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Abstract 

Through-life Engineering Services (TES) are essential in the manufacture and servicing of complex engineering products. TES improves 
support services by providing prognosis of run-to-failure and time-to-failure on-demand data for better decision making. The concept of 
Remaining Useful Life (RUL) is utilised to predict life-span of components (of a service system) with the purpose of minimising catastrophic 
failure events in both manufacturing and service sectors. The purpose of this paper is to identify failure mechanisms and emphasise the failure 
events prediction approaches that can effectively reduce uncertainties. It will demonstrate the classification of techniques used in RUL 
prediction for optimisation of products’ future use based on current products in-service with regards to predictability, availability and 
reliability. It presents a mapping of degradation mechanisms against techniques for knowledge acquisition with the objective of presenting to 
designers and manufacturers ways to improve the life-span of components. 
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1. Introduction 

Through-life engineering services (TES) are essential to the 
support of manufactured complex engineering products. As 
organisations adopt Industrial Product Service Systems (IPSS) 
there is the need to maximise the product availability for use.  

Through-life engineering services are technical services 
that are necessary to guarantee the required and predictable 
performance of a complex engineering system throughout its 
expected operational life with optimum whole life cost [1]. 
This is driven by timely maintenance, repair and overhaul 
(MRO) [1] of the decision making process with the aim to 
restore assets to a state to continually perform its design 
specifications; these maintenance decisions are the 
combination of managerial, supervisory, technical and 
corresponding administrative activities facilitated by the 

ability to predict Remaining Useful Life (RUL) [2].  Such 
predictions are typically undertaken either by model-based, 
analytical-based, knowledge-based, and hybrid-based 
simulation algorithms and tools, the application of which aims 
to manage product support systems, structures, and 
infrastructures more efficiently.   

Prognostic is defined as the estimation of RUL (or time-to-
failure) of a component or system which can be filtered by 
existing or future failure modes [3]. 

This paper reports the findings of a recent review of the 
literature relative to the use of prognostics in support of TES 
enabled IPSS.  The techniques applied to determine the RUL 
of gas turbine components are also discussed. The research 
uses data from semi-structured interviews with academics and 
practitioners to identify types of degradation mechanisms for 
aero-engine components as part of an ongoing case study, the 
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aim of which is to categorise such failures and identify the 
root causes. This paper appraised various degradation 
mechanisms for the chosen component (section 2), and then 
maps the degradation mechanisms against RUL prediction 
techniques to ease the identification of appropriate prediction 
methods for engine parts (section 3). The importance of TES 
is then discussed in section 4.  

2. Degradation Mechanisms 

This research relates the characterisation of service 
acquired knowledge and its feedback to design, identifies the 
following degradation mechanisms as being predominant in 
metallic components: corrosion, deformation, fracture and 
wear. There is a need to curtail component’s failure and a 
timely awareness of failure mechanism is essential for 
maintenance decisions based on threshold levels, confidence 
interval and RUL estimate with regards to through-life 
engineering services in the field of industrial products 
systems.  

Current research activities include complexity based failure 
modeling for planned maintenance proposed by Meselhy et al, 
[4], who explained that failure results from a machine 
operating condition and structure breakdown of components. 
The complexity based failure modeling would enhance 
preventive maintenance. ElMaraghy et al, [5] demonstrated a 
novel complexity coding system to capture manufacturing 
system information; failure threshold with regards to 
functional requirements is dependent upon usage complexity. 
Karandikar et al, [6] focused on wear failure mode predictions 
using Bayesian inference. Corran and Williams, [7] proposed 
lifing methods and safety criteria in aero gas turbines. 
Fashandi and Umberg, [8] discussed the essential 
requirements for establishing concise and effective reliability 
specifications. ElMaraghy and Urbanic [9] focused on 
operational complexity by considering human characteristics 
relative to system performance and sensitivities.  

Future potential research includes predictive maintenance 
strategies required to reduce the failure of industrial 
manufactured products, increase and improve productivity, 
enhance reliability and availability of engineering services, 
reduce costs and downtime on production by estimating the 
remaining useful life of the asset or equipment in-service [10]. 
ElMaraghy [5] iterated that man, machine and software 
interaction is crucial in manufacturing systems with 
operational level complexity; various components should be 
designed within the system; further detailing needed as 
connectivity affects the degree of complicatedness; 
complicated manufacturing systems cost more to implement, 
operate, support and maintain. Also, software tools should 
adapt computational intelligence techniques to deliver quick, 
accurate and precise estimate for maintenance decision 
making.  According to Ajai [11], the healthcare should explore 
point-of-care devices for use in remote environments in order 
to deliver services which would assist users to know when to 
take medications. The adaptation and implementation of RUL 
would aid the healthcare point-of-care devices to provide 
estimates of time for medication 

2.1. Types of Degradation Mechanisms 

 Wear is the loss of material over a period of time resulting 
from component use.  The estimation of wear (or resistance 
to wear) can be achieved by implementing the weighting 
method to fix and measure wear. This is calculated done by 
weighting the component before and after use. The 
variables to consider include speed, friction co-efficient, 
surface finish/texture, surface hardness, load, number of 
cycles, and time are all critical in estimating adhesion wear 
of metallic engine components (e.g  brass, aluminum, and 
steel)  [12]. 

 
 Corrosion is a chemical deterioration process (material 

loss) resulting from electrical or biological reaction, which 
includes oxidation and sulphidation (Fig. 2).  Methods to 
measure corrosion rate include an electro-chemical 
technique shows the speed at which reinforcing steels are 
corroding and identify degraded areas [13]. 

 
 
 
 
 
 
 

 

Fig. 1: Metal discs showing corrosion on the surface 

 Fracture is separation of material by means of cracking or 
disintegration which makes a component incapable of 
performing its designed functions.  It can occur as a result 
of chemical effects, shock, and/or stress. This failure 
mechanism occurs via loading which is independent of 
time [14]. A slow change (creep) in structure can lead to 
fracture whereby the presence of crack can grow rapidly in 
steels or aluminum alloys (Fig. 2). Thus, [15] indicated that 
fracture increases slightly as strain rate increases in copper, 
iron and steel using a fracture model, pressure - strain ratio 
is critical as well as temperature and stress rate. 

 
 
 
 
 

 
 

 

Fig. 2: Bearing (a) external ring failure, and (b) inner ring failure with 
fracture (Source: [3]) 

 Deformation is a change in the geometry or shape of a 
component such as shrinking, stretching, bending, and 
twisting have cumulative effects upon strain in a 
component due to an applied force [14]. Deformation is 
categorized into a time dependent and time independent 
mechanisms (Fig. 3).   

 

(a) (b) 
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Fig. 3: Types of Deformation (Adapted source: [14]) 

In Creep deformation the component gradually 
accumulates over time with the presence of high 
temperature and thermal cycles stress until the product 
fails. Elastic deformation results from applied loads and 
when the load is removed, the assets returns to its original 
condition. Plastic deformation occurs when the material 
exceeds its elastic limit and results in a permanent change 
to the physical structure of the material even when the load 
is removed [14].  Typically Monte Carlo-based uncertainty 
technique, optical measurement systems, digital image 
correlation, the intensity method, or phase shift method are 
often used for deformation measure. [16].     

 This research submits that deformation, fracture, wear and 
corrosion can be measured to ascertain through-life 
perspectives of the product or component using a variety of 
methods relative to RUL.   

3. Remaining Useful Life (RUL) 

Remaining Useful Life (RUL) is the time remaining for a 
component to perform its functional capabilities before 
failure.  Xiongzi et al, [2] defined RUL as the duration from 
current time to end of useful life for a component (Fig. 4). 

 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 4: CHI against Time (hours) (Adapted source: [2]) 

3.1. Classification of Techniques for RUL Prediction 

There are several prognostics prediction methods used for 
determining the RUL of subsystems or components.  These 
are categorised as methodologies and techniques. The 
techniques for RUL prediction are presented in Fig. 5.  

 
 
 

 
 
 
 
 
 
 
 

 

 
 

Fig. 5: Classification of techniques for RUL predictions 

3.2. Types of Prediction Methodology 

 Model-Based: RUL prediction is applicable to Statistics 
and Computational Intelligence (CI) approaches. These 
models are derived from configuration, usage, and 
historical ‘run-to-failure’ data and applicable to 
maintenance decision making. Such components that are 
analysed and documented in literature include bearings 
and gear plates from manufacturing industries. Model-
based methodology is often used to estimate RUL thereby 
informing the maintenance decision based upon failure 
threshold.   

In using model-based predictions, it is proposed that a 
‘wavelet packet’ decomposition approach and/or Hidden 
Markov Models (HMMs) is used to predict RUL where 
the time frequency features allow more precise results 
than using only time features [16].  Similarly Xiongzi [2] 
noted that methods derived from failure and historical 
data can be used to predict functioning asset RUL 
without foreknowledge of the physics of formation of a 
component.     

 Analytical-Based: Analytical-based RUL prediction 
approach represents the physical failure technique. The 
analytical-based model refers to an understanding of 
techniques which aid reliability estimates of the physics-
based model [17] attributed to Physics-of-Failure (PoF), 
physical science of components and generated 
experimental equations.  Coppe et al, [18] proposed using 
a simple crack growth model to predict the RUL of a 
system experiencing fatigue. Failure events such as crack 
by fatigue, wear, and corrosion of components are based 
on mathematical laws used to estimate RUL [3]. 
Analytical-based model requires the combination of 
experiment, observation, geometry, and condition 
monitoring of data to estimate any damage in a specific 
failure mechanism. It also requires the identification of 
specific parameters to monitor, and the tools to identify 
and extract features by using failure modes, mechanism 
and effects analysis.  
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 Knowledge-Based: This model is a combination of CI 
and experience. The knowledge-based approach relates to 
the collection of stored information from subject matter 
experts and interpretation of rules set [19].  It can be seen 
as a service performance system for service delivery 
based upon the principles of service feedback for 
analysis. Parameters of reliability are estimated using an 
experience based approach to information gathered from 
understanding the asset [3]. 
 

 Hybrid: A hybrid model is a collection methodology and 
technique. Hybrid model uses several techniques for RUL 
estimation to improve accuracy. Hybrid model uses 
parametric and non-parametric data to perform RUL 
estimations and to improve accuracy.  It predicts RUL 
individually and through methods based on probability 
theory facilitates the fusion two or more RUL prediction 
results to achieve a new RUL [3]. 

3.3. Types of Prediction Techniques 

 Statistics: This technique relates past and present data 
duly observed and analysed with methods such as auto 
regressive moving average (ARMA), and exponential 
smoothing for effective prediction of result. This model 
applies random variables to new data which improves 
distribution of unknown parameters [18].   
 
Cheng and Pecht [20] argued that regression identified 
the relation between variables and parameter values to 
predict RUL. In normal operating conditions, ARMA is 
used to recognize the dynamic behavior of components 
[21]. Another statistical approach used in the medical and 
biomedical field is Proportional Hazard Model (PHM) 
which, when applied to lifecycle issues, can deliver 
predictions which are more accurate and reliable RUL 
[22].   

 
 Experience: This approach is specific to expert 

judgment.  Knowledge is either explicit or tacit, and 
gained from subject matter experts. It aids degradation 
maintenance decision making whereby processes and 
objects are under consistent observation. Such 
understanding is obtained from data gathered from failure 
events and developmental test events.  An analysis of the 
data enables the extraction of feature based on 
degradation mechanisms which facilitate the construction 
of datasets. Also, it facilitates the introduction of ‘rules’ 
for classification of the information in order to determine 
the RUL of an asset directly by predefining threshold 
level [23].  

 
 Computational Intelligence (CI): This method – also 

known as Soft Computing includes fuzzy logic and neural 
networks which are dependent upon parameters and input 
data to create the desired output. Artificial Neural 
Networks (ANN) uses data from continuous monitoring 
systems and requires training samples. The ANN usually 
called ‘black-boxes’, provides only little insight into the 

internal structures [2]. The study so far confirms that data 
collected from sensors can be translated through ANN to 
predict RUL of an asset. Other alternative approaches are 
Bayesian prediction method and Support Vector 
Machines (SVM) which makes use statistical estimates of 
condition for limited samples to define predictive 
learning base [24].   

 
 Physics-of-Failure (PoF): This technique requires 

parametric data and cover techniques such as Continuum 
Damage Mechanics, Linear Damage Rules, Non-Linear 
Damage Curves and Two Stage Linearization. In 
addition, Life Curve Modification Method of Stress and 
Load Interaction, Crack Growth Concept, and Energy-
Based Damage Models are also available [25].   

 
 Fusion: This is the merging of multiple data into a 

refined state. This approach extracts, pre-process and fuse 
data for accurate and fast forecast of the RUL of an asset 
as illustrated in Fig. 6.  A better way to incorporate fusion 
is to classify data with the aid of fuzzy method to 
improve accuracy of the RUL estimate [26]. In the 
context of uncertainty in RUL estimation, on-demand 
information collected from different sensors are fused by 
either centralized or decentralized means to accurately 
predict useful life by incorporating Principal Component 
Analysis (PCA) [27; 28]. 

 
 

 
 
 
 
 
 
 
 

Fig. 6: Sample Fusion Estimate (Adapted source: [28]) 

3.4. Mapping Degradation Mechanism and Techniques 

Having identified the relevant mechanisms, this paper 
presents the most prominent algorithms for prediction. Table 
1 shows the techniques mapped against mechanisms to aid the 
selection of the correct prediction algorithm for major 
degradation mechanisms.  

When data are mapped against techniques, a decision can 
be reached on which technique to use for a degradation 
mechanism.  Where planned maintenance of six months 
interval is required to service the component, the decision can 
be dependent on past information to predict the life span of 
the asset.  

Employing TES strategies on MRO, once a fracture or 
crack is identified, a computational intelligence technique 
such as fuzzy logic is employed.  For example, threshold level 
should NOT be more than a specified crack length otherwise, 
the asset is scrapped and replaced. Where fracture is within 
the tolerance margin of a specified crack length, component is 
repaired and reused. 
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Table 1: Mapping of Degradation mechanisms versus Prediction techniques 

Degradation 
Mechanism 

Statistics PoF CI Experience Fusion 

Fracture X X X - X 

Wear X X X - X 

Deformation - X - X - 

Corrosion X X X - X 

 
A mapping of datasets against techniques is presented in 

Table 2. The architecture of a model for predicting RUL 
follows the structure of pre-processing, fusion and post-
processing. The confidence interval used to justify the 
maintenance decision is very important when implementing a 
statistical method of prediction.  

PoF requires large amounts of parametric datasets for 
better prediction with confidence. A regular update of the data 
is required to successfully use TES strategies for better 
decision making for MRO. With regards to ordinal datasets 
for instance, a classification of (low (1-3), medium (4-6), high 
(7-10)), can be used in fusion, CI and experience techniques 
to estimate RUL during MRO. These techniques can be 
embedded in information system application for product 
service systems such as product lifecycle management (PLM). 

Table 2: Techniques versus types of data 

Techniques Large 
Dataset 

Few 
Dataset 

Numerical 
Dataset 

Categorical 
Dataset 

Ordinal 
Dataset 

Fusion X - X X X 

Statistics - X X X - 

CI X - X X X 

Experience X X - - X 

PoF X - X - - 

4. Through-Life Engineering Services in relation to  
degradation mechanisms and techniques to predict RUL 

Elements relating to the scope of Through-life engineering 
services are presented (Fig. 7).  It is important that the MRO 
function aligns with the operations strategy of the 
organisation.  This is facilitated by the correct application of 
technology supported by efficient use of service knowledge. 
The benefits obtained from accurate life prediction and 
improved MRO decision making is significant.  

The use of simulation tools, adaptability procedures, 
modular maintenance systems, and informed disposal decision 
facilitate the prediction of reliable life expectancy. Also, the 
increased application of advanced information technology 
such as PLM for distribution and collaboration, condition 
monitoring, and prognosis will reduce downtime and provide 
improved availability of products. 

While the issue of Degradation management is a key 
aspect in TES, the maintenance of autonomous systems and 
development of capabilities in a collaborative environment 
can enhance the life-span of components. 

The concept of cost engineering provides a performance-
based service approach, and whole-life cost model, which is 

applicable to the whole system maintenance and service 
delivery systems in order to deliver effective business 
solutions. 

The uncertainty modelling and simulation techniques based 
on technological and business uncertainties are used to 
improve component/product designs.  

The aforementioned tools and methodologies when 
supported by obsolescence management, service network for 
capability assessment, and cost estimation, have the potential 
to greatly improve the design function.  As a result, there will 
be an improvement in quality, reliability, availability and 
safety whilst yielding feedback to manufacturers [1]. 

In view of the above, the mechanisms which can cause 
component failure are monitored. The techniques for 
measuring and estimating time-to-failure are also identified 
together with the input variables and the datasets that would 
be essential in predicting the remaining useful life of a 
component. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7: Types of Through-Life Engineering Services (Adapted source: [1]) 

5. Conclusion 

The effective prediction of RUL for manufactured products 
within the Industrial Product Service System is a key factor I 
the sustainable service delivery. Thus, the advantages are: 
encourages swift MRO decision making and enhances 
availability of reliable components for use. It reduces regular 
maintenance cost.  It improves operational efficiency. 

This paper identifies the main degradation mechanisms 
(not exclusively) which can affect engine components. The 
Remaining Useful Life simulation and modelling tools and 
methods, the mapping of degradation mechanisms versus the 
prediction techniques have been highlighted. This is coupled 
with mapping the technique against data type to enable the 
selection of the relevant modelling methodology.  

In the final analysis, it is however seen that TES is a 
strategic approach within a service delivery system which 
enables, facilitates and supports IPSS solutions. These toolsets 
can be embedded within the TES architecture to assist or 
guide policymakers to make swift and better maintenance 
decisions. 
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