeling/

28

3.3.3 Model Transformation Techniques

In addition to graphical development, selection between the extension mechanisms
affects the use of model transformations. Standard QVT model transformations are
naturally suited for the metamodeling (MOF) based approach. This can be understood
based on relationships between models, metamodels and model transformations in
Figure 1 in Section 2.1.4. MOF based metamodels are on layer M2 so that concepts in
them can be accessed from transformation definitions on layer M1. Profile models with
Stereotype definitions, however, would be on the same layer with the transformation
definitions, and could not be accessed from transformation specifications.

The stereotype applications and tagged values of UML models can be queried from
transformations with, for example, OCL [56]. However, the use of Stereotypes in
transformations would require defining e.g. switch-case structures based on stereotype
and property names. A transformation programmer would need to know the exact
names of the stereotypes and their tagged values. Programming-time type checks would
not be available in addition to, for example, auto correction functions. This is because
the profile models would not be actually used until executing the transformation. With a
static metamodel, for example, correction functions and consistency checks are
possible. When compiling a transformation, the contents of it can be compared with the
names and concepts of the metamodel.

3.4 UML AP Tool Implementation

In the tool development, a profound decision was the selection of an existing tool to be
extended, which was made in order to re-use the support of an existing tool for plain
UML and SysML. It was, though, assumed that the tool to be extended should be an
open source tool, so that modifications to existing functionality would be possible, if
needed. Among suitable tools, the choice was Topcased. At the time of beginning the
tool development, it was one of few tools supporting both UML and SysML and
development of new diagram types [P1]. At the time, an alternative would have been the
Modeling Project of the platform that was based on GEF/GMF techniques. However, in
addition to UML, Topcased provided extensive support for SysML and was ranked as
the best available UML tool for Eclipse in a VTT study [62], too.

The following sub-sections will discuss the tool development from the point of view of
implementing the modeling concepts (metamodel), graphical support for the new
diagram types and extension interfaces for model transformations. Support for the use

29

of design patterns and re-use of platform specific blocks will be presented in sub-
sections as well.

3.4.1 Metamodel Implementation

The basics of the tool implementation, related to metamodel and graphical support
development, are discussed in the included publication [P1]. In addition to the selection
of an existing tool, an important decision was the extension mechanism to be used to
implement the new modeling concepts of UML AP. The selected basic mechanism was
the metamodeling based approach, with MOF. As discussed earlier, the MOF based
approach has few restrictions when changes to modeling concepts are additions (instead
of removing elements, for example), which was the case with UML AP. UML AP with
its diagram types also required new meta-associations between metaclasses, which
would have caused challenges with the Stereotype based approach. The metamodeling
based approach is also well supported related to developing new (own) diagram types.
The SysML metamodel used by Topcased, for example, has been implemented with
Eclipse Modeling Framework (EMF) by extending the UML28 implementation of UML
metamodel, on the platform.

The majority of the new UML AP concepts have, thus, been defined with EMF, which
is a MOF implementation on the platform and used by several modeling tools.
However, in addition to MOF based extensions, some UML AP concepts were
implemented as Stereotypes. In this way, the concepts (Stereotypes) can be used also in
UML and SysML models and diagrams without changes to their program code. [P1]

The developed metamodel, which specifies the new UML AP concepts, is dependent on
the UML metamodel of the platform (UML2) so that concepts of UML can be used and
extended by UML AP concepts. In addition, the metamodel extends and is dependent on
Topcased implementation of SysML metamodel. The MOF-based extension approach
was facilitated by the availability of the EMF models related to the UML and SysML
implementations so that they could be referenced from the developed EMF model
(which was a metamodel from the point of view of the tool development).

The generated implementation for the (EMF) metamodel is dependent on the respective
(Topcased and UML2) plug-ins that implement the UML and SysML metamodels.
Since only new metaclasses were required, instead of modifications to existing ones, the

8 http://wiki.eclipse.org/MDT-UML2

30

additions could be realized in a distinct plug-in [P1]. The dependencies between the
plug-ins implementing UML, SysML and UML AP metamodels are illustrated in Figure
4 in Section 3.4.2. The figure also illustrates the dependencies between the
corresponding graphical editors.

The initial profile implementation, which is described in [P1], has been later extended
with concepts related to, for example, the modeling of safety aspects, control logic and
design patterns. These extensions are described in more detail in Chapters 4 and 5 of the
thesis. These extensions to the modeling concepts have been implemented so that new
elements have been added to the metamodel. The procedure has been to edit the
metamodel (the EMF model), to re-generate an EMF generator model (genmodel) and
to re-generate the implementation code (see Figure 3). After re-generating code, small
manual modifications have been required related to, for example, the initialization
process of (Java) classes corresponding to the metamodel elements.

The extendibility aspect was not included in [P1]. However, according to experience
gained during the research, it has been possible to further extend and change the profile
implementation with a reasonable amount of work. When changes have been limited to
the additions of new metaclasses, old code related to graphical modeling, for instance,
has also been possible to be re-used without changes.

3.4.2 Graphical Support for UML AP Diagram Types

The graphical support of the tool was initially developed to implement the new diagram
types of UML AP, namely Requirements Specification Diagram, Control Structure
Diagram and Automation Sequence Diagram [P1]. All these diagram types are also
needed in the AUKOTON development process. Requirements Specification Diagrams
are used during the requirements phase and Control Structure as well as Automation
Sequence Diagrams during the functional platform independent and platform specific
design phases. In the included publications, the graphical support development approach
is discussed in [P1]. After the AUKOTON project and publication [P1], additional
graphical support has also been developed for Logic Diagrams as well as for presenting
risks and hazards with the Fault Tree Analysis (FTA) notation [P6]. Support for
visualizing design patterns has been developed to be used in conjunction to all diagram
types [P7].

At the beginning of the tool development, UML AP did not strictly specify the concrete
syntax of the new diagram types and graphical presentation of all the elements. Instead,
the initial specification provided few example diagrams. The intended users of the tool,

31

however, were automation and control engineers that are accustomed to traditional
diagram types of the domain. Accordingly, the diagram types were implemented to
resemble traditional diagram types of the domain, with the intention to help the intended
users to familiarize themselves with the tool and the profile [P1].

The extended open source UML/SysML tool, Topcased, supports the development of
new diagram types with specific configuration files, which are in [P1] called generator
models. They can be used for generating graphical editor plug-ins, plug-ins that
implement diagram types [P1] as well as, for example, plug-ins that contribute to the
properties view of the platform. The generated diagram type skeletons can be further
tailored [P1], for example, to modify the symbols of the model elements in diagrams.
Assuming that a new metamodel is used as a basis of a new diagram type, Topcased
configuration files can be used according to the process described in [63] and illustrated
in Figure 3.

The metamodel is in the process defined with an EMF (ecore) model that is used as a
basis for creating a genmodel and generating the implementing code for the metamodel.
The genmodel is also required for creating an editor configuration and diagram
configurations, with which it is possible to define editor properties and diagram types.
Based on the genmodel, editor and diagram configurations get the information about the
related metaclasses and to which (Eclipse) plug-ins and (Java) Packages the
implementing code (for the metamodel) is generated. However, after generating a
diagram type, for example, the metamodel can be changed and the implementation re-
generated, provided that the classes that the diagram requires are in the same plug-ins
and Packages. Especially, although UML AP metamodel has been changed, the
additions of metaclasses have not broken existing diagram type implementations.

32

Figure 3 Graphical tooling development process with Topcased tool. (Modified from [63])

With the generation process, editor and diagrams become dependent on the metamodel
implementations as illustrated in Figure 4. However, UML AP tool editor is also
dependent on SysML and UML metamodels, in addition to UML AP metamodel. In a
similar manner, the editor of the Topcased SysML implementation is dependent on both
SysML and UML metamodels. [63]

Figure 4 The dependencies between Topcased UML and SysML editors, UML AP tool editor as
well as UML, SysML and UML AP metamodel implementations (Modified from [63])

3.4.3 Finding, Using and Controlling Model Transformations

As discussed, the AUKOTON development process requires three kinds of model
transformations: import transformations, intra-model transformations and export
transformations. These transformations differ from each other with respect to the
purpose to which they are used. However, they also accept different parameters. Import
transformations are targeted to a model Package, export transformations read the
contents of a model Package and intra-model transformations are targeted between

33

Packages of a model [15]. In order to be able to support e.g. new source information
formats, transformations should be added to the tool environment in a flexible manner
[P1].

The mechanism to connect transformations to the tool environment is presented in detail
in publications [P1] and [15]. The extension interface of the tool consists of three well
defined extension points for the transformations. The extension point mechanism of the
platform, in short, allows tools and plug-ins to search and consume one another’s
services without compile-time dependencies from the service consumers to the service
producers [15]. With the mechanism, a plug-in can define an extension point to which
other plug-ins provide their services. Defining such an extension point can include, for
example, the specification of an interface that a plug-in implementing the extension
must implement to provide the service. The platform, on the other hand, allows plug-ins
to search and activate other plug-ins that implement extensions to such extension points.

In UML AP tool, the described mechanism has been used by defining an extension
point for each type of transformation required by the AUKOTON development process.
The tool, thus, defines a separate extension point for import, for intra-model and for
export transformations. For each extension point, the tool defines a Java interface with
appropriate operations that are used to control and to target the transformations to user-
selected model packages. The interfaces are presented in Figure 5. In the figure,
IRequirementImporter, ITransformer and IModelExporter interfaces are related to
import, intra-model and export transformations, respectively [15].

Each interface defines two operations; one for getting a description of the
transformation (to be shown for the user of the tool when selecting a transformation)
and one for initiating the transformation [15]. The (UML) Packages to which references
are relayed through the operations are Packages that the user of the tool has selected
from the outline view of the tool when initiating the transformation [P1]. A relayed
Package can also be an instance of the Model metaclass, which are used to contain
whole model structures. In addition, the operations relay references to “traces” and/or
“src” folders of the (Eclipse) workspace project that contains the model. Those
references can be used for saving traceability information and for storing generated
code, for example [15].

34

Figure 5 Java interfaces related to the extension point for import, export and intra-model
transformations.

With the extension interface, controlling model transformations can be done with the
graphical user interface of the tool while at the same time selecting the parts of models
to be processed [P1]. The provided references to model Packages do not restrict access
(from transformations) to the selected Packages only [P1]. Instead, in order to protect
models from simultaneous modifications, the user interface of the tool is locked when a
transformation is being performed. However, an approach to implement such a
restriction has been presented in [15]. In addition, [15] discusses extending the use of
the transformation-related extension points to other tools and presents a plug-in
structure for SmartQVT model transformations. The plug-in structure has been utilized
in code generation used in [P2] and in simulation model generation [P3], [P4]. The
extension points themselves have been used in [P2] related to all transformation types,
and in [P3], [P4], [P6], [P7] and [P8] related to export transformations.

Finding model transformations is automated by the tool. When a user of the tool
initiates an activity to perform a transformation, the tool uses the platform services to
find plug-ins that implement extensions to the transformation-related extension points.
Found plug-ins are activated so that their descriptions can be loaded and provided for
the user, who can then select between available transformations or choose not to
perform a transformation.

3.4.4 Design Patterns in Modeling

Re-use of designs and solutions is an important means to enhance both the efficiency of
development work and quality of developed applications. A means to document proven

35

solutions are design patterns, which capture knowledge for re-use purposes, for both
expert developers and less experienced ones. In the included publications, the developed
support for design patterns is presented in [P7]. The work presented in [P8], on the other
hand, extends the pattern support for safety systems, with the objective to use patterns
for producing safety documentation.

UML, with its existing modeling concepts, aims to support the use of design patterns in
models [P7]. However, the support is restricted by nature and focused on the Classifier
concepts of UML, leaving other important aspects outside the pattern support. In UML,
patterns are defined with the Collaboration concept that extends both
StructuredClassifier and BehavioredClassifier concepts. A pattern is a set of cooperating
participants, which are Properties of the Collaboration. Pattern instances, on the other
hand, are presented with CollaborationUses. CollaborationUses are owned by
Classifiers to the contents of which the patterns are applied [P7].

Pattern literature of today, however, is not limited to the contents of Classifiers
(Classes) only. For example, patterns can be on an architectural level and related to
organizing an application to layers [64]. This could be in UML models described with,
for example, Packages or Components, but not with the pattern modeling concepts [P7].
For example, a structure in Figure 6 could not be marked as a Layers instance. The
Packages (Layer 1, Layer 2 and Layer 3) are not UML Properties or contained by a
UML Classifier that would have to contain a CollaboratioUse element and all the role
elements (layers) related to the design pattern instance. In a similar manner, it would not
be possible to use Collaboration and CollaborationUse concepts to describe the contents
of a UML class diagram. Class (definitions) would not be Properties or contained by a
Classifier [P7]. Nevertheless, if design patterns are utilized in a software project,
documenting their use in models could be of great value. On the other hand, if, for
example, classes are deliberately designed so that they can be used according to a
pattern, it should be possible to mark the intentional use of the pattern [P7].

36

Figure 6 A presentation of Layers pattern with UML class diagram. (from [P7])

In addition to the standard approach, many tool vendors have developed pattern support
in a more ad hoc manner. Magicdraw, for example, enables the use of informal UML
templates that can be copied to models in order to instantiate patterns. However, as
discussed in [P7], in this way the information on pattern instances is endangered to
vanish and pattern occurrences can be difficult to notice for both developers and tools.
On the other hand, UML concepts are suited to provide only information on solution
parts of patterns leaving e.g. the problem parts unspecified [P7].

The developed pattern modeling approach is presented in detail in [P7]. The approach is
aimed to be less restrictive than that of UML and to enable the specification of part of
the information content that UML leaves intact. Specification of contexts and problems,
which are essential information content of patterns [59], are enabled with text
(attributes) in addition to the names and solutions of patterns [P7]. The metamodel of
the pattern modeling concepts is presented in Figure 7 that has been divided into two
parts. The concepts on the left-hand side are aimed for defining patterns and for
organizing related patterns whereas the concepts on the right-hand side are aimed for
marking pattern instances. It is also foreseen that patterns could be defined in specific
library models in a similar manner than, for instance, stereotypes are defined in profiles
by domain experts and then used in a number of application models.

37

 Figure 7 Metamodel of the pattern modeling concepts. (from [P7])

The Pattern and PatternApplication concepts are aimed for defining patterns and for
marking pattern instances, respectively. Patterns consist of pattern roles and contain
textual information, which has been structured based on the canonical form of patterns
[65] with the addition of consequences of the pattern form in [58]. The Pattern concept
is extended from the UML PackageableElement concept so that Patterns can be defined
in Packages or PatternLanguages. Patterns and PatternRoles can also refer to template
elements, which can be used for automating the application of patterns.
PatternApplications, on the other hand, are used when applying patterns. As a difference
with regard to the UML concepts, pattern instances need not be owned by Classifiers
but Packages, which are used in models in any case. Model elements that play roles in a
pattern instance can be any direct or indirect contents of the Package, instead of
properties of Classifiers only. The role elements are tied to pattern specific roles
(PatternRoles) with RoleBindings [P7].

In addition to the concepts, tool support has been developed to instantiate and to
visualize patterns in models as well as to generate documentation from models in which
the concepts are used [P7]. Defining a pattern with the concepts has to be done only
once for each new pattern. However, because configured PatternApplications are
required for each pattern instance, it is natural that the task should be automated, in

38

order not to require additional work from developers [P7]. In the tool, the task is
included in a wizard with which it is possible to create pattern instances, by copying
role elements from templates or by selecting existing elements for pattern specific roles.
Markings are created as a by-product of applying patterns with the wizard.

Pattern markings support the traceability of solutions in models. With specific pattern
concepts, it is also possible to query models on the use of patterns and to gather
statistics on their use. For example, in [P7] documentation generation functionality is
presented that collects information on the use of patterns and their (backward and
forward) traceability to MS Excel (spreadsheet) documents. Tool support for benefitting
from design patterns includes also a function to visualize pattern instances in models
with the same (Collaboration) notation that UML uses. However, to keep the amount of
details in diagrams sufficient, patterns are highlighted only when requested [P7].

An example diagram with a highlighted Observer [26] pattern is presented in Figure 8.
Diagrams with visualized pattern instances can improve the documentation value of
diagrams by making use of standard solutions explicit [P7]. With the visualizing support
for patterns, it is also possible to use existing models as training material so that it is
easy to find out how and in which situations the patterns have been used.

Figure 8 A visualization of an Observer pattern instance. (from [P7])

3.4.5 Platform Specific Implementation Blocks

In addition to design patterns, re-use in the domain can be related to implementation
blocks that can be collected into libraries and used in different applications. Such blocks
are often called type circuits. They are often platform specific, so that their utilization
can be considered enhancing re-use in the functional, platform specific design phase of
the AUKOTON process. Controllers that implement the well-known Proportional-
Integral-Derivative (PID) control algorithm, for example, are by nature re-usable with
only changes to their tuning parameters. In the included publications, an overview of the

39

platform specific modeling approach is provided in [P2]. In addition, the approach is
presented in detail in [51] as a part of the whole AUKOTON process.

The purpose of the platform specific modeling phase (of AUKOTON) is to detail
functional, platform independent design to a platform specific level, so that code
generation can be performed based on the models [P2]. To achieve this, the
development process relies on platform specific profiles that are developed to support
control system platforms and their existing collections of type circuits. The platform
specific profiles contain Stereotypes corresponding to the type circuits of the platform in
question [P2]. Tagged values (properties) are added to the Stereotypes so that they
correspond to the parameters of the type circuits, and can be set in the models. Lastly,
the signal interfaces of the type circuits are defined in template AFs with ports so that
signal interfaces of AFs in application models can be compared with those of the
templates.

For example, in the assessment of the AUKOTON development process and tools [P2],
a type circuit collection AUKOTON DCS was used. The collection included FBs in
PLCopen IEC 61131-3 XML format and had been modeled as a platform specific
profile - with stereotypes, tagged values and template AFs. Stereotypes and their tagged
values related to the AUKOTON DCS collection are shown in Figure 9. Figure 10
visualizes the template AFs related to LC_3 (Limit Controller 3) and PIDC_2 (PID
Controller 2) type circuits including the available ports in their signal interfaces. During
the platform specific assessment phase [P2], the platform independent functional model
was completed with AUKOTON DCS specific stereotypes and ports. The stereotypes
were used to map the AFs to the existing type circuits (function blocks). The signal
interfaces of the AFs were compared with those of the templates and completed to
correspond to them, when necessary. This is in the tool environment an automated
function and implemented by automatically copying missing ports and warning about
additional ones that do not exist in the templates. After performing this, it was possible
both to use type circuit specific parameters and their port interfaces [51].

Based on such platform dependent models, the process of generating executable
applications is straight-forward. The process includes instantiating (existing) type
circuits, linking the instances together based on connections in the models and
specifying their parameters based on tagged values in the models. In general, this
process is also far less error prone than, for example, constructing applications from
programming language level concepts [51].

40

Figure 9 Stereotypes and their tagged values related to the FB collection used in [P2]. (Modified
from [51])

Figure 10 Template AFs related to LC_3 and PIDC_2 type circuits that were used in [P2].

For [P2], the approach was successfully applied to generating code in PLCopen XML
format, with the AUKOTON DCS type circuit collections. However, in addition to
producing IEC 61131-3 based PLC applications, an industrially applicable development

41

process should support proprietary DCS platforms and their collections of type circuits
[P2]. Without resources to implement code generation for various target DCSs, the
possibility to support DCS platforms has been assessed only based on interviews with
the participants of the assessment event [P2]. The interviews suggested that the
approach that is based on stereotypes and ports could be used also for platform specific
design and code generation for certain proprietary DCS platforms. Identified areas of
further development included the capability to specify interlocks in a detailed manner,
replacing UML terminology with domain concepts and ability to visualize and edit
designs at different levels of granularity. These further development areas have also
been addressed in later work. For example, support for detailed logic diagrams has been
added [P6] and used also for simulation purposes [P3, P4].

3.5 Discussion

The UML AP tool has been implemented by extending an open source UML/SysML
modeling tool, Topcased. The majority of the modeling concepts were implemented
with the MOF based extension approach. However, some UML AP concepts were
implemented as UML Stereotypes so that they can be used in UML and SysML models
and diagrams, which are in the tool environment re-used from Topcased. In this way,
the profile implementation could be kept straight-forward and required meta-
associations between metaclasses could be easily implemented. As a whole, the
approach proved it possible to extend UML on both M1 and M2 metalevels with
reasonable resources.

The approach enables the co-use of modeling languages and profiles so that UML,
SysML and UML AP concepts are used in the same models. Since only new
metaclasses were required to implement UML AP, instead of modifications to existing
ones, the metamodel additions could be realized in a distinct plug-in that extends and is
dependent on UML and SysML metamodel implementations. The implementation is
extendable for future needs, in a similar manner than the UML and SysML metamodels
were extended. It has also been possible to extend the profile implementation along the
research without changes to, for example, existing diagram types.

An assessment of industrial applicability of the development process and tool has been
presented in [P2]. According to the industrial feedback, the process and tools could be
used for developing industrial DCS based control applications. The process and the
tools enable automating part of the design activities that are performed currently
manually but with the cost of introducing an additional work phase with requirements.

42

The use of metamodeling techniques to implement the concepts of the profile enables
developing model transformations with standard transformation techniques, e.g. QVT.
While model processing and transformation techniques, e.g. QVT and OCL, would
enable querying models about Stereotype applications, their support for transformations
between metamodel concepts includes additional consistency checks. In this way, the
concepts of the metamodel can be used in the transformation definitions.

To facilitate the use of model transformations, which are required by the AUKOTON
development process, the tool defines its own extension interface. The extension point
mechanism of Eclipse allows tools to search and consume the services of other tools and
plug-ins without compile-time dependencies to service providers. Especially, to support
transformations, UML AP tool utilizes the mechanism with three extension points, one
for each transformation type required by the AUKOTON process. With the mechanism,
plug-ins implementing transformations can be added to the tool in a flexible manner, for
example to support new source information formats. Searching and controlling model
transformations can be done with the graphical user interface of the tool.

Each extension has been defined with a Java interface that an extending plug-in must
implement. The interfaces, then, include operations that are required to get information
about the transformations and to initiate and target transformations to appropriate model
Packages. The extension interface has been utilized successfully in research related to
[P2], [P3], [P4], [P6], [P7] and [P8].

The design pattern support of the tool has been developed to increase re-use on a
platform independent level and to complement the pattern support of UML. The need
for the new pattern modeling concepts originates from the UML pattern support that
restricts patterns to describe the contents of Classifiers. The pattern literature of today,
however, is not restricted to such a narrow scope and includes patterns on the
architectural level, for example.

The new pattern modeling concepts enable the definition of patterns in specific library
models and marking of pattern instances in application models. The concepts relieve the
impractical restrictions of UML concepts. Patterns are not restricted to describe the
contents of Classifiers but Packages, which are used in models in any case, and patterns
can consist of instances of practically any metaclass. In addition to the concepts, tool
support has been developed to instantiate and to visualize patterns in models as well as
to generate documentation from models in which the concepts are used. Patterns and
their instances both promote the re-use of known solutions and support traceability

43

between solutions and their use in system designs. This traceability information can be
queried and collected into MS Excel spreadsheet documents.

To enable re-use of platform specific implementation blocks, a hybrid modeling
approach was chosen. Implementation blocks and their platform specific parameters are
modeled as Stereotypes and tagged values related to the Stereotypes. Automation
Functions can be applied with (platform specific) Stereotypes to select library blocks to
be used in the places of the Automation Functions in platform independent models. By
applying a Stereotype, it becomes possible to set the block specific parameters with
tagged values. The signal interfaces of the blocks, on the other hand, are modeled with
template AFs. Automated functions have been developed to compare the interfaces of
AFs with the interfaces in the templates and to complete them, when necessary, so that
implementation block specific connections can be used in models.

With the approach, code generation activity can be implemented to instantiate, connect
and parameterize blocks according to models. For [P2], for example, a function block
collection that had been implemented with IEC 61131-3 was modeled as such a
platform specific profile. The collection was then utilized for successfully generating a
function block application in PLCopen IEC 61131-3 XML format.

45

4 Simulations in Model-Driven Development of
Control Applications

The general simulation approaches that can be used in MDD to assess the models that
are used in the process and produced applications include Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL), Processor-in-the-Loop (PiL) and Hardware-in-the-Loop
(HiL) simulations [17]. In control application development, the differences between the
approaches are in the control application (or control system) counterparts that are used
to control the plant9 (process) parts of the closed-loop simulations. Accordingly, the
approaches also differ with respect to the nature of problems that they can reveal and
with respect to the design phase in which it is possible to apply them.

For example, a MiL simulation using (only) a model of a control application to control a
plant model is capable of validating the holistic control solution. SiL, PiL and HiL
simulations use software generated from the models, generated software with target
processors and generated software with the entire target control system hardware,
respectively. In addition to the control solutions, these approaches are able to evaluate
also other aspects in the designs. However, they also require more design phases (such
as hardware design) to be completed and thus may not be performed as early during the
development as MiL simulations.

Another classification of simulation approaches is related to the amount of simulation
engines. A closed-loop simulation can be performed within a single simulation engine
or as a co-operative simulation (co-simulation) by simulating the parts of the overall
simulation model in different but connected environments. Co-simulation, however,
naturally requires a mechanism to connect the environments and to replicate the
simulation commands to them. These tasks are addressed in Functional Mock-up
Interface (FMI) standard [66] and have been recently approached also with model-based
techniques [67].

In MDD in the domain, the use of simulations has been integrated into several recent
approaches in order to be able to validate designs early. In [68], Hegny et al. use an IEC
61499 runtime for simulating both the control application and plant parts of models. The
behavior of a plant model is described within a composite function block using either a

9 Also hybrid plant models that consist of real and simulated parts are possible.

46

timed state chart or an external behavior description, the latter alternative making the
approach a co-simulation approach.

Yang and Vyatkin [69], similarly, rely on IEC 61499 but create plant simulation models
with the use of model transformations, by transforming Matlab/Simulink plant models
to IEC 61499. They thus enable closed-loop simulations within a single simulation (or
IEC 61499 runtime) environment. In [35], Vyatkin et al. propose a model-integrated
design framework. In the framework new systems should be based on intelligent
mechatronic components that would include software components as well as models
that enable system simulation and formal verification. The simulation and formal
verification of control applications are also envisioned in [70], by Vyatkin et al.

In [71], the aim is to mix real control hardware and software with simulated ones while
simulating the plant model in another simulation environment. The benefit of the co-
simulation approach is the ability to test early and concurrently with the engineering
work. In the FLEXICON approach, co-simulations are enabled with Data Distribution
Service (DDS) middleware between the tools [72], and Common Object Request Broker
Architecture (CORBA) in the previous version of the approach [39]. In DECOS [73],
simulations are enabled by the modeling techniques that are used for modeling
application behavior, e.g. Matlab/Simulink and SCADE.

Model-based approaches to the simulation-assisted evaluation of control applications
have also been enabled in commercial products. For example, Beckhoff10 and
Bachmann11 have products for generating PLC code based on Matlab/Simulink models.
In application domains other than industrial control, e.g. automotive control systems, it
has also been common to use simulations and simulation-aided testing within model-
based development. A general framework for and two examples of use of MiL
simulation and testing have been presented in [74]. A testing environment for embedded
systems with SiL simulation has been presented in [75]. HiL simulation and testing
have been utilized, for example, in [76] and [77].

This Chapter discusses the use of design-time simulations in model-driven control
application development and is organized as follows. Requirements for the use of
simulations are presented in Section 3.2. Possible simulation approaches and
implementation techniques are discussed in Section 3.3. Section 3.4, then, presents the

10 http://www.beckhoff.fi/english.asp?twincat/te1400.htm?id=1889849218919049
11 http://www.mathworks.se/products/connections/product_detail/product_35950.html

47

developed simulation approach including observations from applying it in several
publications.

4.1 Requirements for Simulations in Control Application
Development

4.1.1 Benefits of Simulations in Control Application Development

One of the key promises of MDD is the ability to automate simple, repetitive design
tasks with model transformations. However, demanding design decisions over
alternative solutions to achieve (sometimes informally specified) objectives and product
characteristics are still made by professional developers. Fortunately, such decisions do
not need to be made based on developer experience only. Already with more
conventional control application development approaches, the use of simulations has
played a significant role in facilitating the decision making [P3].

Simulation solutions are also commonly provided by commercial DCS platform
vendors [16]. For PLC based control systems, on the other hand, soft PLC solutions
enable the execution of control programs on desktop computers. Benefits of simulations
have also been reported by several researchers. According to a survey of Carrasco and
Dormido [16], the benefits of using control systems in simulators before installation
include improvements to 1) design, development and validation of the control programs
and strategies, 2) design, development and validation of the HMI (Human-Machine
Interface) and 3) adjustments of control loops and programs.

According to Dougall [78], the use of simulations enables better operator training,
ability to test control programs in smaller modules and the ability to the thorough
testing of emergency and dangerous situations. In addition, the use of simulations can
result in shorter start-up times of plants and processes, reduced site time as well as less
waste of material and end products during the start-ups. Karhela [79] mentions the use
of simulations for, for example, control system testing, operator training, plant operation
optimization, process reliability and safety studies, improving plants and processes,
verifying control schemes as well as for start-up and shut-down analyses.

As argued in [P3], many of the mentioned benefits of simulations are related to
engineering tasks that MDD alone may not affect. MDD can enable the use of intuitive
models and diagrams as well as model transformations and model checks to automate
repetitive tasks. However, the use of MDD techniques does not reduce the need to

48

validate and test designs and products. In addition, many of the mentioned benefits of
simulations (above) are related to tasks that would be beneficial to perform at design
time, if it were possible to simulate designs. In general, corrections to design flaws are
often most beneficial to be made as early as possible so that they do not affect adversely
on later designs and decisions. As a consequence, it is possible that many of the
mentioned general benefits of simulations could be obtained also by using simulations
to complement a MDD approach, if it was possible to simulate design models.

However, by integrating simulations into a MDD process, it could be technically
possible to simulate earlier. As argued in [P5], the restrictions of early (MiL)
simulations within a MDD process are related to missing hardware (including, among
others, the user interface), which complicates, for example, operator training. However,
control application (MiL) simulations can be carried out already before selecting a
target platform and performing hardware design. MIL simulations can also be used in
companies that perform outsourced development tasks and may not have access to the
control system hardware, even if control hardware design was performed already.

Following is a brief discussion on the properties of simulations that are useful in MDD
of control applications to achieve the mentioned benefits.

4.1.2 Required Properties for Simulations

The use of simulations should be enabled in MDD of control systems and applications.
It should be possible to simulate designs in a timely manner and in a closed loop with
simulation models of the processes to be controlled [P3]. It should be possible to
acquire prompt feedback about solutions and to compare alternative approaches,
structures, tunings and, for example, interlocks. Design flaws should be corrected as
early as possible so that they would not affect adversely subsequent design phases.
Naturally, the simulation approach should provide support for all the common aspects
of basic control systems including binary and feedback control, control sequences as
well as interlocks.

In MDD, simulation should be an effortless activity [P3]. As the purpose of MDD is to
improve the efficiency of development work by automating repetitive tasks, it cannot be
assumed that developers would create simulation models manually. Instead, simulations
should be possible to be used as a continuous quality assurance method, without
slowing down development. Because in MDD it is possible to automatically generate
executable code, it should be possible to generate simulation models as well. The
simulation models should, thus, be created automatically, as a side product of the

49

development process and based on design models that are created in the development
process. On the other hand, performing the simulations should not require special
simulation expertise - skills that all control application developers may not have.

Simulations should be possible to be performed early in the development process. In
this way, simulations could facilitate understanding the net effects of requirements that
originate from the various design phases preceding the application development.
Developing applications on requirements that originate from various domains of
engineering is a special characteristic of the domain [P3]. It is vital to notice the effects
of requirements early so that possible inconsistencies do not cause expensive re-work.
In a similar manner, simulations could make the effects of changes to high-level models
visible for developers [P3].

In addition to early simulation, the simulation approach should take into account the
special characteristics of the domain related to re-using implementation blocks. Since
libraries of existing implementation blocks are commonly used in applications, similar
libraries should be available for simulations. In this way, platform and vendor specific
functions and blocks could be validated as part of the design. The correspondence
between the reusable implementation blocks and their simulation counterparts could be
verified as well, in order to increase confidence on the results of simulations [P3].

In case of the AUKOTON development process, the above would mean enabling
simulations during both functional platform independent and functional platform
specific development phases (see Section 3.1). Functional models, without platform
specific blocks, can already contain a significant amount of functionality to be
validated. With platform specific details, simulations could be used to evaluate the
platform specific blocks, tunings and predicted performance of control solutions. The
development process with the required simulation extensions is illustrated in Figure 11.

However, it is also obvious that all functions and blocks of control applications cannot
be re-used from libraries. For example, interlocks and sequential control activities are
often developed specifically for each application and thus cannot be (always) re-used.
Therefore, the simulation approach should be capable of creating and using new
simulation blocks in addition to using the librarized ones [P3]. With current UML AP,
such interlocks and sequences are modeled with Logic and Automation Sequence
Diagrams, respectively.

50

Figure 11 The AUKOTON development process with the simulation extensions. (Modified from
[P4])

4.2 Considerations on Implementation Techniques

4.2.1 XiL Simulation Approaches

As presented, the general approaches for simulations in MDD include MiL, PiL, SiL
and HiL, which differ from each other with respect to the control system counterparts
that are used to control the plant simulations. Simulations are also supported by many
control system platform vendors that enable connecting the control systems to
simulators [16] in order to support PiL and HiL simulations. In these simulations,
connections to simulations can be implemented programmatically or via I/O units. It is
also common for industrial DCS vendors to support the computer execution of the
control programs to enable SiL simulations. In addition, for PLC based control system
platforms, there are soft PLC solutions that enable executing the control programs of
PLC systems on desktop computers and thus SiL simulations [P5].

It can be, thus, said that SiL, PiL and HiL simulations are already supported by control
system vendors. As a consequence, if simulations are to be used in a MDD process to
develop control applications that are to be used in PLC or DCS platforms, developing
support for other types of simulations than MiL might not be able to provide significant
benefits. This is because the other types of simulations are (often) already enabled by
the control system platforms and usable after generating code [P5]. By enabling the use
of early MiL simulations, however, it could be possible to validate solutions (at least
partially) before generating code or even selecting a control system platform and

51

hardware parts of it. As a consequence, in MDD in the domain the focus should be on
MiL simulations [P5].

4.2.2 Number of Simulation Engines

As presented, a closed-loop simulation can be performed within a single simulation
engine or as a co-simulation by simulating the parts of the overall simulation model in
different environments. A MiL simulation can use either of the approaches. However,
simulation types other than MiL are usually co-simulations of some kind so that the
plant parts of the simulations are simulated in environments other than those acting as
control systems. For example, coupling and synchronization mechanisms are thus
required to connect the simulations (environments). In the domain, there have also been
approaches (e.g. [68] and [69]) in which plant models have been provided as such or
transformed to IEC 61499 models and coupled to control application parts. If IEC
61499 is considered as a modeling standard, these approaches can be regarded as MiL
simulations using a single simulation engine.

An objective for the simulation approach was that it should not require control
application developers to have special expertise related to simulations. Co-simulation,
however, necessarily requires a mechanism for coupling the simulation environments
and replicating commands of them [P5]. Use of a single simulation engine, without the
need to couple simulators, can be seen as a less complex approach. However, also in
case of a single simulation engine the plant and control system parts need to be
connected, if this task is not performed automatically e.g. by a model transformation.
Because of this possible need for couplings - and inspired by the recent advances related
to co-simulations - the co-simulation approach will be regarded as an alternative in the
following sub-section that compares the alternative approaches to implement MiL
simulations. Such recent co-simulation-related advances include the FMI (Functional
Mock-up Interface) standard [66] and publication [67] in which model-based techniques
are used to facilitate the coupling of simulations.

4.2.3 On Creating Closed-Loop MiL Simulations

As presented in [P5], in addition to using co-simulation there are several approaches to
develop MIL simulations to be performed in a single simulation engine. This often
requires the availability of both control application and plant models in the same
simulation language. Such simulations can be achieved by

52

 developing both the plant and control application models with the same
simulation language,

 transforming both the plant and control application models to the same
simulation language,

 transforming the plant model to the (simulation) language used to develop the
control application model or,

 transforming the control application model to the (simulation) language used
to develop the plant model.

Related to the first alternative, the author is not aware of a language that would be a
feasible alternative for both plant and control application modeling and would integrate
well with UML-based MDD techniques. For example, the language would have to be
processable with (preferably standard) model transformation techniques but also enable
information transfer and requirement modeling during the early phases of software
development. On the other hand, the second alternative would require developing and
keeping up-to-date two possibly complex model transformations. Because of the
amount of complex transformations, it could also be prone to errors. As a consequence,
only the third and fourth alternatives appear feasible. Related literature in the domain
also includes examples on the use of the third alternative, see [69] and [68]. The co-
simulation approach (with hardware included) has been used, for example, in [71].
Included publications [P3], [P4] and [P5] present and evaluate the work of the author
that uses the fourth alternative.

The transformation based approaches (of the list above) and the co-simulation approach
are compared at a conceptual level in [P5]. The results of the comparison, with respect
to connectability and transformability requirements that the approaches place on
languages and tools as well as work related to using simulations, include the following:

 Simulation engines need to be connectable only in the co-simulation
approach, in which parts of the overall simulation are simulated in different
environments.

 Compared with the transformation based approaches, the co-simulation
approach may require additional work related to coupling simulations and
managing simulation cases for several simulation engines. Such simulation

53

cases can evaluate the closed-loop system in different operation points, for
example.

 Both control application and plant modeling languages must be transformable
in the transformation based simulations since they are used either as source or
target models of the transformations. With the co-simulation approach, the
languages do not have to be transformable, provided that they are simulatable
so that the models do not have to be transformed to a simulatable form first12.

The results are also summarized in Table 2. In the table, PML and CAML refer to Plant
Modeling Language and Control Application Modeling Language, respectively.

Table 2 A summary of comparison between co-simulation and transformation based MiL-
simulations within a single simulation engine. (Modified from [P5])

Characteristic of the simulation
approach

Co-
simulation

Transformation based
MiL with single

simulation engine

Requires simulation tool connectability X -

Requires additional work with
simulation cases

X -

Requires additional simulation
management

X -

Requires the transformability of PML - X

Requires the transformability of CAML - X

With respect to the criteria above, the restrictions and requirements of the
transformation based approaches (to MiL simulation using a single simulation engine)
are the same. The approaches, though, place different simulatability requirements to the
modeling languages. The simulatability requirements can also be avoided by using two
transformations - to transform both plant and control application models to a
simulatable form. The results of comparing these approaches, with respect to the
number of required transformations as well as simulatability of languages, include the
following:

12 However, transformability of control application modeling language can be required by the MDD
process used to develop the control application model.

54

 The approaches to transform plant models and to transform control
application models require necessarily one transformation. If both models are
transformed, for example because they are not simulatable, the number of
required transformations is two.

 In the approach to transform plant models (to control application models) the
control application modeling language must be simulatable but the plant
modeling language does not. In the approach to transform control application
models (to plant models), the plant modeling language must be simulatable
but the control application modeling language does not. Transforming both
the models (to a simulatable form) does not require the languages to be
simulatable.

The results are summarized in Table 3. In the table, TPM, TCAM and TPM&CAM
refer to Transforming Plant Model, Transforming Control Application Model and
Transforming both Plant Model and Control Application Model, respectively.

Table 3 A summary of comparison between the transformation based MiL simulations within a
single simulation engine. (Modified from [P5])

Characteristic of the simulation approach TPM TCAM TPM&CAM

Number of required model transformations 1 1 2

Requires the simulatability of CAML X - -

Requires the simulatability of PML - X -

Based on the comparisons, it is difficult to draw conclusions on which of the approaches
would be the most recommendable. In practice, also current plant engineering processes
and possible available process simulation models would be relevant factors. The co-
simulation approach requires more simulation management and coupling work than the
transformation based approaches. It does not necessarily require model transformations.
A transformation, however, is required if either the control application or plant model is
not simulatable. The approach to transform plant models (to control application models)
requires either simulatability of the control application model or an additional (second)
model transformation. For example, this second transformation would be required in
case of UML models that are usually not simulatable.

55

4.3 Model-in-the-Loop Simulating UML AP Models

The developed approach to simulate UML AP models, which is described in detail in
publications [P3] and [P4], uses the general Model-in-the-Loop (MiL) simulation
approach. A single simulation engine is used to simulate both control and plant parts of
the closed-loop model. A model transformation is used to create a ModelicaML
simulation model of the control application, which is integrated (by the transformation)
to an existing plant simulation model. The result is a closed-loop simulation model of
the controlled plant. With respect to the classification of approaches to create
simulations, the approach thus falls to the category of transforming control application
models.

The following sub-sections will briefly present the simulation language used in the
approach, ModelicaML, and the approach to create and integrate control application
simulations to plant simulations.

4.3.1 ModelicaML as a Target Simulation Language

Modelica is an object-oriented, equation based simulation language. The basic concepts
of the language are (simulation) classes. Simulation classes contain properties,
equations (that determine the values of the properties) as well as connectors with which
simulation class instances can be connected together. Similarly to object-oriented
programming languages, Modelica classes can inherit properties and, for example,
equations of super classes. Simulatable Modelica models consist of simulation class
instances that are connected together using their connectors. Classes can also consist
hierarchically of other classes.

In many tools, Modelica models can be composed by instantiating and connecting
simulation classes graphically whereas plain simulation classes can be defined with the
textual syntax of the language [P3]. In addition to object orientation, an important
feature of Modelica is acausality. Since models are mathematically described by
equations, instead of, for example, statements that are applied in an order, the order in
which the equations become defined is usually not relevant [P3]. The use of equations
also improves the re-use potential of simulation classes since equations do not specify a
data flow direction [80]. However, in addition to equations the language includes an
algorithm concept, for performing calculations in which statements are applied in order
[P4].

56

ModelicaML, on the other hand, is a UML profile for creating, reading, understanding
and maintaining Modelica models with UML tools. [20] The profile consists of
stereotypes and tagged values that correspond to the concepts and keywords of the
textual Modelica language. With the use of the profile, Modelica simulations can be
defined in UML models using suitable diagram types. For example, composite structure
diagrams can be used for representing how a simulation class consists of instances of
interconnected (other) simulation classes. The behavior of simulation classes can be
defined e.g. with textual equations or UML state machines, the execution semantics of
which have been addressed in [81].

Choosing Modelica as the target simulation language in the approach is a result of
several factors. Modelica is genuinely object-oriented similarly to the future
programming languages of control applications, e.g. the latest version of IEC 61131
[30]. Applications and simulation models can thus have a similar structure. Modelica
promotes the use of libraries, so that platform and vendor specific blocks can be re-used.
Existing model libraries that are part of the language also facilitate the development of
plant (process) models. Modelica is defined as an open specification. In addition, the
ModelicaML implementation of OpenModelica [21] has been implemented with the
same modeling and metamodeling techniques and tools as the UML AP implementation
[P1]. Both are based on EMF and UML2 plug-ins on Eclipse platform.

Benefits of the similar background of the implementations include the ability to use
standard QVT [13] transformations for defining the transformation from UML AP to
ModelicaML [P3]. The translation of ModelicaML models to textual (simulatable)
Modelica models, on the other hand, has been made publicly available by
OpenModelica [21].

4.3.2 General Simulation Approach

The simulation model generation approach assumes that plant models are provided as
ModelicaML models. In such a model, the main simulation class can be specified, for
example, with a composite structure diagram (UML) that describes how the system
consists of its interconnected parts. The parts, instances of lower level simulation
classes, can be defined in the same model or e.g. in library models. Both the class
definitions and instances need to reference the ModelicaML profile, which defines the
ModelicaML stereotypes that map UML concepts to Modelica concepts. The purpose of
the transformation, then, is to add control application specific simulation classes and
their instances to the plant model, parameterize the instances and connect the instances

57

to the plant simulation with equations. An example model structure before and after
applying the transformation is presented in Figure 12.

Figure 12 The transformation adds the control application specific parts to an existing plant model.
(Modified from [P3])

In the process, simulation class counterparts of platform independent Automation
Functions (AFs) are copied from a library contained by the tool [P3]. To support
platform specific AFs, the transformation is capable of using external libraries that
contain simulation class counterparts to such platform specific AFs [P3]. Lastly, to
support application specific functionalities, the transformation is capable of creating
simulation class definitions for AFs the functionality of which is described with Logic
Diagrams [P3] or with Automation Sequence Diagrams [P4].

In detail the process that is illustrated in the figure above is presented in [P3].
Simplified, the process is performed as follows.

 The user of the tool initiates the transformation, selects the model Package to be
exported to the simulation and selects the plant simulation model.

 ModelicaML class definitions corresponding to platform independent AF
concepts are copied to the plant model from a library model.

 Platform specific AFs that are used in the control application model are
identified based on the platform specific stereotypes that they apply. Simulation
class definitions corresponding to them are copied to the plant model from the
profiles that define the (platform specific) stereotypes.

58

 Application specific AFs, which are defined either with Logic Diagrams or
Automation Sequence diagrams, are identified. Simulation class definitions
corresponding to them are created. These processes are presented in detail in
[P3] related to Logic Diagrams and in [P4] related to Automation Sequence
diagrams. The processes are also briefly described in Sections 4.3.2.1 and
4.3.2.2, respectively.

 Instances of simulation classes are instantiated to the plant model according to
the AFs in the control application models. In the first phase, they become
properties of, for example, the main simulation class in the plant model.

 The types of the newly created properties are set so that they become instances
of the simulation class definitions.

 The newly created instances of the simulation classes are connected together
according to the control application model. Parameters, if any, are set based on
the tagged values of platform specific stereotypes.

 Simulation class instances that interface with actuators and sensors of the plant
model are connected to them based on the channel ID attributes of the AFs.

 Sufficient ModelicaML stereotypes are applied to the created model elements as
required. For example, instances of simulation classes apply <<Component>>
stereotype.

The process is thus quite straight-forward but sufficient for its purpose [P5]. The
simulation approach also partially re-uses work presented in Chapter 3 of the thesis.
Platform specific simulation class libraries corresponding to platform specific AFs can
be added to the tool environment, similarly to the libraries of platform specific AFs, see
3.4.5. In this case, the library models should include the platform specific stereotypes,
template AFs (for completing interfaces) as well as the simulation class counterparts of
the blocks. Also the functionality to complete the interfaces of platform specific AFs
can be used (as presented in 3.4.5) in order to use platform specific ports in models and
simulations.

4.3.2.1. Processing of Logic Diagrams

In UML AP, Logic Diagrams can be used to describe the inner logic of AFs. A
metamodel presenting the modeling concepts that can be used in the diagrams is

59

presented in Figure 13. The existing (related) UML metamodel concepts are in the
figure presented with a gray color. As presented in [P3], all concrete AFs (in the
metamodel) extend the abstract AF concept and are thus also kinds of
StructuredClassifiers. Thus, they are able to contain Properties and Ports as well as
Connectors with which Properties can be connected together. Since the Operations and
the Constant concept of the metamodel are extended from the Property concept, AFs are
able to contain instances of them.

Figure 13 The metamodel of the Logic Diagram concepts including related UML metamodel
concepts. (Modified from [P3])

The process of creating Modelica simulation classes based on Logic diagrams is by
nature simple and described in detail in [P3]. Simplified, for each operation in a diagram
the transformation creates a variable (Property) with a suitable (e.g. Boolean) data type.
Equations to determine the values of the variables are then defined based on the
metaclasses of the operations and Connectors coming into the operations. The
Connectors can always be followed to other operations, which are in the Modelica
models represented by other variables, or Ports. Simplified, the transformation is
performed as follows.

 A new simulation class definition is created for each AF with a Logic Diagram
definition.

60

 A Port with the same name and a corresponding type is created (to the class
definition) for each Port contained by the AF.

 A variable (Property) with the same name and a corresponding type is created
(to the class definition) for each LogicalOperation contained by the AF.

 An OpaqueBehavior element is created to the class definition to contain the
equations (text) to be created to determine the values of the variables.

 The equations to determine the values of the variables are created based on the
metaclasses of the LogicalOperations (e.g. OR) and Connectors coming into the
Operations.

 The newly created elements are set to apply sufficient ModelicaML stereotypes,
e.g. <<Model>>, <<ConnectionPort>> or <<Variable>>.

In the approach, the values of the variables are thus determined with equations. Since
equations apply all the time, the order in which the equations become defined is usually
not relevant. For example, the NOT operations in the Logic Diagram example of Figure
14 have been transformed to (Boolean valued) Properties the values of which equal to
logical not operations of the values of the Ports (that are connected to the NOT
operations). However, if Boolean valued loops (inside diagrams) are identified by the
transformation, they are handled by creating algorithmic statements instead of
equations. The order in which the statements should be applied is asked from the user of
the tool. This is an interactive feature of the model transformation [P3].

Figure 14 An example of transforming Logic Diagram to ModelicaML. (From [P5])

61

4.3.2.2. Processing of Automation Sequence Diagrams

In UML AP, Automation Sequence Diagrams (ASDs) can be used to describe the
sequential behavior of AFs [P4]. A metamodel that presents the essential concepts that
are used in ASDs is presented in Figure 15. The existing (related) UML metamodel
concepts are in the figure presented with a gray color.

Figure 15 The simplified metamodel of the Automation Sequence Diagram concepts including
related UML metamodel concepts. (Modified from [P4])

Sequences, which are the root elements of ASDs, consist of Steps that are the basic
procedural elements in the approach. Similarly to states (of UML state machines) Steps
contain EntryActivities, StepActivities and ExitActivities that are executed when
arriving to the Step, during the Step and when exiting the Step, respectively. Steps can
also reference other (sub) Sequences, which can be defined in other ASDs. Sequences
can preserve process items and devices for their use with Allocations that are released at
the end of the Sequences. The execution order of Steps in a Sequence is determined by
Transitions as well as pseudo steps (which are not shown in the metamodel). Pseudo
steps include initial and final steps as well as fork and join steps that can be used in a
similar manner than the corresponding pseudo states of UML state machines.
Transitions may also contain different kinds of conditions to control when they are
fired.

Sequences, thus, represent the sequential behavior of AFs, which are represented by
Modelica classes in simulations. To simulate the behavior of a Sequence, the
transformation creates variables and algorithmic code to be owned by the Modelica
class that corresponds to the AF that owns the sequence. The systematically named

62

variables are used to keep track of the execution of the Sequence. The algorithmic code,
which utilizes element type specific code templates, on the other hand, changes the
values of the variables according to the Sequence and performs the Activity code related
to EntryActivities, StepActivities and ExitActivities. As described in detail in [P4], the
variables are created according to the mappings in Table 4.

Table 4 Mappings between UML AP and UML (ModelicaML) model elements (modified from
[P4]).

Source model
(UML AP)

Target model (UML with ModelicaML)

Element Element Name Type

Sequence
Property Seq. name Boolean

OpaqueBehavior Seq. name + “Algorithm” -

Step
Property Seq. name + Step name Boolean

Property Seq. name + Step name +
“Phase”

Integer

Transition13 Property Seq. name + Step name +
“Time”

Double

Allocation

Property Seq. name + Allocation
name

Boolean

Class “Allocations” -

Property Device ID Integer

Initial (pseudo step) Property Seq. name + “Initialized” Boolean

Final (pseudo step) Property Seq. name + Final (step)
name

Boolean

Fork (pseudo step) Property Seq. name + Fork name
+ “Branch” + #

Boolean

Join (pseudo step) Property Seq. name + Join name Boolean

Steps, Allocations, (sub) Sequences and pseudo steps are in the algorithmic code
handled with “if – else if” constructs so that they can be each entered only once [P4].
This is necessary because Modelica models are executed cyclically so that execution
must continue from the phase in which it ended in the previous cycle. Steps keep a
record on which Activities have been executed. Allocations are assumed to be next to

13 The transformation creates variables for Transitions only if their transition condition is of type timeout.

63

initial (pseudo steps) and are released automatically at the end of the sequence. Fork-to-
join regions are handled with a variable for each branch. For the execution to proceed
from a Join, all the branches must have reached it. An example illustrating how
algorithmic constructs are created to simulate a simple Sequence is presented in Figure
16.

Figure 16 An Automation Sequence Diagram (ASD) and the corresponding Modelica algorithm
section. (From [P4)

As presented in [P4], the Modelica code structures resemble the structures that can be
used for executing UML state machines, see [81] and [82]. The ASD diagram type has
also been extended from state machines [P4]. However, because of differences between
the modeling notations, the work related to simulating state machines could not be re-
used directly. For example, Sequences of UML AP can have several branches executing
concurrently and independently of each other. Sequences can also include Allocations,
for which there are no corresponding concepts in state machines. Another related

64

notation of UML, activity diagrams, would not enable activities to be broken up e.g. to
StepActivities and ExitActivities [P4].

The restrictions of the developed simulation approach include that Sequences are
always contained by AFs, so that AFs describe their sequential behavior. However, an
AF can contain several Sequences that can be executed simultaneously. In addition, it is
currently required that branches exiting a Fork in a Sequence meet each other in exactly
one join. Lastly, a restriction in the approach is that it does not support looping so that
Steps of a Sequence would be executed continuously, several times. However, in
published simulation experiments, in which Sequences have been used to model e.g.
start-up sequences and changing operation points, the restrictions have not caused
difficulties.

4.3.3 Observations from Applying the Simulation Approach

As summarized in [P5], the simulation approach has been developed incrementally, in
an agile manner and published in several articles including [P3] and [P4] as well as [83]
and [84]. The basic transformation approach, as presented in [P3], has been specified
with QVT operational mappings language. The executable (Java) transformation code
that is used in the Eclipse environment was generated with SmartQVT tooling and
extended with a custom Java class, in order to implement the interactive features of the
transformation, for example. The transformation was then integrated into the tool
environment by packaging it to a plug-in that implements an extension to the export
extension point of the tool. (See Section 3.4.3.) The Logic Diagram modeling concepts
and the diagram type, which was not part of the original UML AP tool, were
implemented according to the procedures described in Sections 3.4.1 and 3.4.2, by
extending the metamodel with EMF and by implementing the diagram types with the
Topcased tooling.

In the simulation experiments that are presented in the articles ([P3], [P4], [83] and
[84]) the plant models to be controlled have covered both machinery and process
industry processes. In terms of numbers of equations, the complexity of the controlled
processes has varied from a few equations to over 1400 equations, which also
demonstrates the scalability of the approach to practical, non-trivial processes with
industrial size and complexity [P4], [P5]. The control applications that have been
simulated have covered different kinds of control functions including binary valued and
feedback control, interlocks and sequences.

65

The observed benefits from applying the simulations are summarized in [P5]. The
simulations have enabled prototyping interlocks and control solutions, comparing
alternative interlock solutions as well as searching acceptable tunings for controllers to
achieve sufficient dynamic performance. Simulations have revealed shortcomings in
requirements and implementations. Lastly, simulations have been used to study
exceptional and hazardous situations, for example by assessing interlock solutions
during hazardous set-points. With respect to the common aspects of basic control
systems, the following sub-sections summarize how they are supported by the
simulation approach and in which publications the aspects have been addressed.

4.3.3.1. Binary and Feedback Control

Feedback and binary (valued) control structures, for actuators such as motors and
valves, have been utilized in all the published simulation experiments. The simulated
structures have been most often control loops consisting of measurement, control,
output and possibly interlock AFs. In [3], a crane system was driven with three
feedback-controlled (and interlocked) motors. In [4], the control solution for a pulp
batch production system included 2 feedback controllers, one of which was binary
valued. Binary valued controls were also used for several valves, according to a control
sequence [P4]. In [83] and [84] the plant models were controlled with an interlocked
feedback control loop and with three individual control loops, respectively.

Binary and feedback control loops can in the approach consist of both platform
independent and platform specific AFs, for which simulation counterparts can be re-
used from libraries. In addition, however, binary valued controls can be specified with
Logic Diagrams, for example to activate or lock actuators in specific circumstances, and
with Automation Sequence Diagrams, for example to activate or lock actuators
according to progress of a control sequence.

4.3.3.2. Interlocks and Safety Functions

Interlocks are often specific to applications and difficult to re-use. Interlocks are used in
control systems to protect the systems to be controlled from causing harm to themselves
or humans [P4]. For example, they can be designed to stop devices and actuators or to
constrain set-points based on the measured states of the systems. Currently, UML AP
supports the specification of interlocks with Logic Diagrams that are used by the
simulation transformation as a basis for creating new simulation classes. Support for
interlocks was, thus, developed into the language after [P2] in which support for them
was assessed as an important further development target. In the published simulation

66

experiments, interlocks were defined and simulated in [P3] to constrain the set-points
for the trolley position and jib angle of a crane. In [P4], a Logic Diagram was used to
specify a temperature controller (thermostat). For [83], Logic Diagrams were used to
specify alternative interlock approaches for a cart system which were then simulated in
order to compare their performance.

In addition to interlocks, Logic Diagrams could be used for the specification of logic of
safety functions. However, in addition to the actual interlock (and safety function) logic,
interlocks and safety functions often require locking and releasing outputs to actuators
and devices. To enable this, platform specific AFs can be defined for actuators so that
the AFs include interface ports for the signals.

4.3.3.3. Control Sequences

In addition to interlocks, also sequential control activities are often specific to
applications. Sequences are needed by, for example, process industries to perform the
start-ups of complex processes such as power plants and to drive the processes to their
designed operation points. In a similar manner, shutting down a process in a controlled
manner may require changing set-points as well as activating and disabling devices in a
specific order [P4].

On the other hand, batch processes constitute a challenging domain of industrial
processes. In batch industries, production processes can require, for example, the
addition of source materials and substances according to the time constraints and
achievement of defined process states such as temperatures and concentrations. In UML
AP, sequential control activities can be defined with Sequences that are described with
Automation Sequence Diagrams (ASDs) and enable an SFC conformant modeling
notation. The execution of a single Sequence is centralized in an AF so that in
simulations the contents created based on an ASD are placed into the simulation class
that corresponds to the AF that owns the Sequence.

In the published simulation experiments, Sequences have been used only in [P4], to
specify a control sequence for batch processing of pulp. However, as presented in [P4],
the support for sequences could have been useful also in the other simulation
experiments that had been published earlier. Sequences could have been used to define
set-point trajectories to evaluate the controlled systems in different conditions. Without
the support, the trajectories in e.g. [P3] and [83] needed to be defined manually.

67

4.4 Discussion

In MDD of control applications, simulations can follow MiL, SiL, PiL and HiL
approaches. The simulations can use either a single simulation engine or co-simulation.
However, because of the application domain specific characteristics, in MDD the focus
should be on MiL simulations. Control applications are commonly developed for (PLC
and DCS) control system platforms that already support the use of simulations. In order
to obtain additional significant benefits, in MDD it should be possible to apply
simulations earlier, before generating code. Practically this means using models of the
control applications for (MiL) simulation purposes. The use of MiL simulations during
control application development does not restrict the use of other (later) simulation
approaches e.g. after hardware design. Instead, by selecting a suitable plant simulation
language, the plant simulation model can be re-used.

In MDD in the domain, MiL simulations can be achieved by (co-)simulating the parts of
the closed-loop system in different, connected simulation engines and by using model
transformations. Model transformations can be used to, for example, transform control
application models to plant models or vice versa. Of these approaches, co-simulation
has been used e.g. in [71] and the approach to transform plant models in [68] and [69].
Included publications [P3] and [P4] describe the approach of the author to transform
control application models to plant models using ModelicaML as the target simulation
language. The important features of the approach include the ability to use simulation
during both platform independent and platform specific development phases, so that
simulation counterparts of platform specific blocks can be used.

In addition to the mentioned approaches, closed-loop simulations could have been
developed by modeling both plant and control application models with a (the same)
simulation language or by transforming both plant and control application models.
However, these approaches would have restricted suitable modeling languages or
required developing and keeping up-to-date two complex model transformations.

The co-simulation approach and the transformation based approaches to develop closed-
loop MiL simulations were compared in [P5]. Based on the comparison, it is not
possible to provide a clear conclusion on which of the approaches should be used. With
the co-simulation approach, plant simulation models need not be processable with
model transformations. However, technically it can be the most demanding approach
and it can cause additional work with simulation cases. The approach also requires a
simulatable control application modeling language or a transformation, so that the use
of co-simulation does not always reduce the amount of required transformations.

68

The transformation based approaches do not require the coupling of simulation engines.
However, when transforming plant models, the control application modeling language
must be simulatable or an additional (second) transformation is needed. Without an
additional transformation, the approach would not support, for example, UML as a
control application modeling language. Similarly, transforming control application
models to plant models requires the simulatability of the plant models or an additional
(second) transformation. However, in the approach, languages such as UML can be
used for control application modeling provided that it is possible to generate appropriate
simulation counterparts for the models. In case of UML AP models, which are not
simulatable as they are, the simulation model generation was possible.

The benefits of using simulations in control system development have been reported by
several researchers and include, among others, improvements to design, development
and validation of control programs and strategies. With simulations, it is possible to
improve operator training and to test the control system in dangerous situations. As
suggested in [P5], it is possible that many of the general benefits of simulations could
be obtained also by using simulations in MDD context. With MDD techniques, it is
possible to automate simple, repetitive tasks. However, the use of MDD does not
necessarily affect the need to validate designs and decisions. Within MDD context,
using MiL simulations, it could be, however, possible to simulate earlier because, for
example, control system hardware design would not have to be completed.

The restrictions of MiL simulation within MDD context are related to missing
hardware. Without a realistic UI, for example, the use of simulations to operator training
could be difficult. However, there should be no reason why early MiL simulations could
not be used for simulation tasks that do not require hardware as such. For example,
verification and validation of control logic, strategies and tunings as well as prototyping
and testing in small modules are possible [P5].

As summarized in [P5], the developed simulation approach has been used in the
development of both machinery and process industry applications. In the published
experiments ([P3], [P4], [83], [84]), the approach has enabled prototyping,
experimenting and comparing control and interlock solutions, determining control
tunings as well as detecting inconsistencies in requirements and designs. It has also been
possible to study exceptional situations. Similar benefits have been reported in the other
referred approaches to integrate simulations into MDD in the domain, for example the
early validation of control applications [68] with reduced time and effort [69].

69

Yet to be addressed research questions for future research include how to select and
connect simulated test cases to the MDD process. In order to facilitate simulation-
assisted MDD, it should be possible to increase test coverage by selecting scenarios in a
smart and systematic manner. At the same time, the process should support, for
example, traceability between the modeled requirements being tested, the parts of
design being tested and the test cases.

71

5 Safety in Model-Driven Development of Control
Applications

The use of MDD techniques in safety system development has been suggested by few
researchers. However, the modeling of safety aspects, perhaps in conjunction with a
more traditional development process, has drawn more research attention. With
techniques that are commonly used in MDD, e.g. UML and SysML, the safety aspects
and their modeling have been addressed in several modeling profiles. Such profiles have
been specified for different sub-domains of safety applications.

Work related to using model-based techniques in safety system development has been
carried out in the DECOS project. The project is targeted to the development of both
critical and non-critical functions of embedded control systems [85]. In the approach,
the preferred means for specifying applications and their functionality is SCADE
language (Safety Critical Application Development Environment) which is based on a
formally defined data flow notation. It enables simulation at model level and code
generation that has been certified against IEC 61508. [73]

In [86], Biehl et al. attempt to integrate safety analysis into the model-based
development of embedded control applications in automotive industry. The objective of
the work is to enable early safety analysis. The solution is to translate the concepts of
the automotive domain to the generic concepts of safety and error analysis domain. In
[87], Guillerm et al. discuss the use of SysML to address requirements specification,
traceability as well as verification and validation in a model driven systems engineering
process. In the paper, they extend SysML with a profile that supports, for example, the
modeling of risks and requirements as well as traceability between them.

UML air-worthiness profile, see [88] and [89], extracts the key safety-related concepts
of RTCA DO-178B standard into a UML profile in order to use them to facilitate
communication between different stakeholders in software development. The standard,
RTCA DO-178B, is the de-facto standard within the domain of commercial and military
aerospace systems that contain software. UML safety analysis profile [90] documents
hazards by presenting their occurrences with the use of Fault Tree Analysis (FTA)
notation. The notation enables the modeling of condition sequences leading to hazards.
Faults and hazards can be traced further to design in order to improve traceability. UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms (QoSFT) [55], lastly, includes notations to model risk assessments. Special
attention is paid to the description of the hazards, risks and treatments of the risks.

72

Architecture design is an essential part of safety system development. Software
architecture is a fundamental organization of a software system as embodied in its
components, relationships between them and to the environment, and the principles
guiding its design and evolution [91]. For safety systems, architectures and architectural
solutions are addressed by several standards. For example, IEC 61508 [1] gives
guidance for selecting architectural approaches related to fault and error detection and
handling, timing as well as management of resources, among other aspects. Redundancy
and redundancy-related design patterns, so that a calculation is performed redundantly
or observed by another channel to produce a reliable result, are presented both in
standards and related literature. For example, redundancy solutions are described in the
6th part of IEC 61508. Publication [92] presents the design patterns of safety systems
including: Homogeneous Redundancy, Diverse Redundancy, Monitor-Actuator and
Safety Executive patterns. Design patterns that are targeted to basic control and safety
systems as well as cooperation between them have been presented also in [93] and [94].

In addition to architectural patterns, another important aspect related to software
architectures is the utilization of architectural knowledge during the development of a
system. Architectural knowledge can be defined as a sum of architectural design and
architectural decisions, including rationale for the design [95] . Architecture Knowledge
Management (AKM), on the other hand, includes coordination and management of
artefacts (e.g. requirements, design patterns and decisions) related to the architecture of
a system.

This Chapter discusses extending the information content of models, which are used in
MDD, with safety aspects. Requirements and objectives for the extensions are specified
in Section 5.1. Possible modeling notations and techniques are discussed in Section 5.2.
The developed extensions as well as tool support to generate documentation based on
the extensions are presented in Section 5.3.

5.1 Requirements for Modeling Safety Features

Related to safety systems and applications, this thesis focuses on extending the
information content of models that are used in MDD with aspects and characteristics
that are required for safety systems. In addition to critical safety systems, however, they
can be of importance also for basic control systems. The techniques and solutions that
improve safety and related quality attributes in safety systems improve them also in
basic control systems [P8]. Generally beneficial quality attributes that should be taken

73

into account in safety and basic control system development alike include, among
others, maintainability, security and reliability.

Safety is also a virtue that should be a priority in the development of any control system
- including those of processes and plants that are not capable of causing significant harm
and are controlled by basic control systems only [P8]. On the other hand, even in case of
potentially hazardous processes that have specific safety systems, the safety related
functions of basic control systems, e.g. interlocks, can be beneficial. Such functions can
be developed to treat hazards and their risks and thus constitute non-certified treatments
to the risks to improve the overall integrity. They could be seen as additional, non-
certified safety barriers [96] or layers of protection [97] in the defense-in-depth
principle. Functions of basic control systems, however, are not usually critical and their
operation principles may differ from those of critical safety functions. Whereas the
(sole) purpose of safety functions is to maintain safety, the safety related functions of
basic control systems can be related to productivity, too. Before hazardous limits, it is
also appropriate to apply different, more complex approaches to react to the deviations.

Before critical situations, it can be feasible to try to recover from deviation situations to
maintain productivity. At critical limits, safety functions are often designed to perform a
controlled shut-down of the plant or process and to de-energize hazardous devices, if
possible. The shut-down-approach is with many processes both a simple and effective
approach to achieve a safe state. The downside of the approach is the lost productivity
of the process, plant or machine. Restoring productivity after a shut-down may also
require the complex manual operations of the operating personnel. However, in basic
control systems, the approaches to recover from the deviations can be more advanced
than in safety systems. There is no need to develop basic control systems according to
safety standards or to certify them. Especially, before the critical limits, it is not
necessary to apply a simple approach to guarantee safety.

In addition to sharing a process to be controlled, basic control system development can
benefit from information that originates from safety system development. Whereas
hazards and their associated risks are the basis for developing safety systems, they can
aid understandability also in case of basic control systems. Hazards and their related
risks can provide a rationale for the requirements of safety related functions of basic
control systems [P6]. Identified hazards can point out the ways in which it is possible
for the systems to cause harm to their environment. Including this information in models
can improve the awareness of control system developers over the hazards and related
risks of the controlled systems.

74

The question, whether safety systems could be produced with model-driven techniques
in future is interesting. Answering the question thoroughly is out of the scope of the
thesis. Nevertheless, to develop safety functions with MDD techniques, one would have
to be able to meet the requirements of safety standards and to produce the required
documentation. Preferably, the documentation should be produced without excessive
manual work, with MDD techniques. To enable this, the required information would
need to be in the models. The following sub-sections summarize requirements related to
the modeling of hazards, risks and use of standard solutions as well as to supporting
traceability, correctness and completeness in models.

5.1.1 Hazard and Risk Information

The development process of safety systems, considering the requirements of safety
standards, is risk driven. For example, IEC 61508 [1] is a standard with a risk driven
development process. After scope definition, the development process starts from the
identification of hazards and determination of risks. They are followed by the
specification and allocation of requirements (to treat the risks) and then proceeding
towards implementations [P6]. The phases of the process build on information produced
by earlier phases, starting from the hazards. To the different development phases,
standards suggest development techniques and measures that promote the properties of
systematic integrity such as correctness and completeness. Traceability should ascertain
that the hazards are the basis for – and become treated by - the safety functions [P6].

Hazards and their associated risks are thus the basis for specifying and understanding
safety requirements. However, hazards should be in the scope of models also for, for
example, traceability purposes [P6]. The hazards of the processes to be controlled
should be visible to developers that use the models in MDD. Individual hazards should
have identities with which they can be referred to and linked to other engineering
artefacts in models and in the development process. Risks, which are associated to
hazards, should be included in the models. They present the significance of the hazards
with respect to their likelihood and consequences.

It should be possible to describe, in a structured manner, how hazards can occur. This
could improve understanding about the hazards themselves and what is required for
them to be realized. The detailed information on their realization could also facilitate the
specification of the requirements for the safety (and safety related) functions, and help
understanding how the functions can prevent the hazardous situations from occurring.

75

5.1.2 Traceability, Correctness and Completeness

In safety standards, e.g. IEC 61508 [1], a repeating requirement for the phase products
of development is traceability between them [P6]. For example, safety system
requirements need to be traceable to both perceived safety needs (hazards) and software
safety requirements [P6]. Similarly, software safety requirements need to be traceable to
both design elements that implement the requirements and to test cases evaluating their
fulfilment. In addition to traceability, repeating requirements for phase products are
correctness and completeness [P6]. Correctness and completeness are also properties of
systematic integrity based on which IEC 61508 [1] (in the third part of it) recommends
many techniques to be used and not to be used in different phases of safety system
development.

Based on the traceability information, it should be possible to confirm, for example, that
all hazards and requirements are addressed (completeness) by the design of a system or
by some part of the design. In addition to performing this (and similar) consistency
checks, the (traceability) information is required for several other purposes, e.g. for
focusing inspections on correct parts of design. In addition to functional requirements,
models should address other safety related requirements and their traceability. Similarly
to functional ones, these requirements – imposed by standards and regulations, for
example - should be traceable to design artefacts that fulfill them.

To support correctness, models and diagrams should be intuitive and on appropriate
abstraction levels. It should be possible to use models with preferably domain specific
or otherwise intuitive and informative diagram types. For example, requirements should
be specified in a formal enough, unambiguous manner and be based on concepts that are
understandable for the developers. However, the current support of UML for
requirements specification is limited and based on the use case concept, mainly [P6].

5.1.3 Use of Standard Solutions

The development process of safety systems and applications, including solutions,
techniques and measures to be used during the development is governed by standards. A
developer of a software part of a safety system should apply standard compliant
techniques, measures and solutions. However, in addition to using them, a developer of
such a system must be able to prove the compliance of the system. This is where
appropriate documentation is needed [P8]. In order to produce the required
documentation from models with MDD techniques, the information should be in the
models and it should be possible to be gathered to a suitable form. For example, it could

76

be useful to enable generating (gathering) documentation on whether or not - and which
- recommended techniques have been used in design and whether or not the techniques
are appropriate for the safety levels required from the applications.

It is also possible that the strict documentation requirements of safety systems are a
reason for the scarce use of MDD in safety system development. As discussed in [P8],
the reason is not that standards would not allow the use of MDD approaches that use
suitable modeling techniques. Instead, for example IEC 61508 recommends automatic
software generation as an architecture design technique for all safety integrity levels.
However, in general, models tend to be more applicable to representing solutions than
the rationale behind them. For example, many basic concepts of UML are similar to the
concepts of object-oriented programming languages and can be in MDD used as a basis
for code generation. However, information on why something has been designed in the
way it has, or that a solution is a standard one, is often missing. Given the strict
documentation requirements, it is possible that MDD has not seen to offer possibilities
to improve the efficiency of development [P8].

5.2 Considerations on Implementation Techniques

5.2.1 Modeling of Hazards and Risks

The reasons to include hazards in scope of modeling are various, including the ability to
support traceability between them and requirements as well as to improve the
understandability of requirements. The modeling of hazards, however, is not supported
by standard UML or SysML. Nevertheless, there are well-known approaches to model
the occurrences of hazards that could be taken advantage of. Such approaches include
those of the UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoSFT) of OMG [55] as well as the safety analysis
profile [90]. In addition, the profile in [98] supports the modeling of hazards with FTA
models and with Failure Mode, Effects, and Criticality Analysis (FMECA) models.
However, the work is focused on incorporating safety requirements in software
architectures and evaluating the architectures.

In QoSFT [55], the main objective is not to enable the specification of how hazards can
be realized. Instead, attention is paid on documenting the magnitudes of risks, i.e. their
likelihoods and consequences, as well as the compromised assets, stakeholders and
treatments of the risks. Approaches to treat the risks include avoidance, the reduction of

77

likelihood or consequences as well as retaining and transferring the risks. The tracing of
risks to requirements is not covered in the profile.

The safety analysis profile [90] covers both the occurrences of hazards and tracing of
them to requirements. The definition of how hazards can be realized is supported with
FTA modeling. FTA models can be used also in a quantitative way and they can aid the
development of safety functions. Safety functions can be designed to stop the fault and
event sequences that lead to hazards, for example by shutting down hazardous devices,
so that for the hazards to occur, also the safety functions would have to fail [90], [P6].

5.2.2 Requirements and Traceability

Traceability is a property the achievement of which can be challenging with traditional,
document based development processes. Traceability between identified hazards and
requirements, for example, can be supported in a simple case by specifying explicitly
the unique identifiers of hazards that the requirements have been specified to treat.
However, references between documents and specifications can be difficult to keep up
to date when something is changed. In addition, the generation of traceability matrices
(or other summaries) from the traceability information and searching for possible
inconsistencies could be difficult to automate [P6]. By including the information in
models, some of these tasks could be at least facilitated with automated functions.

However, support for traceability is limited in UML [P6]. A UML profile, SysML,
covers traceability with specific relation types such as satisfy and verify. Satisfy
relations can be used between SysML requirements and design artefacts that fulfil them.
Verify relations can be used between requirements and (SysML) test cases determining
their fulfilment. Relations of SysML can be also searched from models in order to, for
example, generate tables or matrices. The SysML traceability concepts do not support
all the traceability requirements of safety standards but form a basis that can be
extended [P6]. Extensions have been specified, for example, in the safety analysis
profile [90] that supports the tracing of hazards to requirements. In addition, the tracing
of requirements to design was supported with trace relations already in the original
UML AP specification [52].

In addition to traceability, support for requirements specification is limited in UML
[P6]. Of the concepts of UML, only use cases are intended for specifying interactions
between systems and their users. However, because of limited information content of
(UML models of) use cases, they are often accompanied with separate descriptions
(documents) on what is required to happen. In SysML, requirements can be specified

78

with textual requirement concepts that give requirements exact identities but can hardly
be characterized as formal. UML AP requirement concepts extend SysML ones with a
classification based on the basic need and could also be extended with safety related
information content. With safety related information, they could also enable automating
various consistency checks. For example, [P6] mentions checking the compliance of
safety (integrity) levels of requirements that are associated to each other and checking
that approaches to reduce risks are documented in the models.

Domain specific requirement specification techniques, which are not related to UML,
include IEC standards 62424 [53] and IEC 61804 [99]. These standards cover the
structured presentations of required control functionality and may be familiar to
professionals in the domain [P6]. In addition, logic diagrams have been traditionally
used in the domain for the specification of, for example, safety related interlocks [100].
As a semi-formal technique, logic diagrams are acceptable for requirements
specification, in addition to detailed design and architecture design, also from the point
of view of the safety standards.

IEC 62424 [53], which is also a supported source information format in the AUKOTON
development process, defines a specification for the representation of Process Control
Engineering (PCE) requests. PCE requests can be used in Piping and Instrumentation
(P&I) diagrams and they enable data exchange between P&I tools and control
engineering tools. IEC 62424 also allows the identification of PCE requests that are
related to safety and annotating their respective safety levels. The levels can be
categorized with SILs or Performance Levels (PLs) of EN ISO 13849-1 [101].
However, defining precise safety function logic is not supported in IEC 62424.

IEC 61804 [99], on the other hand, originates from the power generation industrial
sector and utilizes IEC 61499 FBs for detailed requirements specification. Before using
the FB language, required control functions are identified and marked in P&I diagrams
and structured for presentation in control hierarchy diagrams.

5.2.3 Standard Solutions in Models

One of the key concepts of MDD is the shifting of development efforts from (written)
documents to models and the ability to automate parts of the model processing. For
special purposes, e.g. safety system development, it could be possible to maintain
separate documentations. However, this would be against the idea (of MDD) and could
reduce the potential to benefit from MDD. A more appropriate approach would be to
include the required information (for producing the documentation) in the models in the

79

first place [P8]. The information on (also) the use of standard solutions and techniques
should, thus, be in the models. Models should include information on where and how
specific techniques and solutions have been used.

However, as discussed earlier in Chapter 3, modeling languages such as UML include
weak support for standard solutions and, for example, design patterns. Also in general,
models tend to present rather solutions than rationale behind them [P8]. In another
publication [102], these challenges are addressed with the means of Architecture
Knowledge Management (AKM) and use of an Application Lifecycle Management
(ALM) tool, Polarion14. Use of an external tool (in addition to MDD tools), however,
could lead to redundant information [P8]. This is why some documentation
functionalities presented in [102] have been in [P8] implemented by extending the
design pattern modeling concepts. In this way, the functionalities have been included in
the UML AP tool that is used throughout the MDD process.

Design patterns, with safety related extensions, could be used for documenting the use
of standard solutions in safety system development [P8]. For example, extensions to the
pattern concepts could be related to specifying the acceptability of the patterns for
different safety levels. Design patterns could then be used for modeling and marking
uses of techniques that standards recommend. For example, in IEC 61508 [1]
development techniques, measures and solutions can be recommended (R), highly
recommended (HR), non-recommended (NR) or without a recommendation for each
SIL [P8]. For a system of a specific safety level (SIL) a developer should use
recommended and highly recommended techniques and avoid the use of non-
recommended ones.

5.3 Safety Related Extensions to UML AP

5.3.1 Hazard and Risk Information

The hazard modeling approach that has been integrated into UML AP is presented in
[P6] and utilizes the well-known Fault Tree Analysis (FTA) notation. FTA modeling is
also used in both [90] and [98]. FTA diagrams allow depicting the occurrences of
hazards in a graphical manner. They are analytic and intuitive for both safety system
and control system developers. Occurrences of hazards can be presented as the logical

14 http://www.polarion.com/products/alm/index.php

80

combinations and sequences of faults and other conditions. FTA models could be used
also for the quantitative analysis of hazards, for example by including probabilities of
faults and conditions in the models and by applying probability calculus [P6].

FTA is supported with a set of modeling concepts that enable depicting fault and
condition sequences that can lead to hazards. The concepts have been developed to
extend the UML AP implementation and they are presented in Figure 17, which is based
on pictures and description in [P6]. Hazards as well as fault and condition sequences
leading to them are presented with different types of HazardModelNodes. The node
types include Hazard, RequiredCondition, ResultingCondition, Fault as well as
LogicalOperations, which are not shown in the figure. In the approach, Hazards include
attributes for the specification of their associated risk values so that risks cannot be
modeled independently from hazards. In this way, it can be easily made sure that each
Hazard in a model has an associated risk value, so that models are not incomplete with
respect to this aspect.

The tracing of hazards to requirements is supported in the approach with the
RiskTreatment concept. In addition to supporting traceability, RiskTreatments enable
documenting the approaches to treat the risks. The treatment options, which are based
on the alternatives in QoSFT profile [55], are in the metamodel specified in the
RiskReductionApproach enumeration. Hazards can be related to each other with
different kinds of relations that are classified in the HazardRelationKind enumeration.
Additionally, the metamodel defines two other enumerations: LikelihoodKind and
ConsequenceKind. The classification of risks that is supported by the concepts follows
the qualitative classification in annex B of part 5 of IEC 61508 [1]. With agreed limits, a
quantitative classification or some other qualitative classification could be supported as
well.

81

Figure 17 Metamodel of the (FTA) modeling concepts excluding concrete logical operation types.
(The metamodel is based on the pictures and description in [P6].)

Thus, instead of a new one, an existing, well-known notation (FTA) was integrated into
UML AP to be used in the MDD context. This is also in general the approach by the use
of which MDD could be extended for the needs of safety system development. Instead
of new (unfamiliar) notations, already recommended ones could be used but in a new
(MDD) context. In this way, it would be easier for authorities to allow the use of model-
driven techniques in safety system development. However, in the MDD context, it could
still be possible to benefit from the possibilities to automate model processing.

As suggested in [90], the use of FTA diagrams can also facilitate the development of
corrective functions. The functions can often be designed to stop the fault and condition
sequences that lead to hazardous situations. In this way, for the original hazard to occur,
also the safety functions would need to fail in preventing the required conditions (of
hazards) to be realized [P6]. To illustrate the simple idea, consider, for example, the
simple FTA diagram in Figure 18. In the example tank system of [P6], running pump
M100 dry can be caused by using the pump when tank B100 is empty. A simple
approach to prevent the hazard from occurring could be to prevent the required
conditions from being realized at the same time. For example, this could be achieved

82

with an interlock that would force the pump to shut-down when measured level in the
tank is below an agreed limit.

Figure 18 An example FTA model related to a tank system used as an example in [P6].

The FTA-related extensions to the UML AP modeling concepts and diagrams have been
implemented with EMF and Topcased according to the procedures described in Sections
3.4.1 and 3.4.2. Tool supported functions that utilize the hazard concepts to automate
documentation generation and to perform consistency checks will be presented in
following sub-sections.

5.3.2 Requirements Modeling

Functional (UML AP) Automation Requirements are structured concepts with specific
attributes e.g. for id and source. In a manner similar to AFs, they have been divided into
a hierarchy, based on the basic need, for example to measure a quantity or to compute a
control signal [P6]. To model dependencies between required functionalities the
approach includes RequirementInterfaces. With RequirementInterfaces, it is possible to
model, for example, a required control functionality being dependent on a required
measurement functionality, i.e. that a measurement is needed by a control task.
RequirementRefinements enable including additional information in Requirements.
They include both a semantic meaning and value, to support various (possibly in-house)
practices and needs. For example, a refinement could be used to define a measurement
range related to an analog valued measurement. Two specific RequirementRefinement
types are also used for including safety-related information in requirements. They are
presented in Figure 19.

83

Figure 19 The safety related Refinements of UML AP that can refine StructuredRequirements.
((Modified from [P6])

With the first safety related refinement type, TechnologyAllocation, it is possible to
allocate system safety requirements for E/E/PE (Electrical, Electronic or Programmable
Electronic) safety systems, for other technology safety systems and for external risk
reduction facilities. This classification is based on the classification in IEC 61508 [1]
(part 1) that is used in the safety requirements allocation lifecycle phase. The other new
refinement, SILRefinement, enables specifying required safety levels (SILs) for
functional safety requirements. That is, SILRefinements refine functional requirements
with information on which integrity levels the requirements must be implemented.

The detailed logic of safety and, for example, interlock requirements can be specified
with UML AP Logic Diagrams that were discussed in Chapter 4 in relation to
generating simulation classes. Logic diagrams, as a semi-formal method, are highly
recommended by IEC 61508 for requirements specification on all SILs [P6]. They
enable the specification of logic from input RequirementInterfaces to output
RequirementInterfaces of Requirements. Technically, the use of UML AP Logic
Diagrams (for this purpose) is in the tool environment possible because the root
elements of the diagram type are UML Classes15.

15 The StructuredRequirement concept extends the SysML Requirement concept that in turn extends the
Class concept of UML. Similarly, RequirementInterfaces can be used as Ports in Logic Diagrams because
they extend the UML Port concept.

84

5.3.3 Traceability and Documentation Support

As presented, UML AP concepts include support for explicit traces between hazards
and requirements that have been specified to treat the hazards as well as between
requirements and implementing design elements. Between hazards and requirements,
the trace concepts are called RiskTreatments. Between requirements and design
(elements) the concepts are called TraceRelations [P6]. Technically the traces are one-
directional. However, by iterating through traces in a model, it is possible to support
backward traceability. For example, by iterating through RiskTreatments in a model it is
possible to find all hazards that are traced to a requirement.

A RiskTreatment connects exactly one Hazard to exactly one (UML AP) Requirement.
However, it is possible for a Hazard to contain several RiskTreatments. On the other
hand, for a Requirement, there can be several RiskTreatments that trace different
hazards to the Requirement. In this way, the treatment concept has been kept simple
although it is still possible to e.g. specify that a Hazard is treated with several safety
function requirements and that a Requirement (of a safety function) is to treat several
Hazards. TraceRelations are contained by Requirements (that they trace), in a manner
similar to RiskTreatments that are contained by the Hazards that they trace. A
TraceRelation connects a Requirement with a number of implementing elements that
take part in implementing the Requirement [P6].

Both RiskTreatments and TraceRelations are processable with, for example, model
query and transformation techniques and they support both forward and backward
traceability. To demonstrate how to benefit from the hazard, risk and traceability
elements, they are used in the tool environment in several functions that have been
developed to facilitate the development work, see [P6] and [P8]. Properties of
systematic integrity that the functions have been developed to improve include
correctness and completeness.

Included publication [P6] introduces traceability matrices that are compiled based on
the traceability elements. The matrices are compiled (to MS Excel sheets) by collecting
Hazards (or Requirements) to rows and Requirements (or elements) that they are traced
to in columns. In addition to presenting the traceability information in a compact form,
the matrices support completeness. Possibly overlooked hazards and requirements,
which are not traced further but should be addressed in the design, are in the matrices
highlighted (warned) with a red color.

85

An example hazard traceability matrix that was used in [P6] is presented in Figure 20.
In the example below, all Hazards are traced further so that they are not warned (with
the red color) by the tool [P6]. Such a Hazard (or a Requirement) that would not be
traced further would indicate either a problem in the design or the model not being up-
to-date. In either case, the situation should be warned by the tool so that it could be
inspected by a designer. The traceability matrices were in [P6] exported to Microsoft
Excel sheets. This documentation generation functionality has been later extended with
documentation support related to design patterns in general [P7] and especially the
design patterns of safety systems P8].

Figure 20 An example Hazard traceability matrix from [P6].

In addition to traceability and completeness, including safety information in models can
enable automating various consistency checks. As suggested in [P6], it could be easily
checked that safety requirements that are related to each other have compatible integrity
(SIL) refinements. For example, a required measurement that a required safety function
is dependent on must have an equal or higher integrity than that of the (requiring) safety
function. Otherwise, the safety function would become dependent on a measurement
with lower integrity. In a similar manner, it could be easily checked that all
Requirements are traced to (SysML) test cases and that all RiskTreatments document a
risk reduction approach, for example.

5.3.4 Patterns of Safety Systems

The design pattern approach presented in [P7] and Section 3.4.4 is in [P8] extended for
the modeling needs of safety systems. As summarized in [P8], the work is intended to
facilitate the development of safety systems by supporting traceability between standard

86

(safety) solutions and their use in system designs, by enabling verification of safety
levels of solutions (in comparison to required levels) and by guiding the selection of
techniques and solutions.

A metamodel presenting both the safety-related and previous pattern modeling concepts
is presented in Figure 21. In the metamodel, concepts that are additional to the previous
pattern concepts ([P7]) are highlighted with a gray color. A central new concept in the
metamodel is SafetyPattern, which is intended for modeling the design patterns of
safety systems. The applicability of SafetyPatterns can be specified for different safety
integrity levels [P8]. Similarly to recommended techniques and measures in IEC 61508
[1], a SafetyPattern can be Recommended (R), Highly Recommended (HR), Non-
Recommended (NR) or with a Non-Specified recommendation (NS) for each SIL [P8].
The alternatives in the Recommendation enumeration in the metamodel correspond to
these alternatives. SafetyPatterns, thus, enable modeling measures, techniques and
solutions that standards recommend. However, the concept can be used also with
patterns that are related to safety but for which recommendations are not available in
standards.

SafetyPatterns that are related to each other can be collected into collections with the
SafetyCatalogue concept. SafetyCatalogues are intended to contain patterns that are
often used together and to which sets of patterns that are used in models can be
compared. In a catalogue, patterns can be related to, for example, a development phase
or a specific aspect in design. For example, IEC 61508 [1] includes various lists of
techniques and measures to be used during different software safety lifecycle phases.
For software architecture design, for example, the standard mentions 27 techniques,
some of which are alternatives to each other or non-recommended for specific safety
levels. [P8]

In addition to PatternRelations, between SafetyPatterns it is possible to use
Specialization relations. The background of the concept is that for many architectural
solutions that safety standards recommend, for instance, there are already published,
more detailed patterns in literature. With the (Specialization) relation, more specialized
patterns of, for example, pattern literature can be marked as specializations of the
SafetyPatterns that the standards recommend. The specialized patterns can then be
considered as alternatives for the general patterns, for example when comparing the sets
of patterns (used in models) to SafetyCatalogues.

87

Figure 21 The metamodel of the SafetyPattern modeling concepts. (Modified from [P8])

The safety-related pattern modeling concepts enable automating various consistency
checks, providing recommendations on the use of patterns and improving traceability in
models. These capabilities are demonstrated in [P8] by extending the documentation
generation support that has been briefly discussed in Sections 3.4.4 and 5.3.3. The new
documentation sheets are described in [P8] and they are called Safety Catalogue sheet,
Safety Catalogue Conformability sheet and Safety Pattern Traceability sheet.

Safety Catalogue sheets, firstly, enable presenting SafetyCatalogues in a tabular form
that is similar to the form of the recommendation tables of IEC 61508 [1] (in annex A of
part three of the standard) [P8]. On one hand, the sheet type is intended to facilitate the
development of SafetyCatalogues to correspond to recommendations of standards. On
the other hand, the tabular form can be used during development work when
considering, for example, which solutions, techniques and measures to use. In the
sheets, patterns are represented as rows of a table. Separate catalogues are printed to
separate tables. The order of SafetyPatterns in a table is determined based on relations
(next) between the patterns. Alternatives are in the tables assigned same numbers but
different letters to indicate them being alternatives to each other [P8].

An example Safety Catalogue sheet from [P8] can be seen in Figure 22. The table
presents 15 techniques and measures that IEC 61508 [1] recommends for software
architecture design. Many of the techniques and measures are such that pattern literature

88

already includes specialized versions of them, for example to implement redundancy
[28] or to recover from faults [29].

Figure 22 A Safety Catalogue sheet example presenting 15 techniques and measures that IEC 61508
recommends for architecture design. (Modified from [P8])

Safety Catalogue Conformability sheets present SafetyCatalogues, SafetyPatterns of
which can be found in the model from which the documentation is exported. Patterns of
the catalogue, to which the model is compared, are presented in rows, in a manner
similar to the Safety Catalogue sheet. A separate table is printed for each catalogue.
SafetyPatterns, instances of which can be found in the model, are marked with a gray
color to indicate traceability. In addition, the table supports correctness by highlighting
(with color coding) whether the patterns that are used in the model would be appropriate
for each SIL. Incompatibility can result from both use of a non-recommended
SafetyPattern or not using a recommended (or highly recommended) SafetyPattern or
any of its recommended alternatives [P8]. The last rows of the table present the numbers
of patterns (excluding alternatives) that have been used and that would be recommended
for each SIL.

An example Safety Pattern Comformability sheet from [P8] is presented in Figure 23.
The sheet presents how requirement specification techniques (that are used in an
example model) conform to a SafetyCatalogue that has been modeled to correspond to
the recommendations of IEC 61508 for software requirements specification. According
to the table, the model includes markings of use of semi-formal methods, forward and
backward traceability as well as use of computer-aided specification tools. According to
the table, they are recommended for all SILs and it would not be necessary to use other
techniques and measures in order to conform to the catalogue.

89

Figure 23 A Safety Catalogue Conformibility sheet presenting the usage of requirements
specification techniques in a model and their conformability to the recommendations of IEC 61508.
(Modified from [P8])

With the information on required safety levels, on traceability from requirements to
implementations and on solutions used in the implementations, it is also possible to
check the consistency between them. This is automated in the third new sheet,
SafetyPattern Traceability sheet. The sheet traces safety-related requirements (that
include SILRefinements in them) to Packages that contain implementing design
elements for the requirements and to SafetyPatterns that are used in the Packages [P8].
The table presents SILs related to the requirements, integrity levels required from the
Packages (which are derived from the requirements) as well as recommendations of the
Patterns for each SIL. Uses of recommended and highly recommended patterns are
indicated with a green color whereas uses of non-recommended patterns are warned
with a red color.

An example Safety Pattern Traceability sheet from [P8] is presented in Figure 24.
According to the sheet, the model of the example contains two (safety-related)
requirements of safety level SIL 1. The requirements have been traced to elements
contained by the Software Safety Requirements and ControlStructures Packages, so that
the safety levels required from the Packages are the same. Lastly, the sheet presents the
SafetyPatterns, which are used in the Packages in question, and indicates, with a green
color, that the patterns are recommended for the safety levels in question.

90

Figure 24 A Safety Pattern Traceability sheet presenting the traceability of the safety requirements
of an example system to implementing Packages and to SafetyPatterns used in the Packages.

In addition to the presented sheets, [P8] envisions tool-supported functions that could be
used in a constructive manner. For example, a guided process could start from modeled
requirements that would determine required SILs for required functions. A developer
could then select a SafetyCatalogue to be used to guide the design or a specific design
phase, for example architecture design. Based on the catalogue selection and required
SILs, the tool could suggest patterns to be used. In practice, this scenario could be
implemented as simply as a modification to the Safety Catalogue sheet, by hiding
inappropriate patterns based on required integrity levels [P8].

The new modeling concepts that are required for SafetyPatterns and for the sheets, see
the metamodel in Figure 21, have been implemented by extending the EMF metamodel
used by UML AP tool according to the procedure described in Section 3.4.1. The sheets,
which present safety-related information, on the other hand, have been developed by
extending the documentation generation functionality that exports the tables to sheets of
Microsoft Excel documents [P8].

5.4 Discussion

Hazards and their associated risks form the starting point of development of safety
systems. In order to improve the support of UML AP for safety system development,

91

the modeling concepts were extended to enable the detailed presentations of hazards, to
include safety related information in requirements and with support for documenting the
usage of standard solutions.

In the hazard and risk modeling approach, the occurrences of hazards can be described
with the well-known and intuitive FTA notation. FTA models enable depicting the fault
and condition sequences that lead to the hazards. With the logical combinations of
conditions, FTA models support the development of corrective functions, which can
often be developed to stop the condition sequences leading to the hazards. In the
approach, risk information, including the probabilities and consequences of hazards, is
included in the hazards as their attributes. The tracing of hazards to requirements and
further on, on the other hand, is supported with specific traces. RiskTreatments are used
between hazards and requirements and TraceTelations between requirements and
implementing design elements. By nature, the traces are one-directional but possible to
query in order to support both forward and backward traceability.

Traceability, correctness and completeness are in the approach supported with both
choices related to modeling notations and automated functions. When applicable,
decisions on notations, such as the use of logic diagrams, have been made so that they
are intuitive and informative to developers and comply with recommendations of safety
standards. Logic diagrams, for example, can be used to depict the logic of safety
requirements and they are already familiar to control system developers. They are also
recommended by IEC 61508 and claimed to support several properties of systematic
integrity, e.g. “correctness with respect to the safety needs to be addressed by software”.
By using already recommended notations within MDD, the use of MDD techniques
could also be easier to accept in safety system development. MDD of safety applications
could, in this way, be seen as an application of existing, appropriate techniques in a new
(MDD) context.

By including required, safety related information in models, it is also possible to
automate the generation of part of the required documentation of safety functions and
performing various consistency checks. Producing documentation is also a necessity in
the application domain. Without MDD support, the documentation for certification
purposes and for authorities, for example, would have to be produced manually. This
would, however, significantly reduce the potential to benefit from MDD.

The presented automated functions generate, for example, traceability matrices for
hazards and their risks as well as for requirements. In addition to presenting the
traceability information in an intuitive form, the matrices support completeness by

92

warning developers about possibly overlooked hazards and requirements. Such are
hazards and risks that are not traced further in the models. Automated consistency
checks can and have been developed to warn users about possible, incompatible safety
integrity levels related to requirements and safety system patterns, for example.

The starting point in the approach to use design patterns for safety system development
is that the uses of patterns represent the design decisions of developers. As such, they
should be deliberately marked in models, instead of trying to detect pattern instances in
models, for example. In this way, reliable pattern information could be also used as part
of the documentation. The presented SafetyPattern concepts enable modeling techniques
and solutions that safety standards recommend. SafetyPatterns can have
recommendations for different integrity levels. SafetyPatterns can also be collected into
SafetyCatalogues with which it is possible to model recommendation tables of
standards, for example.

Based on the SafetyPattern concepts, automated functions have been developed to
extend the documentation generation possibilities. The functions enable collecting
traceability information on the use of standard solutions. At the same time, they support
correctness by comparing patterns that are used in models, and their recommendations,
to catalogues and to the SILs required from the Packages in which they are used. User
guidance has also been envisioned to support development work in a constructive
manner, so that the tool could recommend techniques and solutions to be used, based on
safety integrity requirements and selections on catalogues.

93

6 Summary of the Included Publications

The thesis includes eight publications. This Chapter presents the summaries of the
publications and defines the contributions of the author in the publications.

[P1]

The paper presents an overview of the AUKOTON development process and UML
Automation Profile (UML AP) as well as motivates the development of the UML AP
tool. The tool builds on Topcased UML/SysML toolkit and implements UML AP
modeling concepts as metamodel extensions to the UML and SysML metamodel
implementations that are used by Topcased. The metamodel extensions are defined and
implemented with Eclipse Modeling Framework (EMF) and graphical support with
Topcased generators and Java programming. The concrete syntaxes of the new diagrams
resemble traditional diagrams used in the domain. The tool utilizes the plug-in
architecture of the Eclipse platform and implements a plug-in interface for finding and
using model transformations that are required in model-driven development.

The author is the main author of the paper and responsible for the tool development in
general. The development approach presented in the paper has been developed as a
collaborative effort. The profile (UML AP) version supported by the original version of
the tool had been previously developed at TUT in ASE.

[P2]

The paper presents the results of the industrial assessment of the AUKOTON
development process and tools. The assessment was organized as a one-day event for
industrial partners of the (AUKOTON) research project. In the event, industrial
professionals utilized the developed process, modeling concepts as well as tools in an
application development project and were observed and interviewed by researchers to
collect qualitative material. According to the results, the techniques and tools could be
successfully used in automation application development. The development process and
tools were seen to automate some tasks that are currently performed manually.
Interlocks were identified as an area for further improvements.

The author is the main author of the paper and responsible for the tool development in
general. The development process has been a collaborative effort, the contributions of
the author being in functional and platform specific modeling phases. The second author
of the paper is the main responsible one for the research methodology used in the
assessment event. The third author of the paper is the main responsible one for the

94

description of the industrial development process. The arrangements of the assessment
have been a collaborative effort.

[P3]

The paper presents a method for transforming UML AP control application models to
ModelicaML form to enable their simulation. The approach is targeted to model-in-the-
loop simulations using a single simulation engine and it aims to transform and append
control application models to plant simulation models. This enables design-time, closed-
loop simulations of controlled processes in order to obtain the benefits of simulations
early in the development process. The developed model transformation is implemented
with QVT model transformation languages and packaged to a plug-in that connects to
the tool platform with the extension interface of it. The case study used in the paper
evaluates the interlock and control behavior of a controlled crane system.

The author is the main author of the paper and responsible for planning the paper,
implementing required software prototypes, preparing and performing the reported
simulations as well as writing the paper.

[P4]

The paper extends the simulation approach [P3] to modeling and simulation of
sequentially executed control activities – Automation Sequences. The modeling
approach is compared with UML state machines and the simulation approach extended
from Modelica simulation of state machines. The paper completes the support of the
simulation approach for all four aspects of basic control systems: binary and feedback
control, sequential control and interlocks. The case study presented in the paper is
related to paper industry. As a simulated process, it is the largest that has been so far
used to evaluate the simulation approach. Based on the case study, it is argued that the
approach scales to non-trivial industrial applications.

The author is the main author of the paper and responsible for planning the paper,
implementing required software prototypes, preparing and performing the reported
simulations as well as writing the paper.

[P5]

The paper presents a conceptual comparison of possible simulation approaches in
model-driven development of automation and control applications. Additionally, the
paper summarizes the observations from three simulation experiments in which the
developed simulation approach has been used. In the comparison, the paper takes into
consideration the benefits, restrictions and numbers of required simulation engines

95

related to simulation approaches. The influence of the domain and the practice of
utilizing existing control system platforms are discussed. Related to the simulation
approach of the author, the paper compares perceived benefits to those anticipated based
on literature. According to the results, the approach is applicable to both machinery and
process industry applications. In addition to the general benefits of simulations, the
approach has enabled prototyping, experimenting and comparing control and interlock
solutions. Furthermore, by enabling simulating early in the development process the
approach detects inconsistencies in requirements and design.

The author is the main author of the paper and responsible for planning the paper,
setting up and performing the comparison of the simulation approaches as well as
writing the paper.

[P6]

The paper proposes model-driven development techniques as a means to facilitate the
development of safety-related applications. UML Automation Profile is extended to the
modeling of risks and hazards as well as to presenting how hazardous situations can
occur. The information content is completed with traces to support traceability between
design and development artifacts. Modeling concepts are rationalized to facilitate the
understanding of software developers over the problem area and thus correctness of
design. Model checks are used to support completeness so that risks, hazards and
requirements are not overlooked later in design. Correctness, completeness and
traceability are discussed with respect to their definitions in IEC 61508 (functional
safety) standard.

The author is the main author of the paper and responsible for planning the paper,
implementing required software prototypes as well as writing the paper.

[P7]

The paper presents an approach to model design-patterns and mark design pattern
instances in models. The approach utilizes metamodel extensions for the both purposes
and enables design pattern definitions to be collected to model libraries. The paper
proposes the use of design patterns for documentation purposes in MDD and argues
why design patterns could be especially valuable in MDD. In the presented approach
patterns can be both traditional programming language level patterns as well as more
general solutions, mainly describing the roles of entities in the patterns. A model
transformation is developed that utilizes patterns to produce traceability documentation
from models.

96

The author is the main author of the paper and responsible for planning the paper,
implementing required software prototypes as well as writing the paper.

[P8]

The paper extends the design pattern modeling approach for SafetyPatterns - patterns of
safety systems. Metamodel extensions are developed for specifying recommended
safety levels for patterns and for organizing safety patterns to safety pattern catalogues.
Such catalogues can be developed to correspond to recommendations of safety
standards. Automated tool support is developed for checking the compliance of patterns
(that are used in models) to safety levels required from the modeled applications. The
tool support also enables comparing the models of applications to safety catalogues in
terms of safety patterns in order to reveal inconsistencies and to suggest patterns that
could be used.

The author is the main author of the paper and responsible for planning the paper,
implementing required software prototypes as well as writing the paper.

97

7 Conclusions

The thesis discusses the use of MDD in automation and control application
development. To study, whether or not their development could benefit from MDD, the
thesis focuses on research topics that are related to modeling and developing tool
support for modeling the applications, ability to integrate simulations into MDD and
ability to include safety-related information in models. This Chapter summarizes the
thesis, the research questions and the limitations of the work, and outlines future work.

7.1 Thesis Summary

The AUKOTON model-driven development process, which is used as a basis to be
extended in the work, is introduced. Requirements for UML AP implementation and
MDD tool support are derived from practical needs and special characteristics of the
domain, including the re-use of platform specific solutions. UML, for which UML AP
is an extension, can be extended for special purposes with two extension mechanisms.
UML includes a built-in stereotype mechanism but can be extended also by extending
the metamodel of the language with the use of MOF, on metamodeling layer M2.

The MOF based approach is selected for UML AP implementation. It provides stability
for graphical tooling development and does not restrict the additions of metaclasses and
meta-associations. At the same time, it enables the use of standard model transformation
languages to implement model transformations. Open source modeling tools on Eclipse
platform, which can be extended in order to re-use their support for plain UML and
SysML, provide natural support for the MOF based approach. The tool used as a basis
in UML AP tool implementation is Topcased. The three types of transformations that
are required by AUKOTON can be added to the tool in a flexible manner using the
Eclipse extension point mechanism and controlled with the user interface of the tool.

The re-use of existing solutions is in the approach supported with respect to both
platform specific and platform independent modeling. Design patterns can be defined
with specific pattern modeling concepts and their instances marked in models.
Automated functions provide support for instantiating and marking patterns in models,
for visualizing patterns in models and diagrams and for generating traceability
information and statistics on the use of patterns. Platform specific blocks can be
modeled in platform specific profiles that consist of stereotypes, tagged values and
template AFs with block specific interfaces. With this information available in models,
using platform specific blocks in code generation is straight-forward.

98

In order to support early testing and validation as well as to facilitate decision making,
simulations are applied. Transformation assisted use of model-in-the-loop simulations
within a single simulation engine is justified to enable simulating early but without
requiring unnecessary simulation expertise of developers. A model transformation is
developed that creates ModelicaML simulation counterparts of control application
models and integrates them into existing plant (simulation) models. The results of the
integration, ModelicaML simulation models of closed-loop systems, can be simulated
using e.g. OpenModelica (open source) tools.

The simulation approach supports both platform independent and platform specific
functions and is capable of creating application specific simulation classes based on
Logic and Automation Sequence diagram definitions of AFs. The approach supports the
different aspects of basic control systems: binary and feedback control, sequential
control and interlocks. Observations from applying the simulation approach are
presented. The size and complexity of the controlled processes have varied up to 1400
equations for a closed-loop system and demonstrated the scalability of the approach to
non-trivial processes with industrial size and complexity. The simulations have enabled
prototyping interlock and control solutions, revealed shortcomings in requirements and
designs and enabled studying hazardous situations. These observed benefits are similar
to those reported in literary. It is possible that many general benefits of simulation could
be obtained also in MDD context but earlier than with more traditional simulation
approaches.

The modeling approach is extended to include information that would be required for
safety applications. The modeling of hazards, how they can be realized and their
associated risks are supported with fault tree modeling. Fault trees are analytic and
intuitive for both basic control and safety system developers. Their use can also
facilitate the development of corrective functions, which can be designed to stop the
fault and condition sequences that lead to hazardous situations. Hazards can be also
traced to requirements that have been specified to treat them.

UML AP requirement concepts as well as the pattern modeling concepts are extended
with safety-related information. Requirements can be refined with information on which
safety level they must be fulfilled and which techniques, e.g. electrical, electronic or
programmable electronic safety systems to use. Design pattern modeling concepts
include SafetyPatterns, which are design patterns of safety systems and can include
recommendations for applications of different levels. SafetyPatterns can be collected
into catalogues to model recommendation tables of safety standards, for example.

99

The safety-related extensions are utilized by functions that gather traceability
information and documentation to spreadsheets and at the same time automate checks of
consistency. Hazards and their risks are traced to requirements and further to design that
fulfils the requirements. Requirements that are not traced further to implementing
design elements are identified automatically to improve completeness. Correctness is
supported by, for example, consistency checks between used safety patterns and safety
levels required from the applications. When appropriate, modeling techniques have been
selected so that they comply with safety standards.

7.2 Research Questions Revisited

The research questions RQ1-3 are in the thesis addressed and discussed in Chapters 3, 4
and 5, respectively. Following is a summary of answers to the research questions.

RQ1: How to develop support for domain-specific, UML based modeling in control
application development? How to develop support for and gain benefit from applying
design patterns in models? How to enable and gain benefit from re-using platform
specific blocks in modeling?

While the stereotype mechanism of UML would enable light-weight modifications, the
use of MOF to extend the language metamodel on metamodeling layer M2 has no
restrictions when domain-specific concepts are extensions to those of UML. Models
conforming to MOF based metamodels can be processed with standard (QVT) model
transformations so that references from transformation definitions to metamodels can be
checked at compile-time. The MOF based extension approach is also supported by
many open source tools, for example on Eclipse platform, so that graphical support for
the domain concepts can be developed on top of an existing tool.

When design patterns are not restricted to the contents of Classifiers only, as in the
UML approach, they can be supported by specifying and implementing suitable pattern
concepts with, for example, the MOF based extension approach. With specific concepts
for specifying and instantiating patterns, it is possible to develop automated support for
using and benefitting from patterns. For example, applying patterns can be facilitated by
the tool, pattern instances can be visualized for e.g. teaching and documentation
purposes, and the traceability of solutions supported by analyzing patterns instances.

Design patterns can improve the re-use of platform independent design. However, in the
domain an even more important characteristic is the re-use of platform specific
implementation blocks, e.g. type circuits. To benefit from existing blocks in MDD, it

100

would need to be possible to use the blocks in the models so that the blocks could be
instantiated to applications, parameterized and connected by code generators. In the
developed approach, this is realized with an approach that uses stereotypes and their
tagged values for identifying and parameterizing blocks as well as template AFs and
their ports for the specification of block interfaces. Automated functions of the tool
enable completing the interfaces of AFs to correspond to those of the blocks, when
applying platform specific stereotypes.

RQ2: How can model-in-the-loop simulations be integrated into MDD of automation
and control applications with UML based modeling? What are the requirements and
constraints for selecting the simulation approach to be followed? How can simulations
with the selected approach benefit MDD?

The developed transformation assisted simulation approach enables the use of MiL
simulations early and using a single simulation engine, thus relieving developers from
connecting simulation models and engines. To take into account the special
characteristic of the domain related to re-use, the approach enables the use of simulation
class libraries, in addition to creating new simulation classes based on Control Structure,
Automation Sequence and Logic diagrams. Simulations can be used during both
platform independent and platform specific phases of AUKOTON. The simulation
transformation has been implemented with QVT and connected with the tool with use of
the Eclipse extension point mechanism. The approach supports all the four aspects of
basic control systems: binary and feedback control, sequential control and interlocks.

The supremacy of any simulation approach over others cannot be claimed based on the
presented material. However, as simulations are already, in general, supported by
control system vendors, to gain benefit from integrating simulations into MDD one
should apply the MiL approach so that simulations could be used before generating
code. The transformation assisted and co-simulation approaches to MiL simulations
have varying requirements and constraints related to the simulatability and
transformability of models, numbers of required transformations, the connectability of
simulations and management of simulation cases, for example. With different
techniques for e.g. modeling, MDD approaches can justifiably utilize different
simulation approaches.

MDD techniques can be used for automating information transfer and repetitive tasks.
The techniques, however, may not reduce the need to test, validate and compare
designs, which are tasks to which simulations have been applied. MiL simulations may
not provide all the benefits of simulations. However, they can be used early for

101

simulation tasks that do not require control system hardware. The developed simulation
approach has been used in the development of both machinery and process industry
applications. It has enabled prototyping and comparing control and interlock solutions,
searching for control tunings and detecting inconsistencies in requirements and design.
The approach has also enabled studying exceptional situations in a safe manner.

RQ3: How can the safety of control applications be supported in MDD? How can risk
and hazard information be integrated into modeling? How can traceability, correctness
and completeness be supported in models? How can the use of design patterns support
documenting the safety features of control applications?

The techniques and solutions that improve safety and related quality attributes in
traditional safety system development can improve them also in MDD. The information
content of models can be extended to take into account requirements of safety standards
related to, for example, traceability. With the safety information available in models,
MDD techniques can be used for gathering the information to documentation and for
automating consistency checks to promote properties such as traceability, correctness
and completeness. When appropriate, modeling methods to be integrated into MDD can
be selected according to recommendations of safety standards.

The modeling of hazards and their associated risks, which is the starting point in safety
system development, is supported in many published extensions to UML. The UML AP
approach uses the well-known FTA notation. The FTA modeling concepts have been
implemented with MOF as metamodel extensions and given graphical tool support
based on Topcased tool. With respect to the data content of models, hazards are
traceable to requirements that have been specified to treat them.

Design patterns can be used to document practices and solutions to recurring problems
also in safety system development. With specific safety pattern modeling concepts,
patterns can include recommendations for applications of different safety integrity
levels. Patterns, which are applied to models, and their recommendations for different
levels can be compared with safety levels that are required from the applications. By
modeling recommended techniques and measures as SafetyPatterns and
recommendation tables as SafetyCatalogues, it is possible to automate checking whether
or not recommended patterns have been applied and if not, which patterns should be
applied to comply to a standard. In this way, SafetyPatterns can be used to guide the
development.

102

7.3 Limitations and Future Work

The methods and techniques that are proposed in the thesis have been implemented on a
prototype level, mainly on the open source Eclipse platform. The results obtained with
constructive research, i.e. the solutions, methods, and techniques, have been assessed
mainly experimentally and in a qualitative manner, to answer the research questions.
However, the improvements obtained with the incrementally developed prototypes
suggest their suitability and potential for improvements also in production use.

Assessing the results quantitatively, to obtain measures of their applicability to
industrial problems and ability to increase efficiency, for example, would require their
implementations in commercial quality tools. Developers would have to work with the
tools and methods in a number of projects in order for the assessment results not to
become biased by the developers being more experienced with their current tools and
practices16. On the other hand, assessing the industrial applicability of the techniques
with surveys would require the designer of the surveys to foresee all the relevant factors
and the answerers to foresee the difficulties and benefits of techniques that they are not
yet familiar with [P2], [103]. In [P2], this problem was solved by familiarizing industry
professionals with the techniques with an example modeling project and by using two
complementary methods for collecting qualitative material: participatory observation
and interviewing. Apart from the results of the AUKOTON project, most developed
research artefacts have been assessed by the author only, in example case studies
reported in the included publications.

An important task in the future work would thus be to acquire industrial feedback about
the industrial adoption potential of the techniques and their ability to facilitate the work
of developers. Because of the number of implemented complex tools and techniques, an
assessment event similar to the one used for [P2] could, however, require several days
from industry professionals in order to familiarize them with the techniques. Another
alternative to gather feedback and directions for improvements could be to work with a
problem of industrial origin and to demonstrate work phases for professionals in order
to provide a basis for discussion and interviewing. This approach could benefit from
improvements to the code generator and from additional platform specific libraries of

16 It is even possible that in order to get non-biased results, the developers would have to be trained for
the techniques during their early careers.

103

the tool environment, so that an industrial control system platform could be used as a
target.

The code generation support that has been developed into the tool environment should
be updated to exploit the most recent advances in the modeling and simulation
capabilities and to include I/O mappings. For example, Logic diagrams and Automation
Sequence Diagrams, which are supported by the simulation integration, should be
supported also by code generation. Simulation-assisted MDD would benefit from the
ability to select test scenarios in a smart and systematic manner, based on, for example,
requirements or hazards of the controlled process. At the same time, MDD techniques
should support traceability between the tests and related model elements.

In addition, in order to assess industrial applicability and potential of the techniques,
code generation support should be developed for an industrial control system platform.
The type circuits of the platform should be possible to use in both application code and
simulation models. With these future enhancements, it appears that control application
development could benefit more from the developed MDD approach.

105

Bibliography

[1] IEC, 61508 functional safety of electrical/electronic/programmable electronic
safety-related systems. International Electrotechnical Commission (2010).

[2] Iivari, J. A Paradigmatic Analysis of Information Systems As a Design Science.
Scandinavian Journal of Information Systems 19(2007)2, pp. 39-64.

[3] Crnkovic, G.D. Constructive research and info-computational knowledge
generation. In: Magnani, L., Carnielli, W. & Pizzi, C. (ed.). Model-Based Reasoning in
Science and Technology. 2010, Springer. pp. 359-380.

[4] Hevner, A.R. & March, S.T. The information systems research cycle. Computer
36(2003)11, pp. 111-113.

[5] Gregor, S. & Hevner, A.R. Introduction to the special issue on design science.
Information Systems and e-Business Management 9(2011)1, pp. 1-9.

[6] OMG. Model Driven Architecture (MDA) Guide. Object Management Group
(2003).

[7] Booch, G. UML in action. Communications of the ACM 42(1999)10, pp. 26-28.

[8] Selic, B. UML 2: a model-driven development tool. IBM Systems Journal
45(2006)3, pp. 607-620.

[9] OMG. OMG Meta Object Facility (MOF) Core Specification 2.4.2. Object
Management Group (2014).

[10] OMG. OMG Unified Modeling LanguageTM (OMG UML), Superstructure
2.4.1. Object Management Group (2011).

[11] OMG. OMG Unified Modeling LanguageTM (OMG UML), Infrastructure 2.4.1.
Object Management Group (2011).

[12] OMG. OMG Systems Modeling Language (OMG SysML™) Version 1.3.
Object Management Group (2012).

[13] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.0. Object Management Group (2008).

[14] Czarnecki, K. & Helsen, S. Classification of model transformation approaches.
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, 2003, Citeseer. pp. 1-17.

106

[15] Vepsäläinen, T., Hästbacka, D. & Kuikka, S. A Model-Driven Tool Environment
for Automation and Control Application Development - Transformation Assisted,
Extendable Approach. Proceedings of 11th Symposium on Programming Languages
and Software Tools and 7th Nordic Workshop on Model Driven Software Engineering.
2009, Tampere University of Technology. Department of Software Systems. pp. 315-
329.

[16] Carrasco, J.A. & Dormido, S. Analysis of the use of industrial control systems in
simulators: State of the art and basic guidelines. ISA transactions 45(2006)2, pp. 295-
312.

[17] Shokry, H. & Hinchey, M. Model-based verification of embedded software.
Computer 42(2009)4, pp. 53-59.

[18] Mattsson, S.E., Elmqvist, H. & Otter, M. Physical system modeling with
Modelica. Control Engineering Practice 6(1998)4, pp. 501-510.

[19] MODELICA ASSOCIATION. Modelica ® - A Unified Object-Oriented
Language for Systems Modeling, Language Specification, Version 3.3. Modelica
Association (2012).

[20] Schamai, W. Modelica Modeling Language (ModelicaML): A UML Profile for
Modelica. 2009, Linköping University Electronic Press.

[21] Schamai, W., Fritzson, P., Paredis, C. & Pop, A. Towards unified system
modeling and simulation with ModelicaML: modeling of executable behavior using
graphical notations. Proceedings of the 7th International Modelica Conference, 2009,
pp. 612-621.

[22] Herrmann, D.S. Software safety and reliability. Los Alamitos, California 1999,
IEEE Computer Society.

[23] IEC. 62061 Safety of machinery: Functional safety of electrical, electronic and
programmable electronic control systems. International Electrotechnical Commission
(2005).

[24] IEC. 61513 Nuclear power plants - Instrumentation and control important to
safety - General requirements for systems. International Electrotechnical Commission
(2011).

[25] Leveson, N.G. System safety in computer-controlled automotive systems. SAE
transactions 109(2000)7, pp. 287-294.

[26] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design patterns: elements of
reusable object-oriented software. 1994, Addison-Wesley.

107

[27] Douglass, B.P. Real-time design patterns: robust scalable architecture for real-
time systems. 2003, Addison-Wesley.

[28] Hanmer, R. Patterns for fault tolerant software. 2013, John Wiley & Sons.

[29] Saridakis, T. Design patterns for checkpoint-based rollback recovery.
Proceedings of the 10th Conference on Pattern Languages of Programs (PLoP), 2003.

[30] IEC. 61131-3: Programmable Controllers - Part 3, Programming Languages.
International Electrotechnical Commission (2013).

[31] IEC. 61499-1: Function Blocks-Part 1: Architecture. International
Electrotechnical Commission (2012).

[32] Thramboulidis, K.C. & Tranoris, C.S. Developing a CASE tool for distributed
control applications. The International Journal of Advanced Manufacturing Technology
24(2004)1-2, pp. 24-31.

[33] Tranoris, C. & Thramboulidis, K. A tool supported engineering process for
developing control applications. Computers in Industry 57(2006)5, pp. 462-472.

[34] Strasser, T., Ebenhofer, G., Rooker, M. & Hegny, I. Domain-specific design of
industrial automation and control systems: The MEDEIA approach. Intelligent
Manufacturing Systems, 2010, pp. 18-23.

[35] Vyatkin, V., Hanisch, H., Pang, C. & Yang, C. Closed-loop modeling in future
automation system engineering and validation. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on 39(2009)1, pp. 17-28.

[36] Dubinin, V., Vyatkin, V. & Pfeiffer, T. Engineering of validatable automation
systems based on an extension of UML combined with function blocks of IEC 61499.
IEEE International Conference on Robotics and Automation, 2005, pp. 3996-4001.

[37] Hussain, T. & Frey, G. Defining IEC 61499 compliance profiles using UML and
OCL. 5th IEEE International Conference on Industrial Informatics, 2007, pp. 1157-
1162.

[38] Panjaitan, S. & Frey, G. Development process for distributed automation
systems combining UML and IEC 61499. International Journal of Manufacturing
Research 2(2007)1, pp. 1-20.

[39] Thompson, H., Ramos-Hernandez, D., Fu, J., Jiang, L., Choi, I., Cartledge, K.,
Fortune, J. & Brown, A. A flexible environment for rapid prototyping and analysis of
distributed real-time safety-critical systems. Control Engineering Practice 15(2007)1,
pp. 77-94.

108

[40] Marcos, M., Estévez, E., Gangoiti, U., Sarachaga, I. & Barandiarán, J. UML
modelling of industrial distributed control systems. Proceedings of the Sixth Portuguese
Conference on Automatic Control, 2004, pp. 127-132.

[41] Lukman, T., Godena, G., Gray, J., Heri ko, M. & Strm nik, S. Model-driven
engineering of process control software–beyond device-centric abstractions. Control
Engineering Practice 21(2013)8, pp. 1078-1096.

[42] Witsch, D. & Vogel-Heuser, B. Close integration between UML and IEC 61131-
3: New possibilities through object-oriented extensions. IEEE Conference on Emerging
Technologies & Factory Automation, 2009, pp. 1-6.

[43] Vogel-Heuser, B., Witsch, D. & Katzke, U. Automatic code generation from a
UML model to IEC 61131-3 and system configuration tools. International Conference
on Control and Automation, 2005, IEEE. pp. 1034-1039.

[44] France, R.B., Kim, D., Ghosh, S. & Song, E. A UML-based pattern specification
technique. IEEE Transactions on Software Engineering 30(2004)3, pp. 193-206.

[45] France, R., Chosh, S., Song, E. & Kim, D. A metamodeling approach to pattern-
based model refactoring. IEEE Software 20(2003)5, pp. 52-58.

[46] Kajsa, P. & Majtás, L. Design patterns instantiation based on semantics and
model transformations. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J. &
Rumpe, B. (ed.). SOFSEM 2010: Theory and Practice of Computer Science. 2010,
Springer. pp. 540-551.

[47] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. & Halkidis, S.T. Design
pattern detection using similarity scoring. Software Engineering, IEEE Transactions on
32(2006)11, pp. 896-909.

[48] Briand, L.C., Labiche, Y. & Sauve, A. Guiding the application of design patterns
based on uml models. 22nd IEEE International Conference on Software Maintenance,
2006, pp. 234-243.

[49] Dong, J. UML extensions for design pattern compositions. Journal of object
technology 1(2002)5, pp. 151-163.

[50] Jing, D., Sheng, Y. & Kang, Z. Visualizing design patterns in their applications
and compositions. IEEE Transactions on Software Engineering 33(2007)7, pp. 433-453.

[51] Hästbacka, D., Vepsäläinen, T. & Kuikka, S. Model-driven development of
industrial process control applications. Journal of Systems and Software 84(2011)7, pp.
1100-1113.

109

[52] Ritala, T. & Kuikka, S. UML automation profile: enhancing the efficiency of
software development in the automation industry. 5th IEEE International Conference on
Industrial Informatics, 2007, pp. 885-890.

[53] IEC. 62424: Representation of Process Control Engineering – Requests in P&I
Diagrams and Data Exchange Between P&ID Tools and PCE-CAE Tools. International
Electrotechnical Commission (2008).

[54] OMG. UMLTM Profile for Schedulability, Performance, and Time Specification,
Version 1.1. Object Management Group (2005).

[55] OMG. UMLTM Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms Specification, Version 1.1. Object Management Group
(2008).

[56] OMG. Object Constraint Language, Version 2.4. Object Management Group
(2014).

[57] Hästbacka, D. Developing Modern lndustrial Control Applications: On
lnformation Models, Methods and Processes for Distributed Engineering. Doctoral
Thesis. Tampere University of Technology. Publication 1143 (2013).

[58] Alexander, C., Ishikawa, S. & Silverstein, M. A Pattern Language: Towns,
Buildings, Construction. 1977, Oxford University Press.

[59] Alexander, C. The timeless way of building. 1979, Oxford University Press.

[60] Agerbo, E. & Cornils, A. How to preserve the benefits of design patterns. ACM
SIGPLAN Notices, 1998, ACM. pp. 134-143.

[61] Karaila, M. & Systa, T. Applying Template Meta-Programming Techniques for
a Domain-Specific Visual Language - An Industrial Experience Report. 29th
International Conference on Software Engineering, 2007, IEEE. pp. 571-580.

[62] Evesti, A. Quality-oriented software architecture development. VTT publications
636(2007).

[63] Vepsäläinen, T. UML-Profiilityökalu Automaatiosuunnitteluun. M.Sc. Thesis.
Tampere University of Technology (2008).

[64] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. Pattern
oriented software architecture: a system of patterns. 1996, John Wiley & Sons.

[65] Appleton, B. Patterns and software: Essential concepts and terminology. Object
Magazine Online 3(1997)5, pp. 20-25.

110

[66] MODELISAR Consortium Functional Mock-up Interface for Co-simulation,
Document version 1.0. MODELISAR (2010).

[67] Hemingway, G., Neema, H., Nine, H., Sztipanovits, J. & Karsai, G. Rapid
synthesis of high-level architecture-based heterogeneous simulation: a model-based
integration approach. Simulation 88(2012)2, pp. 217-232.

[68] Hegny, I., Wenger, M. & Zoitl, A. IEC 61499 based simulation framework for
model-driven production systems development. 15th IEEE Conference on Emerging
Technologies and Factory Automation, 2010, IEEE. pp. 1-8.

[69] Yang, C. & Vyatkin, V. Transformation of Simulink models to IEC 61499
Function Blocks for verification of distributed control systems. Control Engineering
Practice 20(2012)12, pp. 1259-1269.

[70] Vyatkin, V., Karras, S. & Pfeiffer, T. Architecture for automation system
development based on IEC 61499 standard. 3rd IEEE International Conference on
Industrial Informatics, 2005, IEEE. pp. 13-18.

[71] Ferrarini, L. & Dedè, A. A model-based approach for mixed hardware in the
loop simulation of manufacturing systems. 10th IFAC Workshop on Intelligent
Manufacturing Systems, 2010, IFAC. pp. 36-41.

[72] Thompson, H., Ramos-Hernandez, D., Fu, J., Jiang, L., Nu, J. & Dobinson, D.
The FLEXICON co-simulation tools applied to a marine application. Proceedings of the
Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime
Environment 222(2008)2, pp. 81-94.

[73] Herzner, W., Schlick, R., Schlager, M., Leiner, B., Huber, B., Balogh, A.,
Csertan, G., LeGuennec, A., LeSergent, T. & Suri, N. Model-based development of
distributed embedded real-time systems with the decos tool-chain. SAE AeroTech
Congress & Exhibition, 2007.

[74] Plummer, A. Model-in-the-loop testing. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 220(2006)3,
pp. 183-199.

[75] Chae, H., Jin, X., Lee, S. & Cho, J. TEST: Testing Environment for Embedded
Systems Based on TTCN-3 in SILS. In: l zak, D. et al. (ed.). Advances in Software
Engineering. 2009, Springer. pp. 204-212.

[76] Short, M. & Pont, M.J. Assessment of high-integrity embedded automotive
control systems using hardware in the loop simulation. Journal of Systems and Software
81(2008)7, pp. 1163-1183.

111

[77] Stoeppler, G., Menzel, T. & Douglas, S. Hardware-in-the-loop simulation of
machine tools and manufacturing systems. Computing and Control Engineering
16(2005)1, pp. 10-15.

[78] Dougall, D.J. Applications and benefits of real-time IO simulation for PLC and
PC control systems. ISA transactions 36(1997)4, pp. 305-311.

[79] Karhela, T. A software architecture for configuration and usage of process
simulation models: Software component technology and XML-based approach.
Doctoral Thesis. VTT Technical Research Centre of Finland. VTT Publications 479
(2002).

[80] Fritzson, P. & Bunus, P. Modelica - a General Object-Oriented Language for
Continuous and Discrete-Event System Modeling and Simulation. 35th Annual
Simulation Symposium, 2002, IEEE. pp. 365-380.

[81] Schamai, W., Fritzson, P. & Paredis, C.J. Translation of UML state machines to
Modelica: Handling semantic issues. SIMULATION: Transactions of The Society for
Modeling and Simulation International 89(2013)4, pp. 498-512.

[82] Schamai, W., Pohlmann, U., Fritzson, P., Paredis, C.J., Helle, P. & Strobel, C.
Execution of UMLState Machines Using Modelica. 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools (In Conjunction with
MODELS), 2010, Citeseer. pp. 1-10.

[83] Vepsäläinen, T. & Kuikka, S. Simulation-Based Development of Safety Related
Interlocks. In: Pina, N., Kacprzyk, J. & Filipe, J. (ed.). Simulation and Modeling
Methodologies, Technologies and Applications. 2013, Springer. pp. 165-182.

[84] Vepsäläinen, T., Hästbacka, D. & Kuikka, S. Simulation Assisted Model-Based
Control Development - Unifying UML AP and Modelica ML. 11th International Middle
Eastern Simulation Multi Conference, 2010, EUROSIS.

[85] Huber, B. & Obermaisser, R. Model-based development of integrated computer
systems: Modeling the execution platform. 5th Workshop on Intelligent Solutions in
Embedded Systems, 2007, IEEE. pp. 151-164.

[86] Biehl, M., DeJiu, C. & Törngren, M. Integrating safety analysis into the model-
based development toolchain of automotive embedded systems. ACM Sigplan Notices
45(2010)4, pp. 125-132.

[87] Guillerm, R., Demmou, H. & Sadou, N. Information model for model driven
safety requirements management of complex systems. In: Aiguier, M., Bretaudeau, F. &
Krob, D. (ed.). Complex Systems Design & Management. 2010, Springer. pp. 99-111.

112

[88] Zoughbi, G., Briand, L. & Labiche, Y. A UML profile for developing
airworthiness-compliant (RTCA DO-178B), safety-critical software. In: Engels, G.,
Opdyke, B., Schmidt, D.C. & Weil, F. (ed.). Model Driven Engineering Languages and
Systems. 2007, Springer. pp. 574-588.

[89] Zoughbi, G., Briand, L. & Labiche, Y. Modeling safety and airworthiness
(RTCA DO-178B) information: conceptual model and UML profile. Software &
Systems Modeling 10(2011)3, pp. 337-367.

[90] Douglass, B. Analyze system safety using UML within Telelogic Rhapsody
environment. 2009, White Paper, Rational Software, IBM Software Group.

[91] IEEE. 1471-2000 - IEEE Recommended Practice for Architectural Description
for Software-Intensive Systems. IEEE (2000).

[92] Douglass, B.P. Safety-critical systems design. Electronic engineering
70(1998)862, pp. 45-50.

[93] Rauhamäki, J., Vepsäläinen, T. & Kuikka, S. Functional Safety System Patterns.
VikingPLoP 2012 Conference, 2012, pp. 48-68.

[94] Rauhamäki, J. & Kuikka, S. Patterns for Control System Safety. 18th European
Conference on Pattern Languages of Programs, 2013, ACM.

[95] Kruchten, P., Lago, P., van Vliet, H. & Wolf, T. Building up and exploiting
architectural knowledge. 5th Working IEEE/IFIP Conference on Software Architecture,
2005, IEEE. pp. 291-292.

[96] Sklet, S. Safety barriers: Definition, classification, and performance. Journal of
Loss Prevention in the Process Industries 19(2006)5, pp. 494-506.

[97] Möller, N. & Hansson, S.O. Principles of engineering safety: risk and
uncertainty reduction. Reliability Engineering & System Safety 93(2008)6, pp. 798-805.

[98] de Miguel, M.A., Briones, J.F., Silva, J.P. & Alonso, A. Integration of safety
analysis in model-driven software development. IET Software 2(2008)3, pp. 260-280.

[99] IEC. 61804-1: Function blocks (FB) for process control - Part 1: Overview of
system aspects. International Electrotechnical Commission (2006).

[100] Peltola, J., Sierla, S., Vepsalainen, T. & Koskinen, K. Challenges in industrial
adoption of model-driven technologies in process control application design. Industrial
Informatics (INDIN), 2011 9th IEEE International Conference on, 2011, pp. 565-572.

113

[101] ISO. 13849-1:2006 Safety of machinery - Safety-related parts of control
systems - Part 1: General principles for design. International Organization for
Standardization (2006).

[102] Vepsäläinen, T., Kuikka, S. & Eloranta, V. Software architecture knowledge
management for safety systems. 17th IEEE International Conference on Emerging
Technologies & Factory Automation, 2012, IEEE. pp. 1-8.

[103] Trauth, E.M. The choice of qualitative methods in IS research. In: Trauth, E.
(ed.). Qualitative research in IS. 2001, IGI Publishing. pp. 1-19.

115

Publications

Publication 1

Vepsäläinen, T., Hästbacka, D., Kuikka, S. (2008) Tool Support for the UML Automation

Profile – for Domain-Specific Software Development in Manufacturing. Proceedings of the

3rd International Conference on Software Engineering. Sliema, Malta, October 26-31, 2008,

pp 43-50. IEEE Computer Society, 2008.

DOI: 10.1109/ICSEA.2008.22

© 2008 IEEE. Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of Tampere University of Technology's products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

Tool Support for the UML Automation Profile - for Domain-Specific Software
Development in Manufacturing

Timo Vepsäläinen, David Hästbacka, Seppo Kuikka
Tampere University of Technology, Department of Automation Science and Engineering,

P.O. Box 692, FIN-33101 Tampere, Finland
{timo.vepsalainen, david.hastbacka, seppo.kuikka}@tut.fi

Abstract

The development of modern distributed automation
applications is challenging and present development
practices contain manual transferring of informal
information from one phase to another. Our research
aims to overcome some of these challenges by
integrating concepts from modern object-oriented
design, model-driven development and high-level
modeling potential of the UML automation profile into
a seamless development path from PI-diagrams to
control software. This paper presents a prototype of a
control engineering tool that supports the UML
automation profile and is intended to cover part of the
development chain. The tool was implemented on the
Eclipse platform and it utilizes various open source
tools and frameworks to enable also usage of UML
and SysML in modeling work. The implemented tool
can be extended by transformation tools capable of
processing requirements of the control system and
PIM-model of the designed control software.
Keywords: automation, control, MDE, UML profile,
modeling tool.

1. Introduction

Automation is important in manufacturing for
various reasons, such as achieving or enhancing the
quality and flexibility of industrial production and the
safety and efficient use of manufacturing equipment.
Strict requirements concerning dependability, safety
and various other quality issues are consequently laid
on the systems. The fundamental role of automation
applications is in the measurement and control of a
system or process, usually leaving for humans only the
overall supervision of the integrated and distributed
automation system.

Software has an essential role in developing modern
industrial automation applications. In the recent years,
the challenges in software development for automation
systems have increased, because the systems have
become more and more complex while competition
within the automation industry has tightened. In order
to maintain competitiveness, automation system and
application vendors have been forced to increase both
the efficiency and openness of the development
process.

A potential solution is the use of high-level domain-
specific modeling languages and tools that are capable
of capturing the essential concepts of modern, complex
automation applications. Key issues for such languages
are the capability of the modeling language to address
the safety- and mission-critical properties of
automation systems. Preferably, the language shall be
such that it can exploit the appropriate concepts and
notations of generic information system modeling, i.e.
UML and relevant profiles. As a result, a high-level
modeling language, based on UML V2 and suitable
UML profiles, provides substantial potential for
modeling automation applications in an efficient and
vendor independent way.

The tools shall give support for the entire
application development life cycle – starting from
manufacturing oriented requirements and proceeding
via platform independent architectural considerations
of an automation application to the platform specific
and device oriented implementation.

This paper will first consider domain-specific
languages as well as UML profiles and metamodels in
section 2, Related work. It will then discuss in section
3, the concept of a seamless development process of
automation applications, which we in TUT (Tampere
University of Technology) are developing within the
so called AUKOTON project, in collaboration with
automation companies, VTT (Technical Research
Centre of Finland) and HUT (Helsinki University of

Technology) in Finland. Section 4 gives an overall
view of the automation profile and section 5 of the
Automation Profile Tool (AP-Tool), both developed in
TUT / ASE (Department of Automation Science and
Engineering). Section 6 gives more details of the
present AP-Tool. Section 7 concludes the research
work and discusses future work to enhance the profile,
the AUKOTON chain and the tool.

2. Related work

Domain-specific languages and DSL development
methods raise the level of abstraction in software
development and problem solving by leveraging
domain-specific concepts and practices as a modeling
or programming language. Contrary to general-purpose
programming languages, such as C and Java, domain-
specific programming languages are dedicated to a
particular problem domain, thus making it easier to
solve problems while enhancing properties such as
quality and reliability among others. As a drawback the
design and implementation of domain-specific
programming languages is challenging and requires a
lot of effort and consideration.

However, by using a domain-specific language,
problems can be solved on a higher abstraction level
with concepts and practices of the specific domain, that
is to say in a more problem-oriented manner. This does
not only increase productivity but also makes reuse of
solutions more feasible and most importantly enables
domain experts to work with familiar building blocks
and notions.

In the area of automation and control applications
as well as many other specialized domains there are
recurring concepts and structures that encourage the
use of domain-specific modeling and programming
languages. In contrast to more general modeling (e.g.
UML) and traditional software development, the DSL
methods not only bring the elements of a particular
domain but they may also restrict development to a
very narrow realm in that domain. A common trend
with systems in general is increased complexity and a
strong need for integration on all levels. This calls for
modeling various objects and systems on different
levels of abstraction and the ability to easily extend
modeling and development to new concepts and
related systems. Besides the domain-specific concepts
in the multidisciplinary area of automation and control
applications there is also a need for extendibility and
more general modeling and development capabilities.

In recent years, there has been wide industrial and
academic interest in UML profiles and their usage in
development and design work. An example of
industrial interests is the profile produced by the

AUTOSAR project. The UML profile for AUTOSAR
is intended to provide a precise and pragmatic mapping
between concepts of the UML 2.0 and the AUTOSAR
metamodel [1].

 An example of usage of UML in the automation
domain is the work carried out by Thramboulidis and
Tranoris who have integrated UML and the function
block concept of the automation domain by
introducing a set of transformation rules to generate
function block applications from UML models [4].
Thramboulidis has also introduced a hybrid approach
combining UML and the function block concept for
distributed control system development. The study also
examined applicability of the standardized UML
profile for Schedulability, Performance and Time to
the proposed development process [5]. Compared to
our work, the studies carried out by Thramboulidis et
al. rely more on general modeling capabilities of UML,
instead of common modeling elements and
terminology of the automation domain.

3. AUKOTON development chain

The AUKOTON project introduces a development
chain for industrial software development, the
AUKOTON chain, which utilizes advanced practices
with formal requirement description, profile assisted
UML modeling and automatic code generation.

Our observations during interviews and previous
studies with automation and control engineering
professionals indicate that current practices contain
stages in which informally represented information is
transferred from one phase to another. These stages
contain a lot of manual work and are therefore prone to
error while requirements and additional information
needed to satisfy the required functionality is
supplemented. Another important observation is
companywise varying development processes and the
lack of common application modeling concepts. As a
result interoperability suffers between development
processes of different companies, the design process
becomes platform dependent early in the development,
and the reuse of solutions is difficult.

The seamless AUKOTON development chain
combines foremost industrial practices with object-
oriented design and concepts from model-driven
development (MDD). AUKOTON aims to
conceptualize a structured and formal representation of
initial requirements and source information as well as
design requirements, architectural descriptions, and
information concerning implementation details to
automatically build a running application. Compared to
traditional application development practices the
AUKOTON chain highlights the importance of

platform independent modeling, automatic transfer of
design information, such as process instrumentation
lists, and late binding of platform specific
implementation details, in order to enhance
productivity, solution reuse and software quality.

MDD and Model Driven Engineering (MDE) put
emphasis on the use of models as primary engineering
artifacts in the development process. These models are
then refined from one stage to another either in a user
assisted manner or automatically. The background data
traditionally guides decisions made during each phase
but it may also contain information that can be
automatically processed and transferred to the next
design phase. For automation and control applications
this could be for instance connections between
different parts of the system or selecting a particular
low-level function block for the target DCS
(Distributed Control System) based on information in
initial P&I diagrams.

Model transformations are an essential part of the
MDE concept and usually related to metamodeling
methods. Model transformations take source models as
input and produce target models as a result. These
models typically conform to given metamodels that
can be understood as higher level models that define
the semantics and the syntax of a modeling language.

The AUKOTON chain consists of a starting data
phase where initial requirements and background
information from sources such as P&I diagrams,
process descriptions, and instrumentation lists are
gathered into a formal structured representation. In the
following phase where most of the actual design work
is done the UML automation profile (UML AP) is
utilized (see section 4). The UML modeling results in a
platform independent model (PIM) that is used as a
source model in the transformation in the final stage.
The PIM can be tagged with stereotypes to indicate
additional information needed for the transformation
that produces a platform specific model (PSM) of the
application. The PSM is a representation of the
application based on building blocks and constructs of
the target control platform and is used to generate the
final executable application. The AUKOTON chain
described is illustrated in figure 1.

In order to support the development process
presented a tool based on the Eclipse framework has
been developed. At this moment the tool implements
the UML automation profile concepts and supports
application modeling covering requirements,
application functionality, devices and resources as well
as application architecture and distribution. In addition,
the tool offers well-defined extension points for
integration to plug-ins that fulfill the rest of the
AUKOTON chain (see figure 1). By using this type of

a loosely coupled tool chain, responsibilities can be
shared conveniently and the approach can easily be
adapted to, for instance, new target platforms.

Fig. 1. The AUKOTON chain utilizes current

practices with formal requirement description,
UML modeling and automatic code

generation.

4. The UML automation profile

The main principles of the UML automation profile,
which is specified in detail in [3], are presented in this
section as background information for the tool
presentation in sections 5 and 6. The utilization of the
relevant existing UML profiles is also indicated. The
automation profile is divided into several areas of
responsibility, each covering an important automation
domain specific aspect. Such a division is made in
order to allow easier management and further
enhancement of the profile. In addition, the designers
using the profile will be able to easily adopt and utilize
only those parts of the profile, found relevant for the
needs of the application.

The profile is organized into four independent
subprofiles, as depicted in Fig. 2. Case problems that
represent typical (but still as diversified as possible)
automation applications have been utilized as test cases
for the profile.

Fig. 2. The high-level organization of the

UML automation profile.

The profile consists of stereotypes, tagged values
and constraints, which are the principal means for
introducing domain-specific concepts and their
semantics into the language. The stereotypes are
extended, as extensively as possible, from feasible
elements of the UML Real-Time Profile, SysML and
UML Profile for Quality of Service and Fault
Tolerance.

The Requirements subprofile provides means for
organizing the original requirements in a graphical
fashion. The graphical representation is lightweight by
emphasizing the relations between requirements and
giving only a summary for each requirement. This
summary allows identifying, rationalizing,
categorizing and shortly describing the requirement.
The requirement specification diagram specializes the
requirement diagram of SysML. The purpose of the
diagram type is to enable specifying automation
application’s requirements and linking requirements to
actual model structures and design decisions.

The AutomationConcepts subprofile provides
support for specifying various kinds of functionalities
and capabilities common in the applications of the
automation domain. One of the key concepts of the
subprofile is the automation function that includes a
category of common domain-specific functionalities.
The functionalities covered in this subprofile include
control of devices, sequential control, handling of
events and alarms, as well as executing simulations. In
addition, the subprofile supports the specification of
control algorithms and integrating them with control
functionalities.

The AutomationConcepts subprofile approaches
control functions with the so-called control structure
diagram, based on the SysML block definition
diagram, that illustrates a control structure, or a set of
structures, by linking the control outputs, inputs and
algorithms together.

Automation applications often perform sequential
control activities, such as start-up or shutdown
sequences or batch automation sequences, which
consist of activities initiated by measured state or
timing conditions. Sequential control consists of a
collection of sequential steps (or procedural elements)
using which, a specific control task is executed.
Indeed, this subprofile defines an automation sequence
diagram, based on UML state machines, that allows
the building of sequences from state-like steps, each
with dedicated tasks executed when the step is entered,
exited or during the step.

The DistributionAndConcurrency subprofile
supports the specification of so-called automation
components, from which an automation application
software is composed, and the deployment of these

components to active resources, such as controllers.
Each resource may execute several components, thus
supporting the distribution models of industrial
standards. In order to allow communication between
the components over the network in a transparent
manner, the profile allows the utilization of several
common communication patterns, including the
publisher-subscriber and client-server patterns.

Another issue addressed in this subprofile is
concurrency that causes the need for mutual exclusion
and synchronization. The subprofile allows protection
of resources with mutual exclusion mechanisms.
Synchronization mechanisms may also be specified.
For covering general concurrency issues, the package
depends on the concurrency subprofile of the UML
RT-profile.

The DevicesAndResources subprofile provides
support for interfacing with various kinds of
automation devices by specifying device interfaces and
I/O operations in a platform and hardware independent
manner. A device interface includes only the necessary
information for identifying and interacting with the
device, such as an identifier and type of the hardware
interface. The subprofile also takes into account that
interaction with a device may take place with any
number of signals. Therefore, a device interface
contains a set of ports, each transferring a single
signal.

5. UML AP Tool design approach

The design and implementation work of a tool
supporting the UML automation profile, the UML AP
Tool, was initiated and influenced mainly by two
factors. Firstly, the UML automation profile was
designed to be used by automation and control
engineers to design and to specify automation
applications. Tool support was needed to further
improve and to experimentally estimate the automation
profile. Secondly, the AUKOTON chain requires tool
support for the automation profile as two stages of the
modeling chain use concepts of the profile. Moreover,
the AUKOTON chain requires support for other
functionalities regarding the model driven
characteristics of the tool chain.

Besides defining a high-level modeling language
for software-oriented applications in the automation
domain, the automation profile also makes demands to
tools supporting it. In addition to the profiles own
concepts, practical usage of the profile requires tools to
enable the use of any diagram type or modeling
concept of UML and SysML [3]. Even though the
profile defines three new diagram types, not all of the
concepts of it are intended to be used in the new

diagram types only. For example, most of the concepts
defined in the DevicesAndResources sub-profile fit
most naturally as stereotypes to specialize semantics of
the modeling concepts of UML and SysML. These
concepts do have specialized semantics, for example
regarding to roles in certain design patterns, and
usually sets of attributes related to the semantics but
their structural characteristics are not rich enough to
model all the desired aspects of the application.

The automation profile defines most of the concepts
needed in its diagram types but does not actually
specify the concrete syntax of the diagram types and
graphical presentation of the elements. The intended
users of the tool, however, are automation and control
engineers accustomed to traditional diagram types of
the automation domain. Because of this, the diagram
types were chosen to be implemented to resemble these
traditional diagrams with the intention to help intended
users to familiarize themselves with the tool.

There are several structural similarities between the
three own diagram types of the automation profile and
certain diagram types of UML and SysML. Despite the
similarities, some of the concepts needed in the
aforementioned new diagram types have structural
features that do not fit to the UML metamodel. That is
to say, implementing these concepts requires at least
new meta-associations, in addition to defining
stereotypes, to be added to the metamodels of UML
and SysML.

The light weight profile mechanism of UML is
based on stereotypes that can be used to specialize
semantics of the modeling language concepts.
Stereotypes may also define tagged values (attributes)
that can be used to parameterize semantic
characteristics of the stereotypes. Stereotypes cannot,
though, be used in a way that would contradict with
the semantics of the UML metamodel [2]. The UML
super structure specification, for example, denies
stereotypes to be used to insert new meta-associations
between metaclasses and adding new metaclasses,
which is exactly what the precise implementation of
the automation profile would require. Fortunately,
there are no such restrictions imposed to possible
modifications to be done on the MOF-based (Meta
Object Facility) M2 metamodel layer on which the
abstract syntax of UML is defined.

These aspects imply that in the automation profile
implementation some of its concepts require
modifications on the M2 metamodel layer while others
are more naturally supported with stereotypes which
are modeling-time constructs. This, of course, has
influence on implementation techniques. Additionally,
the implementation, including metamodel
implementation, needed to be tightly integrated to an

existing UML/SysML tool as it would require an
excessive amount of development work to implement
also UML and SysML support from scratch.

Mostly because of these needs to integrate the tool
to an existing tool and to modify the metamodel being
used, the tool was chosen to be implemented on the
Eclipse platform. On the Eclipse platform, there exists
a variety of open source UML/SysML tools which also
use the same open source implementation of the UML
metamodel, org.eclipse.uml2. The UML metamodel
implementation is itself based on the open source
Eclipse Modeling Framework (EMF) that can also be
used to make further additions to the metamodel.
Eclipse and EMF are also a good choice considering
the AUKOTON chain and its need for M2M (model to
model) transformations. There are several
transformation tools supporting EMF, such as
SmartQVT and Atlas Transformation Language
(ATL).

The AUKOTON tool chain, as presented in section
3 and Fig. 1, processes the model of the application to
be implemented and its requirements on four layers of
abstraction. Two of these four representations of the
system use concepts defined by the automation profile
and needs the support of the UML AP Tool. In
addition, the tool needs to support importing
requirements from design phases and tools preceding
software design and exporting models to code
generators.

By using so called extension points, import and
export functionalities can be integrated to the tool and
activated from the user interface of the tool which is
more convenient than using entirely independent tools.
The same user interface can also be used to select the
parts of the model that will be processed in the
transformation.

6. UML AP Tool development

The UML AP Tool is a result of design and
implementation work based on features and
requirements presented in the previous section. The
present version of the tool was finished during spring
2008 but the tool will be further developed during the
AUKOTON project because of the needed
enhancements to the profile and additional features
needed to support the AUKOTON chain.

The tool was implemented on the Eclipse platform
to extend the open source Topcased UML/SysML tool
(one of the few tools supporting UML, SysML and
further diagram development at the time the
development work was started). The Topcased tool
also supports implementing own diagram types on
EMF-based metamodels. The support includes

generator models for generating skeletons of graphical
editors and diagram type implementations which can
be easily modified and integrated to the Topcased tool
environment.

As presented in section 5, the implementation of the
automation profile required also modifications to the
implementation of the metamodel used by the tool. In
this case these modifications were restricted to
additions of new metaclasses and meta-associations
corresponding to concepts defined by the automation
profile. Additions could be realized in a distinct plug-
in that is only dependent of the existing
implementations of UML and SysML metamodels, the
org.eclipse.uml2 and the org.topcased.sysml.

Both of the extended metamodel implementations
are based on the Eclipse Modeling Framework (EMF)
which was also used to implement the additional parts
of the metamodel. The additions, new meta-
associations and metaclasses extending metaclasses of
UML and SysML, were specified in an ecore model
(MOF-like metamodel in EMF) which was further
used to generate implementing Java classes and
Eclipse plug-ins. Concepts not realized with
metamodel extensions are supported with light weight
UML profile consisting of stereotypes corresponding
to the concepts of the profile. In the present version of
the UML AP Tool, the modeling-time profile is also
imported automatically to all new models in order to
ease usage of the stereotypes.

The UML AP Tool consists of seven Eclipses plug-
ins, each implementing part of the functionality of the
whole application. The plug-ins follow Topcased’s
naming convention and they are presented in Fig 3 that
also presents the most important (but not all) couplings
of the plug-ins to the extended Topcased tool and to
the Eclipse platform.

Fig. 3. The seven plug-ins of the UML AP Tool
and the most important couplings to the

extended Topcased tool and the platform.

The central plug-in in the picture, and in the context
of the tool, is the plug-in implementing the additions to
the metamodel, org.topcased.uml_ap. Plug-in
org.topcased.uml_ap.editor is a simple tree editor
capable of handling models conforming to the
metamodel.

The org.topcased.modeler plug-in is the graphical
editor plug-in of the tool. In addition to basic graphical
editors functionality, the modeler plug-in also defines
its own extension points of the tool to enable external
transformation plug-ins usage from the tool. The
modeler plug-in is based on the graphical editor
generation of Topcased’s and is basically a GEF
(Graphical Editing Framework) editor.

The own extension interface of the tool, defined by
the modeler plug-in, consists of import and export
extension points. Performing the import functionality
can be initiated by the user of the tool and the user may
also select the desired RequirementDefinition from
tools Outline view and the desired import
implementation from the list provided by the tool. The
export extension point is technically very similar to the
import extension point and allows exporting Packages
(UML::Package) or elements of any type extending the
Package type.

Both the import and the export extension points
allow mediating references to elements of the
processed model and initiating the import or export
functionality, respectively. The mediated parts of the
model, however, are not separated from the whole
model. Because of this, the choice to use the
referenced element and children of it or the whole
model is eventually a choice to be made by the import
or export tool. This also enables modification of the
existing requirement hierarchy instead of creating a
new one every time the import functionality is
performed.

The last three plug-ins of the UML AP Tool,
org.topcased.modeler.requirementspecificationdiagram
, org.topcased.modeler.controlstructurediagram and
org.topcased.modeler.automationsequencediagram,
implement the new diagram types of the automation
profile: requirement specification diagram, control
structure diagram and automation sequence diagram,
respectively. The diagram types are registered to be
used by the Topcased tool and graphical editors by
defining an extension to the extension point
org.topcased.modeler.diagrams (see Fig. 3). Extending
this extension point includes specifying a diagram type
specific configuration class and metaclasses that can
act as root elements of the diagrams.

The first new diagram type, the requirement
specification diagram, is aimed to enable modeling of
automation application requirements and linking of

these requirements to actual design decisions. The
diagram was implemented to resemble the class
diagram, as can be seen in Fig. 4, since there wasn’t
any well known graphical representation of
requirements in the automation domain to be used as a
starting point.

The requirements in the Fig. 4, as well as modeling
elements in figures 5 and 6, are related to a laboratory-
scale process for simulating pulp batch cooking. The
pulp process includes both continuous control tasks
and discrete sequential control and is therefore a good
example to be sketched with the new diagram types.

Fig. 4. Functional requirements of the Mini
Pulp Process control application presented
with the Requirement Specification diagram.

The second new diagram type, the control structure

diagram, enables modeling of automation applications
structure and control activities with use of function-
block-like AutomationFunctions. In addition to
AutomationFunctions, the diagram type allows the use
of SysML block definition diagram concepts to enable
modeling of AutomationFunctions coupling to the
whole control systems and I/O functionality. An
example of a control structure diagram can be seen in
Fig. 5. AutomationFunctions defined by the
automation profile are presented as blocks that can be
linked together with ports and connections.

Fig. 5. Pressure control loop of the Mini Pulp

process control application presented with the
Control Structure diagram.

The third new diagram, the automation sequence
diagram, enables modeling of sequentially executed
control activities. Sequences consist of Steps,
Interlocks (representing exceptional Steps),
Allocations and sub-Sequence references that are
executed in order determined by Transitions and
Exceptions. The graphical presentation of the diagram
type is mostly implemented to resemble traditional
sequential function chart (SFC) diagrams of the
automation domain. An example of such automation
sequence diagram can be seen in Fig. 6.

Fig. 6. Part of the impregnation sequence of

the Mini Pulp Process control application
presented with the Automation Sequence

diagram.

7. Conclusions and further development

This paper has presented an overview of the UML
automation profile and the AP-Tool. The former is a
UML-based high-level modeling language for
software-oriented applications in the automation
domain, the latter is an Eclipse plug-in for supporting
efficient use of the profile.

The current version of UML (UML V2) has
sufficient potential for modeling tasks in the domain.
Thus, the new language is implemented as an UML V2
profile which utilizes three existing UML profiles,
namely SysML, UML Real-Time Profile and UML
Quality of Service and Fault Tolerance Profile. The
profile itself covers the most common essential aspects
of automation applications, namely requirements,
automation concepts, distribution and concurrency, as
well as automation resources and device interfaces.

A model-driven approach for developing
automation and control applications offers many
possibilities to improve the development process.
Although there are still issues that require
consideration, this seems like a feasible approach that

is worthwhile studying. By bringing domain-specific
concepts to the application design process problems
can be solved by domain experts with familiar
elements on a higher level compared to traditional
approaches.

The implemented tool support for the UML
automation profile proved it possible to extend UML
on both M2 and M1 metamodeling layers and to
implement new diagram types conforming to the
extended metamodel with reasonable resources. The
tool fulfills common functionalities of modeling tools
and is technically implemented to utilize the plug-in
architecture of Eclipse and various open source tools
and frameworks, such as, the Eclipse Modeling
Framework. The utilized plug-ins were found useful
and well-working in their intended usage.

The prototype tool was also tested and evaluated by
a few automation researchers from Tampere University
of Technology and Helsinki University of Technology.
According to the feedback, the new diagram types
were considered fairly easy to draw and the tool
performed modeling and drawing work rather well.
Most of the difficulties that came to light were related
to unfamiliarity of certain concepts of SysML and to
the usage of UML profiles and stereotypes. It was also
stated that the tool should include more user
supporting functions as, for example, the use of
stereotypes may be unfamiliar to automation and
control engineers.

The AUKOTON approach and the tool chain
presented is being further developed and evaluated in
co-operation with our research partners and industry
professionals. Although the tool chain has not yet been
fully implemented and evaluated, it appears that the
AUKOTON approach may provide improvements
related to efficiency and productivity of automation
application design and to quality and maintainability of
automation applications.

The future work concerning the automation profile
is focused on one hand to enhancing the Automation
concepts subprofile with new algorithms and the
DevicesAndResources subprofile with embedded
device constraints. On the other hand, already in the
ongoing work within the AUKOTON-project, the
upper level requirements, given according to the new
automation requirements standard (IEC-62424) will be
integrated to the Requirements package of the
automation profile.

Within the AUKOTON chain, partial code
generation will be developed to facilitate run-time
function block execution (IEC-61131) based on the
specifications with the automation profile. Moreover,
design wizards with smart design support functionality
will be developed to help the use and dissemination of
the profile within automation design community.

9. References

[1] AUTOSAR Gbr, UML profile for AUTOSAR V1.0.1,
AUTOSAR Development Partnership, 2006.
[2] Object Management Group Inc., UML 2.1.1
Superstructure Specification, formal/07-02-05, OMG, 2007.
[3] T. Ritala, S. Kuikka, “UML Automation Profile:
Enhancing the Efficiency of Software Development in the
Automation Industry”, The Proceedings of the 5th IEEE
International Conference on Industrial Informatics (INDIN
2007), Vienna, Austria, 23-27.7.2007, pp. 885-890.
[4] C. Tranoris, K. C. Thramboulidis, “Integrating UML and
the Function Block Concept for the Development of
Distributed Control Applications”, The Proceedings of the 9th
International Conference on Emerging Technologies and
Factory Automation (ETFA 2003), Lisbon, Portugal, 16-
19.9.2003, pp. 87-94.
[5] K.C. Thramboulidis, “Using UML in Control and
Automation: A Model Driven Approach”, The Proceedings
of 2nd IEEE International Conference on Industrial
Informatics (INDIN 2004), Berlin, Germany, 24-26.6.2004,
pp. 587-593.

Publication 2

Vepsäläinen, T., Sierla, S., Peltola, J., Kuikka, S. (2010) Assessing the Industrial

Applicability and Adoption Potential of the AUKOTON Model-Driven Control Application

Engineering Approach. Proceedings of the 8th IEEE International Conference on Industrial

Informatics. Osaka, Japan, July 13-17, 2010, pp. 883-889.

DOI: 10.1109/INDIN.2010.5549626

© 2010 IEEE. Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of Tampere University of Technology's products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

Assessing the Industrial Applicability and Adoption
Potential of the AUKOTON Model Driven Control

Application Engineering Approach

Timo Vepsäläinen1, Seppo Sierla2, Jukka Peltola2, Seppo Kuikka1
1Tampere University of Technology, Department of Automation Science and Engineering,

P.O. Box 692, FIN-33101 Tampere, Finland, {timo.vepsalainen, seppo.kuikka}@tut.fi
2Aalto University, School of Science and Technology, Department of Automation and Systems Technology,

P.O. Box 15500, FI-00076 AALTO, Finland, {seppo.sierla, jukka.peltola}@tkk.fi

Challenges in software development for automation and
control have increased because of various reasons, including the
size of applications and competition within the industry. A
potential solution could be the use of a model-driven engineering
approach to facilitate the development process and design
information flow. Despite the wide interests towards model-
based techniques in the automation domain, the authors have
not been able to find a complete, tool supported UML based
MDE approach, the industrial relevance of which would have
been systematically assessed. In this paper, we intend to assess
the suitability and usefulness of the AUKOTON development
process and tools to development of industrial automation and
control applications. To study these questions, we organized a
laboratory project, in which industrial professionals used our
development process and tools, and used qualitative research
methods for gathering the industrial feedback.

I. INTRODUCTION

The present implementation techniques and practices of
automation and control system implementations highlight the
importance of software, i.e. the automation and control
applications, as essential parts of the systems. Partly due to
this, the challenges in software development for automation
systems have increased. The systems have become more and
more complex, while at the same time the competition and
need for co-operation within the industry have become
prevalent. This has forced the organizations to increase both
the efficiency and openness of the development process.

A potential solution to the challenges could be the use of a
high-level domain specific language accompanied with a
model-driven engineering (MDE) approach and a tool
environment supporting both of them. A development
approach with such characteristics has been proposed in the
AUKOTON project. The modeling concepts are based on the
UML Automation Profile [1] defining the concepts for
modeling the requirements, functionality and architecture of
automation and control applications. The basics of the MDE
approach, as well as the supporting tool environment, have
been discussed in [2] and [3]. The latter paper also discusses
the technical foundation for defining and implementing the
transformations required by the development process.

However, adoption of MDE technology can be a difficult
step for companies, especially since the scope of changes to
current industrial development processes is unknown. This

paper studies the adoption possibilities of the AUKOTON
development process and tools and their ability to facilitate
development work. A research methodology for involving
professionals in this assessment is applied to this study.

This paper is organized as follows. Section 2 reviews
research related to model-driven engineering of automation
and control applications and presents our research questions.
Research methodology for involving professionals and
collecting empirical material is described in section 3.
Current industrial development practices are discussed in
section 4. Section 5 presents the case study and the gathered
empirical material. The empirical material is analyzed against
our research questions in section 6. Section 7 presents
conclusions on the industrial adoption potential of the
AUKOTON model driven engineering approach.

II. RELATED WORK AND RESEARCH QUESTIONS

The idea of model-driven engineering (MDE) and related
approaches, e.g. Model-Driven Development (MDD), Model-
Driven Software Development (MDSD) and Model-Driven
Architecture (MDA), is to use models as primary engineering
artifacts in the development process. In the process, models
are gradually refined towards the executable application,
either automatically and/or in a user-assisted manner. Model
transformations are used to process models and to produce
revised models from existing ones. Models, associated to
model transformations and used during the development,
usually conform to UML or some domain specific languages
(DSLs) that can be either based on or independent of UML.
Tool support for the processes exists on several platforms,
such as Eclipse [16], for both the modeling [12], [13] and
transforming [14], [15] purposes.

In addition to the AUKOTON project, the use of MDE in
the automation domain has been recently proposed by several
projects and papers. The approach of the MEDEIA project, as
discussed in [17],[18] and [19], is based on Automation
Components that are characterized to be composable
combinations of embedded hard- and software including
integrated simulation, verification and diagnostics services
and which can be deployed to hardware with code generation.
However, to the authors of this paper it remains unclear
whether or not the maturity of the developed tools enable
their practical assessment and whether or not the applicability

of the approach has been evaluated with industry
professionals. Moreover, the focus of the project is in
embedded control systems.

Model-driven development of distributed industrial control
applications have been studied by Tranoris and
Thramboulidis [20]. The proposed process addresses the
requirements and analysis of industrial process measurement
and control systems (IPMCS) using UML, and the design and
deployment by means of the function block (FB) construct of
IEC 61499. Model transformations are used between IPMCS-
UML metamodel and IPMCS-IEC61499 function block
metamodel, that both were defined in order to enable the use
of model transformations and the development process is
supported by the CORFU engineering support system.
However, the authors of this paper are not aware of the
development process and tools being assessed with industry
professionals.

The suitability of modeling approaches and notations for
model-driven development of industrial, distributed control
systems has been studied in [21]. The evaluation of the
modeling languages, which included mainly conventional
modeling notations, such as, algebraic models, sequential
function charts, IEC 61499 FBs and class and state diagrams,
was based on modeling needs of the domain with respect to
degree of formality, availability of analysis techniques and
tools, expressiveness of requirements and availability of
exchange formats. The evaluation, however, was not related
to any specific MDE approach and the evaluation did not
cover the industrial usefulness of any MDE approach per se.

Despite the wide interest towards model-driven methods in
the domain, the authors have not been able to find any
systematical assessment of industrial applicability of an MDE
approach with capabilities to produce industrial automation
applications and to automate part of the development work.
The aim of this paper is to fill this gap by assessing the
AUKOTON development process and UML AP Tool with
domain-professional in the development of a small-scale
industrial automation application.

Our research questions are 1) do the process and tool chain
support the information content and development activities
needed to produce industrial automation and control
applications and 2) are the tools and the approach able to
automate part of the development work that is done manually
in current industrial practice. To study the questions, we
organized a laboratory project in which industrial
professionals used our process and tool chain to develop an
application. Qualitative empirical material on their experience
was gathered to answer the research questions above. Other
MDE approaches on the domain, such as those cited above,
were excluded from the study because of the tight schedule of
the event and because the expertise of the authors that
organized the event was in the AUKOTON development
process and tools.

III. RESEARCH METHODOLOGY

A. Choice of method
For the purpose of assessing the industrial adoption

potential of technology that is not yet in industrial use, such
as the AUKOTON tool chain, most research methods are not
applicable [4][11]. Surveys require considerable a priori
knowledge of the phenomenon under study, so they are
problematic for obtaining industrial feedback from
technology that is not yet in industrial use. The designer of
the survey would need to anticipate all the relevant factors
and the answerers would need to foresee the difficulties and
benefits of a technology that they are not familiar with [11].
Case studies can only be undertaken when a technology is
being piloted in a company. This approach usually results in
documenting innovations of industrial origin [4].

Few researchers have addressed the problem of evaluating
DSLs and their supporting tools. A company pilot of a DSL is
described in [24], but our goal is to evaluate a DSL with
professionals before it gains sufficient maturity to be piloted.
A solution to the problem of evaluating the performance of
DSL models on various targets is described in [22]. This is an
example of DSL evaluation that does not involve
professionals. Experiences from having end users evaluate a
DSL have been described in the context of the printing and
graphics arts industry [23]; the paper only presents the results
of the evaluation without describing the method for obtaining
them, but it is clear from the results that the empirical
material was qualitative. Qualitative methods are applicable
for problems that have received little academic attention, so
that the researcher is not able to specify the relevant variables
beforehand [11]; since obstacles to industrial adoption of
MDE-based control engineering approaches are not well
known, qualitative methods were chosen in our research.

Since surveys, case studies and industry pilots are not
applicable in our case, 8 professionals from 4 different
companies were invited to participate in a one-day project
using the AUKOTON tool chain on university premises.
Research arrangements for this are described in the next
section.

B. Research arrangements
Two methods are used for collecting empirical material in

this research: participatory observation and interviewing. The
arrangements are based on our experience in using these
methods on two similar one-week projects in 2005 [10] and
2006 [9].

Participants use the AUKOTON development process and
tools to develop a control system in a university PC-class.
Appropriate guidance is provided in order to complete the
small application with new tools during a one-day event.
Guidance is given by researchers working in industrially
familiar roles of lead engineers and technical specialists.
These researchers have the dual role of collecting qualitative
empirical material, and making field notes of problem
situations in which their assistance is required. In this way,
empirical material is focused on interesting problem
situations; our earlier experience with the conventional
participatory techniques was that most of the material simply
confirms that participants were following instructions
successfully [9].

With the research design described in this paper,
researchers are continuously involved in recording situations
in which participants need external help, and every such
situation results in a qualitative field note. This arrangement
is also very acceptable for industrial participants who can be
uncomfortable having their activities observed and noted
down, since the involvement of field-note taking researchers
is visible to participants only as technical assistance.

One of our previous events [10] used recorded and
transcribed semi-structured qualitative interviews according
to the method proposed by [8]. Our discovery from the
analysis of the transcripts was that despite the great volume of
material and the significant effort in performing the
transcripts, only a limited number of technically interesting
observations were made by the interviewees. Since the
participants had no previous experience with the tool, they
were often not able to recall specific technical details that
they had worked on only a few hours before the interview. In
this situation, all the legitimate interviewing techniques, such
as probing questions and follow-up questions [6] were of
little use due to the fundamental problem of the interviewee
not remembering sufficient details.

These problems were avoided with the interviewing
strategy described here. A single interviewer is responsible
for a small number of participants, and at the end of each
phase in the workflow, a set of questions is asked from each
of these participants regarding the workflow phase that was
just completed. The questions concern the problem that the
participant had recently worked on, and they can refer to the
tool that is in front of them. The researcher will then note
down compact detailed observations instead of producing
hundreds of pages of interview transcripts from which only a
minor part will be chosen for detailed analysis, as in
conventional interviewing techniques [8]. This interview
structure of asking the same questions after each workflow
phase, and from each participant, results in a high level of
comparability [6] in the material. Before the event,
researchers visited each company for a full day interview
about current industrial practice, which was structured
according to the tasks in the development process and the
related artifacts.

The resulting empirical material consists of qualitative
notes collected by several methods: participatory observation,
qualitative interviewing during the event and qualitative
interviewing in companies before the event. The use of
several empirical methods to study the same phenomena is
advocated as it “will provide a richer picture of the events
and/or issues than will any single method” [7, p. 163]. The
methodological challenge is to link these three data sets
together to support analysis. Our solution for this and the
benefits of each of these 3 methods are described below.

Participatory observation complements the interviews
during the event. In both cases, the researcher making the
note also records the workflow phase and the name of the
participant. Cross comparison of interview notes to any
problem notes for the same person and phase suggest if
interview statements were prompted by misunderstanding of
the AUKOTON development process or a genuine

understanding of the approach and its limitations. Interview
statements were full of company specific jargon, so the
meaning of terms could be discovered by referring to the task
and activity descriptions of the corresponding company
interview.

IV. INDUSTRIAL DEVELOPMENT PROCESS

This chapter describes the industrial design work flow and
related design artifacts, based on interviews of six companies
involved in process and automation design projects. The aim
of the chapter is, thus, to position the control application
engineering phase in industrial projects and to discuss the
production of the design information that the AUKOTON
development process and control application engineering
phase in general use as source information.

Process control system design for process plants involves
co-operation between teams and disciplines from process
design, facility design, electrical design, instrumentation
design and automation design. Instrumentation is often
considered as a part of automation design. Automation design
takes requirements and input information from the other
mentioned areas of engineering and produces a functional
process control application. In the Finnish process industry
domain, the automation design is, typically divided in three
main phases: preliminary design, basic design and detailed
design. Depending on the project, each phase may be
outsourced separately.

Main purpose of preliminary design is to provide the
necessary information about major cost factors for making the
investment decision. Thus, the phase resembles the feasibility
study; however, the companies favor the term preliminary
design. Similar phase is carried out also in other engineering
areas. Preliminary automation design collects requirements
and other source information from other engineering
disciplines and the end customer. Customers may supply
general design guidelines, standards and preferred device
suppliers and technology selections. Process engineering
provides a preliminary version of a P&I diagram, verbal
process descriptions and a preliminary list of instruments
(loop list). An updated loop list is received later from
instrument designers. Electrical design provides a list of
motors and other devices with significant power
consumption. This enables estimation of required I/O points,
which is used to evaluate the cost of the automation system.
The structure of the automation system is documented in an
automation description document. The produced artifacts are
textual documents and updated spreadsheets, which provide
source information for the basic design phase.

The basic design produces procurement specifications for
the automation system. These are used when requesting
quotations from automation suppliers. The I/O list is created
on the basis of the process engineering’s loop list, instrument
list and motor list. When the automation system supplier is
selected, more detailed technical information about the
communication is accumulated in the I/O list. The Process
engineering provides reference designations of the loops and
functional descriptions of the process. An important
workflow event is the control approach meeting between

process designers and basic designers. There may be several
iterations of these meetings; first, emphasis is on
understanding source information and later on presenting and
validating basic design’s design decisions and documents.
The basic design produces design documents such as control
diagrams and regulation diagrams (e.g. logic, interlock and
sequence diagrams) and loop wise functional descriptions.

Control diagrams specify the analog control logic solution
to be implemented, in order to manage the process in normal
conditions and keeping it stable. One control diagram shows
only a relevant section of the process equipment and its
logical control solution using signal wires and calculation
symbols. According to interviewees, control diagrams may
use vendor neutral logic or vendor specific concepts if the
automation system supplier has been selected. Regulation
diagrams specify binary logic and sequential control for
moving the process between operational states (e.g. start-up
and shut-down of a sub-process), applying group control for
several devices (e.g. synchronized operations) and handling
abnormal conditions (e.g. interlocks). Similar to control
diagrams, also regulation diagrams may use supplier specific
or neutral logic and concepts.

V. THE ASSESSMENT

The activities performed during the assessment were
divided to 6 phases: control approach discussion, source
information inspection, requirement import and elaboration,
functional design phase, platform specific design phase and
PLCopen XML export. Model transformations were used for
creating the requirement and functional models and to export
PLCopen XML presentation of the application. Three of the
phases: requirement import and elaboration, functional design
phase and platform specific design phase, are integral parts of
the AUKOTON development process presented in Fig. 1. The
intention of the rest of the phases was to introduce the process
to the developers and to be able to classify problem notes to
more specific phases of the assessment event.

During the control approach discussion, the developers
were introduced to the laboratory process, the source
information documents and the approach for dividing the
functionality to control loops. The information was presented
by the lead engineers and consisted of a piping and
instrumentation diagram (P&ID) presenting the physical
process and spreadsheet documents of the I/O connections
points and the required interlockings.

The laboratory process is presented in Fig. 2. The
controlled process variables were the levels of water in tanks
B100 and B200, water flow from tank B100 to B200, water
temperature in tank B100 and pressure in tank B300. The
control application was required to utilize both binary and
analogue valued sensors and actuators, protect

instrumentation from misuse with interlocks and use
controllers also in cascade control structures. Thus, the
application covered the basic tasks of typical automation and
control applications. Some of the interviewed developers
were also able to identify a project with similar automated
process from their work history.

After the discussion, the developers started working
independently by continuing their study of the source material
and then performing the actual development activities. In
order to accomplish the development task during the one-day
event, part of the required models and corresponding visual
diagrams were given to the developers so that the diagrams
could be used as parts of the design and as examples during
the creation of the diagrams that the developers were
responsible for. Guidance for the development approach and
the tool were given as an instruction document and as help
features integrated to the tool. The tool and its wizards
partially automated some tasks, such as applying platform
specific details to the models.

The AUKOTON tool chain produces application code in
the PLCopen IEC 61131-3 XML format utilizing a pre-
defined set of function blocks (FBs) called AUKOTON DCS
(Distributed Control System) library. However, in addition to
being able to produce IEC 61131-3 based PLC applications,
an industrially applicable development approach should be
able to support proprietary DCS platforms and their existing
function block types. However, without resources to
implement mappings for various target DCSs, the possibility
to support various proprietary DCS platforms was assessed
only based on interviews of the participants.

A. Requirement import and elaboration
The intention of the first actual development phase of the

AUKOTON development process, requirement import and
elaboration, is to import the source information and
requirements to the tool environment. Source documents were
imported as structured requirements presenting needs to
interface with sensors and actuators of the process or to

Fig. 2. The laboratory process automated during the assessment event.

Fig. 1. An overview of the AUKOTON development process.

compute control or interlocking signals, as presented in [3].
During the phase, the developers used two automatic import
transformations to import the I/O connections points and the
interlockings as system requirements, re-structured the
requirements to new requirement categories, visualized the
requirement model in requirement specification diagrams and
added the requirements for controllers manually.

During the phase, a total amount of 20 problem notes,
about 2/3 of the total number of problem notes, was gathered.
The problems included, for example, developers forgetting to
import a source information document or being unable to
identify or find certain imported elements from the views of
the tool. This could be due to several reasons. Firstly, current
development practices of industrial automation applications
do not usually contain phases corresponding directly to the
requirement phase. Consequently, the developers may not
have been able to identify a development phase of industrial
projects that could be compared to the requirement phase in
order to understand its purpose and the activities. Secondly,
the requirement phase was the first phase during which the
developers used the UML AP tool that most of the developers
were not familiar with before the assessment. So, one factor
behind these problems was the unfamiliarity of the tool and
Eclipse platform. However, already during the functional
design phase during which the actual activities with the tool
were quite similar, such problems were avoided.

B. Functional design
The intention of the functional design phase of the

development process is to produce a functional model of an
application that fulfills the requirements and that could be
later refined with platform specific details. During the phase,
the developers used an automatic transformation for creation
of the functional model (Automation Functions) based on the
requirement model presenting the user-modified source
information, visualized the functional model with control
structure diagrams and could then refine and inspect the
functional design. Automation Functions (AF) could be
characterized as platform independent, abstract FBs
representing different kinds of measurement, actuation,
control and interlocking functionalities that can be combined
and connected together for modeling of the whole application
[3]. During the phase, only one problem note was reported
and it reported difficulties to open a model.

Based on the interview notes gathered after the functional
design phase, a majority of the developers agreed that the
platform independent design could be completed for, at least,
some proprietary DCS platforms. However, it was pointed out
that more specific concepts, such as logic operations allowing
the modeling of interlocking logic, would be needed to
specify interlockings in industrial projects. This information
was suggested to be added in diagrams specifying the inner
logic of the interlocking Automation Functions (see [1]).
Another piece of information that would be needed for certain
platforms was the specification of the execution order of the
AFs that are eventually transformed into FBs. In case of
PLCopen IEC 61131-3, this information was not needed
because the Multiprog tool could decide the order after the
code generation.

Some developers also suggested presentation of control
and interlocking functionalities in different diagrams in order
to aid the understandability of the design. Technically, such
views could be created with the tool but creation of them is
not automated and they were not used during the assessment.
However, the separation of such aspects might be beneficial
already during the requirements specification phase. In
addition, some developers suggested improving the graphical
presentation of the models. Vocabulary of the model
elements, as well as graphical presentation, should be more
familiar to automation engineers and the UML specific details
and vocabulary should be hidden from the developers.

C. Platform specific design and PLCopen export
The intention of the platform specific design phase is to

produce a platform specific model based on which the
application code could be automatically generated. During the
phase, the platform independent functional model was
completed with platform specific (AUKOTON DCS library)
stereotypes and ports. The stereotypes were used to map the
AFs to existing FBs so that modeling of the implementation
of the AFs was not needed. The signal interfaces of the AFs
(presented as ports) were completed to correspond to those of
the existing FBs by (automatically) checking that all the ports
of the FBs were present in the model and by warning about
additional ports not defined by the actual, implementing FBs.

The interview notes gathered after the completion of the
phase supported our understanding that the stereotypes and
ports based approach could be used also for completing the
platform independent design for certain proprietary DCS
platforms. However, the possibility for detailed-enough
specification of the interlockings was still seen to be missing
which could reduce the usability of the approach. The missing
details included priorities, delays and detailed specification of
the inner logic of the interlocking Automation Functions. It
was also estimated that the basic control functionality
(without interlockings) forms approximately 80-90% of the
amount of code in typical customer projects.

Finally, the developers performed the automatic code
generation and could visualize the program with Multiprog, a
tool with PLCopen IEC 61131-3 XML import/export
capability. No problem notes were reported during the code
generation.

VI. RESULTS

This section presents the results of the assessment based on
the problem and interview notes gathered during the event.
The discussion has been structured based on the research
questions presented in section 2. Subsection A discusses the
question of whether the process and tool chain enable the
development of industrial automation applications for
proprietary DCS platforms. The discussion will consider both
the developers’ ability to use the development process and
tools and the possibility to use this MDE technique to
generate applications to the proprietary DCS platforms that
are currently used by automation system vendors.

Subsection B addresses the second research question -
whether the approach and the techniques could automate part
of the development work that is usually done manually in

current industrial practice. However, also in case of the
second research question, the ability to automate part of
AUKOTON development process may not automatically
prove the industrial capabilities. Instead, in order to assess
industrial applicability, aspects such as inconsistencies
between industrial development workflow and that of the
AUKOTON development process should be taken into
consideration. However, because of the size of the developed
application, such aspects can only be assessed based on the
results of interviewing industrial professionals.

A. Ability to produce industrial automation applications
During the development activities, a total of 30 problem

notes were gathered. The numbers of problem notes gathered
during the phases of the assessment are: control approach
discussion (1), source information inspection (3),
requirements import and elaboration (20), automation
functions (1), platform specific design (2), PLCopen XML
export (0). In addition, 3 problem notes were gathered that
cannot be linked to any specific development phase. Fig. 3
presents the distribution of problems based on the
development phases.

As presented in previous section, at least some of the
problems during the requirements phase may have been
caused by the unfamiliarity of the tool and the platform. This
assumption is also supported by the division of problems
based on the types of problems, shown in Fig. 4. For
example, the total amount of problems related to finding and
creating elements and using the Eclipse views were 2, 3 and
3, respectively. Problem notes in these categories reported

difficulties to find or notice elements and element creations in
the outline view of the tool. In addition, some problem notes
reported difficulties to joint-use the graphical diagrams and
the outline view, and to comprehend the correspondance
between the elements of the views. Because such features are
quite common in UML tools, those tools and the Eclipse
platform have probably been unfamiliar to the developers. In
addition, the distribution in Fig. 4 indicates difficulties
interpreting source data. However, 6 of those 7 problem notes
were more like comments regarding the laboratory process
and its documentation, such as, presentation of the cascade
control loop in the P&ID.

As the total amount of developers was eight, the average
sum of problem notes per developer is approximately four
that could be considered relatively small. In addition, a
majority of the developers were able to finish the
development and perform code generation during the one-day
event. The interview notes gathered after the platform
specific modeling phase supported our understanding that
proprietary DCS platforms with existing collections of FBs
(excluding interlocks), that have been used successfully in
industrial scale projects, could be supported with the process
and tools. Thus, although the Eclipse platform and UML
based modeling may be unfamiliar to automation
professionals, such techniques and tools could possibly be
successfully used in automation application development.

B. Ability to automate part of the development work
The question of whether the approach can automate some

development tasks that are carried out manually in current
practices proved to be more complicated. Based on the
interview notes, the approach was seen beneficial as “the
current industrial practice can be seen as collecting pieces of
design information and acting on unstable information”. The
AUKOTON development process, on the other hand, was
seen to proceed in a more straightforward way from abstract
levels to more concrete design. The most important
improvement offered by the approach was the partially
automated shifting from process and basic automation design
based requirements to application development. However,
somewhat similar intermediate techniques, such as,
spreadsheet macros are already in use to automate, for
example, parameter updates in design. Secondly, it was seen
that transformation techniques could be used for automating
information transfer between development phases in order to
reduce both workload and errors.

Based on the interviews, the ability to partially automate
the development may not be automatically generalizable to
the present development practices used within the industry. In
case of the AUKOTON development process, the automated
creation of functional model structures was made possible by
detailed requirement specification models; the creation of
such models would require additional work compared to the
current development practices. Based on the interviews, the
information content of the requirement models is gathered
also in the present practices but not as formally and not
necessarily during an individual development phase dedicated
for the requirements as in case of the AUKOTON process.

Fig. 3. Division of problem notes by development phase.

Fig. 4. Division of problem notes by types of problems.

Instead, according to an interviewee, in their development
practice, the source information from process engineering is
used for creation of control, interlocking and regulation
diagrams that are used as inputs for the application
development. As such, the requirement models of the
AUKOTON approach does not correspond to any of the
aforementioned diagrams but to unified version of them. An
interviewee suggested providing control and interlocking
views to this unified model. With such an approach, the
requirement model within the tool could still be as unified as
in the case of the present approach although different views
would be used for depicting, for example, the control and
interlocking aspects.

VII. CONCLUSIONS

As a conclusion to the first research question, the results of
the development task and the interviews suggest that the
approach could be used for development of industrial DCS-
based applications. Three areas of further development were
identified. Firstly, the capability to specify interlockings
should be enhanced. Secondly, UML related terminology and
notations should be replaced with terms and symbols that are
familiar to professional automation engineers. Thirdly,
visualization and editing of designs at different levels of
granularity is needed.

As a conclusion to the second research question, the
interviews suggest that some design activities of present
development practices could be automated but with the cost
of introducing an additional but at least partially automated
work phase with requirement models. In addition, industrial
application of the development approach might require
changes to industrial development practices. Additional
activities would be required especially for unifying the source
information in order to create a starting point for the
application development. Nevertheless, the total amount of
development work could still be smaller because also the
present development practices require unification of the
design later during the application development. Estimating
the quantitative net effect on development work, however,
requires further research. Comparisons to industrial practice
are only meaningful after the MDE tools mature to
commercial quality. In addition to the AUKOTON project,
model-driven methods have been recently proposed by
several projects in the automation domain. Despite the
process and tools used during the reported assessment were
specific to the AUKOTON project, the authors hope that part
of the industrial feedback could be of use also for the other
projects.

REFERENCES
[1] T. Ritala, S. Kuikka, “UML Automation Profile: Enhancing the

Efficiency of Software Development in the Automation Industry”, The
Proceedings of the 5th IEEE International Conference on Industrial
Informatics (INDIN 2007), Vienna, Austria, 23-27.7.2007, pp. 885-890.

[2] Vepsäläinen, T., Hästbacka, D., Kuikka, S. Tool Support for the UML
Automation Profile - for Domain-Specific Software Development in
Manufacturing. In The Proceedings of the 3rd International Conference
on Software Engineering Advances (Sliema, Malta, 26-31 October,

2008). ICSEA’08. IEEE Computer Society, Washington, DC, USA,
43-50.

[3] Vepsäläinen, T., Hästbacka, D., Kuikka S. A Model-driven Tool
Environment for Automation and Control Application Development -
Transformation Assisted, Extendable Approach. In The Proceedings of
the 7th Nordic Workshop on Model Driven Software Engineering
(NW-MODE'09), Tampere, Finland, August 26-28, 2009.

[4] Benbasat, I., Goldstein, D.K., & Mead, M. (2002) “The Case Research
Strategy in Studies of Information Systems”. In Myers, M.D. and
Avison, D. (eds) Qualitative Research in Information Systems. London:
SAGE Publications, pp 79-100.

[5] Browne, G.J., & Menon, N.M. (2004). Network Effects and Social
Dilemmas in Technology Industries. IEEE Software 21(5), 44-50.

[6] Kvale, S. (1996). Interviews: an introduction to qualitative research
interviewing. Thousand Oaks, CA: SAGE Publications.

[7] Sawyer, S. (2001) ”Analysis by Long Walk: Some Approaches to the
Synthesis of Multiple Sources of Evidence”. In Trauth, E.M. (ed)
Qualitative Research in IS: Issues and Trends. Hershey PA: Idea Group
Publishing, 163-190.

[8] Seidman, I. (1997). Interviewing as Qualitative Research: A guide for
Researchers in Education and the Social Sciences. Second Edition. New
York: Teachers College Press.

[9] Sierla, S.A., Christensen, J.H., Koskinen, K.O., & Peltola, J.P. (2007).
Educational Approaches for the Industrial Acceptance of IEC 61499.
ETFA’2007 12th IEEE International Conference on Emerging
Technologies and Factory Automation, September 25-28, 2007, Patras,
Greece.

[10] Strömman, M.P., Sierla, S.A., Peltola, J.P., & Koskinen, K.O. (2006).
Professional designers’ adaptations of IEC 61499 to their individual
work practices. ETFA’2006 11th IEEE International Conference on
Emerging Technologies and Factory Automation, September 20-22,
2006, Prague, Czech Republic.

[11] Trauth, E.M. (2001) ”The Choice of Qualitative Methods in IS
Research”. In Trauth, E.M. (ed) Qualitative Research in IS: Issues and
Trends. Hershey PA: Idea Group Publishing, 1-19.

[12] Papyrus UML project, http://www.papyrusuml.org
[13] Topcased project, http://www.topcased.org/
[14] SmartQVT project, http://smartqvt.elibel.tm.fr/
[15] ATL project, http://www.eclipse.org/m2m/atl/
[16] Eclipse project, http://www.eclipse.org/
[17] Strasser, T., Sunder, C., Valentini, A. Model-driven embedded

systems design environment for the industrial automation sector.
INDIN 2008 the 6th IEEE International Conference on Industrial
Informatics, July 13-16, 2008, Daejeon, Korea.

[18] Strasser, T., Rooker, M., Hegny, I., Wenger, M., Zoitl, A., Ferrarini, L.,
Dede, A., Colla, M. A research roadmap for model-driven design of
embedded systems for automation components. INDIN 2009 the 7th
IEEE International Conference on Industrial Informatics, June 23-26,
2009, Cardiff, UK.

[19] Ferrarini, L., Dede, A., Salaun, P., Tuan Dang, Fogliazza, G. Domain
specific views in model-driven embedded systems design in industrial
automation. INDIN 2009 the 7th IEEE International Conference on
Industrial Informatics, June 23-26, 2009, Cardiff, UK.

[20] Tranoris, C., Thramboulidis, K. (2006). A tool-supported engineering
process for developing control applications, Computers in Industry,
Vol. 57, pp.462–472.

[21] Luder, A., Hundt, L., Biffl, S. On the suitability of modeling
approaches for engineering distributed control systems. INDIN 2009
the 7th IEEE International Conference on Industrial Informatics, June
23-26, 2009, Cardiff, UK.

[22] Zhu, L., Liu, Y., Bui, N.B., Gorton, J., Revel8or: Model Driven
Capacity Planning Tool Suite, ICSE 2007 29th International
Conference on Software Engineering, 20-26 May 2007, Minneapolis,
USA, Page(s):797 – 800.

[23] Dantra, R.; Grundy, J.; Hosking, J., A domain-specific visual language
for report writing using Microsoft DSL tools, VL/HCC 2009. IEEE
Symposium on Visual Languages and Human-Centric Computing, 20-
24 Sept. 2009, Corvallis, USA Page(s):15 – 22

[24] Lee, J.-S.; Chae, H.S., Domain-specific language approach to modelling
UI architecture of mobile telephony systems, Software, IEE
Proceedings, Volume 153, Issue 6, Dec. 2006 Page(s):231 - 240

Publication 3

Vepsäläinen, T., Kuikka, S. (2014) Integrating Model-In-the-Loop Simulations to Model-

Driven Development in Industrial Control. SIMULATION: Transactions of the Society for

Modeling and Simulation International, vol. 90, no12, pp. 1295-1311.

DOI: 10.1177/0037549714553229

© 2014 Simulation Councils Inc. Reprinted with permission.

Research Article
Model-Driven Development of Automation and Control
Applications: Modeling and Simulation of Control Sequences

Timo Vepsäläinen and Seppo Kuikka

Department of Automation Science and Engineering, Tampere University of Technology, P.O. Box 692,
Korkeakoulunkatu 3, 33101 Tampere, Finland

Correspondence should be addressed to Timo Vepsäläinen; timo.vepsalainen@tut.fi

Received 20 March 2014; Revised 24 June 2014; Accepted 8 July 2014; Published 7 August 2014

Academic Editor: Henry Muccini

Copyright © 2014 T. Vepsäläinen and S. Kuikka.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

The scope and responsibilities of control applications are increasing due to, for example, the emergence of industrial internet. To
meet the challenge, model-driven development techniques have been in active research in the application domain. Simulations
that have been traditionally used in the domain, however, have not yet been sufficiently integrated to model-driven control
application development. In this paper, a model-driven development process that includes support for design-time simulations
is complemented with support for simulating sequential control functions. The approach is implemented with open source tools
and demonstrated by creating and simulating a control system model in closed-loop with a large and complex model of a paper
industry process.

1. Introduction

Model-driven development (MDD) is a system and software
developmentmethodology that emphasizes the use ofmodels
during the development work. In MDD, models conform to
modeling languages that have formal metamodels, for exam-
ple, unifiedmodeling language (UML). In addition tomanual
development work, models can be processed with model
transformations that revise existing and create new, refined
models. The use of transformations may automate error-
prone tasks such as importing information to models from
preceding development phases and tools. Design models can
be used for generating code or to analyze the developed
systems. Automated model checks may reveal problems and
inconsistencies in models and between phase products.

The mentioned benefits of MDD are related to develop-
ment tasks that are repetitive and simple enough to be treated
with preprogrammed rules. However, MDD has not been
able to, and probably cannot, automate all the complex tasks
in system and software development. Demanding design
decisions over alternative solutions to achieve (sometimes
informal) objectives and product characteristics need to be
made by professional developers. However, although genuine

design decisions cannot be automated, developers do not
always have to rely solely on their experience. For example,
simulation is a technique that has been traditionally used
in the domain within control algorithm development and
control system testing.

Automation and control system development is also an
application domain in which the use of MDD techniques has
been researched extensively during recent years. However,
despite the research activities and the tradition of using
simulations, ability to simulate early software design models
has not yet been sufficiently addressed in the domain.

In their previous work, the authors have developed a
simulator integration [1] to the tool-supported Aukoton
MDD process [2] for automation and control applications.
The approach is based on UML Automation Profile (UML
AP) [3]. It enables modeling and simulation of cyclically
executed control functions including feedback and binary
control as well as interlocks (interlocks are used in control
systems to protect the controlled processes from causing
harm to themselves or personnel, e.g., by forcing actuators to
safe states based on measured states of the processes).

The simulation support is intended to be usable during
both platform independent and platform specific modeling

Hindawi Publishing Corporation
Advances in Soware Engineering
Volume 2014, Article ID 470201, 14 pages
http://dx.doi.org/10.1155/2014/470201

http://dx.doi.org/10.1155/2014/470201

2 Advances in Software Engineering

Simulation Simulation
-Control approach

and structures
-Interlockings

-Performance
-Control tunings

Changes and corrections
(user-assisted)

Source information
input (automated)

Requirement
import and
elaboration

Functional model
creation (automated/

Functional,
platform

independent
design

details (automated/

Functional,
platform

Code generation
(automated)

specific design

Platform specific

user-assisted) user-assisted)

Figure 1: The MDD process with simulation extensions.

phases of the development process; see Figure 1. During the
platform independent phase, it is possible to, for exam-
ple, evaluate alternative control approaches, structures, and
interlocks. During the platform specific phase, the approach
enables the evaluation of platform specific functions, tunings,
and predicted overall performance of the system. Technically
the approach utilizes model-in-the-loop simulations so that
UML AP control system models are transformed to Modeli-
caML models. In this paper the approach is complemented
by enabling simulation of sequential control activities. The
activities are modelled with Automation Sequences of UML
AP and visualized with Automation Sequence Diagrams.

The contributions of this paper are as follows. The mod-
eling notation is discussed in comparison to the well-known
statemachine notation of UML. An approach that enables the
simulation of control sequences in a state-machine-like form
is presented and implemented as amodel transformation.The
approach is integrated to the previous simulation integration.
The approach is applied to batch control of a paper industry
process.

The rest of this paper is organized as follows. Section 2
reviews work related to the use of MDD and simulations in
the industrial control domain. In Section 3, the previouswork
is introduced briefly, which is necessary for understanding
how the new work integrates to it. Section 4 discusses the use
of control sequences in process industry, presents the UML
AP approach to modeling control sequences, and presents
the model transformation to create simulation models. In
Section 5, before discussion and conclusions, the approach is
applied to an illustrative pulp batch processing system.

2. Related Work

The use of model-driven techniques has been researched
extensively in the domain of industrial control during recent
years. Modeling of requirements, architecture, and details
of control applications has been seen as an important part
of design processes and as a means to cope with the ever-
increasing size and complexity of the applications. Many of
the recent approaches have also integrated simulations to

the development processes in order to be able to test early and
concurrently to the development work.

In addition to industrial control, MDD with simulation
features has been applied to control system development for
automotive and other embedded applications. The general
simulation approaches that can be applied when models are
used for generating code include model-in-the-loop (MiL),
software-in-the-loop (SiL), processor-in-the-loop (PiL), and
hardware-in-the-loop (HiL) simulations [4]. The approaches
differ in the control system configurations that are used to
control plantmodels in closed-loop simulations. Examples on
use ofMiL, SiL, andHiL simulations in the embedded system
domain include [5] that describes a general framework for
and two examples of use of MiL simulation. A testing envi-
ronment that uses SiL simulations is presented in [6]. HiL
simulation and testing have been utilized, for example, in [7–
9].

Another classification of simulation approaches is related
to the amount of simulation engines. Simulation of a con-
trolled system, with a model of a process to be controlled
and a model of a control system, can be performed within a
single simulation engine or as cosimulation. In cosimulation,
the models are simulated within different but connected
environments. This requires a mechanism to synchronize
the simulations including their values and states. Commands
and functions, for example, running, replaying, freezing, and
loading states (see [10] for a list of basic simulation functions)
must be replicated to all used engines.

The management and coupling of cosimulations have
been recently addressed with FMI standard [11] and also
with model based techniques [12]. However, the area of
expertise of control application developers may still not be in
simulation techniques. As a consequence, the use of a single
simulation engine can be considered more recommendable.

In the industrial control domain, MAGICS approach for
MDD of industrial process control software is presented in
[13]. As amodeling notation the approach utilizes ProcGraph
that has been implemented on the Eclipse platform on top of
Eclipse Modeling Framework (EMF). The approach utilizes
several diagram types including Entity Diagrams (ED), State
TransitionDiagrams (STD), and StateDependencyDiagrams

Advances in Software Engineering 3

(SDD), of which STD is suitable for modeling sequential
behavior.The approach enables the generation of executables
but does not address simulations.

The FLEXICON project studied the integration of Com-
mercial-Off-The-Shelf tools, including MATLAB/Simu- link
and ISaGraf, to support the development of control appli- ca-
tions formarine, automotive, and aerospace systems [14].The
approach uses cosimulation, which is enabled by DSS (data
delivery service) middleware between the tools.

Vyatkin et al. [15] developed a model-integrated design
framework for designing and validating industrial automa-
tion systems. It is based on the Intelligent Mechatronic Com-
ponent (IMC) concept and the use of IEC 61499 architecture.
New systems are developed from IMCs that are integrated
together and with their models enable formal verification,
closed-loop MiL simulation of IEC 61499 models and code
deployment.

The approach of the MEDEIA project [16] builds on use
of several model types as well as bidirectionalmodel transfor-
mations. The process supports the use of closed-loop MiL
simulations which are based on use of an IEC 61499 environ-
ment. Simulation models of the process parts are in the
approach defined with either timed state charts or external
behavior descriptions (external simulation tools).

The abovementioned standard, IEC 61499 [17], is a
specification and modeling language for industrial control
applications. It extends the function block concept of another
IEC programming language, IEC 61131-3 [18], with event
driven execution and support for distribution of applications.
With an appropriate tool support, IEC 61499 models can also
be used for simulation purposes.

The simulation approach in [19] is based on mixing real
control hardware with simulated one while simulating the
plant in another (SIMBA 3D) environment.The benefit of the
cosimulation approach is the ability to test early, by executing
already implemented parts and simulating the rest.

The simulation approach closest to our work has been
recently presented in [20]. In a manner similar to [15, 16]
IEC 61499 is used for simulation purposes also in [20]. Model
transformations are used for creating IEC 61499 plant models
fromMATLAB/Simulink plant models to obtain closed-loop
behavior within a single (MiL) simulation environment.

Difference from the work to be presented, the referred
simulation approaches in the domain ([14–16, 19, 20]) do
not address modeling and simulation of sequential control
separately from, for example, stabilizing feedback control. In
[13] the sequential control aspect is addressed with respect
to modeling. However, simulation of the models is not
suggested. The use of simulations can thus be assumed to be
possible no earlier than after code generation.

On the other hand, the referred development approaches
that support simulations rely either on cosimulation ([14,
19]) or use of IEC 61499 as a simulation language ([15,
16, 20]). The use of IEC 61499 to simulations was not a
viable alternative in this work to be presented because it
is not used in the MDD process [2] that is extended with
simulations. On the other hand, UML AP models that are
used in the development process are not simulatable as such.
The use of cosimulation would thus have either required

a transformation to a simulatable formor delayed simulations
to simulating plant models with produced executables. These
reasons, however, apply to a number of MDD processes with
nonsimulatable modeling languages such as UML and UML
profiles.

Other works related to sequential control with model-
based characteristics include [21] that presents an approach
to transform Grafcet [22] models to Mealy machines for
testing purposes (Grafcet is a conventional means to specify
control sequences). Execution semantics of Sequential Func-
tion Charts (SFC) [18] have been addressed in [23]. The SFC
notation is part of IEC 61131-3 [18] and based on the earlier
version Grafcet.

In the simulation approach to be presented, the tar-
get simulation language is Modelica [24] with Modelica
Modeling Language (ModelicaML) [25] as an intermediate
language. Modelica is an object-oriented, equation based
simulation language. The basic concepts of it are simulation
classes that contain properties, equations, and connectors.
Similarly to classes of object-oriented programming lan-
guages, Modelica classes can inherit properties (and equa-
tions) of parent classes. Simulatable Modelica models consist
of instances of the classes that are connected together with
their connectors. ModelicaML [25], on the other hand, is
a UML profile for Modelica. It consists of stereotypes and
tagged values that correspond to the key words and features
of Modelica and enable modeling of Modelica models with
UML tools. ModelicaML models are not simulatable as such
but can be transformed to simulatable Modelica form with
OpenModelica tools [26]. For simulating Modelica models
there are both open source (e.g., OpenModelica [26]) and
commercial tools (e.g., Dymola [27]) available.

The ModelicaML (profile) implementation uses UML2
plugins on the Eclipse platform which are built on Eclipse
Modeling Framework (EMF) implementation of OMGMeta
Object Facility (MOF). The ModelicaML implementation is
thus technically similar to the UML AP implementation [28]
that is used in this work for control system modeling. It
has been implemented by extending UML2 and Topcased
SysML metamodel with EMF. This similar background of
the tools enables implementing the transformation from
UML AP to ModelicaML using standardized QVT (Query/
View/Transformation) languages [29] and their open source
implementations on the Eclipse platform.

3. On Simulating Control Application Models

The objective of integrating simulations toMDD for automa-
tion and control applications is to support design-time
quality assurance activities. It should be possible to compare
alternative control approaches and structures and tunings
as well as interlocks. Design flaws should be found and
corrected as early as possible and to the extent possible so that
they would not affect adversely subsequent design phases.
By enabling simulation of design-time models, it could be
also possible to obtain at least part of the general benefits
of simulations before implementation of the applications.
Such general benefits include, for example, improvements

4 Advances in Software Engineering

to the design, development, and validation of the control
programs, as reported in [10].

Without specific support for sequential control, the
approach to create simulation models from UML AP models
has been presented in [1]. In UMLAP, the modeling concepts
for functional modeling are automation functions (AFs)
that have been divided to a hierarchy of measurements,
actuations, controls, and interlocks. Measurement and actu-
ation AFs are interfaced with sensors and actuators of the
controlled processes while performing conversions of signals
to and from engineering units. Control AFs perform compu-
tation of control signals according to control algorithms.The
purpose of interlock AFs is to compute releasing and locking
signals for actuators and devices. AFs interchange signals and
information with ports.

The transformation for simulating functional UML AP
models (that consist of AFs) creates and appends simulation
counterparts of the AFs toModelica plant simulationmodels.
For platform independent AFs, the transformation utilizes
a library of predefined simulation counterparts (classes) of
them. To support platform and vendor specific AFs, the
transformation is capable to utilize external libraries of
simulation classes. To support application specific AFs, for
example, interlocks that require tailoring for each application,
the transformation is capable to create simulation classes
based on logic diagram descriptions of AFs [1]. The process
described in this paper is an equivalent approach to create
new simulation classes but based on Automation Sequence
Diagrams instead of logic diagrams.

Thedecision to usemodel transformations in thismanner
was made because UML AP models, as they are used in the
tool, are not simulatable as such. Transforming plant models
to the control application models would not have enabled
closed-loop simulation, for example, in [16, 20] in which (IEC
61499) models were simulatable. In a similar manner, use
of cosimulation as in [14, 19] would have required transfor-
mation to a simulatable form before applying cosimulation.
Additionally, the cosimulation approach would require addi-
tional work; see Section 2, related to, for example, coupling
simulations skills that not all control application developers
can be assumed to have.The approaches to obtain closed-loop
simulations by transforming plant models, by transforming
control application models, and by using cosimulation have
also been recently compared in [30].

An example structure of a plant model before and
after executing the transformation that appends the control
application specific parts to it is illustrated in Figure 2. Before
executing the transformation, the model contains simulation
class definitions of the parts of the plant and a description
of how the interconnected instances of the classes form the
system model. This part of the model, referred to as the
original process model, is circled with blue, dashed line.
The transformation (1) copies and creates new simulation
class definitions based on the control system model, (2)
creates instances of the classes according to the control system
model, and (3) couples the required instances of the classes
to the original model. In the figure, the newly created parts of
the model are circled with red, dashed line.

4. Modeling and Simulation of
Control Sequences

Control sequences are needed by process industries to per-
form start-ups of complex processes, for example, power
plants or paper machines and to drive them to their designed
operating states. In a similar manner, shutting down a
process in a controlled and energy efficient manner may
require changing set-points of process variables and shutting
down devices and sub-systems in a specific order. On the
other hand, batch processes constitute a challenging part
of industrial processes. In batch processes production of
the end products may require, for example, addition of
sourcematerials and substances according to time constraints
and achievement of defined process states, for example,
temperatures and concentrations.

The UML AP approach to modeling sequential control is
based on (automation) sequences that have been developed
to enable a SFC-conformant modeling notation within UML
AP models. Sequences are modelled with a domain specific,
new diagram type, Automation Sequence Diagram (ASD).
Graphically the ASD notation resembles both the state
machine and activity modeling notations of UML.

4.1. Description of the Modeling Notation. Sequences that are
described in ASDs consist of Steps that are basic procedural
elements in the approach (e.g., upper level batch recipe steps
or device level controls). Similar to states of UML state
machines, Steps contain Entry, Step, and Exit Activities that
are executed when arriving to the Step, during the Step
and when exiting the Step, respectively. In addition, Steps
may reference other Sequences that can be defined with
other ADSs. This is an equivalent characteristic to composite
states of UML. Containing activities and referencing a sub-
Sequence are exclusive alternatives for a Step. In addition to
basic Steps, Sequences may contain Allocations. Allocations
are intended for reserving process items and devices for the
Sequences that they appear in. When used, Allocations are
next to initial Steps in the Sequences.

The execution order of Steps within a Sequence is deter-
mined by Transitions that may contain different kinds of
conditions that control when a Transition is fired. First, the
condition can be a Boolean condition that explicitly specifies
a Boolean valued condition based on, for example, values of
the variables of the AF that contains the Sequence. Secondly,
a condition can be a timeout condition specifying how long
the Transition must wait after the execution of the previous
Step is finished. Additionally, the Transition can be a one shot
Transition which is fired immediately after the previous Step
has been executed.

In addition to Steps, Allocations, and Transitions, Se-
quences contain initial and final as well as fork and join Steps.
They can be used in a similar manner that the corresponding
pseudostates of UML state machines, that is, to control the
execution of Sequences. Use of initial and final Steps is also a
necessity in each Sequence because whether a transition may
occur from a Step to another is not always dependent (only)
on the conditions of the Transitions.

Advances in Software Engineering 5

Simulation model

p1: Pump v1: ControlValve

ctrlVal: Pin
flv1: FlowSensor

ctrlVl: Pin
pid1: PIDAlgorithm

measVal: Pin

Original process model

Parts of the model created by
the model transformation

in: inlet out: outlet in: inlet out: outletin: inlet out: outlet

measVal: Pin

setPointVal: Pin

ModelLibrary⟩⟩⟩⟩

⟩⟩

Simulation class defs

Model ⟩⟩

⟩⟩

⟩⟩ Pump Valve⟩⟩ Valve

ModelLibrary

⟩⟩

⟩⟩ UML AP Simulation library

Model

⟩⟩

⟩⟩⟩⟩ PIDAlgorithm Model⟩⟩ AnalogOutput

Profile⟩⟩ ModelicaML

Figure 2: The transformation adds the control system specific parts to an existing model of the physical process.

Consider, for example, the two example diagrams in
Figure 3. The figure also illustrates the graphical represen-
tation of initial and final Steps, (basic) Steps, Steps that
reference sub-Sequences, forks, joins, and Allocations. In
the Sequence at the left-hand side, all the Steps reference
sub-Sequences that consist of Steps and possibly other
sub-Sequences. For example, the WLF (White Liquor Fill)
Sequence in the right-hand side diagram is referenced from
the third Step in the left-hand side diagram.

Because the Transitions in the Sequence at the left-hand
side are one shot Transitions, it is obvious that whether a
Transition can fire is also dependent on the completion of
the referenced Sequences. Referenced Sequences need to have
performed their control activities in a similar manner as in
SFCs [18], which is a domain specific notation based onwhich
the ASD notation has been developed. For a Transition to be
fired from a Step referencing a sub-Sequence, the referenced
Sequence must have reached its final Step. This is a clear
semantic difference of the notation in comparison to UML
state machines.

Some other obvious differences to UML state machines
are also visible in Figure 3. The first Step in the Sequence
on the right-hand side is an Allocation. In the example, the
allocated process parts are (tanks) T100, T300, and T400 as
well as (pump) P100. (In UML state machine diagrams, there
are no similar concepts.) After the first of the fork Steps,
the transition condition on the right-hand side is of type
timeout with value “1” indicating that the Transitions must

wait 1 (sec) after the execution reaches the fork. In UML state
machines the semantics of the timeouts is slightly different
since the waiting time of UMLAP Transitions starts from the
completion time of the Step preceding the transition.

Lastly, as can be seen in the example Sequence at the right-
hand side in Figure 3, Sequences may have several branches
executing at the same time. In UML state machines, an
analogous feature would be the possibility for a system to be
in two (or more) states at the same time. This requires using
composite states, each within a region of its own.

Another modeling notation of UML that the ASD nota-
tion resembles (both graphically and semantically) is the
activity diagram notation that would enable concurrent
Sequences of activities and explicit constraints on flows but
no timing constraints. However, UML activities cannot be
broken up to concepts corresponding to Entry, Step, and
Exit Activities of Steps. Activity diagrams may additionally
contain decision nodes for which there are no corresponding
concepts in ASDs. Lastly, activity diagrams usually describe
workflows of entire systems, whereas in UML AP Sequences
are used to describe sequential behavior of individual AFs.

Because of the mentioned conceptual differences to the
modeling notations of UML that have similar appearance, it
was not possible to use directly research work that has been
previously done to enable their simulation.

4.2. Model Transformation for Simulating Sequences. In gen-
eral,Modelica is an equation based language so that the values

6 Advances in Software Engineering

ASD AutomationSequenceDiagram:

[oneshot]

[oneshot]
[oneshot]

[oneshot]

[oneshot]

[oneshot] [oneshot]

[oneshot] [oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

(SubSequence)
Impr

references:
Impregnation

Step⟩⟩⟩⟩

Step⟩⟩⟩⟩ Step⟩⟩⟩⟩

Step⟩⟩⟩⟩ Step⟩⟩⟩⟩

(SubSequence)

Discharge
references:

Step⟩⟩⟩⟩

(SubSequence)

(SubSequence)

BlackLiquorFill
references:

Step⟩⟩⟩⟩

(SubSequence)

WhiteLiquorFill
references:

Step⟩⟩⟩⟩

Cooking
references:

Step⟩⟩⟩⟩

ASD AutomationSequenceDiagram: ..MPPSequence:: WhiteLiquor

BLF

WLF

 Ckg

Dsch

EM3 OP3 EM1 OP2

StepActivity

AutomationFunction:
AutomationFunction:

AutomationFunction: AutomationFunction:

[timeout: 1]

[condition:

EM3 OP6 EM1 OP4

⟩⟩⟩⟩Allocation

kind: allocation
deviceIDs: T100, T300, T400, P100

delay:

delay: delay:

delay:

⟩⟩⟩⟩ StepActivity⟩⟩⟩⟩

StepActivity⟩⟩⟩⟩ StepActivity⟩⟩⟩⟩

V301.p := true;
V401.p := true;

V102.p := 100;
V304.p := true;
V100.p := 100;

PIC300SP.p := 2;
V204.p := false;
V301.p := false;
V401.p := false;

V102 0;
V304 = false;
V100.p :=

.p :=

.p :=

0;

Fill/WLF

[LI400.P > 0.2]

Figure 3: Automation sequence diagrams illustrating a sequence and a referenced subsequence of it.

of variables ofModelica models are determined by equations.
However, in addition to the equations that apply all the time,
the language includes an algorithmic concept for calculations
in which statements are applied in an order. Algorithms are
also the constructs of the language that the transformation
uses for simulating the Sequences.

The simplified (hiding unnecessary details) metamodel
of the ASD diagram type is presented in Figure 4. In the

metamodel, Sequence is extended from the UML state
machine. The Step and Allocation concepts are extensions
of UML state. Entry, Step, and Exit Activities are extended
from the UML activity concept and contained by Steps with
metamodel properties of UML State (that are hidden from
the figure). In addition to the concepts that are shown in
the figure, ASDs may contain instances of the mentioned
pseudostates of UML, namely, initial, join, and fork states

Advances in Software Engineering 7

-oneshot
-timeout
-condition

TransitionConditionType

UML::StateUML::StateMachine

UML::Activity

UML::Region

UMLAP::Step
-deviceID : string

UMLAP::Allocation

-body : string
UMLAP::EntryActivity

-body : string

UMLAP::StepActivity
-body : string

UMLAP::ExitActivity

-subMachine

UML::Transition
-conditionType : TransitionConditionType
-timeoutValue : double
-condition : string

UMLAP::Transition

metaclass⟩⟩⟩⟩ metaclass⟩⟩⟩⟩ metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩ metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩

metaclass⟩⟩⟩⟩ metaclass⟩⟩⟩⟩

⟩⟩type⟩⟩

-· · · -· · · -· · ·

-· · · -· · ·

0.. 1 ∗

UMLAP::Sequence

Figure 4: Simplified metamodel of the ASD diagram type with relations to the UML metamodel.

(Steps) as well as final states. Transitions between Steps,
Allocations, and pseudo Steps are modelled with a Transition
concept that has been extended from UML Transition.

To simulate the behavior of Sequences, they are used
as a basis for creating variables and algorithmic code. The
systematically named variables are used to keep track of the
execution, whereas the algorithmic code changes the values
of the variables. The (Entry, Step, and Exit) Activity code
of Steps is also included in the algorithms. The variables,
which are created to be owned by a Modelica class that
corresponds to the AF that owns the Sequence, are created
as follows. For the sequence that an ASD represents, and, for
each sub-Sequence that is referenced from the Steps of the
Sequence, a Boolean variable with the same name than the
name of the Sequence is created. These variables are used to
indicate the execution of the Sequence being in the Sequence
or sub-Sequence in question. In addition, exactly one UML
OpaqueBehavior for each highest level Sequence is created to
contain the algorithmic code to be generated.

For each Step in a Sequence, the transformation creates
two variables. First is a Boolean variable with a name
consisting of the name of the Sequence and the name of the
Step. The second variable is an Integer variable with a name
consisting of the name of the sequence, the name of the Step,
and “Phase” literal.The Boolean variables are used to indicate
the execution of the Sequence being in the Step in question,

whereas the Integer variables keep track of which Activities
(Entry, Step, or Exit) have been executed in a Step.

For (exactly one) initial Step in a Sequence, the trans-
formation creates a Boolean variable with a name consisting
of the name of the Sequence and “Initialized” literal. For a
final Step in a Sequence, the transformation creates a Boolean
variable with a name consisting of the name of the Sequence
and the name of the final Step. These variables indicate
whether or not the execution has reached the initial and final
steps in question.

For each fork-to-join region the transformation creates a
Boolean variable with a name that consists of the name of the
fork, the name of the join, and “Region” literal. In addition,
a Boolean variable is created for each branch going out from
the fork and coming into the (exactly one) join. The names
of these variables consist of the name of the fork (Step) and
the number of the branch. The variables corresponding to
the branches are used in guard conditions for exiting the join
(Step), whereas the other variables are used to indicate the
execution of the Sequence being in the fork-to-join region.

For Transitions, the transformation creates variables only
if their transition condition is of type timeout. In this case,
the name of the real valued variable consists of the name of
the Sequence, the name of the Step from which the transition
starts, and “Time” literal. These time variables keep track of
completion times of the Steps that the Transitions exit from.

8 Advances in Software Engineering

Table 1: Mappings between UML AP and UML (ModelicaML)
metamodel elements.

Source model
(UML AP) Target model (UML with ModelicaML)

Element Model
element Element name Element

type

Sequence Property Seq. name Boolean
Opaque
Behavior

Seq. name +
“Algorithm” —

(UML) Initial
(pseudostate) Property Seq. name +

“Initialized” Boolean

Step

Property Seq. name +
Step name Boolean

Property
Seq. name +
Step name +
“Phase”

Integer

(UML)
FinalState Property Seq. name +

FinalState name Boolean

(UML) Fork
(pseudostate) Property

Seq. name +
Fork name +
“Branch” + #

Boolean

(UML) Join
(pseudostate) Property

Fork name +
Join name +
“Region”

Boolean

Transition Property
Seq. name

+ Step name +
“Time”

Double

Allocation
Property Seq. name +

allocation name Boolean

Class “Allocations” —
Property Device ID Integer

Lastly, for the Allocations, the transformation generates a
record (class) and a property for each individual device ID
that becomes reserved in the Sequences owned by the AF.The
mappings between UML AP and UML metamodel elements
are also presented in Table 1.

Some of the algorithmic constructs that are created based
on the ASDs are illustrated in an example in Figure 5. First,
a when-construct is created that is executed only once at the
7 start of the simulation (“when initial() then”). It sets all the
Boolean phase variables (Steps, pseudo Step, Allocations, and
sub-Sequences) to false.The Integer variables related to Steps
are set to 0 to indicate that no activities have been performed.
The Integer variables related to Allocations are also set to 0,
to indicate that no allocations are active. The initialization
code is created only for each highest level Sequence, not for
referenced sub-Sequences.

Steps, Allocations, sub-Sequences, and pseudo Steps are
handled with conditional (if-else if) code blocks that can be
all entered only once. This is necessary because Modelica
models are executed cyclically. In a cycle the execution must
continue from the phase to which the execution ended in
the previous cycle. For example, arriving to the allocation
phase in the example is enabled in the initialization phase
and disabled in the allocation phase, which in turn enables
the next phase.

Entry, Step, and Exit Activities are executed only once so
that when arriving to a Step, the Entry Activity is executed
first in addition to changing the phase value to 1. Next,
Step Activity is executed and the phase value set to 2. The
execution of the Exit Activity and setting the phase variable
to 3 waits until the transition condition (if any) to next Step
in the Sequence is satisfied so that the transition can occur
immediately after performing the Exit Activities. If the Step
in question does not contain Entry, Step, or Exit Activities,
the corresponding algorithmic code only changes the value
of the phase variable.

Allocations are assumed to be next to initial Steps
in Sequences. They are intended to model allocations of
devices that have IDs corresponding to the ID variables of
Allocations. For Allocations, the algorithmic code increases
(by one) the variables of the record that correspond to
the allocated IDs. At the end of Sequences, allocations are
relieved by decreasing the values of the variables by one. In
the simulations, the Allocations thus do not force execution
to wait but only warn about double allocations, which are
indicated by the values of the variables becoming greater than
1. Such problems can then be inspected by developers.

Fork-to-join regions are in the approach handled by
creating variables for each branch in the region.The branches
may execute independently of each other but for a transition
to exit a join Step, all branches must have reached the join.
This condition is used as an exit guard for the join, in addition
to possible transition conditions related to the transition
exiting it.

In the approach, the Modelica code structures resemble
the structures in [31] that are used for Modelica simulating
state machines. The most notable differences are as follows.
Steps or sub-Sequences that are next to another sub-Sequence
are not enabled until the sub-Sequence reaches its final Step.
This prevents a transition in a higher-level sequence to fire
before the final Step is reached. The phases of Steps, that
is, whether the Entry, Step, and Exit Activities have been
executed, are recorded with Integer variables. The transition
conditions to exit Steps are used inside the Steps as guards
for shifting to the Exit Activities and enabling the next
Step/sub-Sequence. In Allocations that do not have activities
the transition conditions are similarly used as conditions to
enable the next Steps or sub-Sequences. In referenced sub-
Sequences, the next Steps or sub-Sequences are enabled in
the final Steps. Lastly, in case of a transition containing a
timeout condition, a real valued time variable is created for
the previous Step the value of which is set to equal the
completion time of the previous Step, pseudo Step, or sub-
Sequence. The time variables can be used in the transition
conditions as illustrated in Figure 5.

4.3. Constraints and Assumptions. In development of the
modeling and simulation approach, a decision was made that
Sequences must always be owned by AFs. In this way, the
variables and algorithmic code corresponding to a Sequence
can be created for a Modelica class corresponding to the
AF that owns the Sequence. In the approach a Sequence
thus describes the sequential behavior of the AF that owns

Advances in Software Engineering 9

Step⟩⟩⟩⟩

Step⟩⟩⟩⟩

⟩⟩⟩⟩Allocation

[oneshot]

[oneshot]

[oneshot]

[timeout: 1]

EA1EntryActivity⟩⟩⟩⟩

SA1StepActivity⟩⟩⟩⟩

ExitActivity⟩⟩⟩⟩ ExA1

Kind: allocation
deviceIDs: T100

(Subsequence)
Step1

references:
SubSequence

delay:

//Entry activity code
AutomationFunction

//Step activity code
AutomationFunction

//Exit activity code
AutomationFunction

Step2

 intial() when
Sequence :
SequenceIntialized :
SequenceAllocation :
SubSequence :
//SubSequence-related variables
SequenceStep2 :
SequenceStep2Phase :
SequenceFinalStep :

end when;
if not SequenceIntialized then

SequenceIntialized :
SequenceAllocation :

end if;
 SequenceAllocation then

//Allocation code here
if not pre(SequenceAllocation)

SequenceAllocation :
SubSequence :

end if;
else if SubSequence then

//SubSequence-related algorithm code
else if SequenceStep2 then

if pre(SequenceStep2Phase) =

=
//Entry activity code
SequenceStep2Phase := 1; //Entry done

//Step activity code
SequenceStep2Phase := 2; //Step done

//Exit activity code
SequenceStep2Phase := 3; //Exit done
SequenceStep2 :
SequenceFinalStep :

end if;
else if thenSequenceFinalStep

SequenceFinalStep :
Sequence :
//A next Step/Sequence would be enabled here
//Allocations releasing code here

end if;

SequenceAllocationTime : = time;
end if;
if time > SequenceAllocationTime +1 then

then

else if pre(SequenceStep2Phase) == 1 then

else if pre(SequenceStep2Phase) == 2 and

then

true

If

then

= true;

= true;

= true;

= true;

= true;

= false;
= false;

= false;

= false;

= false;

= false;

= false;

= false;
= false;

= 0;

= 0

here. . .

here. . .

Figure 5: An automation sequence diagram with a corresponding (Modelica) algorithm section.

the Sequence. A Step being executed in a Sequence is a Step
of theAF. For control or other signals to be forwarded to other
AFs, the AF must be connected to them with use of ports in
the interfaces of the AFs. The execution of a single Sequence
is thus centralized in an AF. However, an AF may contain
several Sequences. On the other hand, a control application
model may contain several AFs that define Sequences so
that at runtime there would be several Sequences executing
concurrently and independently of each other.

The properties that are created for implementing the
sequential behavior (see previous section) become the prop-
erties of the (ModelicaML) class that is created to correspond
to the AF. The properties are necessary for implement-
ing the dynamic behavior, by controlling the execution of
algorithmic statements. During simulation, however, they
also indicate the execution of the Sequence. For example,
the Boolean valued properties created to correspond to
Sequences (and its possible sub-Sequences) have value true
only when the execution is in the sub-Sequence in question.
This feature has been used, for example, in Figure 9 in which
the upper plot presents the sub-Sequences of a pulp batch
processing Sequence.

There are also restrictions related to the use of Sequences
in the approach. Currently, for the simulation transformation
to work properly, fork-to-join regions must be balanced so
that branches exiting a fork meet each other in one join. On
the other hand, the transformation does not support loops
within Sequences so that a Step could be entered more than
once in a Sequence. It is also assumed that a Sequence always
contains an initial Step and at least one final Step.Whether the
restrictions related to initial and final Steps hold is checked
before performing the transformation.

4.4. Implementation of the Approach. The transformation
for simulating Sequences was implemented by extending
the previous version of the transformation [1]. In addition
to Control Structure and logic diagrams that were sup-
ported by the previous version, the transformation processes
Sequences contained by AFs to properties and algorithm
sections of Modelica classes. The core of the transformation
was written with the QVT (Query/View/Transformation)
operational mappings language [29] and the executable Java
code generated with the SmartQVT tool. The generated Java
transformation class was complemented by extending it with

10 Advances in Software Engineering

T200

LI200

V302

V201
P200

V404

V204

V402

V303

T300

V104

PI 300

V301

V103

V401

V403

FI 100

P100

T400

V101

T100

V102

LI 400

LI 100

TI 100
V304

V203

LS + 300

LS − 300

Figure 6: P&I diagram of the pulp production process.

a manually written class. It takes care of, for example, the
creation of tagged values of stereotypes and other tasks that
are hard to express with QVT languages. To enable launch-
ing the transformation with the graphical user interface of
the supporting UML AP tool [28], the transformation was
packaged to an Eclipse plugin. The plugin architecture and
integration to the tool was implemented as outlined in [32].

5. Illustrative Example

The example system to be used in this paper is a laboratory
scale pulp processing plant the piping and instrumentation
(P&I) diagram of which is in Figure 6. The plant includes
3 storage tanks, a boiler, 2 pumps, 2 control valves, 13
solenoid valves, and piping that enable pumping fluid from
any tank to the boiler and via boiler back to any of the
tanks. The tanks contain instrumentation to measure liquid
levels in them, temperature in tank T100, and pressure in
boiler T300.The process is used to simulate batch processing
of pulp which is located in the boiler and processed with
process substances (impregnation liquor, black liquor, and
white liquor) according to timing, pressure, and temperature
constraints. In specific phases of the processing sequence,
feedback control is required to control the temperature of the
white liquor (in tank T100) and pressure in the boiler (T300).

To enable the simulation of the process with a modelled
control solution, the process was modeled withModelicaML.
This included defining simulation classes for the physical
parts of the process including tanks, boiler, pumps, solenoid
valves, control valves, pipes, and pipe crossings with 3 and
4 inlets. Tanks keep record on liquid levels and temperatures
inside them. For temperature equations, idealmixing of fluids

is assumed.The liquid flows in pipes and in control valves that
are proportional to constants measured from the process and
to square roots of the pressure differences between the ends of
the pipes/valves. Pumps increase the pressure in their output
sides and solenoid valves stop the liquid flows regardless of
the pressure differences.

The simulatable ModelicaML model was then defined
by creating instances of the classes and connecting them
together according to the connections in the physical process.
This was done with a structured class diagram. A small part
of the diagram, related to the surroundings of the tank T400,
is presented in Figure 7.

The control solution for the batch process is illustrated
with Figures 8 and 3. Figure 8 presents a (UML AP) Control
Structure Diagram of the control solution. It contains binary
and analogue valued input and output AFs for interfacing
with the sensors and actuators of the process. The Sequence
is implemented within the MPPSequence AF that controls
some actuators directly and uses controllers for controlling
T300 pressure (by throttling valve V104) and T100 tempera-
ture with heater E100. To illustrate how logic diagrams and
ASDs are used to define behavior of AFs, the figure has been
complemented with the MPP Sequence and a logic diagram
definition of the temperature controller.

The other illustrating figure (Figure 3) was used as an
example earlier and illustrates the MPPSequence and one of
the sub-Sequences of it,WhiteLiquorFill.MPPSequence con-
sists of 5main phases: Impregnation, BlackLiquorFill,White-
LiquorFill, Cooking, and Discharge. During the phases,
the boiler is filled with impregnation liquor and pressur-
ized, filled with black liquor that replaces the impregnation
liquor (BlackLiquorFill), filled with white liquor that replaces

Advances in Software Engineering 11

T400: Tank [1]
plugpipeV401:

V104:

V101:

V403:

· · ·

· · ·

· · ·

· · ·· · ·

· · ·
··
·

··
·

··
·

··
·

pipe

pipe

· · · . . .

.

. . .

+

+

+

+

+

+

+

+ +

Figure 7: A part of the ModelicaML plant model.

(SubSequence)
Impr

references:
Impregnation

Step⟩⟩⟩⟩

[oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

[oneshot]

(SubSequence)

BlackLiquorFill
references:

Step⟩⟩⟩⟩

BLF

(SubSequence)

WhiteLiquorFill
references:

Step⟩⟩⟩⟩

WLF

(SubSequence)

Cooking
references:

Step⟩⟩⟩⟩

 Ckg

(SubSequence)

Discharge
references:

Step⟩⟩⟩⟩

Dsch

EDouble Meas.Val out

EDouble Meas.Val out

EDouble Meas.Val out

EDouble Meas.Val out

EDouble Meas.Val out

PI300A

LI100A

LI200A

LI400A

TI100A

BMLSH300

BMLSL200

BMLSH100

MPPSequence

AlgorithmSpecification:
Descipition:
SafetyRelated: false

Monitored: false

Pin PI300 in
Pin LI100 in
Pin LI200 in
Pin LI400 in
Pin TI100 in
BoolPin LSL300 in
BoolPin LSH300 in
BoolPin LSL200 in
BoolPin LSH100 in

BoolPin V101 out
Pin V102 out

BoolPin V103 out
BoolPin PIC300En out

Pin PIC300SP out
BoolPin V201 out
BoolPin V202 out
BoolPin V203 out
BoolPin V204 out
BoolPin V301 out
BoolPin V302 out
BoolPin V303 out
BoolPin V304 out
BoolPin V401 out
BoolPin V402 out
BoolPin V403 out
BoolPin V404 out

Pin P100 out
Pin P200 out

Pin TIC100SP out
BoolPin TIC100En out

⟩⟩ControlAlgorithm, Model⟩⟩

⟩⟩ControlAlgorithm, Model⟩⟩

ASD AutomationSequenceDiagra
MPPSequence::

CSD ControlStructureDiagram : MPP::

MainLoop

AnalogMeasurement⟩⟩

AnalogMeasurement⟩⟩

AnalogMeasurement⟩⟩

AnalogMeasurement⟩⟩

⟩⟩AnalogMeasurement⟩⟩
ControlLoop⟩⟩⟩⟩

AP

AP

AP

AP

AP

AP
AP

AP
AP

AP

AP

AP

AP

AP

AP

AP

AP

AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP

AP
AP

AP
AP

AP
AP
AP
AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

⟩⟩PIDAlgorithm, PID4MPP⟩⟩
PIC300

AlgorithmSpecification: PID
Desciption:
SafetyRelated: false
Monitored: false
Kp: −50.0
Ti: 1.0
Td: 0.0

ModelicaReal Meas.Val in
ModelicaBoolean enable in
ModelicaReal SP.Val in

ModelicaReal Ctrl.Val out

Pin SP.Val in
BoolPin SetMode.On in
Pin Meas.Val in

BoolPin Ctrl.Val out

UMLAP IBD UMLAPInternalBlockDiagram : MPP::Control::TIC

BoolPin SetMode.On

Pin SP.Val

Pin Meas.Val

op1

op2

BoolPin Ctrl.Val

TIC100
AlgorithmSpecification:
Desciption:
SafetyRelated: false
Monitored: false

BOV101
Boolean Ctrl.Val in

Boolean Ctrl.Val in

Boolean Ctrl.Val in

Boolean Ctrl.Val in

Boolean Ctrl.Val in

AOV102

EDouble Ctrl.Val in

EDouble Ctrl.Val in

BOV103

AOV104

BOV201

BOV202

BOE100

BinaryOutput⟩⟩⟩⟩

BinaryOutput⟩⟩⟩⟩

BinaryOutput⟩⟩⟩⟩

BinaryOutput⟩⟩⟩⟩

BinaryOutput⟩⟩⟩⟩

AnalogOutput⟩⟩⟩⟩

AnalogOutput⟩⟩⟩⟩

op1 ≥ op2

BinaryMeasurement⟩⟩⟩

BinaryMeasurement⟩⟩⟩

BinaryMeasurement⟩⟩⟩

BinaryMeasurement⟩⟩⟩

Bloolean Meas.Val out

Bloolean Meas.Val out

Bloolean Meas.Val out

Bloolean Meas.Val out

BMLSL300

Control/ControlStructure

100/Ctrl logic

m · · ·
MPP/MPP

Figure 8: Modeling of automation sequences integrates to previous work with control structure and logic diagrams.

the black liquor (WhiteLiquorFill), heated to cooking tem-
perature and pressurized (Cooking), and finally drained back
to white liquor tank T400 (Discharge). WhiteLiquorFill, on
the other hand, opens valvesV301, V401, V102, andV304, and
pumps liquor until the level in tank T400 exceeds 0.2 (m).

In order to obtain simulation results of a closed-loop
system, the developed transformation was used to transform

and connect the control system model to the plant model.
Practically this included selecting the simulator export func-
tionality of the tool and the (target)ModelicaML plant model
file. After performing the transformation, the model was
simulated with OpenModelica [26] tools. The ModelicaML
model was first transformed to Modelica code and then
loaded to the simulator environment. Initial values for

12 Advances in Software Engineering

1

0.8

0.6

0.4

0.2

0

50 100 150 200 250 300 350

50 100 150 200 250 300 350

Ac
tiv

e s
eq

ue
nc

e p
ha

se

Time (s)

Time (s)

Plot by OpenModelica

Impregnation
BlackLiquorFill
WhiteLiquorFill

Cooking
Discharge

LI100
LI200

PI300
LI400

 b
oi

le
r p

re
ss

ur
e (

ba
r)

Ta
nk

 le
ve

ls
(m

) a
nd

0.25

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

Figure 9: Simulation results plotting active phases of the sequence,
levels in tank T100 (LI100), T200 (LI200), and T400 (LI400) as well
as pressure in boiler T300 (PI300).

the plant, for example, levels and temperatures in the tanks,
were defined in the process model. For different simulations
they could have been changed at this point too.

A plot illustrating the results from simulating the Se-
quence is shown in Figure 9. The main phases are plotted
in the upper part of the figure, a value being one indicat-
ing execution of the phase in question. The lower part of
the figure plots the levels of liquor in tanks T100 (LI100),
T200 (LI200), and T400 (LI400) and pressure in tank T300
(PI300). According to the results, the control solution includ-
ing the Sequence works as intended. Processing liquors are
used in the correct order and the boiler pressurize, during
black liquor fill and cooking phases.

The values shown in the figure were selected for plotting
after performing the simulation. The simulator keeps record
on all variables related to a simulation. Any other set of
variables related to an aspect in the process or in the control
solution, for example, functioning of a controller, could have
been selected for plotting as well.

6. Discussion

This paper has addressed the issue of simulating sequen-
tial control activities within MDD of control applications.

The approach integrates to the previous work of the authors
and enables the use of Automation Sequence Diagrams
(ADSs) of UMLAP to define sequential behavior of Automa-
tion Functions for simulation purposes. The transformation
to simulatable ModelicaML form was implemented with
open source modeling and model transformation (QVT)
tools on the Eclipse platform. The ASD diagram type that
is in the approach used for modeling sequential control has
been extended from UML state machine diagrams. However,
because of significant differences in execution semantics of
state machines, it was not possible to rely on existing work
[31] related to simulating them in Modelica form.

The benefits from using Modelica (ML) as the (target)
simulation language of the approach included the ability
to use standard model transformation techniques. Modelica
is also an object-oriented simulation language, which was
taken the advantage of mainly in development of the plant
simulation model. From the point of view of simulating the
control application, however, object-oriented features were
not used. As a consequence, it is expected that the presented
approach could be used also with other simulation languages
that can be accessed with model transformations, for exam-
ple, Simulink. An approach to execute Sequences without
equation based, acausal execution semantics of Modelica
could also be similar to the one presented in this paper.
Algorithmic constructs were used also in case of Modelica
instead of equations that apply all the time.

The novelty of the simulation approach is in the ability
to simulate control application models at design time, before
IEC language [17, 18] implementations of the applications.
Closed-loop MiL simulations are created with model trans-
formations so that a genuine simulation language (Modelica)
is used for simulating both plant and control application
models. Other MDD approaches in the domain (in which
simulations have been supported) have utilized IEC 61499
as a simulation (in addition to implementation) language
[15, 16, 20] or relied on the use of cosimulation [14, 19]. On the
other hand, sequential control as a special aspect of control
systems has been addressed only in [13] but not with respect
to simulations. With the work presented in this paper and
[1], the simulation approach covers all the common aspects of
basic control systems including binary and feedback control,
sequential control, and interlocks.

An issue that is not yet addressed in the approach [1] is
delays in control systems hardware, for example, networks
in distributed control systems. However, the objective of the
approach is to enable simulations early, already before, for
example, finishing control system hardware design. On the
other hand, effects of delays and, for example, random noise
in instrumentation can be included in the models, in simula-
tion classes of sensors and actuators of the process. It is also
assumed that, for example, delays in typical control system
hardware are less significant than those in instrumentation.

Support for model-based control software development
is also part of some commercial products. For example,
B&R (Automation Studio) [33] and Beckhoff (TwinCAT 3)
[34] support the development of control applications in
MATLAB/Simulink environment and generating executable
(PLC) code based on the models. As a difference to such

Advances in Software Engineering 13

products, the work presented in this paper intends to support
simulations in an MDD approach in which all models are
not simulatable. Instead, models are developed gradually
from requirements towards executable applications using
model transformations for shifting between models and,
for example, importing source information to models. In
addition, the models cover special needs such as traceability
between requirements and design artifacts that are becoming
more and more important in the domain.

To illustrate the simulation approach, it was applied to
simulation of a controlled pulp batch production process. For
the case study, the pulp production process was modelled
withModelica. Flow, pressure, and temperature equations for
all the plant components in themodel led to the total number
of equations for the closed-loop system to be approximately
1400. As such, the closed-loop system was the largest that has
been utilized in the simulation experiments of the approach
so far. It also demonstrates the scalability of the approach for
practical, nontrivial simulation needs.

7. Conclusions

MDD techniques are under active research in the application
domain of industrial control systems. However, despite the
research activities, and the tradition of using simulations,
simulations have not yet been sufficiently integrated to MDD
in the domain.

In MDD, it is possible to utilize model transformations
for obtaining simulation models already before programmed
implementations of the applications. This possibility should
be taken advantage of. Control applications models should
be evaluated in a timely manner and in closed-loops with the
models of the processes to be controlled. In order to relieve
control application developers from the task of coupling
simulation engines, the simulations should follow themodel-
in-the-loop approach using a single simulation engine.

The presented approach complements the simulation
approach of the authors with the possibility to simulate
sequential control activities in conjunction to feedback and
binary control as well as interlocks. The new work has
been targeted for the sequences of process and batch indus-
try. However, control sequences can be beneficial also in
simulations of other kinds of processes. For example, in a
previous simulation experiment [1], the set-point trajectories
to evaluate a control system in different conditions needed to
be defined manually. With the work presented, the set-point
trajectories can be included in Sequences of the models.

According to our experiences, the simulation approach is
useful in revealing defects in control algorithms, structures,
and tunings. The simulations can be performed already at
design time and so that decisions made in a development
phase can be evaluated before they affect decisions in later
phases. By creating simulationmodels with automatedmodel
transformations, simulations can be used as a continuous,
design-time quality assurance method. This can be done
without causing excessive additional workload to developers.

It is also expected that the task of developing models of
the processes to be controlled with Modelica becomes easier

and more attractive for industry in near future. This is due to
improvements in libraries of simulation classes, theModelica
standard library, from which it is possible to compose plant
models. It is also a clear benefit of Modelica that it includes
support for standard and user/company specific libraries.
Modelica is already supported by both commercial and open
source tools that can be used by both industry and academy.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] T. Vepsäläinen and S. Kuikka, “Simulation-based development
of safety related interlocks,” in Simulation and Modeling Meth-
odologies, Technologies and Applications, pp. 165–182, Springer,
2013.

[2] D. Hästbacka, T. Vepsäläinen, and S. Kuikka, “Model-driven
development of industrial process control applications,” Journal
of Systems and Software, vol. 84, pp. 1100–1113, 2011.

[3] T. Ritala and S. Kuikka, “UML automation profile: enhancing
the efficiency of software development in the automation indus-
try,” in Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN ’07), pp. 885–890, June 2007.

[4] H. Shokry and M. Hinchey, “Model-based verification of
embedded software,” Computer, vol. 42, no. 4, pp. 53–59, 2009.

[5] A. Plummer, “Model-in-the-loop testing,” Proceedings of the
Institution ofMechanical Engineers I, vol. 220, pp. 183–199, 2006.

[6] H. Chae, X. Jin, S. Lee, and J. Cho, “TEST: testing environment
for embedded systems based on TTCN-3 in SILS,”Communica-
tions in Computer and Information Science, vol. 59, pp. 204–212,
2009.

[7] M. Short and M. J. Pont, “Assessment of high-integrity embed-
ded automotive control systems using hardware in the loop
simulation,” Journal of Systems and Software, vol. 81, no. 7, pp.
1163–1183, 2008.

[8] M. Schlager, R. Obermaisser, andW. Elmenreich, “A framework
for hardware-in-the-loop testing of an integrated architecture,”
in Software Technologies for Embedded and Ubiquitous Systems,
pp. 159–170, Springer, 2007.

[9] G. Stoeppler, T.Menzel, and S. Douglas, “Hardware-in-the-loop
simulation of machine tools and manufacturing systems,” IEE
Computing and Control Engineering, vol. 16, no. 1, pp. 10–15,
2005.

[10] J. A. Carrasco and S. Dormido, “Analysis of the use of industrial
control systems in simulators: state of the art and basic guide-
lines,” ISA Transactions, vol. 45, no. 2, pp. 295–312, 2006.

[11] MODELISAR Consortium, “Functional Mock-up Interface for
Co-simulation,” Version 1.0., 2010.

[12] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and G.
Karsai, “Rapid synthesis of high-level architecture-based het-
erogeneous simulation: a model-based integration approach,”
Simulation, vol. 88, no. 2, pp. 217–232, 2012.

[13] T. Lukman, G. Godena, J. Gray, M. Heričko, and S. Strmčnik,
“Model-driven engineering of process control software-beyond
device-centric abstractions,” Control Engineering Practice, vol.
21, no. 8, pp. 1078–1096, 2013.

14 Advances in Software Engineering

[14] H. Thompson, D. Ramos-Hernandez, J. Fu, L. Jiang, J. Nu, and
D. Dobinson, “The FLEXICON co-simulation tools applied to a
marine application,” Proceedings of the Institution of Mechanical
Engineers M: Journal of Engineering for the Maritime Environ-
ment, vol. 222, pp. 81–94, 2008.

[15] V. Vyatkin, H. Hanisch, C. Pang, and C. Yang, “Closed-loop
modeling in future automation system engineering and valida-
tion,” IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews, vol. 39, no. 1, pp. 17–28, 2009.

[16] I. Hegny, M. Wenger, and A. Zoitl, “IEC 61499 based simula-
tion framework for model-driven production systems develop-
ment,” in Proceedings of the 15th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA ’10),
September 2010.

[17] International Electrotechnical Commission, IEC 61499-1: Func-
tion Blocks-Part 1: Architecture, International Standard, Geneva,
Switzerland, 1st edition, 2012.

[18] International Electrotechnical Commission, IEC 61131-3: Pro-
grammable Controllers part 3, Programming Languages, IEC
Publication, 2013.

[19] L. Ferrarini and A. Dedè, “A model-based approach for mixed
Hardware in the Loop simulation of manufacturing systems,” in
Proceedings of the 10th IFAC Workshop on Intelligent Manufac-
turing Systems (IMS ’10), pp. 36–41, July 2010.

[20] C. Yang and V. Vyatkin, “Transformation of Simulink models
to IEC 61499 Function Blocks for verification of distributed
control systems,” Control Engineering Practice, vol. 20, no. 12,
pp. 1259–1269, 2012.

[21] J. Provost, J. Roussel, and J. Faure, “Translating Grafcet speci-
fications into Mealy machines for conformance test purposes,”
Control Engineering Practice, vol. 19, no. 9, pp. 947–957, 2011.

[22] R. David, “Grafcet: a powerful tool for specification of logic
controllers,” IEEE Transactions on Control Systems Technology,
vol. 3, no. 3, pp. 253–268, 1995.

[23] A. Hellgren, M. Fabian, and B. Lennartson, “On the execution
of sequential function charts,” Control Engineering Practice, vol.
13, no. 10, pp. 1283–1293, 2005.

[24] P. Fritzson and V. Engelson, “Modelica—a unified object-
oriented language for system modeling and simulation,” in
Proceedings of the Object-Oriented Programming Conference
(ECOOP ’98), pp. 67–90, Springer, 1998.

[25] W. Schamai, Modelica Modeling Language (ModelicaML): A
UML Profile for Modelica, Linköping University Electronic
Press, 2009.

[26] OpenModelica, https://www.openmodelica.org/.
[27] Dassault Systemes, Dymola, http://www.3ds.com/products-

services/catia/capabilities/systems-engineering/modelica-sys-
tems-simulation/dymola.

[28] T. Vepsäläinen, D. Hästbacka, and S. Kuikka,, “Tool support
for the UML automation profile—for domain-specific software
development in manufacturing,” in Proceedings of the 3rd Inter-
national Conference on Software Engineering Advances (ICSEA
’08), pp. 43–50, 2008.

[29] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification (QVT), Version 1.0,” Object Management
Group, 2008.

[30] T. Vepsäläinen and S. Kuikka, “Benefit from simulating early
in MDE of industrial control,” in Proceedings of the IEEE 18th
Conference on Emerging Technologies & Factory Automation
(ETFA ’13), pp. 1–8, 2013.

[31] W. Schamai, U. Pohlmann, P. Fritzson, C. J. Paredis, P. Helle, and
C. Strobel, “Execution of UML State machines using modelica,”
in Proceedings of the 3rd International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools (EOOLT
’10), pp. 1–10, 2010.

[32] T. Vepsäläinen, D. Hästbacka, and S. Kuikka, “A model-
driven tool environment for automation and control application
development-transformation assisted, extendable approach,” in
Proceedings of 11th Symposium on Programming Languages and
Software Tools and 7th Nordic Workshop on Model Driven
Software Engineering, pp. 315–329, 2009.

[33] B&R Automation Studio, http://www.br-automation.com/en/
products/software/automation-studio/.

[34] BeckhoffTwinCAT 3, http://www.beckhoff.fi/english.asp?twin-
cat/default.htm.

Publication 5

Vepsäläinen, T., Kuikka, S. (2013) Benefit From Simulating Early in MDE of Industrial

Control. Proceeding of the 18th IEEE International Conference on Emerging Technologies

and Factory Automation. Cagliari, Italy, September 10-13, 2013, pp. 1-8.

DOI: 10.1109/ETFA.2013.6647961

© 2013 IEEE. Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of Tampere University of Technology's products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

Benefit from Simulating Early in MDE of Industrial Control

Timo Vepsäläinen
Tampere University of Technology,

Dept. of Automation Science and Engineering
Korkeakoulunkatu 3, 33101, Finland

timo.vepsalainen@tut.fi

Seppo Kuikka
 Tampere University of Technology

Dept. of Automation Science and Engineering
Korkeakoulunkatu 3, 33101, Finland

seppo.kuikka@tut.fi

Abstract

This article focuses on integration of simulations to
model-driven engineering (MDE) of automation and
control systems and applications. MDE offers means to
automate repetitive design tasks and thus improves the
efficiency of development work. However, it does not
reduce the need for genuine decisions of professional
developers to challenging design tasks. Formerly, the
decision making has been facilitated with separate
process simulations to predict the characteristics of
controlled processes. This paper presents and evaluates
a new way to seamlessly integrate simulations to early
phases in MDE of control applications. On one hand, we
argue why and how simulations should be organized in
MDE in the domain. On the other hand, we present and
summarize observations from the experiments in which
our simulation approach has been used.

1. Introduction

This article focuses on integration of simulations to
model-driven engineering (MDE) of automation and
control applications. MDE is a system and software
development methodology that emphasizes the use of
models and model transformations instead of, for
example, textual documents. In MDE, models conform
to formally specified modeling languages such as UML
(Unified Modeling Language) and are processed with
model transformations. Models contain the design
information for both development and documentation
purposes. Model transformations, on the other hand,
enable processing of models to create and update models
as well as code implementations.

Model transformations may automate importing
information to models from models of preceding
development phases, e.g. process design, and their tools.
Design models can be used for creating analyzable
models that can be studied using application domain
specific tools. Automated model checks may reveal
problems and inconsistencies in models and between
modeled phase products of the development process. The
mentioned benefits of MDE are mainly related to

automating repetitive tasks that are time-consuming but
possible to handle with pre-defined rules that can be
programmed to model checks or transformations.

However, the use of MDE has not been able to
automate all the complex design and development tasks.
Demanding design tasks and decisions over alternative
solutions to achieve (sometimes informally) specified
objectives and system characteristics need to be made by
professional developers. Nevertheless, developers do not
always have to rely solely on their experience on design
tasks. Simulations have enabled comparing alternative
solutions and predicting the characteristics of systems
and controlled processes based on models and partially
implemented systems in conjunction to models.

Despite the research activities to utilize MDE
techniques - and the long tradition of using, e.g.
Matlab/Simulink based techniques - simulations have not
yet been sufficiently integrated to MDE in the domain.
Because models can be used for automating generation
of code, it should be also possible to generate simulation
models to be used with simulation models of the
processes to be controlled. In this way, MDE could
provide even more benefits compared to traditional
control application development approaches. By
applying model transformations to generation of
simulation models, simulations could be made a part of
continuous development-time quality assurance work.

In our previous work, we have developed simulation
integration [1] to our tool-supported MDE approach [2]
for control applications of both process industry and
machinery systems. The integration covers modeling and
simulation of cyclically and also sequentially [3]
executed control functions that can be librarized for later
use and to support use of vendor specific libraries. The
modeling in the approach is based on UML Automation
Profile (UML AP) for which we have developed tool
support on Eclipse platform. The integration is based on
Modelica and model transformations for creating
ModelicaML (Modelica Modeling Language) simulation
models. An example industrial process from our latest
study is presented in figure 1.

The contributions of this article are to assess the
benefits of integrating simulations to MDE in the
automation domain and to evaluate and compare our
simulation approach to other approaches. Related to
using simulations in general, we argue why MDE in the

automation domain should focus on Model-in-the-Loop
(MiL) simulations. We point out the benefits of early
MiL simulations in comparison to simulation approaches
enabled by control system platforms and compare
alternative approaches to implement MiL simulations.
Related to our approach specifically, we present lessons
learned and observations from several simulation
experiments in which we have modeled control systems
for both industrial processes and machinery systems.

The rest of this paper is organized as follows. In
section 2, we present work related to integrating
simulations to MDE and using simulations in MDE of
automation and control systems. In section 3, we argue
why MDE in the domain should focus on MiL
simulations, compare early MiL simulations to other
possible simulation approaches, and compare alternative
approaches to implement closed-loop MiL simulations.
Before concluding the paper, in section 4 we briefly
present our tool-supported simulation approach and the
observed benefits of it in three simulation experiments.

Figure 1. The pulp batch production
process used as an example process in [3]

2. Related work

General simulation approaches that can be utilized in
conjunction to MDE include model-in-the-loop (MiL),
software-in-the-loop (SiL), processor-in-the-loop (PiL)
and hardware-in-the-loop (HiL) simulations [4]. These
approaches are in [4] addressed in development of
embedded systems. In MDE of automation and control
systems and applications the differences between the
approaches are in the control system configurations used
to control the plant simulation models. For example, in
MiL a model of the control system/application is used
whereas SiL, PiL and HiL utilize generated software,
generated software with target processor and generated
software with entire target hardware, respectively.
Accordingly, they also differ in the nature of defects that
they are capable to reveal. For example, MiL simulations
evaluate the conceptual control solutions and cannot
reveal problems related to software-hardware integration
whereas HiL simulations (with the target hardware) can.

Similar simulation approaches, except MiL, can also
be utilized in conventional control system development.
For example, HiL simulation can be used to test a

control application with its target hardware regardless of
the development process of the software application.
Support for the simulation approaches is also nowadays
provided by major proprietary DCS (Distributed Control
System) vendors as presented in [5].

Another classification of simulation approaches is
related to the amount of simulation engines. Simulation
of a controlled system, i.e. a system including a process
to be controlled and a control system can be performed
within a single simulation engine or as a co-operative
simulation (co-simulation). In co-simulation, parts of the
overall system are simulated within (2 or more) different
but connected environments. The approach, however,
requires a mechanism for coupling the simulation
environments and replicating commands of them. See [5]
for a list of basic simulation functions.

Integration of simulations to MDE of control software
has been common in the application domains of
embedded and automotive software. For example, [6]
describes a general framework for, and two examples of
use of MiL simulation. In [7] a testing environment for
embedded systems is presented which utilizes TTCN-3
notation in test specifications and SiL simulation for
executing the tests. HiL simulation and testing have been
utilized for example by Short and Pont [8], Schlager et
al. [9] and Stoeppler et al. [10].

In the domain of industrial control, integrating
simulations to MDE approaches has not been a principal
goal. However, such work has been presented at least in
[11], [12] and [13]. In addition, in [14] Ferrarini and
Dede have presented a co-simulation approach in which
the aim is to test already implemented parts of control
systems and applications while simulating the rest. The
approach uses HiL simulation but does not confine to
MDE techniques for acquiring simulation models.
Instead, it is targeted to provide support for flexible co-
use of already programmed and simulated control
functions with a plant simulation model.

Yang and Vyatkin in [11] utilize MDE techniques the
aim being to create IEC 61499 Function Blocks (FB)
models from Simulink models in order to verify control
applications which are also developed with IEC 61499.
Hegny et al. in [13], similarly, create IEC 61499 plant
models which are described either with timed state charts
(conforming to a project specific metamodel) or external
behavior descriptions, which make the approach a co-
simulation approach. In [12] the approach of Vyatkin et
al. is based on composing applications from intelligent
mechatronic components that should include models and
with model transformations enable development-time
verification and simulation of the applications.

3. Comparison of simulation approaches

The purpose of this section is to discuss, compare and
evaluate at a conceptual level the possible simulation
approaches in conjunction to MDE of control systems

and applications. In the discussion, we take into account
their special characteristics. Some of the characteristics,
in addition to arguing why MDE in the domain should
concentrate on MiL simulations, will be discussed first
in section 3.1. In section 3.2, we discuss the applicability
of MiL simulations over target platform specific
simulations. In section 3.3 we compare the alternative
approaches to implement MiL simulations including
their benefits, disadvantages and restrictions.

3.1. Simulations in MDE of control applications
The development of control systems and applications has
several characteristics that also affect the MDE of them
and how the development process could utilize
simulations. To our work, the most important are:
• Many industrial vendors of control system platforms

already support connecting the control systems to
simulators [5] to support PiL and HiL simulations,
depending on whether the connections to plant
simulators are implemented directly or via I/O units.
Similarly, it is common for industrial DCS vendors
to provide support for computer-execution of the
control programs to enable SiL simulations. For
PLC-based (Programmable Logic Controller)
control systems there are soft PLC solutions that
enable running programs on desktop computers.

• Industrial control system development utilizes, to
the extent possible, librarized blocks for interfacing
with the instrumentation of the processes and
implementing control algorithms. In some
companies in the domain, even metrics on use of
librarized blocks have been used to characterize the
composed applications. [15].

As a consequence of the characteristics, we argue the
following. 1) If MDE techniques are used for developing
control applications to be used in PLC or DCS platforms,
developing support for other types of simulations than
MiL might not be able to provide significant benefits
since the other simulation types are already enabled by
the platform vendors and usable after generating code.
The focus should, thus, be in MiL simulations. 2) Since
applications are composed of re-usable library blocks,
simulation counterparts of the blocks could be librarized
as well and used in MiL simulations. Re-using well-
tested, parameterizable simulation blocks could support
the confidence in the results of MiL simulations but also
simplify the generation of models. Simulation model
generation should, thus, be capable of re-using libraries
of either simulation or implementation blocks.

 However, there are several approaches to perform
MiL simulations in MDE. A closed-loop simulation can
be a co-simulation in which the model of a control
system/application and that of the system to be
controlled (plant model) are simulated in different but
connected environments. Alternatively, the simulation
can be performed within a single simulation engine.

This, however, usually requires availability of both the
control system and plant models in same simulation
language. In practice, this would require:

• control system model and plant model being
developed with a (same) language that can be
simulated or

• plant model being transformed to the modeling
language used to develop the control system model
which must be possible to simulate or

• control system model being transformed to the
modeling language used to develop the plant model
which must be possible to simulate or

• both the control system and plant models to be
transformed to a simulation language.

Of these approaches, the last one is arguably the most
laborious one and prone to errors since it requires
developing and keeping up-to-date two possibly complex
model transformations - like in implementing both the
second and third alternatives. On the other hand, related
to the first approach, the authors are not aware of a
language that would support well both the development
of simulation models of complex industrial processes
and software applications. Additionally, it would need to
integrate well with other functional and non-functional
information required in MDE of control applications.

Consequently, practical alternatives to enable closed-
loop MiL simulations of controlled systems in MDE in
the domain are to use co-simulation or transform either
the plant model to the language used in control system
model or the control system model to the language used
by the plant model. Of the approaches presented in the
related work section, [11] and [13] have chosen the
approach to transform plant models. In [14] the approach
utilizes co-simulation but with hardware included (HiL).
The approach to transform control system models is -
according to the knowledge of the authors - utilized only
in our work, in the automation domain. The first and last
approaches in the bullet list above have not been used.

3.2. Comparing MiL simulations to target platform
specific simulations

Use of simulations in automation and control system
development, in general, is not a new idea. Simulation
solutions are provided by commercial DCS vendors [5]
and for PLC based control systems, e.g. soft PLC
solutions enable execution of control programs on
desktop computers. Benefits of applying simulations
have also been discussed in several articles.

In [16] the author compared I/O simulation approach
to the traditional approach of performing control system
testing only on-site with the actual controlled processes.
According to the article, the use of simulations results in
shorter start-up times as well as less waste of end
products during the start-ups. Use of simulations enables
better operator training, ability to test control programs

in smaller modules, and the ability to thorough testing of
emergency and dangerous situations.

In his doctoral thesis [17], Karhela mentioned the use
of simulations to control system testing, operator
training, plant operation optimization, process reliability
and safety studies, improving processes, verifying
control schemes and strategies, and start-up and
shutdown analyses. According to [5], the benefits of
using control systems in simulators before installation
include improvements to 1) design, development and
validation of the control programs and strategies, 2)
design, development and validation of the HMI (Human-
Machine Interface) and 3) adjustments of control loops
and programs. Simulations have thus benefitted control
system and application development even before
applying model-driven engineering techniques.

In the referred approaches utilizing simulation within
MDE, see section 2, the number of anticipated benefits
of simulations is smaller. However, their authors can be
assumed to have compared their approaches and the
benefits implicitly to simulations enabled by the target
platforms. Nevertheless, in [13] the objective is to enable
early control application development, when the plant or
equipment is not physically built-up, as well as detection
of inconsistencies and missing requirements.

In [11], the approach is motivated by the ability to
provide necessary plant models to be used in simulations
to validate distributed systems compliant with IEC
61499. Additionally, the article mentions easy re-use of
Simulink blocks as IEC 61499 function blocks, potential
to improve performance with distributed computation
and reducing conflicts between the natures of the two
models (IEC 61499 and Simulink). However, the latter
advantages are related to use of IEC 61499, not to use of
simulations. In [12] simulations are seen to enable
prototyping and verification of applications, although
formal verification methods are seen necessary to
complement simulation techniques.

To summarize the claimed benefits, it is clear that
many of them could be achieved also with simulations
enabled by control system platform vendors but not as
early. However, the other way round, there should be no
reason why early MiL simulations could not be used for
simulation tasks that do not require control hardware.
For example, verification and validation of control
strategies, schemes and tunings, prototyping, and testing
in small modules should be possible. But because MiL
simulations do not require either the physical plant or
control system hardware design to be finished, it is clear
that they can be performed earlier.

The inexistence of control hardware in the
simulations is also related to another potential benefit.
Since the hardware is not needed, simulations could be
applied also in companies performing out-sourced design
tasks, which would be a significant benefit in networked
business environments. Lastly, it should be noticed that
using MiL simulation early in the design process does
not restrict the use of other simulation approaches i.e.
SiL, PiL and HiL later in the process. By selecting a
suitable plant modeling language for MiL simulation, it

is also possible that the plant model could be re-used in
simulations enabled by the control system platform. Our
own observations from applying transformation-assisted
MiL simulations will be presented later in section 4.

3.3. Comparison of MiL simulation approaches
A clear conclusion of the earlier section 3.1 was that

if simulations are integrated to MDE of control
applications they should follow the MiL simulation
approach. However, as discussed, there are at least 3
practical approaches for obtaining MiL simulations,
which have been used in the domain. The approaches are
next compared taking into account the restrictions that
they place on the modeling languages to be used, the
amount of required model transformations as well as the
difficulty of managing simulations, tools and cases.

3.3.1. Co-operative MiL simulation. In the co-
simulation approach, the parts of the closed-loop system,
plant model and control system model are simulated in
different simulation engines. An obvious advantage of
the approach is the possibility (freedom) to choose a
plant modeling (simulation) language that is not possible
to process with transformations. The language must be
supported by a simulation engine that can be connected
to another engine (simulating the control system model).
With such an engine it is, however, likely that the plant
simulation model can be re-used in possible later,
platform specific simulations.

If a product of the MDE process is simulatable, co-
simulation may also be possible to implement without
additional model transformations. However, if the MDE
process utilizes, for example, UML (or any non-
simulatable language), simulating a modeled control
solution requires transforming the solution to a
simulation language. So, whether the co-simulation
approach reduces the amount of required model-
transformations is also dependent on the modeling
languages used in the MDE process. Accordingly, the
reliability of simulation results may or may not be
dependent of the correctness of a simulation
transformation. Support for re-using libraries requires in
the approach re-usability either in the modeling tool or in
the transformation that may be required for simulating
design models.

Technically the co-simulation approach may be the
most complex one. Values and states of connected
variables and engines as well as simulation commands,
e.g. running, freezing, stepping, replaying and working
in slow and fast modes need to be replicated to both (or
more) environments. In addition, if simulations are to be
used to evaluate the behavior of the controlled system in
several simulation cases, e.g. in several operation points
or exceptional situations, initial values for the simulation
cases must be managed for all the used simulation
engines. Consequently, depending on the intended use of
simulations, we argue that the co-simulation approach

may lead to difficulties in managing all the required
simulation cases and information related to them.

3.3.2. Transforming plant models. Compared to the
co-simulation approach, the obvious benefit of the
approach of transforming plant models is that simulation
cases and initial values to evaluate the control system in
different situations have to be defined only for one
engine. There is also no need to replicate simulation
commands and states of several simulation engines.

In the approach, the plant models do not necessarily
have to be simulatable but they must be possible to
process with model transformations. However, a model
transformation is inevitably necessary for transforming
the plant model to the modeling language used in control
system models. The correctness of simulation results is
also dependent on the correctness of the transformation.
On the other hand, either the language used in the MDE
process to develop the control system/application model
has to be simulatable or an additional (second)
transformation is required to create a control system
simulation model before transforming the plant model.
In practice, this would mean two additional model
transformations. Without an additional transformation,
UML and related MOF-based, non-simulatable
languages (e.g. SysML) would be out of the question.
Support for (simulation) libraries could be in the
approach implemented by supporting models of
implementation blocks – or by using libraries in the
second simulation transformation.

In practical implementations of the approach, see [11]
and [13], the control application modeling language has
been IEC 61499 which is simulatable. However, since
IEC 61499 is close to PLC programming languages, the
approach is also close to the approach of using SiL
simulations after generating code. For example in [13]
several model transformations are already used before
obtaining IEC 61499 models. Lastly, a concern with the
approach is that although IEC 61499 is simulatable,
genuine simulation tools dedicated to simulation, instead
of distributed control software development, may still be
more suitable for managing and executing complex
simulations than software development tools are. This
concern, however, is also related to the co-simulation
approach if a simulation transformation is not used.

3.3.3. Transforming control application models.
Compared to the co-simulation approach, the approach
of transforming control application models, again,
requires a model transformation. The approach also
provides the same advantages than the approach of
transforming plant models. Simulation cases have to be
defined only once and there is no need to replicate
simulation states, values and commands.

However, compared to the approach of transforming
the plant models, this approach does not suffer from the
need to develop control system models with a
simulatable language. Consequently, for example, UML
and SysML can be used in addition to languages such as

IEC 61499. Correctness of the results of simulations is
dependent on the correctness of the simulation
transformation, however, as we have shown the
approach enables re-use of simulation blocks [1] which
can be seen as a means to improve the reliability of
simulation results. Lastly, the closed-loop simulation can
be executed in a genuine simulation tool supporting the
language used to develop the plant model, if such a
modeling language has been selected for plant modeling.

Practical restrictions for selecting modeling and
simulation languages apply though. In order to apply the
approach, both the control system and plant modeling
languages must be possible to process with model
transformations. The modeling language used in the
plant model must also be simulatable. However, both
plant and control system models must be possible to
process with model transformations also in the case of
transforming plant models - in order to create and
append plant models to control system models. On the
other hand, if control systems are developed using MDE
techniques, the control system models must be
processable with model transformations in any case so
that this restriction applies also to the other approaches.
The restrictions of the approach of transforming control
application models are thus tighter than in case of co-
simulation but related to plant modeling only.

3.3.4. Summary of the comparison. A summary of the
results of comparing the alternative approaches to obtain
MiL simulations in MDE of industrial control
applications is presented in table 1. In the table, co-sim.
refers to co-simulation, TCSM to the approach of
Transforming Control System Models and TPM to
Transforming Plant Models. CSML and PML refer to
Control System and Plant Modeling Languages.

Co-simulation places least restrictions on possible
modeling and simulation languages because plant
models do not necessarily have to be accessible with
model transformations. However, simulation technically
the approach is the most complex one, it may lead to
difficulties in managing simulation cases and it either
requires the control system modeling language (CSML)
to be simulatable or an additional model transformation
for creating one. If a transformation is not developed, it
may require the control system to be simulated in a
software development tool, instead of a simulation tool.
However, in this case the results of simulations are not
dependent of correctness of simulation transformations,
as is the case in the transformation-assisted approaches.

The two transformation-assisted approaches do not
require coupling simulation engines, states or
commands. However, the approach of transforming plant
models is more restricting than the approach to transform
control system models. Either the control system model
must be simulatable or the control system model must be
first transformed to a simulatable form, with an
additional (second) model transformation. In addition, if
a transformation is not developed, the approach may

require the control system to be simulated in a software
development tool, instead of a simulation tool. All the
approaches enable re-use of simulation blocks, either at
modeling level or with use of simulation block libraries.
Consequently, this feature is not included in the table. It
is also natural that if a simulation approach requires a
transformation, the correctness of the results is
dependent on correctness of the transformation. Thus,
this feature has not been repeated in the table, in addition
to listing the numbers of additional transformations
required in the approaches.

Table 1. Results of comparing alternative approaches
to MiL simulations in MDE in the automation domain

 co-sim. TPM TCSM
Enables use of genuine
simulation tools ?/X ? X
Simulation tools must be
connectable. X - -
Number of additional
transformations 0/1 1/2 1
CSML must be simulatable X/- X/- -
PML must be simulatable X - X
Additional work with
simulation cases X - -
Additional simulation
management work X - -
PML must be
transformable - X X
CSML must be
transformable X X X

4. Observations from applying the approach

In our work, the objectives of developing the
simulation integration have been early, development-
time simulation of applications and the resulting
capabilities to test, compare and prototype control
applications and functions. Design flaws should be also
corrected as early as possible so that they would not
affect adversely on subsequent design phases. Naturally,
this requires prompt feedback about the designs that can
be in the automation domain acquired with simulations.

The approach to create simulation models from UML
AP models is transformation-assisted and has been
developed and published gradually. We started from the
core concept and support for librarized simulation blocks
[18], developed support for using logic diagrams to
model and simulate application specific blocks, e.g.
interlockings [1], and lastly focused on automation
sequences [3] that are necessary in shifting between
operating points and for start-up and shut-down analyses.
In detail, the approach has thus been presented in [18],
[1] and [3]. With respect to the possible MiL simulation
approaches in MDE that were discussed in section 3, the
approach falls to the MiL category using single
simulation engine and transforming control system

models to plant models. The approach also enables the
use of libraries of existing simulation blocks.

4.1. Simulation experiments
So far, the simulation approach has been used in 3

published or to-be-published simulation experiments that
have covered both process industry as well as machinery
processes. On the other hand, the experiments have
covered different types of control functions that are
needed in the domain. Basic feedback control, firstly,
has been utilized in all the simulation experiments.
Interlockings, secondly, have been used to enable and
disable devices and to restrict set-points of controllers in
both machinery- and process-industry-related
simulations. Sequences and binary controls, lastly, have
been used in the latest simulation experiment related to
batch production of pulp.

In the first simulation-related publication [18], we
modeled and simulated a control application for a heated
water supply system. The control application consisted
of three control loops, each containing an interlocking
and controlling one of the controlled variables of the
process that is presented in figure 2. The simulation
counterpart of the control system was in this experiment
composed solely of librarized simulation blocks that
were coupled together and parameterized by the
transformation according to the control system model.

Figure 2. The heated water supply system
used as an example process in [18]

In [1] the process to be controlled was a mechanical
cart system that is presented in figure 3. The cart system
was moved with an electrical motor, stopped with brakes
and must be kept outside forbidden areas regardless of
the set-point from a higher level control system. The
control system model contained both librarized blocks
and application specific interlocking blocks. Alternative
solutions to keep the cart in its allowed area regardless of
the value of the non-restricted set-point were defined
with a logic diagram implementation of our tool and
evaluated by using the transformation to simulation
models and simulating the designs.

Figure 3. The mechanical cart system used
as an example process in [1]

Lastly, in [3] the example process was a batch process
system, the piping and instrumentation diagram of which
is presented in figure 1 in section 1. In this experiment,
in addition to feedback control, we modeled also a
control sequence that was used to control the execution
of the batch and to control individual devices. Compared
to the other simulation experiments, the total process
model was also the largest that we have used, so far.
Including both the equations caused by the control
system and those of the plant, the total amount of
equations in the model was over 1400. (Modelica is an
equation based language.) Of these equations, a large
proportional were trivial; however, the plant model alone
still contained approximately 50 differential equations
and several hundred complex algebraic equations.

4.2. Benefits of early MiL simulations
In the simulation experiments we have covered all the

common aspects of basic control systems: binary control,
feedback control, sequential control as well as
interlockings. Based on the experiments, they can be also
used concurrently. For example, set-points of feedback
controllers as well as binary control commands can be
given in sequences concurrently to interlockings that
enable and disable devices and controllers.

On the other hand, in addition to processes of
different industries, the modeling and simulation
approach has scaled well to processes of industrial size
and complexity. In the latest modeling and simulation
experiment, the total amount of equations related to the
closed-loop system was over 1400. Although such an
amount of equations would not necessarily enable
modeling of large processes such as paper machines, it
would enable quite detailed modeling of partial process
industry processes or mechanics of machinery systems.

With respect to benefits of applying simulations, in
[18] and [1] we prototyped several different interlocking
and control solutions. Related to interlockings, the latter
publication contains a comparison of two solutions and
results of their simulations. Tunings of e.g. PID
controllers to obtain acceptable dynamic behavior have
also been searched for all the published experiments. As
such, the approach has shown to enable prototyping and
comparing alternative approaches and tunings to
implement control and interlocking functions.

Related to revealing inconsistencies and missing
requirements, we have been able to notice shortcomings
in requirements and implementations. Especially, related

to the batch process experiment [3] we developed the
control solution and sequence step by step and simulated
the phase products. For the incomplete phase products,
the simulation results clearly indicated missing parts of
the sequence as well as controllers which led to stopping
of the execution of the batch sequence or temperatures
and pressures to rise above their desired values.

Lastly, according to our results, MiL simulations can
be useful also in testing exceptional situations.
Activations of interlockings due to hazardous set-points
have been successfully tested in several experiments
including the ones published in [18] and [1]. Safety
studies related to changes in the physical processes could
be implemented easy as well. For example jams of
valves or motors could be tested by presenting the timed
changes in dynamics in the process models while using
the simulation approach in a normal way since the
control application parts are only added to the process
model. As such, we regard the MiL approach suitable
also for safety studies which was one of the general
benefits of simulations mentioned in [16] and [17].

To draw conclusions on the experiments, we have
demonstrated the suitability of the approach to processes
of different industries and of industrial size. In our
experiments, the simulation approach has been found
useful in comparing and prototyping alternative control
and interlocking approaches, testing sequences as well as
finding acceptable controller tunings. Simulations have
helped finding missing implementations and
requirements as well as testing exceptions that could be
dangerous to test with actual physical processes.

5. Conclusions

In this paper, we have discussed and compared
approaches to integrate simulations to model-driven
engineering of industrial automation and control
applications. If simulations are used in an MDE process,
they should follow the Model-in-the-Loop approach
(MiL). Other types of simulation are supported by PLC
and DCS platform vendors and are applicable after
generating code. Because applications are already often
composed of re-usable implementation blocks, re-use
should be also enabled in simulations in order to
improve the reliability of the simulations.

The conclusions of comparing MiL simulations to
using target platform specific simulation tools were that
most of the general benefits of use of simulations can be
also obtained by integrating early MiL simulations to an
MDE process. The restrictions of early MiL simulations
are related to missing hardware, which may complicate,
for example, operator training. However, without
hardware, MiL simulations can be performed prior to
choosing target platform and performing hardware
design. MiL simulations could also be used in companies
performing out-sourced development tasks and it may be
possible to re-use plant models in later simulations, too.

We also compared the conceptual approaches to
implement MiL simulations with the conclusion that all
the approaches have both benefits and disadvantages
over each other. Co-simulation, firstly, does not require
model-transformations provided that the control system
modeling language is simulatable. However, it requires
more work in configuring simulation cases and engines.
Of the transformation assisted approaches, transforming
plant models may be less restrictive related to modeling
languages. However, it requires an additional model
transformation if the control system modeling language
used in the MDE approach is not simulatable and may
lead to using software development tools to system
simulation, instead of genuine simulation tools.

The simulation approach of the authors falls to the
MiL category and uses model transformations to create
and append control application specific parts to the plant
models. According to results obtained with three
published simulation experiments, the approach suits for
both machinery and process industry applications. It has
also been used beneficially in simulation of a large
process industry process. The general benefits of
simulations obtained so far are similar to those
anticipated by other researchers. Our approach has
additionally enabled prototyping, experimenting and
comparing control and interlocking solutions, searching
controller tunings and detecting inconsistencies in
requirements and design. Related to general benefits of
simulations, we have also used MiL simulations to
evaluating control and interlocking solutions during
exceptions. The simulations have been possible to
implement early and without either the physical
processes or the expensive control system hardware.

References

[1] T. Vepsäläinen and S. Kuikka, ”Simulation-Based
Development of Safety Related Interlocks”, Simulation
and Modeling Methodologies, Technologies and
Applications, Springer Berlin Heidelberg, 165-182, 2013.

[2] D. Hästbacka, T. Vepsäläinen and S. Kuikka, ”Model-
Driven Development of Industrial Process Control
Applications”. Journal of Systems and Software, Vol. 84,
No. 7, 1100 – 1113, 2011.

[3] T. Vepsäläinen and S. Kuikka, “Simulation Assisted,
Model-Driven Development of Automation and Control
Applications - Modelling and Simulation of Control
Sequences”, Control Engineering Practice, 2013.
(SUBMITTED)

[4] H. Shokry, and M. Hinchey, “Model-Based Verification
of Embedded Software”. Computer, 53-59. 2009.

[5] J. Carrasco and S. Dormido, “Analysis of the Use of
Industrial Control Systems in Simulators: State of the Art
and Basic Guidelines”. ISA Transactions, Vol. 45, Issue
2, 295-312, 2006.

[6] A. Plummer, “Model-in-the-Loop Testing”, Proceedings
of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering, Vol. 220,
No. 3, 183–199, 2006.

[7] H. Chae, X. Jin, S. Lee and J. Cho, “Test: Testing
Environment for Embedded Systems Based on TTCN-3
in SILs”. Advances in Software Engineering, Springer
Berlin Heidelberg, 204–212, 2009.

[8] M. Short and M. J. Pont, “Assessment of High-Integrity
Embedded Automotive Control Systems Using Hardware
in the Loop Simulation”, Journal of Systems and
Software Vol. 81, Issue 7, 1163 – 1183, 2008.

[9] M. Schlager, R. Obermaisser and W. Elmenreich, “A
Framework for Hardware-in-the-Loop Testing of an
Integrated Architecture”. Software Technologies for
Embedded and Ubiquitous Systems, Springer Berlin
Heidelberg, 159–170, 2007.

[10] G. Stoeppler, T. Menzel and S. Douglas, “Hardware-in-
the-Loop Simulation of Machine Tools and
Manufacturing Systems”. Computing & Control
Engineering Journal, Vol. 16, Issue 1, pp. 10–15, 2005.

[11] C. Yang and V. Vyatkin, “Transformation of Simulink
Models to IEC 61499 Function Blocks for Verification of
Distributed Control Systems”. Control Engineering
Practice, Vol. 20 No. 12, 1259–1269, 2012.

[12] V. Vyatkin, H.-M. Hanisch, C. Pang and C.-H. Yang,
“Closed-Loop modeling in Future Automation System
Engineering and Validation”, Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, Vol. 39 No. 1, 17 –28, 2009.

[13] I. Hegny, M. Wenger and A. Zoitl, ”IEC 61499 Based
Simulation Framework for Model-Driven Production
Systems Development“, Emerging Technologies and
Factory Automation, IEEE Conference on, 1–8, 2010.

[14] L. Ferrarini and A. Dede, “A Model-Based Approach for
Mixed Hardware in the Loop Simulation of
Manufacturing Systems”, 10th IFAC Workshop on
Intelligent Manufacturing Systems, 41–46, 2010.

[15] M. Karaila and T. Systä, ”On the Role of Metadata in
Visual Language Reuse and Reverse Engineering – An
Industrial Case”, Electronic Notes in Theoretical
Computer Science, Vol. 137, Issue 3, 29-41, 2005.

[16] J. Dougall, “Applications and Benefits of Real-Time I/0
Simulation for PLC and PC Control Systems”, ISA
Transactions, Vol. 36. No. 4, 305-311, 1998.

[17] T. Karhela, ”A Software Architecture for Configuration
and Usage of Process Simulation Models: Software
Component Technology and XML-Based Approach”,
PhD Thesis, VTT Technical Research Centre, 2002.

[18] T. Vepsäläinen, D. Hästbacka and S. Kuikka,
“Simulation Assisted Model-Based Control Development
- Unifying UML AP and Modelica ML”, 11th
International Middle Eastern Simulation Multi-
conference, 43-50, 2010.

Publication 6

Vepsäläinen, T., Kuikka, S. (2011) Towards Model-Based Development of Safety-Related

Control Applications. Proceeding of the 16th IEEE International Conference on Emerging

Technologies and Factory Automation. Toulouse, France, September 5-9, 2011, pp. 1-9.

DOI: 10.1109/ETFA.2011.6058979

© 2011 IEEE. Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of Tampere University of Technology's products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

Towards model-based development of safety-related control applications

Timo Vepsäläinen
Tampere University of Technology,

Department of Automation Science and
Engineering

P.O. Box 692, FIN-33101 Tampere, Finland
timo.vepsalainen@tut.fi

Seppo Kuikka
Tampere University of Technology,

Department of Automation Science and
Engineering

P.O. Box 692, FIN-33101 Tampere, Finland
seppo.kuikka@tut.fi

Abstract

Model-based techniques have been recently the topic
of numerous publications in different domains. In
addition to producing revised models and executable
applications, model-based techniques could also aid the
understandability of design and consistency between
design artefacts. These properties are also focal to
development of safety-related applications, in addition to
the ability to produce documentation about the systems.
In this paper, we strive to create a new model-based
approach for development of safety-related applications
by integrating risk analysis techniques and modeling
notations from several related languages and standards.
The notations and their characteristics are compared to
the requirements of the vital functional safety standard,
IEC 61508, and illustrated with an exemplary modeling
case.

1. Introduction

The idea of focusing to models in development of
systems and software applications has recently been the
topic of numerous publications in several domains,
including industrial control engineering. Due to the
interests and publications, there are also several
acronyms related to the concept, some of which are
already registered trademarks of organizations that have
pioneered in utilizing and standardizing the approaches.
For example, Model-Driven Architecture (MDA) is a
trademark of OMG that also maintains the specifications
of modelling (UML, SysML), metamodeling (MOF) and
transformation (QVT) languages that can be used in
conjunction to MDA.

The idea of model-based development and related
approaches, e.g. MDA and model-driven engineering
(MDE), is to use models as primary engineering artefacts
during the development of applications. In the domain of
systems engineering, model-based systems engineering
(MBSE) refers to applying models as part of the systems
engineering process in order to support analysis,
specification, design and verification of the system being
developed [1]. However, in systems engineering, the

main focus of model-based methods may not always be
in producing more accurate models or executable
applications based on models but also to aid the analysis,
understanding and documentation of the systems. In
development of software applications, it has been more
natural to target to the ability to automatically utilize
models and specifications in production of revised
models and executables.

The authors of this paper have taken part in
development of an approach, and tools supporting the
approach, to automatically utilize models in
development of industrial control applications. The
approach developed during the AUKOTON project has
been presented in detail in [2] and consists of three
modelling phases during which the requirements,
functionality and platform specific details are specified.
The modelling concepts used during the development are
based on UML automation profile (UML AP) [4] and
enhancements to the profile developed during the
AUKOTON project. The assessment of industrial
applicability of the AUKOTON approach has been
presented in [3].

However, more attention could be paid on analysis of
models and producing documentation (potentially for an
in-house design knowledge repository) about the
applications. In some model-based development
approaches, documentation may not have been a focal
asset also because of some common trends in software
engineering. For example, agile development processes
are focusing on the ability to react to changes and value
working software above extensive documentation. These
purposes are probably beneficial in development work
that is based on changing user requirements.

In development of mission-critical and safety-critical
systems and applications, requirements are based on
hazard and risk analysis and are not likely to change that
often. In addition, documentation is still of importance
because of the need to be able to prove characteristics of
the systems. Development of safety-critical applications
(conforming to safety standards) is required to produce a
vast amount of documentation about the systems and the
development activities used. It is thus an interesting
question, whether or not also development of safety-

critical applications, requiring thorough analysis and
documentation, could benefit from application of model-
based techniques.

Whereas safety-critical applications are often quite
small compared to, for example, ordinary industrial
control applications, in the development of them there
might not be need to automate processing of bulk
information. Instead, the development of safety-critical
applications could benefit more from aiding
understandability of the system being built, the hazards
related to the system, traceability between design
artefacts and the ability to run analysis model-checks and
generate documentation about the system. In this paper,
we discuss the possibilities to support development of
safety-related software applications with model-based
development (MBD) techniques by extending our
AUKOTON approach. Specifically, we focus on
modelling of information that supports the understanding
of hazards, safety requirements specification, and
detailed design.

The development process and essential requirements
of the vital functional safety standard, IEC 61508 [5], are
discussed in section 2. Section 3 focuses in modelling
needs and possible notations to be used. In section 4, we
discuss the concept of risk and hazard modelling.
Section 5 focuses on requirements modelling. In section
6, before presenting related work and concluding the
paper, we develop an exemplary modelling project
utilizing the developed modelling concepts for the
physical process presented in figure 1.

Figure 1. An exemplary physical process
for the modeling example in section 6.

2. Development of safety critical systems

IEC 61508 is an international standard of functional
safety of electrical/electronic/programmable electronic

safety-related systems. The standard consists of seven
parts that focus on different aspects of development of
safety-related systems including, for example, general
requirements and software requirements. The current
version of the standard has been published in 2010. [5]

IEC 61508 is of special importance as a functional
safety standard because of several reasons. Firstly, the
standard has been renewed a short while ago.
Consequently, for example, the list of recommended
actions and techniques should be as modern as
applicable. Secondly, one of the purposes of IEC 61508
is to facilitate development of industry specific
standards, which increases its importance. Such industry
specific standards include, for example, IEC 62061:2005
in machinery. Finally, according to our interviews during
the Ohjelmaturva project with several Finnish and
international companies in mobile working machines
domain, IEC 61508 may be the most difficult safety
standard to be used in the development. Partly this is
because of the vast amount of requirements and
techniques, partly because of the difficulty of applying
some of the required techniques.

According to the standard, the lifecycle of safety-
related system starts from concept definition. Concept
definition is followed by overall scope definition, hazard
and risk analyses, overall safety requirements
specification, safety requirements allocation, planning
phases, realization phases of safety related systems of
various implementation techniques, and so on. The
development of software parts of systems is covered
mainly in the part 3 of the standard. It includes software
safety requirements specification, validation planning,
design and development, integration of software and
hardware, operation and maintenance procedures
specification, and validation. [5] The standard is built so
that the most natural way to fulfill the requirements
would be to utilize the traditional V-model development
process. However, the standard allows any development
process to be used, provided that the requirements of the
standard are fulfilled. Thus, also agile processes could be
used, but, according to [6], problems may arise because
of lack of ability to provide necessary documentation.

IEC 61508 is a risk-driven standard. After scope
definition, the actual development process starts from
identification of the hazards and estimations of risks,
followed by specification and allocation of requirements
and then proceeds towards implementation. The latter
phases of the process are built on information produced
by the former phases. To the different development
phases, the standard suggests means to make sure that
the actual risks are taken care of and that the system will
function in a proper way. Traceability requirements
ascertain that the risks and hazards are the basis for
development of the safety-related functions - the process
is thus risk-driven. Recommended techniques, on the
other hand, ascertain that the functionality is specified
and implemented correctly.

2.1. Traceability
In IEC 61508, a repeating requirement for phase

products of safety-related system development is the
consistency and traceability between them. For example,
system level requirements must be both backward
traceable to the perceived safety needs and forward
traceable to software requirements. Architecture design
must be traceable to safety requirements, software design
must be traceable to safety requirements and design
specifications must be traceable to test specifications. [5]

In traditional, document-based development of
systems and applications, the traceability between the
development artifacts may be difficult to fulfill. For
example, traceability between identified hazards and
software safety requirements could be supported by
specifying (explicitly) the unique identifiers of the
hazards that the requirements have been specified for.
Similarly, requirements could be linked to software
safety functions and architectural decisions by specifying
the IDs of them. In addition, hyperlinks between the
specifications in same or different documents could be
defined to aid the discovery of the artefacts related to
each other. However, documents are still difficult to
keep up-to-date when something is changed and they
don’t support impact analysis. In addition, generation of
any kind of summary about the traceability, such as a
traceability matrix, or searching for hazards that have
not been addressed by any requirement, would be very
difficult.

2.2. Correctness, completeness and unambiguousness
Some other repeating requirements for different phase

products of safety-related software development are,
according to IEC 61508, correctness, completeness and
unambiguousness. To achieve the correctness and
freedom from faults, the standard recommends, for
example, application of formal or semi-formal
techniques during, for example, requirements
specification and detailed design phases. However, even
the standard admits that application of formal methods
may complicate the achievement of the understandability
requirement. [5]

Indeed, formal methods are, according to the
knowledge of the authors, often not familiar to
developers of software applications in industrial control
and machinery. However, in order to develop safe
systems, the requirements need to be specified strictly
and in an unambiguous manner. Instead of formal
methods, the design specifications could be also based
on semi-formal, domain specific concepts, that would
fulfill the requirements of the standard. In the domain of
industrial control, logic diagrams have been traditionally
used for specification of control approaches and safety-
function-like interlockings. Such specifications present
requirements but also, in some cases, detailed design and
are both familiar to developers and, at least, a semi-
formal approach.

Specifying requirements has been found difficult in
software engineering in general. Author of [7] has
analyzed the quality of produced software in about
12500 projects from year 1984 to 2008 and the defects
delivered (and removed) during the projects. According
to the survey, in best-in-class-quality, a main portion of
defects delivered were related to defects in requirements
specification, partly because defects in requirements are
difficult to discover.

One effective means to aid and improve requirement
specifications could be the use of inspections. In model-
based development, inspection-like activities could be
supported by presenting both the hazards and
requirements in same models than design and by linking
them together. By doing so, the developers of the system
could always follow the requirements to the hazard
model when in doubt. In addition, for example, definers
and implementers of safety functions could be instructed
to always check the consistency between the artefacts
before writing a single line of specification or code. By
doing so, the consistency would be checked several
times during the development by different people,
including developers of safety requirements,
implementers and testers, just to name a few. Visibility
could thus aid both correctness and completeness.

3. Model-based approach to safety

In MBD, models are used as primary development
artefacts instead of, for example, documents. In MBD of
safety-related applications, the applications should,
accordingly, be developed by utilizing models but also
considering the requirements of safety standards. Thus,
when applying MBD techniques to development of
safety-related systems, attention should be paid on the
documentation needs. In our opinion, the special needs
are the properties discussed in 2.1 and 2.2: traceability,
correctness, completeness and unambiguousness.

Traceability, in this case, refers to traceability
between all the phase products such as hazards,
requirements, and detailed design artefacts. In software
engineering, the most used modelling language is UML.
However, UML does not address the traceability
explicitly with any modelling concept. In contrast, a
UML profile SysML defines concepts for defining
relations (traces) between requirements and design
artefacts and between requirements and test cases. These
concepts do not cover all the traceability requirements of
IEC 61508 but form a foundation that could be further
extended. However, supporting traceability would also
require including more concepts, such as hazards in the
scope of modeling.

In addition to traceability, there are several reasons to
add hazards to the scope of models. As discussed in 2.2,
the hazard information could be made visible and
available for the developers in order to aid the

understandability of the requirements and design.
Consistency between design artefacts could be inspected
by different developers to aid the correctness and
completeness of requirements. Similarly to traceability,
hazards are not covered by UML. There are, however,
reported approaches to cover structured presentations of
hazards, such as, the safety analysis profile [8] and the
approach of the UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and
Mechanisms (QoSFT) [9].

Requirements specification may be the most critical
part of development of complex systems. Requirement
specifications should, on one hand, be formal enough to
fulfil the requirements of standards but also be based on
concepts familiar to developers. However, for example
UML defines only use case concept for stating
(functional) requirements. In addition, SysML defines a
set of textual requirement specification concepts but they
can hardly be characterized as formal. In the domain of
industrial control, there are also standards related to
functional requirements, including IEC 62424 [14] and
IEC 61804 [12]. These standards are more familiar to the
developers in the domain but also enable structured
presentation of required functionality and coupling to the
instrumentation of the system.

In our approach, we pursue to integrate modeling
notations from several languages in order to facilitate the
development of safety-related software applications with
model-based techniques. In more detail, we aim to
enhance traceability, correctness, completeness and
unambiguousness of design with models. The modeling
languages and notations of interest include: UML,
SysML [11], safety analysis profile [8], QoSFT profile
[9], IEC 62424 [14] and IEC 61804 [12]. These
languages and notations will be next discussed from the
point of view of modeling hazards, requirements and
detailed design with the aim of collecting practices to be
used in modeling in conjunction to UML AP.

4. Risk and hazard modeling

Currently, modeling of hazards and risks is not
covered by many modeling languages or profiles in
software engineering. In the approach of [10], the focus
is in incorporating safety requirements in software
architecture and evaluations of the architectures based on
safety analysis methods. The developed metamodels
include FMECA (Failure mode, effects and criticality
analysis) and FTA (fault-tree analysis) metamodels.

In QoSFT profile [9], the main objective of the
modeling may not be in detailed specification of how the
hazards may occur. Instead, it is focused on factors
determining the magnitudes of risks (likelihood,
consequences), compromised assets, stakeholders, and
the treatment of risks. Treatment approaches include:
avoiding risk, reducing its likelihood or consequences,

and retaining and transferring the risks. Tracing of risks
to requirements is not covered by the profile.

In safety analysis profile [8], both the occurrences of
hazards and tracing hazards to requirements are covered.
To the definition of occurrences of hazards, the profile
suggests the use of FTA that can be also used in a
quantitative way. Another benefit of FTA is that it can
aid the design of safety functions. Safety functions can
be designed to disjoint the fault or event sequences
leading to the hazards so that for the hazards to occur,
also the safety functions would need to fail.

To support the documentation of hazards, we suggest
a combination of the modeling notations. FTA,
suggested by both [8] and [10], is a very analytic
technique and also enables quantitative analysis of
hazards. To support traceability, it should be possible to
trace hazards to requirements. However, in addition to
tracing the hazards to requirements, it would be
beneficial to document the approach to handle the risks,
similarly to the approach of QoSFT profile.

The following (partial) metamodel, presented in
figure 2, has been defined to fulfill the above mentioned
needs. However, properties supporting quantitative
analysis, such as, mean time between failures (MTBF)
and for example logic operators supporting FTA, such
as, OR and NOT, have been left out of the figure. The
hazards and event sequences leading to hazards can be
presented with FTA elements: Hazard, Required and
Resulting Conditions, Fault and logical operations (not
shown in the figure). Risk treatments specify the
approaches to treat the risks and link them to
requirements. Hazards can be related to each other with
different kinds of relations and Faults can be linked to
modeled hardware (SysML) or software (UML)
elements causing the fault.

Figure 2. Part of the developed hazards
metamodel.

5. Requirements and design

As presented earlier UML does not contain concepts
for stating explicit requirements. Use cases can be used
for presenting interactions between users and systems
but they usually require additional textual descriptions to
enable specification of what exactly happens. In
addition, other modeling concepts, such as classes and
state machines, can be used in analysis phases but the
diagram point of view is often in solutions instead of
requirements. By use of SysML [11], requirements can
be specified with requirement concepts that include text
and id attributes. Traceability of requirements is in
SysML supported by traces that can be used for tracing
requirements to implementing elements and test cases.
Traces can also be searched from models, for example
with model checkers, in order to generate traceability
documentation or to search for overlooked requirements.
However, SysML requirements can hardly be
characterized as formal.

In the industrial control domain, there are at least two
standards that address the functional requirement
specification issue: IEC 62424 [14] and IEC 61804 [12].
IEC 62424 defines a specification for presentation of
requirement-like process control engineering (PCE)
requests in piping and instrumentation diagrams (P&ID)
and enables data exchange between P&ID tools and
control engineering tools in order to optimize the
engineering process. The standard also allows
identification of requests (requirements) that are related
to safety and definition of the corresponding SIL or PL
levels. Another advantage is the direct linking to devices
and instruments of the process. However, IEC 62424
does not allow definition of safety function logic that
would be advisable from the point of view of IEC 61508.

IEC 62424 is also part of AutomationML which is
focused on data exchange and the integration of
engineering disciplines in development of manufacturing
systems. The information addressed by the language
includes manufacturing system topology, geometry,
kinematics, and control behavior. [15]

IEC 61804 originates from power plant industrial
sector and aims to utilize IEC 61499 function blocks
(FB) for specification of functional requirements.
Process flow diagrams are first used to identify the
process elementary operations. The required (control)
functions are then identified and marked in P&I
diagrams, structured to sets and presented in control
hierarchy diagrams. Finally, the details of the required
functions are specified by using a vendor neutral (but
unambiguous) FB language. [12] Similarities between
61804 and 62424 include, at least, tight integration to
instrumentation, which could aid the understandability of
requirements. Neither standard, however, addresses the
traceability to implementation although shifting to
implementing function blocks may be straightforward.

In UML AP, requirements are structured concepts
with attributes for id, description, priority, rationale and
source. Concepts are divided to a hierarchy based on the
basic viewpoint, such as, to interface with sensors or to
interlock devices. The required information interchange
between required functions can be modeled with port-
like requirement interfaces. By connecting safety and
control function requirements to requirements presenting
needs to interface with the instrumentation, the interfaces
also enable modeling of the integration to
instrumentation. Requirements can be traced to
implementing model elements with requirement traces
(similar to the traces of SysML). To enable definition of
safety requirements, it was seen that support for
modeling of unambiguous interlocking logic (like in IEC
61804), required SIL (or PL) levels and allocation of
requirements to different implementation techniques
would be needed.

Figure 3 presents part of the additions to requirement
metamodel of UML AP, detailed diagrams of which are
presented in [2]. In UML AP, requirement refinements
are used to define additional information to
requirements. In case of safety requirements, such
refinements could be related to required SIL (or PL)
level, or in early stages of requirements specification, the
(allocated) implementation technology for the
requirements. Logic operation library was also defined to
enable the definition of exact logic. The logic concepts
are currently applicable in internal block diagrams that
can be used to depict internals of requirements in our
tool environment.

Figure 3. Part of the additions to the UML
AP requirements sub-profile.

In this paper, our main focus has been in modeling
hazards and requirement information. The reason is that,
in our opinion, those aspects are the ones that are
difficult to cover in modeling with current languages.
However, commonly used modeling languages, such as,

UML could be used in detailed design at least if the
system is to be implemented with general purpose
programming languages. UML can be seen as a semi-
formal method so it also fulfills the requirements of IEC
61508 (table B.7 of part 3). In addition to detailed
design, UML and SysML are suitable for depicting
software and system architectures with, for example,
component, block and deployment diagrams.

 The functional modeling concepts of UML AP,
Automation Functions, are related to function-block-
based development. FB languages (with defined subsets)
are also highly recommended to all SIL levels by IEC
61508. The current version of the profile also enables
detailed definition of interlocking and safety function
logic, which was seen to be missing in the assessment of
the previous version [3]. To achieve this, we have
enabled the use of logic library that was discussed earlier
also in specification of inner logic of Automation
functions. The justification is that logic diagrams are
closely related to (highly) recommended programming
languages, fulfill the required formality, are familiar to
developers and thus aid unambiguity.

6. A modeling example

The purpose of this section is to provide an exemplary
utilization of the developed modeling concepts. In the
following subsections, we present a model describing
hazards related to a simple process and how the
modeling concepts can be used in specification of
requirements and traceability between the hazards and
requirements.

6.1. Hazard model
The system of interest is visualized in figure 1. The

system constitutes a simple, closed system providing hot
pressurized water for the supplied process, and consists
of two storage tanks for hot liquid, a boiler, two pumps
for pumping the water between the tanks, and a few
valves and sensors. The system is capable of causing
harm to the environment, at least, by overflowing from
the tanks B100 and B200 and by leaking from the
pumps, which may be caused by damaging the pumps by
running them dry.

The occurrences of hazards of overflowing of tank
B200 and running pump M100 dry are presented in
figure 4 (drawn with the UML AP Tool). In this case, the
occurrences of the hazards do not require faults in the
system. Instead, overflowing of B200 requires that water
is pumped to the tank with the tank being already full.
Pump M100 running dry requires that the pump is used
while B100 is empty. Both hazards are traced to
interlocking requirement I-M100 (Interlock for M100),
as indicated with the risk treatments, with the goal to
avoid the risk. Details of the hazards: likelihoods,

consequences and resulting risk values are not shown in
the simplified figure below.

Figure 4. Hazards related to tank B200 and
pump M100.

In a similar way, overflowing of tank B100 can be
caused by pumping water to it (through boiler and
supplied process) while the tank is already full and the
pump M200 running dry by using it while tank B200 is
empty. However, another way in which tank B100 can
overflow is to drain additional water to it with use of
valve Y101 when the tank is full. The occurrences of
these hazards that can be treated by interlocking pump
M200 and valve Y101 are shown in figure 5.

Figure 5. Hazards related to tank B100 and
pump M200.

6.2. Requirements
The interlocking requirement related to pump M100

is presented in its context and with details in figures 6
and 7, respectively. As seen in figure 6, the interlocking
requires information about the levels of water in tanks
B100 and B200, so the requirement is related to the

corresponding measurement requirements and also to the
requirement of controlling pump M100 (not shown in the
figure). Because of relatively small amount of energy
handled in the process, the SIL levels for the required
functions were set to 0 which means that they are non-
safety-critical interlocking requirements. Actual,
required interlocking logic for pump M100 is presented
in figure 7: the pump is locked (disabled) if the water
level in B100 is below 0.1 or the level of water in B200
is over 0.9, so that the condition sequences in figure 4
are disjoint. The notation in figure 6 is discussed in more
detail in [2].

Similarly, interlocking for the pump M200 can be
required to stop the pump if the water level in B200 is
below 0.1 or the level of water in B100 is over 0.9. The
latter condition can be used also in the interlocking for
Y101 (I-Y101) to close the valve. These interlocks are
not shown in the figures.

Figure 6. Interlocking requirement for M100.

Figure 7. Detailed logic of Interlocking
requirement M100.

6.3. Traceability
The example process covered in this paper is

relatively small but illustrates the use of FTA and
requirement concepts discussed earlier, in conjunction to
UML AP. In the model, identified hazards are linked to
functional requirements with risk treatments that also
specify whether the requirement represents a required
safety function and with the risk reduction approach (in
the example: avoid). With the requirement trace concepts
of UML AP [2], the requirements could be further linked
to implementing (modeled) elements that could be

related to both architecture and detailed design. In
addition, SysML defines (verify) relations to be used
between requirements and test cases. As a whole, the
approach thus supports traceability between hazards,
requirements, architecture, detailed design and test cases.

As the traceability is defined with explicit traces, it
can also be analyzed automatically. Currently, our tool
environment supports exporting traceability matrices
(Microsoft Excel sheets) presenting the traceability
between identified hazards and requirements and also
between requirements and (detailed or architectural)
design elements. When creating a hazard trace table, the
hazards are first collected to a list. The corresponding
requirements are identified and listed based on the risk
treatments and finally the information content is
exported to Excel sheets by adding a row for each hazard
and a column for each requirement a hazard is traced to.
Finally, the requirements that a hazard is traced to can be
indicated by marking the columns of the requirements.
In the process, hazards that are not traced to any
requirements are highlighted with red color in order to
warn the user about possibly overlooked hazards. An
example of an automatically generated traceability
matrix related to the hazards and requirements discussed
earlier is shown in figure 8.

Figure 8. An automatically generated
traceability matrix from hazards to
requirements.

Similarly to the hazard traceability matrix,
requirement traceability matrices can be automatically
constructed between requirements and other model
elements. In the implementation, the main difference is
that instead of risk treatment elements, the table is
constructed based on trace requirements elements of
UML AP. In addition, because the trace relations of
SysML define explicitly the client and supplier elements,
they could also be used in creation of similar tables.
However, the use of SysML traces is not yet automated
in our modeling tool.

Model checks could also be easily added to the tool
environment to perform various checks. For example,
requirements that are coupled together must have
matching SIL refinements, all requirements must be
traced to test cases modeled with SysML, and risk
treatments must document the risk reduction approaches,
just to name a few. This kind of checks could ease the
developers work by identifying possible flaws in the
models. Consequently, their main purpose could be to
support the developers during the actual development
work whereas the traceability information could be
useful both during the development and after it. In more
detail, during the development the traceability matrices
could aid the understandability and inspections of design
and after it by storing the valuable traceability
information.

7. Related work

In addition to the approach outlined in this paper,
supporting development of safety-related software with
model-based techniques has been studied also by other
researchers. In [16], Guillerm et al. discuss the use of
SysML to address requirements definition, traceability as
well as verification and validation in system engineering
process. In the paper, they propose the use of UML and
SysML in requirements definition and extend the
languages with stereotypes related to documenting risks.
However, the information model does not address the
modeling of how the hazardous situations occur which
would be required to understand how the required safety
functions are to treat the risks, for example, by
interrupting fault sequences leading to hazardous
situations.

In the approach presented in [17], Biehl et al. attempt
to integrate safety analysis to model-based development
in automotive industry. They automate translation from
EAST-ADL2 to HiP-HOPS with 2-phased
transformation in order to automate performing of
safety-analysis on refined models with minimal effort.
However, in the approach the focus is in automating the
safety analysis, not in using and understanding the
information produced by safety and hazard analysis in a
constructive way, as is in our approach.

The UML Profile for developing Airworthiness-
Compliant SafetyCritical Software [18] intends to extract
the key safety-related concepts from RTCA DO-178B
standard into a UML profile and to use them to facilitate
the communication between different stakeholders in
software development. One of the purposes of the
profile, to make requirements more understandable to all
stakeholders, is similar to that of our approach.
However, we aim to do it by describing the occurrences
of hazards to the control and safety software engineers
and by enabling semi-formal specification of
requirements with notations familiar to engineers and

explicit traces between hazards and requirements, where
as the concepts of the airworthiness profile are extended
from the airworthiness standard.

8. Discussion and conclusions

It might be beneficial if both the basic control systems
and the safety-related systems could be developed with
similar or same tools. The industrial trend is moving
towards model-based techniques also in development of
safety-related systems. For example, IEC 61508 states
that automatic software generation may aid
completeness, correctness and freedom from intrinsic
design faults in architecture design. As a consequence,
the issue of how to develop safety-related systems with
model-based techniques is important.

Unification of the development tools and notations
could benefit both the development of basic control
systems and safety-related systems. For example,
developers would be capable of developing both kinds of
systems and understand the couplings between the
systems. Development of basic control systems could
also benefit from the ability to generate documentation
from design that would be necessary to support model-
based development of safety-related systems. It could
also lead to unification of basic control systems and
safety systems into single systems.

In this paper, we have discussed the development of
safety-related systems and applications from the points
of view of both IEC 61508 standard and model-based
development. In model-based development of safety-
related applications, documentation is a focal asset that
must be addressed. To achieve at least part of the goals
of the standard including traceability, correctness,
completeness and unambiguousness, we have studied
modelling notations that could be used in modeling of
hazards and requirement. In order to provide an
exemplary model utilizing the concepts, the new
modelling concepts were added to the UML AP Tool.
Our approach to fulfil the mentioned goals of the
standard with the modelling concepts and features is
summarized in table 1.

Property Supporting modelling features

Traceability Traces and traceability matrices
between modelling artefacts.

Correctness Formal and semi-formal
notations, visibility of hazards
and requirements to developers.

Completeness Traceability and model checks
to make sure that requirements
and hazards are not overlooked.

Unambiguousness Semi-formal and user-familiar
modelling notations.

Table 1. Summary of goal properties and
supporting modeling features.

One issue in shifting towards model-based techniques
is that in development of safety-related systems, tools
should be either verified or proven in use. Verification of
a complete tool set supporting model-based development
would be a vast project. Collection of usage data,
however, could be possible from the development of
basic control systems that often include safety-function-
like interlockings. From the point of view of the authors,
the main difference between interlockings and safety
functions is that interlockings are not certified.
Consequently, they can be designed to be more complex.
However, the basic needs may be very similar to those of
safety functions.

The authors acknowledge that the proposed
methodology and the modeling concepts still require
further development and exemplary modeling cases with
which they can be assessed and further developed. The
development of safety-related applications could also
benefit from simulation capabilities. The approach
presented by the authors in [13] could be integrated to
development and design-time verification of alternative
approaches to achieve safety. With such a development
approach, it could be possible to run test-like simulations
to test the approach to achieve safety. In our future
projects, we will collaborate with the industry in order to
gain deeper insight about re-occurring safety needs.

References

[1] S. Friedenthal, A. Moore and R. Steiner. “A practical
guide to SysML”. Morgan Kaufmann OMG Press, San
Francisco. 2008

[2] D. Hästbacka, T. Vepsäläinen and S. Kuikka. “Model-
driven development of industrial process control
applications”. Journal of Systems and Software (2011),
doi:10.1016/j.jss.2011.01.063

[3] T. Vepsäläinen, S. Sierla, J. Peltola and S. Kuikka.
“Assessing the Industrial Applicability and Adoption
Potential of the AUKOTON Model Driven Control
Application Engineering Approach”, The Proceedings of
the 8th International Conference on Industrial Informatics.
Osaka, Japan, July 13-16, 2010.

[4] T. Ritala and S. Kuikka. ”UML Automation Profile:
Enhancing the Efficiency of Software Development in
the Automation Industry”, The Proceedings of the 5th
IEEE International Conference on Industrial Informatics,
Vienna, Austria, 23-27.7.2007, pp. 885-890.

[5] International Electrotechnical Commission, IEC 61508:
functional safety of electrical/electronic/programmable
electronic safety-related systems. parts 1-7. 2010

[6] J. Paalijärvi, M. Katara, M. Karaila and T. Parkkinen.
“Agile development of safety-critical software for
machinery: A view on the change management in IEC-
61508-3”. The 6th International Conference on Safety of
Industrial Automated Systems SIAS 2010, Tampere,
Finland, 14-15 June, 2010

[7] C. Jones. “Software quality in 2008: A survey of the state
of the art”. 2008. Software Productivity Research LLC.
http://www.jasst.jp/archives/jasst08e/pdf/A1.pdf
(achieved 13.2.2011). 59 p.

[8] B. Douglass. “Analyze system safety using UML within
the Telelogic Rhapsody environment”. IBM Corporation,
2009.

[9] Object management Group, “UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics
and Mechanisms Specification”. Version 1.1. OMG.
2008.

[10] M. de Miguel, J. Briones, J. Silva, and A. Alonso,
“Integration of safety analysis in model-driven software
development,” IET Software, vol. 2, no. 3, pp. 260–280,
2008.

[11] Object Management Group, “OMG Systems Modeling
Language (OMG SysML™), Version 1.1, OMG 2008,
online at: http://www.omg.org/spec/SysML/1.1.

[12] International Electrotechnical Commission, IEC 61804:
Function blocks (FB) for process control – part 1:
Overview of the system, 2003.

[13] T. Vepsäläinen and S. Kuikka. "Simulation Assisted,
Model-Based Development of Safety Related
Interlocks", to appear in 1st International Conference on
Simulation and Modeling Methodologies, Technologies
and Applications. Noordwijkerhout, Netherlands, July
29-31, 2011. (accepted)

[14] International Electrotechnical Commission, IEC 62424:
Specification for Representation of process control
engineering requests in P&I diagrams and for data
exchange between P&ID tools and PCE-CAE, 2008.

[15] AutomationML, www.automationml.org
[16] R. Guillerm, H. Demmou and N. Sadou. “Information

Model for Model Driven Safety Requirements
Management of Complex Systems”. In: First
International Conference on Complex System Design
and Management, Paris, France, October 27-29, 2010.

[17] M. Biehl, C. DeJiu, and M. Törngren. “Integrating safety
analysis into the model-based development toolchain of
automotive embedded systems”. In: LCTES 2010, pp
125-132, New York, NY, USA, 2010. ACM.

[18] G. Zoughbi, L. Briand and Y. Labiche. “A UML Profile
for Developing Airworthiness-Compliant (RTCA DO-
178B), Safety-Critical Software”. In: MODELS 2007.
LNCS, vol. 4735, pp. 574–588. Springer, Heidelberg
2007.

Publication 7

Vepsäläinen, T., Kuikka, S. (2014) Design Pattern Support for Model-Driven Development.

Proceedings of the 9th International Conference on Software Engineering and Applications.

Vienna, Austria, August 29-31, 2014, pp. 277-286.

DOI: 10.5220/0004990002770286

© SciTePress. Reprinted with permission.

Design Pattern Support for Model-Driven Development

Timo Vepsäläinen and Seppo Kuikka
Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland

Keywords: Design Pattern, Model-Driven Development, Tool Support.

Abstract: Design patterns document solutions to recurring design and development challenges. UML, as the de-facto
modeling language in software development, aims to support defining and using patterns in models.
However, as is demonstrated in the paper, the support is not sufficient for all kinds of patterns and all
meaningful ways to use patterns. In this paper, the use of design patterns is suggested for documentation
purposes in Model-Driven Development. The pattern support of UML is complemented with an approach
that does not constrain the structures that can be used in patterns. The approach, which is tool supported in a
model-driven development environment for control applications, also enables specification of part of the
information content of patterns that UML leaves intact. The developed tool support includes instantiating
and highlighting patterns in models and gathering of traceability information on use of patterns.

1 INTRODUCTION

Design patterns document proven solutions to
challenges that keep arising in design and
development work. Patterns capture expert solutions
for reuse purposes for both expert developers and
less experienced ones. In UML modeling, support
for using patterns is only partially enabled by the
language. The support for the use of patterns is
based on Collaboration and CollaborationUse
concepts (OMG, 2011) that have been developed
along the entire language specification from
parameterized collaborations (Sunyé et al., 2000).

However, in addition to the standard approach,
many tool vendors, e.g. No Magic (No Magic,
2014), have implemented additional pattern support
in a more ad hoc manner. Such support for patterns
is in many tools based on informal UML templates
that can be copied into design models to create
instances of the patterns. In addition, copying the
templates may utilize wizards that enable modifying
pattern occurrences to specialized forms, by e.g.
selecting existing elements to pattern-specific roles.

However, without referencing pattern definitions
the information about the occurrences is endangered
to vanish. With application specific names of e.g.
properties, classes and interfaces, the occurrences
are difficult to notice later for both developers and
the tools. To avoid losing this information, patterns

should be modeled and their occurrences marked in
the models.

With its concepts, UML aims to support the
definition of patterns in library models and their
instances in models. It appears that the collaboration
concepts of UML have been designed with
traditional GoF (Gang of Four) (Gamma et al., 1994)
patterns in mind: with focus on co-operating objects
as properties of classes. However, as will be
demonstrated, the UML concepts may not be
sufficient for all kinds of patterns and foreseeable,
meaningful ways to use patterns. Nevertheless, when
patterns are utilized in software projects,
documenting their use in models could be of great
value. Especially this is the case with development
processes that emphasize the use of models, e.g.
Model-Driven Development (MDD).

In addition to solutions, design patterns include
textual information about, for example, their
contexts and the problems being solved. In
(Alexander, 1979), the pattern concept is defined as
a three-part rule expressing a relation between a
context, a problem and a solution. A design pattern
defined with the UML concepts, however, is likely
to provide only information about the solution part
of the pattern leaving the other important aspects
unspecified.

This paper addresses the aforementioned issues.
A pattern modeling approach is presented, which is
less restrictive than that of UML and enables

277Vepsäläinen T. and Kuikka S..
Design Pattern Support for Model-Driven Development.
DOI: 10.5220/0004990002770286
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 277-286
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

specification of part of the information content that
UML does not address. The approach is tool
supported in UML AP (UML Automation Profile)
tool environment (Vepsäläinen et al., 2008) for
MDD of control applications. The contributions of
this paper are as follows. A set of concepts for
defining and using design patterns is presented and
rationalized. The benefits of the concepts are pointed
out and compared to pattern support in UML. The
use of patterns and pattern markings is proposed to
benefit development work, documentation and
learning of developers within MDD.

The rest of this paper is organized as follows.
Section 2 reviews work related to modeling and
facilitating the use of design patterns in UML
context. Section 3 outlines and discusses how the
use of patterns could benefit specifically MDD. The
means of UML to define and use patterns are
presented in section 4, in addition to pointing out
shortcomings in the support with use of well-known
example patterns. Section 5 presents a new approach
to model patterns and pattern instances and
illustrates the tool support developed based on the
concepts. Before conclusions, section 6 discusses the
work presented and future work to be done.

2 RELATED WORK

The roots of design patterns, as a concept, lie in
building architecture and work of Alexander, see
(Alexander et al., 1977) and (Alexander, 1979). In
software development, the use of patterns began to
gain popularity after publication of the Gang of Four
(GoF) patterns (Gamma et al., 1994), in which the
application area was object oriented programming
and software, but not so much modeling. However,
support for patterns was also developed to UML.

In addition to area of expertise, e.g. building and
software engineering, design patterns vary in their
abstractness and levels of details specified. For
example, (Lasater, 2010) describes patterns as
design tools to improve existing code whereas
(Buschmann, 1999) focuses on architectural
patterns that can have varying implementations.
Patterns for safety systems development can be
found e.g. in (Rauhamäki et al., 2013), the patterns
mainly describing roles of elements.

The need for automated tool support to define
and use design patterns in models has been
identified by several researchers. Support has also
been developed for specifying patterns, identifying
pattern instances, detecting parts in models where

patterns could be used as well as for instantiating
and visualizing patterns.

(France et al., 2004) presents a formal pattern
specification technique that is based on UML. It is
intended for specifying design patterns and checking
conformance of pattern instances to their
specifications. In (France et al., 2003), automatic
transformations are developed for refactoring
patterns into models. The approach is based on
specifications of pattern-specific problems, solutions
and problem-to-solution transformations.

Detection of points in models where design
patterns could be used has been studied, among
others, in (Briand et al., 2006). In the paper,
detection rules are specified with OCL (Object
Constraint Language) and combined with decision
trees. Detecting design pattern instances has been
studied in (Tsantalis et al., 2006) the approach being
based on representing both the models and patterns
with graphs and applying graph similarity scoring.

Automating application and evolution of design
patterns has been proposed and studied in (Dong and
Yang, 2006), (Xue-Bin et al., 2007) and (Kajsa and
Majtás, 2010). In (Dong and Yang, 2006), QVT
(Query/View/Transformation) transformations are
developed for evolving pattern applications to new
ones, e.g. adding new observers to an Observer
pattern instance. (Xue-Bin et al., 2007) uses XSLT
(Extensible Stylesheet Language Transformations)
for pattern-specific transformations to add patterns.
The work in (Kajsa and Majtás, 2010) utilizes model
transformations that are guided with UML
stereotypes to mark the points to which the patterns
should be added.

Visualizing design patterns in model diagrams
has been addressed in (Dong, 2002) and (Jing et al.,
2007). (Dong, 2002) presents several notations to
highlight and distinguish patterns and pattern-related
elements in diagrams. Among them is the
collaboration notation that is also used in this paper.
In (Jing et al., 2007), a UML profile is developed for
specification of pattern roles that elements in pattern
occurrences play. Based on the profile, the authors
have developed a web service tool that integrates to
e.g. Rational Rose to visualize patterns.

3 DESIGN PATTERNS TO
FACILITATE MDD

Design patterns provide many general, well-known
benefits to development work. For example, they
encapsulate knowledge and experience, provide

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

278

common vocabulary for developers and enhance
documentation of designs (Agerbo and Cornils,
1998).

More recently, design patterns have been seen to
mark points in which developers have been
potentially faced with challenges. Design patterns
can be considered as predefined, reusable design
decisions. However, they may require configurations
for specific applications (Jansen and Bosch, 2005).
Patterns are proven and general whereas design
decisions are more tentative, specific to an
application and also possible to be choices between
solutions (Harrison et al., 2007), e.g. patterns. By
marking a design pattern instance, a developer thus
not only instantiates and configures a solution but
marks a challenge and documents a decision.

The use of patterns in models can thus extend the
documentation value of the models with
architectural knowledge. However, especially
patterns could be valuable in MDD in which the
purpose is to shift development efforts from
documents to models. To demonstrate this point, we
discuss their use to a few selected purposes.

Patterns can be used to gather statistics. When
patterns are marked in models that are used
throughout the development process, it is possible to
gather statistics on the use of the patterns. Pattern
markings promote traceability between the solutions
(of the patterns) and their use in software products.
It is possible to study and compare work and
preferred solutions of developers. Companies and
teams can set up rules for using patterns in order to
unify designs. For example, it could be agreed that a
specific kind of challenge is always solved with a
standard way in applications of a specific domain.

Also metrics could be defined to evaluate
software products in an application domain or work
of different developers. Extensibility and
modifiability, for example, are quality attributes that
many classic design patterns aim to improve. As a
consequence, it is possible that similar software
products could be compared in terms of preferred
quality attributes by comparing the patterns and
amount of patterns used in the products.

Design patterns can promote learning of new
developers, too. When best practices and expert
solutions are documented as patterns and pattern
instances marked in design models, the models can
be used as training material. New developers can
look for pattern instances, in which kinds of contexts
they have been used and how they have been used
by experienced developers. Optimally, design
pattern instances could be highlighted in models and
diagrams in order to ensure their discovery.

Diagrams with pattern annotations could also be
used as parts of written documents when copied to
such documents, when necessary.

It can be argued that the mentioned benefits are
not restricted to the use of patterns in MDD only.
However, the benefits from increasing the
documentation value of models are of special
importance in MDD. This is because one of the
objectives of MDD is to gain benefits by changing
the focus of development efforts from documents to
models. If the aim is not to produce written
documents in which challenges, decisions and
solutions could be included, the only places where
they can be added are the models.

On the other hand, in development practices
other than MDD there may not always be need to
model all parts of the developed systems. If all parts
and aspects are not modeled, being able to produce
e.g. statistics from models may not result in
unbiased information on use of patterns. It is
possible that the results from systematic use of
patterns in models could be more usable in MDD
context than with traditional development processes.

4 SUPPORT FOR DESIGN
PATTERNS IN UML

In UML, patterns are defined with the Collaboration
concept that extends both the StructuredClassifier
and BehavioredClassifier concepts, similarly to the
Class concept of the language. A pattern is a set of
cooperating participants that are owned by a
Collaboration instance as its properties, similarly to
properties of a class. For each pattern-specific role
there should be a property owned by the
Collaboration. Required relationships between the
participants are specified with connectors between
the properties. The features required from the
participants are defined by the classifiers (e.g.
classes or interfaces) that are used as types of the
properties.

Pattern instances are represented with the
CollaborationUse concept. A CollaborationUse
represents an application of a Collaboration (pattern)
to a specific situation. CollaborationUses are owned
by classes to contents of which the Collaborations
(patterns) are applied. Contents (properties) of the
applying classes are bound to roles (properties) of
the Collaborations with Dependencies that are called
role bindings. The entities (properties) playing the
roles in the pattern instances must be owned by the
classifiers owning the CollaborationUse elements.

Design�Pattern�Support�for�Model-Driven�Development

279

Graphically, Collaborations and
CollaborationUses can be defined in composite
structure diagrams (CSDs). In case of defining a
Collaboration (pattern) the root element of the
diagram is the Collaboration, whereas in case of a
CollaborationUse the class owning it. In other
diagrams, CollaborationUses can be visible in
compartments related to the applying classes, if
supported by the tool being used.

4.1 Challenges with the UML Pattern
Modeling Approach

The approach of UML for defining and using design
patterns is formal and well-defined. However, when
compared to, for example, literature presentations of
many well-known patterns, the UML concepts
cannot be used in a literature prescribed way. A
CollaborationUse cannot be used e.g. in a class
diagram describing classes of a package because in
that case the participants would be classes (instead
of properties) and owned by a package (instead of a
class). For example a set of classes as in Figure 1
could not be marked as an Observer (Gamma et al.
1994) pattern instance.

Figure 1: A class diagram illustrating the Observer pattern.

A rationale for claiming that the familiar
structure in the figure cannot be an Observer
instance could be that a class diagram does not yet
indicate definite occurrence and use of instances of
the classes in the pattern-specific way. Instead, the
UML approach would be to define another class,
create instances of the classes (of the figure) as
properties of the other class and connect them to use
the services of each other. Graphically this could be
done with CSDs.

CSDs were not available at the time e.g.
Observer pattern was authored, which is a possible
explanation for the tool support to differ from the
literature (or vice versa). However, from a pragmatic
point of view, it may not be worthwhile to require
definition of the class instances in CSDs because
CSDs are not used as commonly (e.g. in industry) as
class diagrams are. On the other hand, if a developer
deliberately designs classes so that they can be used

according to a pattern, it should be possible for her
to mark the decision, e.g. for documentation
purposes.

Another example related to the lack of pattern
modeling capabilities in UML is related to
architectural patterns. A well-known example of
such a pattern is the Layers pattern (Buschmann,
1999). An intuitive means to illustrate the use of
Layers in a UML model could be to present the
packages and classes that an application is built of in
a layered-like orientation as in Figure 2. One could
also use component diagrams and arrange the
components to a layered like orientation, like in
(Buschmann, 1999) pp.35. However, neither of these
approaches could be marked as a Layers instance.
Packages, that class and component diagrams are
used to describe, are not classes and thus cannot own
CollaborationUses. And if they could, the packages
and components would not be properties of a class.

Figure 2: A layered architecture pattern illustration in a
class diagram.

Observer and Layered Architecture patterns were
used as examples above because of their familiarity.
However, they are not the only patterns that may be
difficult to apply in UML models. When patterns
and pattern instances are defined and applied as
contents of classifiers, use of patterns to describe
aspects other than those related to classes and
properties becomes difficult. Especially this can be
seen to restrict the support for architectural patterns.

Related to pattern languages, UML does not
define means to specify relations between patterns.
According to the language specification (OMG,
2011), Collaborations can extend others. However,
there is no means to specify, for example, that after
applying a pattern it could be advisable to apply
another, related pattern.

Lastly, the means of UML for defining
information content of patterns other than solutions,
e.g. context and problem, are limited. The
Collaboration concept does not include textual or
other kinds of properties for such purposes.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

280

5 A NEW PATTERN MODELING
APPROACH

Generally, the concepts that can be used in models
conforming to a modeling language are defined in
the metamodel of the language. The concepts
available in UML models, for example, are defined
in the UML metamodel (OMG, 2011) which in turn
has been defined with use of Meta Object Facility
(MOF). The metamodel of the new pattern modeling
concepts, with relations to existing UML concepts,
is presented in the next sub-section.

5.1 Metamodel for Defining, Marking
and using Design Patterns

What pieces of information a pattern is obviously
required to include are a name (identifier), problem
(that the pattern solves), context (in which the
pattern can be applied) and the solution, as also
suggested in (Alexander, 1979). On the other hand,
as argued in the previous section, the modeling
approach should not restrict the nature of solutions
in patterns. Practical patterns may consist of
practically any modeling elements, e.g. components
or class definitions. It should also be possible for
other modeling elements than classes to contain
elements that are parts of a pattern instance.

The basic concepts of the new pattern modeling
approach are depicted in Figure 3 that has been
divided into two parts. The concepts on the left-hand
side are aimed for defining patterns whereas the
concepts on the right-hand side for using and
marking patterns instances. Although they are part
of the same metamodel, it is assumed that design
patterns could be defined in specific library models
(preferably by experienced developers) and their
instances used in application models (of the systems
being modeled). Similar division of concepts exists
already in UML related to profiles and stereotypes.
Stereotypes are defined by experts in profiles and
then used in a number of application models.
Although stereotypes can be considered as tools for
design work and altering the semantics of modeling
elements, they are defined in UML models similarly
to the concepts that they specialize.

The Pattern and PatternApplication concepts are
aimed for defining patterns and pattern instances,
respectively. Their UML counterparts are the
Collaboration and CollaborationUse concepts.
However, instead of defining (only) contents of a
classifier, Patterns contain textual information which
has been structured based on the canonical form of

patterns (Appleton, 1997) with addition of
Consequences from the Alexandrian form
(Alexander et al., 1977).

The Pattern concept is extended from the UML
PackageableElement concept so that Patterns can be
defined within package hierarchies. The main
contents of Patterns are PatternRoles that are used to
specify structural and behavioral roles specific to the
Patterns. Multiplicities define the limitations to
numbers of modeling elements playing the roles in
pattern instances. PatternRoles can also refer to
template elements that are specific to the roles. Their
purpose is to enable development of tool support to
facilitate the creation of pattern instances.

Figure 3: The metamodel of the new pattern modeling
concepts; UML concepts are highlighted with grey color.

RoleBindings are owned by PatternApplications
and they bind pattern instance specific elements to
the roles of the patterns. The metaclasses of bound
elements are not restricted since (concrete) elements
of UML all extend the abstract Element concept that
is used as the type of the meta-reference. The same
applies to SysML and UML AP modeling elements
in the supporting tool; they can be used in patterns
and pattern instances as well.

PatternLanguage concept is a lightweight
approach to pattern languages, allowing patterns to
be organized into hierarchies. With PatternRelations,
patterns can be organized into (pattern) sequences
describing meaningful orders of using patterns, and
sequences combined to simple languages. Relations
also allow the specification of alternatives, patterns
requiring other patterns and patterns that conflict

Design�Pattern�Support�for�Model-Driven�Development

281

with each other. This aspect is yet to be defined in
more detail.

The major differences of the approach in
comparison to plain UML are as follows. The roles
of patterns have been separated from their template
elements in the template packages. Pattern
definitions may contain textual information. The
model elements playing the roles in patterns and
their instances are not restricted to be instances of
any specific UML (or e.g. SysML) metaclass.
Lastly, PatternApplications are owned by packages
that are used in models in any case.

The concepts relieve the restrictions of UML so
that, for example, the patterns presented in section
4.1 could be marked as instances of suitable pattern
definitions. Since elements playing roles in a pattern
need not be properties, for example class definitions
of Figure 1 - or some other variation of the pattern –
could be marked as an Observer pattern instance. A
structure like that could also be marked as a pattern
instance regardless of whether the constructs would
be defined in the same or different package. It would
only affect to which package should own the
PatternApplication element. Constructing patterns
from classes, packages and components is also
possible, which would enable marking the structure
of Figure 2 as an instance of the Layers pattern.

As a downside, the approach is less formal than
that of UML. Because of the freedom to define
patterns to consist of any elements, it is more
difficult to confirm correctness of pattern
applications, for example. Since the approach does
not restrict the elements that play roles in a pattern
instance to be owned by a single model element, it is
also possible for pattern instances to disperse to
several places in models due to, for example, model
refactoring. That is, although simple checks of
consistency can be automated with e.g. the
multiplicity restrictions more responsibility over
correctness of pattern definitions and instances is left
for developers in the approach.

Another restriction of the approach is related to
the portability of it to other tools, which is caused by
the metamodel additions that the approach requires.
This aspect is discussed in more detail in section 6.

5.2 Illustrative Example

To demonstrate the use of the concepts, they are
used in an example to define Observer pattern and to
apply it to a model. The starting point in the example
is a situation in which a PressureControl class would
need to be made capable of receiving notifications of
new (pressure) measurements from a

PressureMeasurement class. A class diagram
illustrating this starting point is shown in Figure 4.

Figure 4: An example diagram before applying a pattern.

In order to apply Observer (Gamma et al., 1994),
it needs to be first defined with the presented
modeling concepts. A tree view of a model defining
the pattern with the concepts is shown in Figure 5.
The pattern is in the example defined in a Package
that contains the Pattern element (Observer) as well
as a template Package. The pattern includes roles
related to it (Observer, Subject and
ConcreteObserver). The classes and interfaces of the
template package were illustrated in Figure 1; they
also define several operations that are hidden from
the figure below. Textual information related to the
pattern, e.g. context and problem, is stored in the
properties of the Pattern element.

Figure 5: A tree view of Observer definition with the
modeling concepts.

The example class diagram, after applying the
pattern, is illustrated in figure 6. The diagram also
illustrates how the pattern instance is visualized with
the collaboration notation. The modifications from
applying the pattern include addition of an interface
(Observer), an interface realization as well as several
operations specific to the role elements in the
pattern, e.g. update(). These elements have been
added based on the template elements illustrated in
Figure 1.

Another view to the results is presented in figure
7 that illustrates the references between the model
trees related to the pattern definition and pattern
instance. The operations and other added model
elements are contained in the model in a similar
manner than any model elements. The information
about the pattern instance, on the other hand, is

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

282

stored in a PatternApplication element. The
PatternApplication contains the RoleBindings that
link the pattern instance specific elements to the
general roles of the pattern definition.

Figure 6: A visualization of an Observer pattern instance.

Figure 7: References from a pattern instance to definition.

5.3 Tool Support for using Patterns

With the tool support, the purpose has been to
facilitate the use of patterns and to demonstrate the
benefits from their use. The metamodel extensions
to UML AP and UML modeling concepts, see
Figure 3, were defined with Eclipse Modeling
Framework (EMF) that is a Meta Object Facility
(MOF) implementation used by the UML AP tool
(Vepsäläinen et al., 2008). In addition to
implementing the concepts, tool support has been
developed to instantiate and to visualize patterns in
models as well as to generate documentation from
models. Of these functions, first two have been
implemented with the core of the tool whereas the
latter extends the documentation generation work in
(Vepsäläinen and Kuikka, 2011).

5.3.1 Instantiating Patterns

Compared to instantiating patterns from templates in
an ad hoc manner, the use of the presented concepts
requires additional work. Defining patterns with the
Pattern and PatternRole elements has to be done
only once for each pattern. PatternApplications,
however, need to be created and configured for each
new instance. As such, it is natural that this task
should be facilitated with tool support. In the tool,

this task has been integrated to a wizard. Compared
to existing pattern wizards in UML tools, the novelty
of the wizard is in managing the new concepts.

The process of instantiating patterns is performed
as follows. The user of the tool initiates the wizard
from a tool menu. As a response, the tool scans
through available pattern libraries in order to find
available patterns. New libraries can be added to the
tool by registering them with an (Eclipse) extension
point developed for this purpose.

The user of the tool is provided with a list of
available patterns. When selecting a pattern to apply,
part of the textual information (problem, context and
solution) related to the patterns is visible to the user,
as illustrated in Figure 8. After selecting a pattern,
the pattern (definition) that should be referenced by
the PatternApplication to be created is known. In
case of the design diagram root element being a
package, the PatternApplication to be created can be
owned by the package. Otherwise, it can be created
to be owned by the package closest to the diagram
root in the model hierarchy. The wizard proceeds to
processing (iterating through) the pattern roles.

For each role, the wizard enables the user to
select an existing element from the active diagram to
act in the role. If the pattern in question defines a
template, it is also possible to copy an element for
the role from the template. For PatternRoles that the
user has either selected an element for or copied it
from the template, the wizard creates RoleBindings
that bind the elements to the roles of the pattern. In
case of using existing elements in roles of a pattern,
their contents (elements owned by them) are
compared and completed to correspond to those of
the templates by copying missing contents.

Technically the wizard has been implemented so
that it only collects the information from the user
whereas actual model changes are performed at once
after completing the wizard. The purpose of this is to
enable possibility to collect model modifications to a
single (undoable) command. However, currently
undoing a pattern application requires manual work.

It is also possible to modify pattern instances
after creating them. PatternApplications and
RoleBindings can be selected from the outline view
and modified with the properties view of the tool.
Elements related to a pattern instance can also be re-
organized and it is possible to apply more instances
of compatible patterns. Information on which
elements are part of a pattern instance is stored in a
PatternApplication specific to the instance and the
RoleBindings of it. They are not affected by
additions of new elements or simple changes to the
bound elements, e.g. re-naming or moving them.

Design�Pattern�Support�for�Model-Driven�Development

283

Figure 8: The pattern information page of the wizard.

5.3.2 Visualizing Patterns

Although pattern instances are always visible in the
outline view of the tool, they are not visible in
diagrams by default. This is rational since the
amount of details in a diagram should be relatively
small to keep it understandable. Patterns can also be
considered as explanatory information that may not
be required all the time. However, when pattern
applications are necessary to be shown, e.g. for
documentation or teaching purposes, it should be
possible to visualize them in diagrams.

Visualization of a pattern is initialized from a
menu of the outline view of the tool while at the
same time selecting the PatternApplication to be
shown. As a response, a dotted ellipse shape with
lines to the model elements playing the roles in the
pattern instance is created. The ellipse represents a
PatternApplication (pattern instance) and contains
the name of the pattern (definition). Connections to
the role elements show the names of the
corresponding pattern roles.

The graphical presentation of pattern instances is
similar to CollaborationUses in CSDs, with addition
of <<PatternApplication>> to distinguish between
them. An example graphical presentation of an
Observer pattern application was presented in Figure
6. In the figure the pattern has been applied to a
client application model so that the names of the
concrete classes are different from the names of the
template classes, which were shown in Figure 1.

5.3.3 Patterns as a Part of Documentation

One of the main motivations of this work has been
to use patterns for documentation purposes in MDD.
Since design patterns and design pattern instances
are modeled with dedicated elements, it is possible
to track the design patterns that are used in a model
of an application as well as the number of instances
of the patterns. Since PatternApplications are owned

by packages, it is possible to trace the parts of
models in which a design pattern is used. Starting
from packages, it is again possible to track the
patterns that are used in the packages.

Exporting documentation is initiated by the user
of the tool that selects the root of the model from the
outline view, selects export functionality and then
traceability information. First sheets of the generated
(Microsoft Excel) spreadsheet are described in
(Vepsäläinen and Kuikka, 2011) whereas last two
are dedicated to design patterns.

The first of the new sheets lists the design
patterns that are used in a model. The sheet is
collected by searching all PatternApplication
instances in the model. The number of instances for
each design pattern (definition) as well as the total
amount of patterns are calculated and shown. With
traceability matrices, the sheet presents package to
design pattern traceability (the patterns that are used
in each package), design pattern to package
traceability (in which packages each design pattern
is used) and lastly design pattern to element
traceability. In the latter matrix, each design pattern
instance is traced to all elements that play roles in
the instance. An example sheet presenting
traceability for the pressure sensor example of
Figure 6 is presented in Figure 9.

Figure 9: An exemplary automatically generated
traceability sheet.

The second of the new sheets focuses on design
patterns themselves. At the beginning of the sheet a
list of patterns, instances of which can be found
from the model, is repeated with the amount of
pattern instances. After this table, the sheet presents
printouts of information for each design pattern used
in the model including context, problem, forces,
solution (textually), consequences, resulting context,
example, and known usage.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

284

6 DISCUSSION AND FUTURE
WORK

This paper has discussed the use of design patterns
in UML based modeling and their potential benefits
in model-driven development. Shortcomings in
UML design pattern support have been pointed out
and an additional set of modeling concepts has been
presented.

The need for a new approach to utilize patterns
in models originates from the UML pattern
modeling concepts that restrict patterns to describe
contents of classifiers. The information content of
actual published patterns, however, is not restricted
to such a narrow scope. Patterns may not always
concern concrete programming language level
aspects and their information content is not restricted
to solutions only. For example, solutions of patterns
may consist of packages, components or even use
cases. In addition, patterns include information
about their contexts and problems for which the
patterns provide the solutions.

The presented, simple set of modeling concepts
enhances the UML limitations by enabling patterns
to include textual information and to consist of
practically any elements that a pattern author finds
useful. As a downside, the approach leaves more
responsibility over the correctness of patterns and
pattern applications to developers. The portability of
the approach to other tools is also questionable,
which is caused by metamodel modifications.

The approach introduces new metaclasses to the
MOF based UML metamodel so that implementing
the approach in other tools would require similar
additions. The other extension mechanism of UML,
light weight profiles that consist of stereotypes,
however, would not have enabled all the required
additions. According to the UML specification
(OMG, 2011), stereotypes cannot be used to insert
new metaclasses or metareferences between existing
metaclasses, for example. With stereotypes (without
new metaclasses), it would have been possible to
include the textual information in the Collaboration
concepts of UML. However, CollaborationUses
would still be owned by classes and their other
specified constraints would still apply.

In future work, it is our intention to focus on
safety related patterns, examples of which can be
found e.g. in (Rauhamäki et al., 2013). Safety related
systems constitute an application domain in which
documentation is of special importance. This is
because of the need to justify the safety of the
developed applications against safety standards. For
software safety functions, the standards focus on

development methods, practices and solutions that
are recommended for different levels of safety. On
the other hand, safety standards require traceability
between requirements, design, implementations and
test cases, among others. This is the problem domain
that we foresee to be possible to facilitate with safety
pattern modeling and extending the presented
documentation generation work.

7 CONCLUSIONS

Design patterns document solutions and capture
expert knowledge to recurring challenges in design
and development work. The scope of design patterns
that can be found from literature varies in terms of
area of expertise and abstraction level. Many
patterns present rather conceptual solutions than
solutions that could be copied or modeled always in
the same way. However, although the UML
concepts have been enriched along the development
of the entire language, the pattern support is still
restricted to collaborating properties of classes.

In this work, the issue has been addressed by
defining and implementing a set of pattern modeling
concepts that can be used to complement the UML
concepts. The approach is not restricted to modeling
of classifiers only but enables patterns to consist of
practically any modeling elements that an author of
a pattern finds useful.

Tool support for automating the use of the new
concepts has been developed for instantiating
patterns, visualizing patterns in diagrams as well as
collecting documentation and statistics from models.
The tool and concepts have been used by researchers
working in the project. They have been found useful
and will be used to gather more use experience in
software engineering courses at the department of
Automation Science and Engineering at Tampere
University of Technology.

The tool supported functionalities are also related
to the way in which design patterns could be used to
facilitate model-driven development. Patterns enable
including additional documentation to models.
Patterns enrich models with information on
challenges, points of decisions as well as traceability
between solutions and their use in specific
applications. Visualizing patterns in diagrams may
both support learning of developers and increase the
value of diagrams in written documents. Knowledge
on pattern use can be gathered to statistics to
compare applications and work of developers.
Patterns and rules for using them can also be used to
unify work of developers in teams and companies.

Design�Pattern�Support�for�Model-Driven�Development

285

REFERENCES

Agerbo, E., Cornils, A. 1998, How to preserve the benefits
of design patterns, ACM SIGPLAN Notices, ACM,
pp. 134-143.

Alexander, C. 1979, The timeless way of building.
Alexander, C., Ishikawa, S., Silverstein, M. 1977, Pattern

languages, Center for Environmental Structure, vol. 2.
Appleton, B. 1997, Patterns and software: Essential

concepts and terminology, Object Magazine Online,
vol. 3, no. 5, pp. 20-25.

Briand, L.C., Labiche, Y., Sauve, A. 2006, Guiding the
application of design patterns based on uml models,
Software Maintenance, 2006. ICSM'06. 22nd IEEE
International Conference on, IEEE.

Buschmann, F. 1999, Pattern oriented software
architecture: a system of patters, Ashish Raut.

Dong, J. 2002, UML extensions for design pattern
compositions, Journal of object technology, vol. 1, no.
5, pp. 151-163.

Dong, J., Yang, S. 2006, QVT based model transformation
for design pattern evolutions, in: Proceedings of the
10th IASTED international conference on Internet and
multimedia systems and applications.

France, R.B., Kim, D., Ghosh, S., Song, E. 2004, A UML-
based pattern specification technique, Software
Engineering, IEEE Transactions on, vol. 30, no. 3, pp.
193-206.

France, R., Chosh, S., Song, E., Kim, D. 2003, A
metamodeling approach to pattern-based model
refactoring, Software, IEEE, vol. 20, no. 5, pp. 52-58.

Gamma, E., Helm, R., Johnson, R.,Vlissides, J. 1994,
Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Education.

Harrison, N.B., Avgeriou, P., Zdlin, U. 2007, Using
patterns to capture architectural decisions, Software,
IEEE, vol. 24, no. 4, pp. 38-45.

Jansen, A., Bosch, J. 2005, Software architecture as a set
of architectural design decisions, Software
Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference onIEEE, pp. 109.

Jing, D., Sheng, Y., Kang, Z. 2007, Visualizing design
patterns in their applications and compositions,
Software Engineering, IEEE Transactions on, vol. 33,
no. 7, pp. 433-453.

Kajsa, P., Majtás, L. 2010, Design patterns instantiation
based on semantics and model transformations, in
SOFSEM 2010: Theory and Practice of Computer
Science, Springer, pp. 540-551.

Lasater, C.G. 2010, Design patterns, Jones & Bartlett
Publishers.

No Magic, Inc. 2014, MagicDraw. Available:
http://www.nomagic.com/products/magicdraw.html
[2014, 1/23].

OMG, 2011. Unified Modeling Language Specification
2.4.1: SuperStructure, Object Management Group.

Rauhamäki, J., Vepsäläinen, T., Kuikka, S. 2013, Patterns
for safety and control system cooperation, Proceedings
of VikingPLoP 2013 Conference.

Sunyé, G., Le Guennec, A., Jézéquel, J. 2000, Design
patterns application in UML, in ECOOP 2000—
Object-Oriented Programming Springer, pp. 44-62.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.,
Halkidis, S.T. 2006, Design pattern detection using
similarity scoring, Software Engineering, IEEE
Transactions on, vol. 32, no. 11, pp. 896-909.

Vepsäläinen, T., Hästbacka, D., Kuikka, S. 2008, Tool
Support for the UML Automation Profile - For
Domain-Specific Software Development in
Manufacturing, Software Engineering Advances,
2008. ICSEA '08. The Third International Conference
on.

Vepsäläinen, T., Kuikka, S. 2011, Towards model-based
development of safety-related control applications,
Emerging Technologies & Factory Automation
(ETFA), 2011 IEEE 16th Conference on.

Xue-Bin, W., Quan-Yuan, W., Huai-Min, W., Dian-Xi, S.
2007, Research and implementation of design pattern-
oriented model transformation, Computing in the
Global Information Technology, 2007. ICCGI 2007.
International Multi-Conference on, IEEE.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

286

Publication 8

Vepsäläinen, T., Kuikka, S. (2014) Safety Patterns in Model-Driven Development.

Proceedings of the 9th International Conference on Software Engineering Advances. Nice,

France, October 12-16. 2014, pp. 233-239. Available in ThinkMind:

http://www.thinkmind.org/download.php?articleid=icsea_2014_9_40_10247

© 2014 IARIA. Reprinted with permission.

Safety Patterns in Model-Driven Development

Timo Vepsäläinen, Seppo Kuikka
Tampere University of Technology

Dept. of Automation Science and Engineering
Tampere, Finland

{timo.vepsalainen, seppo.kuikka}@tut.fi

Abstract— Design patterns capture named solutions to
recurring challenges in development work. With an
appropriate, non-restrictive tool support, design patterns could
also improve the documentation value of models in model-
driven development. This paper extends the design pattern
modeling approach of UML Automation Profile with safety-
related information and suggests the use of patterns in models
to document safety aspects. The modeling concepts are tool
supported. In the paper, the concepts are used for exporting
safety-related documentation. The documentation can be used
to guide the selection of development techniques as well as to
perform consistency checks with respect to safety integrity
levels that are required from modeled applications.

Keywords-Model-Driven Development; Design Pattern;
Safety.

I. INTRODUCTION
Design patterns document solutions to recurring

challenges in design and development work. As a concept,
design pattern was introduced in the work of Alexander
[1][2] related to building architectures. In software
development, design patterns began to gain popularity after
the publication of the Gang of Four (GoF) patterns [3] that
were targeted to object oriented software engineering.
Support for the use of patterns was also developed to Unified
Modeling Language (UML). Today, UML is the de-facto
software modeling language. With domain specific profiles,
UML is also the modeling basis of many Model-Driven
Development (MDD) approaches. However, the support for
design patterns in UML is still focused on describing
contents of UML Classes.

The idea of MDD is to use models as the primary
engineering artefacts during the development of software
systems. Models describe the systems and applications from
different points of view and on different abstraction levels. In
MDD, the development often starts from high abstraction
level models, e.g., Computation Independent Models (CIM)
as in Model Driven Architecture (MDA) [4]. Model
transformations are used between the models to ensure their
consistency and to produce refined models based on the
earlier ones. Models also document the developed systems.
However, in specific application domains the required
information content of documentation is governed by
regulations and standards, in addition to development needs.

Safety-related systems and applications constitute such a
domain. The development process of safety applications as
well as solutions and techniques to be used during the
process is governed by standards, e.g., IEC 61508 [5]. In
addition to using standard-compliant techniques, a developer
of such a system must be able to prove the compliance of it.
This is where the relevant documentation is needed.

The use of MDD to safety system development has been
suggested by few researchers and even less MDD has been
taken to industrial practice. The reason is not that safety
standards would not allow the use of MDD techniques.
Instead, for example “automatic software generation” is
recommended as an architecture design technique by IEC
61508 [5]. Possible explanations for the scarce use of MDD
techniques in the application area are, however, the strict
documentation requirements. It is possible that given the
strict requirements, MDD has not been seen to offer
possibilities to improve the efficiency of the development.

The purpose of this paper is to extend a design pattern
modeling approach of UML Automation Profile (UML AP)
[6] to safety patterns. Safety patterns are design patterns that
are applicable for safety-related systems and include
additional information related to safety. They can be used by
exporting documentation from models of the developed
systems in which the patterns are used. The documentation
generation is intended to facilitate development work by: 1)
supporting traceability between applicable safety solutions
and their use in systems, 2) enabling verification of safety
levels of patterns in comparison to required safety levels and
3) guiding the selections of techniques and solutions.

The rest of this paper is organized as follows. Section 2
reviews work related to design patterns and use of design
patterns in models and model-driven development. Section 3
recapitulates the recent pattern-related work that is extended
in the paper. Sections 4 and 5 present the safety-related
extensions to the pattern concepts and the developed tool
support, respectively. Before conclusions, Section 6
discusses the work and the relevance of safety aspects in
control system development in general.

II. RELATED WORK
Support for using design patterns in UML models is in

the language based on Collaboration and CollaborationUse
[7] concepts that are suitable for presenting patterns inside

233Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

UML Classes. The concepts have been developed along the
language itself from parameterized collaborations that were
utilized in, e.g., [8]. In addition to the standard approach,
however, many tool vendors have developed additional
pattern support in a more ad hoc manner. For example,
MagicDraw [9] enables the specification of model element
templates and copying the templates to models to instantiate
patterns. Without pointing out pattern instances, however,
the information on the occurrences is endangered to vanish.

To enable precise but practical use of patterns in UML,
France et al. [10] have developed a pattern modelling
approach using UML. Precise specification of pattern
solutions is seen to enable tool support for building solutions
from pattern specifications and for verification of the
presence of patterns in design. In the approach, an overall
pattern specification consists of a structural pattern
specification specifying the class diagram view of the
solution, and a set of interaction pattern specifications that
specify the interactions in the pattern solutions.

Approaches to apply and evolve design patterns to UML
models have also been developed with use of model
transformations [11][12][13][14] using
Query/View/Transformation (QVT) and Extensible
Stylesheet Language Transformations (XSLT) techniques.
Detection of design patterns in models, on the other hand,
has been studied for example with use difference calculation
[15], graph matching [16], graph similarity scoring [17], as
well as graph decomposition and graph isomorphism [18].

In the approach of the authors, the novelty is neither in
the approach to transform patterns into design nor in
detecting pattern instances. Instead, a starting point in the
work is that uses of patterns are design decisions that should
be deliberately documented by marking the patterns. On the
other hand, attention is paid to the questions how the pattern
markings could be used to produce documentation in general
and in safety-related application development in particular.

For safety-related systems, design patterns have been
specified, for example, related to redundancy. In [19],
Douglass presents 4 patterns to implement redundancy or
redundancy-like behavior so that a task is performed in
different channels or that another computing channel is used
to observe the behavior of the main channel. Also IEC 61508
[5] in the 6th part of it presents several M out of N solutions
in which the idea is to perform a calculation redundantly and
to use voting to acquire a reliable result for it.

In the tables of recommended techniques and measures
for software architecture design (annex A), IEC 61508 [5]
also refers to a wide range of solutions that already have
corresponding patterns in pattern literature. For example, the
standards suggest the use of (different kinds of) redundancy
[19], backward recovery (from faults) [20][21] and cyclic
program execution [19]. Another example on use of patterns
in the domain is related to documenting recurring arguments
of safety cases in order to systematically collect and gain
benefit from arguments of previous projects [22].

MDD of safety systems has been studied in the DECOS
project [23] that is targeted to development of both critical
and non-critical functions of embedded control systems. In
the approach, the preferred means for specifying application

functionality is Safety-Critical Application Development
Environment (SCADE) which is based on formally defined
data flow notation and enables simulation at model level and
code generation.

UML based modelling and development of safety
applications has also been facilitated with UML profiling
techniques. In [24] the approach is based on extracting key
concepts of a safety standard, RTCA DO-178B, to
stereotypes with which it is possible for software developers
to include safety-related concepts and properties in models.
It can be assumed that such models suit well also for the
purpose of producing documentation. However, we regard
the work presented in this paper as an important complement
to the approach. Whereas UML stereotypes are applied to
single modelling elements, with patterns it is possible to link
several elements in designs to patterns and roles of them.
This is needed in order to characterize how a number of
elements are used together to perform a task.

III. NEED FOR PATTERNS IN MDD
The key concept of MDD is to shift the development

efforts from written documents to models that are used
throughout the development process. For special purposes,
e.g., safety system development, it could be possible to
maintain separate documents. However, that would require
additional work and could significantly reduce the potential
to benefit from MDD. In a sense, it would also be against the
central idea in MDD. A more appropriate approach would be
to include the documentation in the models, in the first place.

A possible challenge in this objective is that models, in
general, tend to be more applicable for representing solutions
than rationale behind them. For example, many of the basic
concepts of UML are similar to concepts of object oriented
programming languages. UML models can be well used to
answer the question how to implement, e.g., a class or a
program. In the MDD context, it is even possible to generate
code from models to avoid the manual programming work.
However, information on why something has been designed
in the way it has, is often missing. This information could be
crucially important for, e.g., quality assurance and
maintenance purposes.

Design patterns are a possible solution to improve the
situation. Patterns document named, proven solutions that
are well-known among developers and suited for solving
recurring challenges and tasks. They are structured so that
they consist of named parts that have responsibilities in the
solutions. The solutions that patterns include may have
crucial advantages. The use of design patterns and pattern
instances in MDD and models could thus increase the value
of models significantly. Patterns could 1) indicate the use of
standard solutions in systems and specifications, 2) mark
potential challenges (that are treated with the patterns), 3)
make design more understandable (because of the use of the
known solutions) and 4) clarify the roles of model elements
in design, just to name a few benefits. In specific application
areas, e.g., safety system development, the use of patters
could even automate tasks and checks that are currently
performed manually.

234Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A. Design Patterns in UML
In UML, pattern definitions and pattern instances are

defined with the Collaboration and CollaborationUse
concepts of the language, respectively. Similarly to the Class
concept, Collaboration extends the StructuredClassifier and
BehavioredClassifier concepts. A pattern definition is in the
language a set of cooperating participants that are Properties
of a Collaboration. In a similar manner Properties can be
owned by Classes. The features that are required from the
participants are defined by the Classifiers that are used as
types of the Properties. Graphically Collaborations can be
presented in composite structure diagrams in which
participants of a pattern are connected with Connectors.

A CollaborationUse represents an application of a pattern
to another Classifier (Class). The CollaborationUse must be
owned by the Class to the contents of which it (the pattern) is
applied. Properties of the applying Class can be bound to the
roles of the Collaboration with Dependencies. The entities
playing the roles must be owned by the same Class instance
that owns the CollaborationUse. In short, with the UML
pattern concepts, patterns are seen to describe contents of
Classifiers.

Pattern literature of today, however, is not restricted to
contents of UML Classifiers only. For example, many well-
known patterns such as the Layers pattern [25] (and many
other architectural patterns) are intended to clarify the
division of systems to, e.g., Components or Packages.
However, marking the occurrence of such patterns may not
be possible with the UML concepts. This is because
Packages are not Properties or necessarily owned by Classes.
With application domain specific extensions, the support for
patterns in UML becomes even more constraining. In order
to benefit from the use of patterns in MDD, a new approach
to define and mark patterns in models is required. The
approach should restrict neither the types of elements that
play roles in patterns nor the types of elements to contents of
which patterns can be applied.

B. The New Pattern Approach
The developed pattern modelling approach [6] uses a set

of concepts that have been developed for defining patterns
and marking pattern instances in models. In the approach,
pattern instances are not owned by Classes but Packages that
are used in models in any case. The elements playing pattern
specific roles in pattern instances can be any direct or
indirect contents of the Packages and instances of any
metaclass, instead of Properties only. Pattern definitions
include textual properties that are essential information
content in patterns. Lastly, the element roles in pattern
definitions are separated from the template elements that are
used in automating the application of patterns.

The approach is tool-supported including functions for
instantiating patterns, exporting statistics and traceability
information related to the use of patterns as well as for
visualizing patterns in diagrams [6]. Patterns are instantiated
to models with the use of a wizard that performs pattern
specific modifications to the models, according to user
selections. Markings of pattern instances are also created
automatically by the wizard.

Statistics and traceability information on patterns can be
exported to MS Excel files. Statistics include lists of design
patterns that are used in a model including the number of
instances for each pattern. Patterns are traced to Packages
with traceability matrices to indicate the patterns that are
used in each Package and vice versa. Visualizing patterns in
diagrams utilizes the Collaboration notation of UML and
presents pattern instances with dotted ellipses. Model
elements that play pattern specific roles in the instances are
connected to the ellipses with dotted lines. The tool support
for the use of patterns can be used in any UML, Systems
Modeling Language (SysML) or UML Automation Profile
(AP) models and diagrams in UML AP research tool [26].

IV. SAFETY PATTERN METAMODEL
With extensions to safety aspects, the purpose has been

to experiment how design patterns could specifically support
documentation of safety applications. Most importantly, the
extensions to the pattern modeling concepts, see Figure 1,
include a specific SafetyPattern. SafetyPatterns are design
patterns that have been identified to be related to safety. To
distinguish the concepts that are used for defining patterns
from those used to mark pattern instances, the Figure has
been divided to two parts. The new (in comparison to [6])
concepts are in the Figure high-lighted with grey color.

A SafetyPattern is, thus, a design pattern that has been
identified to be related to safety and that may have
recommendations for applications of different safety levels.
With safety systems, we refer to systems that perform safety
functions the correct operation of which is required to ensure
the safety of a controlled process. The safety levels in the
metamodel correspond to the 4 Safety Integrity Levels
(SILs) in IEC 61508 [5]. In general, a SIL determines the
probability of correct functioning of a safety function, SIL1
being the lowest and SIL4 being the highest level. For
traditional, e.g., electrical safety systems it is possible to
determine SILs statistically. However, due to the systematic
(vs. random) nature of software faults, the statistics approach
cannot be applied to software. For new software components
there would not even be statistics available. In IEC 61508,
this problem is solved by focusing on development
techniques and solutions the use of which are documented.
For each SIL and for each development phase, the standard
specifies a set of techniques that can be highly recommended
(HR), recommended (R) or non-recommended (NR) or with
non-specified recommendation (NS). The alternatives in the
Recommendation (enumeration) in the metamodel
correspond to these alternatives.

The purpose of the SafetyCatalogue concept is to collect
together (from various pattern sources) related
SafetyPatterns. Catalogues contain patterns that should be
used together and to which sets of patterns that are used in
models can be compared. Patterns in a catalogue can be
related to, e.g., a phase in development or a specific purpose.
For example, IEC 61508 [5] includes lists of techniques to be
used during specific software development phases. For
software architecture design, for instance, the standard
mentions 27 techniques and/or measures, some of which are
non-recommended or alternatives to each other.

235Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

An example Safety Catalogue sheet can be seen in Figure
2 that presents a part of a printout of a catalogue of
techniques or measures that IEC 61508 recommends for
software architecture design. In the table, patterns can be
highly recommended (HR), recommended (R) or non-
recommended (NR) or with non-specified recommendation
(NS). To avoid repeating a table of the standard, the table
includes only 15 techniques that have been modeled as
patterns. By looking at the table, however, it also becomes
clear that pattern literature already includes specialized
versions of many of the techniques, for example to
implement redundancy [19].

B. Safety Catalogue Conformability Sheet
Whereas the purpose of the Safety Catalogue sheet is to

enable presenting catalogues of SafetyPatterns, the purpose
of Safety Catalogue Conformability sheets is to present how
a set of SafetyPatterns (that are used in a model) conforms to
a SafetyCatalogue. Similarly to the previous sheet, the
conformability sheet serves both the guidance and
documentation purposes. In addition, the table presents to
which SILs the set of SafetyPatterns would be applicable.

The sheet is compiled as follows. In a similar manner
than in the case of the previous sheet, the SafetyCatalogues
related to the model are collected to a list from which the
user may select the desired ones. General structure of the
sheet is similar to the previous sheet. However, the
SafetyPatterns of the catalogue that are used in the model are
indicated with light grey color. In addition, the table presents
whether the set of (used) patterns is compatible with each
SIL. Compatibility of the used patterns is illustrated with
green color and incompatibility with red color.
Incompatibility can result from both using a non-
recommended pattern or not-using a recommended (or
highly recommended) technique or any of its alternatives.

The last two rows of the table also present the numbers of
patterns (excluding alternatives) that would be recommended
for each SIL and how many of them have been actually
applied. As such, the table also answers the question how
many techniques (more) should be applied in order to
conform to the catalogue for each SIL.

Figure 3. An example generated Safety Catalogue Conformability sheet.

An example Safety Catalogue Conformability sheet can
be found in Figure 3. It presents the conformability of
SafetyPatterns used in an example model to the software
safety requirement specification techniques of IEC 61508 [5]
that have been modeled as a SafetyCatalogue. According to
the table (grey highlighting), it can be seen that a semi-
formal modeling technique has been used, the software

safety requirements specification supports both backward
and forward traceability and that computer-aided
specification tools have been used. The table also illustrates
(with green color) that these choices are applicable to all
SILs. In addition to the techniques used, it is not necessary to
use any other technique (for requirements specification).

C. Safety Pattern Traceability Sheet
While patterns can have recommendations for different

levels of safety, it is also possible to check their conformance
to safety levels required from the safety functions. The
purpose of the safety pattern traceability sheet is to trace
safety requirements (of UML AP) to Packages that contain
implementing design elements for the requirements and to
SafetyPatterns that are used in the Packages. In addition to
traceability, the table presents the safety levels (SIL) related
to the requirements, Packages as well as recommendations of
the Patterns for each level. Similarly to the previous sheet,
the use of recommended or highly recommended patterns is
indicated with green color whereas the use of non-
recommended patterns is warned with red color.

The sheet is compiled as follows. Safety-related (UML
AP) requirements and their respective safety integrity levels
are collected to a list. The Packages that contain
implementing design elements for the requirements are
identified based on TraceRelations (of UML AP). The
SafetyPatterns, instances of which can be found from the
Packages, are identified based on PatternApplications. The
traceability table is printed. In the table, traceability between
a requirement and a Package is presented with an arrow ().
SILs for the Packages are determined by finding the highest
SILs from the requirements that are traced to the Packages.
Traceability between a Package and a SafetyPattern used in
the Package is, again, presented with the arrow symbol.

Figure 4. An example generated Safety Pattern Traceability sheet.

An example Safety Pattern Traceability sheet can be
found in Figure 4. According to the table, it can be seen that
the example model contains 2 requirements of safety level
SIL1: P100 protection and P100IR. The former one (a
general safety function requirement) is traced to “Software
Safety Requirements” Package and the latter one to
“ControlStructures” Package. SILs required from the
Packages (their contents) come from the requirements, both

237Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

being SIL1. Moreover, the sheet presents that the use of
“Automatic software generation” has been marked in
ControlStructures Package and Semi-formal methods,
backward traceability, forward traceability as well as
computer aided specification tool in the Software Safety
Requirements Package. According to the table (color
coding), the techniques are recommended for the safety
integrity level (SIL1) required from the Packages.

VI. DISCUSSION
This paper has presented an approach to extend the

information content of design pattern concepts of UML AP
with safety aspects. The new concepts enable specifying the
applicability of SafetyPatterns, i.e., design patterns of safety
systems, to applications of different safety integrity levels. In
addition, SafetyPatterns can be collected to SafetyCatalogues
with which it is possible to model both recommendations of
safety standards and custom catalogues of SafetyPatterns.

To illustrate the use of the concepts, the paper has
presented 3 example documentation sheets. The sheets were
generated automatically based on a library model containing
two SafetyCatalogues and a model utilizing the patterns of
the catalogues. The first of the sheets presented one of the
catalogues. The other two sheets presented compliance of a
model (of a developed systems) to the other catalogue. The
new information content of SafetyPatterns was in the sheets
used for automating identification of safety-related patterns
and consistency checks with respect to safety levels. The
sheets, thus, documented rather the developed systems than
SafetyPatterns themselves. In the developed metamodel,
SafetyPatterns share most of their information content with
the design pattern modeling concepts that are used in [6].

The authors believe that the possibility to export
documentation from models is a future research topic within
MDD research. Moreover, it could improve the applicability
of the MDD techniques to safety system development. This
is because safety applications cannot be used in practice
without appropriate documentation. Without automated
support for producing documentation, it would have to be
produced manually. On the other hand, by automating even
part of the work, it would be possible to obtain additional,
MDD specific benefits in the application area.

When developing safety applications with MDD
techniques, the development process should be supported. A
tool should assist developers by pointing out the issues that
need to be addressed, by presenting the alternatives (when
appropriate) and by documenting the decisions for later use.
For example, the supported process could start from modeled
requirements that determine the required integrity levels. A
developer could select a SafetyCatalogue to be used to guide,
e.g., architecture design. Based on the selection and required
integrity levels, the tool could suggest patterns to be used. In
practice, this scenario could be supported with only a small
modification to the Safety Catalogue sheet, by hiding
inappropriate patterns based on required integrity levels.

Work that aims for guiding development work in MDD
has been previously carried out by the authors also based on
use of an Architecture Knowledge Management (AKM)
platform [28]. Use of an external tool, however, may lead to

redundant information. On the other hand, it is believed that
documentation and guidance support should be available for
both architectural and detailed design levels. Thus, it is
feasible to integrate the required support in one tool, which is
used throughout the MDD process.

A challenge in developing guidance for MDD is that
development processes, techniques and solutions vary
between companies and between controlled processes. The
approach presented in this paper could improve the situation.
Documentation sheets can be developed to support various
purposes and processes, not only the ones presented in this
article. In addition, by using, e.g., the SafetyCatalogue
concept, the generated sheets and their contents are also
dependent of the catalogues to the contents of which the
models are compared. Thus, to support another kind of a
development process or other techniques, one could specify
other catalogues to which the models would be compared.

The authors regard safety aspects important for also basic
control systems that are not critical. Safety is an issue that
should be taken into account in development of any control
system. Safety standards state their recommendations on
techniques, measures and solutions based on evidence on
their usefulness. It is likely that adopting selected techniques
and measures from safety system development, e.g.,
traceability could also improve the quality of basic control
systems. This could in turn improve the productivity of the
controlled processes at least in application domains in which
the development processes are not strictly governed.

On the other hand, considering selected aspects of safety
standards in development of basic control systems could
shorten the gap between the systems. Safety systems and
basic control systems are currently not only separated from
each other but also developed with different development
processes and tools and often by different teams. It is
possible that professionals are not even aware of the
practices in the other teams. Because the development of
safety systems is regulated by authorities, the only possibility
to shorten the gap would be to adopt suitable practices of
safety system development to basic control system
development.

VII. CONCLUSIONS
Design patterns document solutions and capture expert

knowledge to recurring challenges in design and
development work. On one hand, design patterns support the
re-use of design by preserving named, proven solutions to
recurring challenges. However, they can also increase the
documentation value of models that usually tend to present
design solutions rather than rationale behind the solutions.
With use of patterns, designs become easier to understand
and the roles of design elements clear for possible third
parties that use the documentation. Especially the use of
patterns could benefit MDD in which the idea is to use
models for both development and documentation purposes.

In this paper, a set of pattern modeling concepts was
presented that enable increasing the information content of
design patterns with applicability to safety integrity levels.
The new concepts enable constructing catalogues of safety-
related patterns with which it is possible to model

238Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

