14,567 research outputs found

    Model selection for degradation modeling and prognosis with health monitoring data

    Get PDF
    Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime pre- diction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Overview of Remaining Useful Life prediction techniques in Through-life Engineering Services

    Get PDF
    Through-life Engineering Services (TES) are essential in the manufacture and servicing of complex engineering products. TES improves support services by providing prognosis of run-to-failure and time-to-failure on-demand data for better decision making. The concept of Remaining Useful Life (RUL) is utilised to predict life-span of components (of a service system) with the purpose of minimising catastrophic failure events in both manufacturing and service sectors. The purpose of this paper is to identify failure mechanisms and emphasise the failure events prediction approaches that can effectively reduce uncertainties. It will demonstrate the classification of techniques used in RUL prediction for optimisation of products’ future use based on current products in-service with regards to predictability, availability and reliability. It presents a mapping of degradation mechanisms against techniques for knowledge acquisition with the objective of presenting to designers and manufacturers ways to improve the life-span of components

    Selection and Validation of Health Indicators in Prognostics and Health Management System Design

    Get PDF
    Health Monitoring is the science of system health status evaluation. In the modern industrial world, it is getting more and more importance because it is a powerful tool to increase systems dependability. It is based on the observation of some variables extracted in operation reflecting the condition of a system. The quality of health monitoring strongly depends on the selection of these variables named health indicators. However, the issue in their selection is often underestimated and their validation is, of what is known, an untreated subject. In this paper, the authors introduce a complete methodology for the selection and validation of health indicators in health monitoring systems design. Although it can be applied either downstream on real measured data or upstream on simulated data, the true interest of the method is in the latter application. Indeed, a model-based validation can be integrated in the design phases of the system development process, thereby reducing potential controller retrofit costs and useless data storage. In order to simulate the distribution of health indicators, a well known surrogate model called Kriging is utilized. Eventually, the method is tested on a benchmark system: the high pressure pump of aircraft engines fuel systems. Thanks to the method, the set of health indicators was validated in system design phases and the monitoring is now ready to be implemented for in-service operation

    Circuit breaker prognostics using SF6 data

    Get PDF
    Control decisions within future energy networks may take account of the health and condition of network assets, pushing condition monitoring within the smart grid remit. In order to support maintenance decisions, this paper proposes a circuit breaker prognostic system, which ranks circuit breakers in order of maintenance priority. By monitoring the SF6 density within a breaker, the system not only predicts the number of days to a critical level, but also incorporates uncertainty by giving upper and lower bounds on the prediction. This prognostic model, which performs linear regression, will be described in this paper, along with case studies demonstrating ranking breakers based on maintenance priority and prognosis of a leaking breaker. Providing an asset manager with this type of information could allow improved management of his/her assets, potentially deferring maintenance to a time when an outage is already scheduled

    Accommodating repair actions into gas turbine prognostics

    Get PDF
    Elements of gas turbine degradation, such as compressor fouling, are recoverable through maintenance actions like compressor washing. These actions increase the usable engine life and optimise the performance of the gas turbine. However, these maintenance actions are performed by a separate organization to those undertaking fleet management operations, leading to significant uncertainty in the maintenance state of the asset. The uncertainty surrounding maintenance actions impacts prognostic efficacy. In this paper, we adopt Bayesian on-line change point detection to detect the compressor washing events. Then, the event detection information is used as an input to a prognostic algorithm, advising an update to the estimation of remaining useful life. To illustrate the capability of the approach, we demonstrated our on-line Bayesian change detection algorithms on synthetic and real aircraft engine service data, in order to identify the compressor washing events for a gas turbine and thus provide demonstrably improved prognosis

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version
    corecore