2,829 research outputs found

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    makeSense: Simplifying the Integration of Wireless Sensor Networks into Business Processes

    Get PDF
    A wide gap exists between the state of the art in developing Wireless Sensor Network (WSN) software and current practices concerning the design, execution, and maintenance of business processes. WSN software is most often developed based on low-level OS abstractions, whereas business process development leverages high-level languages and tools. This state of affairs places WSNs at the fringe of industry. The makeSense system addresses this problem by simplifying the integration of WSNs into business processes. Developers use BPMN models extended with WSN-specific constructs to specify the application behavior across both traditional business process execution environments and the WSN itself, which is to be equipped with application-specific software. We compile these models into a high-level intermediate language—also directly usable by WSN developers—and then into OS-specific deployment-ready binaries. Key to this process is the notion of meta-abstraction, which we define to capture fundamental patterns of interaction with and within the WSN. The concrete realization of meta-abstractions is application-specific; developers tailor the system configuration by selecting concrete abstractions out of the existing codebase or by providing their own. Our evaluation of makeSense shows that i) users perceive our approach as a significant advance over the state of the art, providing evidence of the increased developer productivity when using makeSense; ii) in large-scale simulations, our prototype exhibits an acceptable system overhead and good scaling properties, demonstrating the general applicability of makeSense; and, iii) our prototype—including the complete tool-chain and underlying system support—sustains a real-world deployment where estimates by domain specialists indicate the potential for drastic reductions in the total cost of ownership compared to wired and conventional WSN-based solutions

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart cities at the forefront of the future internet

    Get PDF
    Smart cities have been recently pointed out by M2M experts as an emerging market with enormous potential, which is expected to drive the digital economy forward in the coming years. However, most of the current city and urban developments are based on vertical ICT solutions leading to an unsustainable sea of systems and market islands. In this work we discuss how the recent vision of the Future Internet (FI), and its particular components, Internet of Things (IoT) and Internet of Services (IoS), can become building blocks to progress towards a unified urban-scale ICT platform transforming a Smart City into an open innovation platform. Moreover, we present some results of generic implementations based on the ITU-T’s Ubiquitous Sensor Network (USN) model. The referenced platform model fulfills basic principles of open, federated and trusted platforms (FOTs) at two different levels: the infrastructure level (IoT to support the complexity of heterogeneous sensors deployed in urban spaces), and at the service level (IoS as a suit of open and standardized enablers to facilitate the composition of interoperable smart city services). We also discuss the need of infrastructures at the European level for a realistic large-scale experimentally-driven research, and present main principles of the unique-in-the-world experimental test facility under development within the SmartSantander EU project.Although only a few names appear on this paper, this work would not have been possible without the contribution and encouragement of many people, particularly all the enthusiastic team of the SmartSantander project, partially funded by the EC under contract number FP7-ICT-257992

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Event and Time-Triggered Control Module Layers for Individual Robot Control Architectures of Unmanned Agricultural Ground Vehicles

    Get PDF
    Automation in the agriculture sector has increased to an extent where the accompanying methods for unmanned field management are becoming more economically viable. This manifests in the industry’s recent presentation of conceptual cab-less machines that perform all field operations under the high-level task control of a single remote operator. A dramatic change in the overall workflow for field tasks that historically assumed the presence of a human in the immediate vicinity of the work is predicted. This shift in the entire approach to farm machinery work provides producers increased control and productivity over high-level tasks and less distraction from operating individual machine actuators and implements. The final implication is decreased mechanical complexity of the cab-less field machines from their manned counter types. An Unmanned Agricultural Ground Vehicle (UAGV) electric platform received a portable control module layer (CML) which was modular and able to accept higher-level mission commands while returning system states to high-level tasks. The simplicity of this system was shown by its entire implementation running on microcontrollers networked on a Time-Triggered Controller Area Network (TTCAN) bus. A basic form of user input and output was added to the system to demonstrate a simple instance of sub-system integration. In this work, all major levels of design and implementation are examined in detail, revealing the ‘why’ and ‘how’ of each subsystem. System design philosophy is highlighted from the beginning. A state-space feedback steering controller was implemented on the machine utilizing a basic steering model found in literature. Finally, system performance is evaluated from the perspectives of a number of disciplines including: embedded systems software design, control systems, and robot control architecture. Recommendations for formalized UAGV system modeling, estimation, and control are discussed for the continuation of research in simplified low-cost machines for in-field task automation. Additional recommendations for future time-triggered CML experiments in bus robustness and redundancy are discussed. The work presented is foundational in the shift from event-triggered communications towards time-triggered CMLs for unmanned agricultural machinery and is a front-to-back demonstration of time-triggered design. Advisor: Santosh K. Pitl
    • 

    corecore