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Abstract—Control decisions within future energy networks may 

take account of the health and condition of network assets, 

pushing condition monitoring within the smart grid remit. In 

order to support maintenance decisions, this paper proposes a 

circuit breaker prognostic system, which ranks circuit breakers 

in order of maintenance priority. By monitoring the SF6 density 

within a breaker, the system not only predicts the number of days 

to a critical level, but also incorporates uncertainty by giving 

upper and lower bounds on the prediction. This prognostic 

model, which performs linear regression, will be described in this 

paper, along with case studies demonstrating ranking breakers 

based on maintenance priority and prognosis of a leaking 

breaker. Providing an asset manager with this type of 

information could allow improved management of his/her assets, 

potentially deferring maintenance to a time when an outage is 

already scheduled.  

 
Index Terms—Circuit breakers, Prognostics and health 

management, Condition monitoring, Maintenance. 

I.  INTRODUCTION 

ROGNOSTICS can be considered the ultimate aim of 

condition monitoring, giving a prediction of the future 

health and remaining life of an asset [1]. With accurate 

forecasting of degradation, maintenance can be planned in 

advance of failures, and potentially deferred to a prearranged 

outage.  

Thus far, condition monitoring is mostly used for fault 

diagnosis and health monitoring. Moving from diagnosis to 

prognosis requires new models of fault progression, in order to 

assess not only the presence of faulty behavior, but also the 

trajectory of degradation. This will become more of an issue 

with smart grids, which are anticipated to have more 

monitoring and automated control than current networks. 

Control decisions may take account of plant health, while 

wider monitoring will produce more data for analysis. Data 

mining [2] will be a useful tool for uncovering previously 

unknown relationships between plant health and prognosis. 

Circuit breakers are a prime example of an asset where 

prediction of future health can benefit maintenance planning. 

Circuit breakers are required to operate correctly in the 

presence of a fault, and maintenance is scheduled when it is 

estimated the breaker may fail to operate. Currently this is 

performed on a number-of-operations basis, but condition 

monitoring could be used to estimate the probability of correct 

operation. Maintenance can be scheduled when this 
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probability falls too low. 

Predicting future performance based on current condition 

requires a prognostic model of breaker health deterioration. To 

gain an insight into the circuit breakers condition, and 

potential prognosis, informative parameters must be 

monitored. One example of an online circuit breaker 

monitoring equipment is Alstom’s CBWatch-2 [3], which 

constantly monitors a variety of measurements from the circuit 

breaker, including: opening and closing time of contacts; 

density of SF6; arc duration and number of operations. This 

paper describes how data mining of CBWatch-2 data was used 

to build prognostic models for a number of a utility's SF6 

breaker fleet. The resulting models of degradation are 

integrated into a prognostic architecture, which ranks the 

breakers in order of maintenance need. 

This paper will first highlight the authors’ perspective of 

prognostics and how it is utilized in other fields. Section III 

will describe the various parameters used in condition 

monitoring of circuit breakers, highlighting key parameters 

that can be applied in both condition monitoring and 

prognostics. Section IV will discuss how these parameters can 

be employed to predict a critical SF6 density level for a circuit 

breaker, with section V providing a substation case study of 

ranking the breakers based on maintenance priority. Section 

VI will demonstrate a case study of the prognosis for a leaking 

circuit breaker. The direction of future work will be outlined 

in section VII, and section VIII concludes the paper. 

II.  PROGNOSTICS 

A prognostic system must be able to give a prognosis, or 

prediction, about the length of time before some event occurs. 

In the case of health monitoring, prognostic systems should 

give some information pertinent to maintenance timescales, 

such as remaining useful life (RUL), or time to failure (TTF).  

Prognostic systems differ in purpose from diagnostic 

systems. A diagnostic system aims to identify the presence of 

a fault, and may do this by classifying the type of fault (using 

knowledge-based or data-driven heuristic classification), 

identifying the faulted component (using model-based 

diagnosis), or simply highlighting that plant behavior has 

deviated from normal (anomaly detection, another form of 

heuristic classification). In all cases, the diagnostic system is 

making a judgment about the current state of the plant under 

study, and deeming it to be healthy or unhealthy based on 

current data. 

In contrast, a prognostic system makes a forecast about the 

future state of the plant under study, based on current data. It 

may build on a diagnostic system; for example, a new fault 

diagnosis may trigger a recalculation of RUL in the prognostic 

system. However, the clear distinction between diagnosis and 
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prognosis is that a prognosis includes a forecasted timescale of 

deterioration. 

Outside of the power industry, prognostics research is 

ongoing in some domains that can be characterized as having 

an inability to perform maintenance until the end of a duty 

cycle. This includes aerospace and marine applications, where 

maintenance and replacement is limited to time on the ground 

or in dock [4][5][6]. This limitation means that prognostic 

prediction is essential for efficient maintenance practices, and 

accurate prediction of the probability of completing the next 

duty cycle is used for fleet planning. 

Useful discussion of the potential benefits of prognostics for 

the power industry is dependent on clear definitions of the 

capabilities of different types of systems. One particular 

framework for classifying and discussing prognostic systems 

is that developed at the University of Tennessee [7]. This 

splits prognostic systems into three types, outlined below. 

Type I systems are the most basic, and model failure 

statistics about groups of assets. Instead of predicting the RUL 

of any specific asset, type I systems use the average lifetime 

and distribution of failures to make predictions about how 

many assets within the population will experience a fault 

within a given timescale. A common way of doing this 

modeling is using the Weibull distribution [1]. 

Type II systems give a “stressor-based prediction” [1], 

which combine the average component lifetime of a type I 

model with information about the environmental conditions 

experienced by a given asset. A type II system takes account 

of the different ways an asset can be used. For example, some 

circuit breakers are exercised frequently for switching 

operations, whereas others are expected to operate only to 

clear faults, and may remain unexercised for years at a time. 

These different environmental factors can exert different 

stresses on the breaker - one experiences regular, low level 

wear while the other experiences infrequent, high levels of 

wear - and consequently, one particular model of breaker 

could fail at different rates depending on whether it is used 

primarily for switching or fault clearance. 

The type II prognosis is still reliability-focused, making 

predictions about the rate of failure within a group of assets. 

However, the prediction is more tailored to a specific asset 

than a type I prognosis, by factoring in the hazards or shocks 

the asset experiences from the environment.  

 Type III systems take a further step, by incorporating 

condition data measured from the specific asset. While a type 

II model assumes a particular environmental shock will place 

a certain amount of wear on the asset, type III models 

explicitly measure the condition to determine how damaging 

the environment is. The condition-based type III prognostic 

systems can forecast the likely RUL of a specific asset under 

study, based on the reliability of the asset group and specific 

feedback about the plant's current health. 

Broadly speaking, type I prognostic systems are the tools of 

the asset manager, who must budget for replacements and 

maintenance across a fleet within a given timescale. Type I 

systems can forecast how many within the group will need 

corrective maintenance, but cannot say which units will be 

affected. In order to forecast the maintenance required for one 

particular item of plant, type II or type III prognostic systems 

are needed. Type III systems are generally preferable, as they 

are most informed about the current status of the asset. Type II 

and III systems are also the most difficult to implement, as 

they require knowledge of the relationship between plant 

condition, shocks, and future degradation. 

III.  CIRCUIT BREAKER MONITORING 

The monitoring of circuit breakers has been recognized as 

beneficial due to the valuable role the breaker plays in 

protecting the circuit from short circuits and overloads [8]. 

The monitoring of circuit breakers is usually split into the 

monitoring of its separate components, for example, gas 

mixture; mechanical parts; switching; contacts and control 

circuits. Part A of this section will briefly touch on 

commercial products for the monitoring of parameters that 

could highlight the state of a circuit breaker. By examining 

these products, and the present literature in this area, part B 

discusses the key parameters that could potentially indicate 

problems in the circuit breaker. 

A.  Condition Monitoring Packages 

A number of commercial products are available on the 

market to monitor a variety of parameters that depict the 

condition of the breaker. Examples of these include 

Hathaway’s CBT 200/400 portable circuit breaker test kit [9] 

and BCM200/200E online breaker monitor [10], INCON’s 

OPTImizer+® [11], Doble’s TDR9000 [12], InuoSys 

Solutions Pte Ltd’s BSM1000 [13] and Alstom’s CBWatch-2 

modular circuit breaker monitoring system [3]. The 

parameters that are generic to most units include: 

• Mechanism: 

o Opening contact times of the mechanism. 

o Closing contact times of the mechanism. 

• Gas: 

o Temperature of SF6. 

o Pressure of SF6. 

• Main contact wear: 

o Arc duration. 

o I
2
t. 

It should be noted that software and/or alarms are often 

associated with these commercial products, informing the 

engineer if certain issues arise. Most of the commercial 

products shown above are only concerned with diagnostic 

capabilities, where parameters are measured to indicate the 

present condition of the circuit breaker and invoke alarms if it 

diverges from the expected. However, the CBWatch-2 system 

has a software counterpart that provides a diagnosis of the 

circuit breaker faults and also utilizes the SF6 data to inform a 

RUL timescale. The system described in this paper is 

concerned with prognostics and differs from the CBWatch-2’s 

prognosis by not only providing a time to critical level and 

ranking the circuit breakers based on this prognosis, but also 

by indicating boundaries of upper and lower limits of the 

prediction. Furthermore, it is intended to form part of a 

combination of useful parameters in an overall prognostic 

architecture. 
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B.  Useful Parameters 

Research regarding automated analysis of circuit breakers 

has been conducted since 1969 [14] to optimise maintenance 

and improve safety of personnel and the environment. The 

general consensus of a literature review performed by the 

authors revealed that a combination of parameters should be 

utilized to indicate the health of the breakers [15][16][17], 

with the IEEE C37.10.1 guide [8] offering a variety of ways to 

measure these parameters. The main focus of the literature is 

that the opening and closing times, the SF6 pressure and I
2
t are 

useful parameters that indicate mechanical wear, SF6 leakage 

and interrupter erosion, respectively. These parameters were 

also highlighted from the commercial products in part A. 

Since an indication of the overall health of a circuit breaker 

is dependent on a union of monitoring techniques, the aim is 

to create a prognostic architecture that ranks circuit breaker 

condition using a combination of all these useful parameters. 

However, for this paper, we focus in detail on the SF6 data and 

the creation of a prognostic module for SF6. Further work will 

expand this architecture to incorporate other parameters for an 

improved prognosis. 

The density of SF6 within a circuit breaker is important to 

ensure the correct operation of arc extinguishing. Cigre 

reported that 40% of minor faults and 7% of major faults are 

as a result of gas leakages in SF6 circuit breakers [18]. These 

leakages could not only have an impact on the arc 

extinguishment, restricting the potential of the asset, but also 

have environmental impacts. For these reasons, data mining 

techniques [2] were utilized during this research on CBWatch-

2 recorded SF6 data for condition monitoring and prognostic 

purposes. 

IV.  PROGNOSTICS USING SF6 DATA 

Examining the SF6 density level of a circuit breaker 

provides an insight into the condition of the asset. If a circuit 

breaker has an SF6 density below a certain level the circuit 

breaker may not be able to extinguish an arc, and will 

therefore require maintenance in the form of a top up of SF6. 

This paper proposes a method to project this condition 

monitoring data to predict a time when a circuit breaker may 

reach such a level, known as lockout, based on its past and 

present SF6 levels. This information would provide the asset 

manager with prior warning of a critical level of SF6 density, 

allowing the safe delay of maintenance to a planned outage, 

removing perhaps unnecessary outages. 

SF6 density data from the CBWatch-2 commercial product 

was used in this research from 3 substations of 9, 12 and 15 

circuit breakers, from 2002 to 2007. Each day, at midnight, the 

density of SF6 in each circuit breaker was recorded, along with 

a timestamp, the ambient temperature and the current in pole 

A. Samples were taken at midnight to remove external 

parameters, such as the sun’s rays, which could have an effect 

on the density of SF6. 

The overall aim of the prognostic system was to provide the 

asset manager with a list of circuit breakers in each substation 

ranked by their maintenance priority. This ranked list would 

highlight the number of days to lockout, along with an 

uncertainty providing upper and lower limits of this predicted 

time frame. Before such a system could be created, data 

mining was employed to identify if a relationship existed 

when sampling the SF6 density.  

Plotting all the available data on a scatter plot of sample day 

versus SF6 density highlighted a linear relationship between 

the two parameters during a leakage of SF6. Fig. 1. shows an 

example of the linear relationship for a subset of the data, 

where the subset was taken from between two presumed top-

ups. From this discovery linear regression [19] was used to 

predict the day (plus or minus the uncertainty) when the SF6 

density would reach a lockout limit.  

Using the data in Fig. 1, the calculated linear regression 

equation can be seen in (1). 

Rearranging (1) allows the number of days (!) to be calculated 

when an assumed lockout limit (!) of ≈ 8200 mbar occurs. 

This can be seen in (2), where it is predicted that the lockout 

limit will be reached on day 126. Assuming 24/05/02 (the final 

sample day) is today and knowing that there are 58 samples in 

the dataset, the number of days from today to a lockout is 68 

days i.e. 126-58. 

 

! !
8577!! ! 8194

!!0412
! 126!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !  

 

Since the SF6 density fluctuates between sample reading, it 

is beneficial to calculate the uncertainty; displaying an upper 

and lower limit of the number of days to lockout. Two 

approaches were examined to provide this information. The 

first involved calculating the standard deviation (sd) of the 

density and plotting new functions from the data based on the 

equation y = mx + c ± sd. By taking the data in Fig.1, these 

boundaries can be seen in Fig. 2, where the standard deviation 

in y is 60.36. Calculating the number of days until lockout 

from the final sample results in 68 ± 21 days. 

! = 8577.6 - 3.0412!!            (1) 

 

Fig. 1. Linear Regression of SF6 Density 
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An alternative approach to uncertainty was performed 

taking into consideration the uncertainty of the slope and the 

uncertainty of the y-intercept. Equations to calculate these 

were taken from [19] and can be seen in (3) and (4) 

respectively. 

!!
!
!! !

!

! !! ! !!
!
!
! !! !!!! ! !

!

! ! !
!!!!!!!!!!!!!!!!!! !  

!!
!
!! !

!

!
!

!
!

! !! ! !!
!
!
! !! !!!! ! !

!

! ! !
!!!!!!! !  

where ! is the mean of !, n is the number of samples, m is the 

gradient of the slope and c is the intercept of y. 

From (3) and (4) new lines can be drawn providing the 

upper and lower bounds based on uncertainty. The equations 

of these lines can be seen in (5) and (6) respectively. These 

alternative boundaries can be seen in Fig.3. From these bounds 

the time to lockout from the final sample is 68 + 10 or 68 – 8 

days. 

!!!!!!upperbound ! !
!! ! ! ! ! !!!

! ! !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!lowerbound ! !
!!! ! ! ! !!!

! ! !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

where y = lockout value. 

 
 
Fig. 3. Projecting the density leakage to predict when a lockout level will be 

reached, providing upper and lower bounds on prediction based on the 

uncertainty of the slope and the y-intercept. 

Further examination of the data revealed that the time of 

year had an effect on the recorded density of SF6, with higher 

density corresponding to higher summer temperatures. Clearly 

this is an artifact of the measurement process, as the density of 

gas in the sealed container cannot increase unless it is refilled, 

and these slight summer increases are not due to refilling. 

The recorded density is calculated within the CBWatch-2 

monitoring system from measurements of temperature and 

pressure, using the Beattie-Bridgeman equation [20]. This 

equation links pressure, temperature, and density with five 

empirical parameters tuned to the gas in question. The Beattie-

Bridgeman equation is one of a number of real gas equations 

of state, which are more accurate than the ideal gas equation 

of state given certain conditions (such as within a given range 

of pressures). 

However, the seasonal fluctuations in recorded SF6 density 

indicate that inaccuracies exist with this approach. Equations 

of state assume steady-state conditions for temperature, 

pressure, density, etc., whereas the presence of a leak would 

invalidate that assumption. 

An alternative real gas equation of state, the virial equation, 

links pressure and temperature with empirical parameters, 

removing the need for density calculation. The empirical virial 

parameters for SF6 are available from the literature [21][22]. 

Using measurements of ambient temperature, the virial 

equation can be used to calculate pressure residuals; that is, 

the difference between the expected pressure for a given 

temperature, and the measured pressure. The linear regression 

can then be applied on the resultant residual to project for a 

prognosis, as described previously. 

V.  SUBSTATION CASE STUDY 

The overall aim of the prognostic system, described in this 

paper, is to rank the circuit breakers at a substation based on 

their maintenance priority, in order to allow the scheduling of 

maintenance to when an outage is already planned. This 

section will demonstrate the output of the created system by 

using data from a subset of the aforementioned datasets. The 

input to the system examines 11 circuit breakers in 1 

substation from 13/05/07 to 20/08/07. For each circuit breaker 

the system performs linear regression and ranks the circuit 

breakers based on their predicted number of days to lockout, 

assumed to be ≈ 8200 mbar. Uncertainty, giving upper and 

lower bounds, calculated by the two methods shown in section 

IV are also included in the output. The linear regression and 

the ranking can be performed every n days, where n is 

predefined by the engineer. Table 1 shows an example of the 

output after the first 50 days of data. 

The data used in this example was composed of circuit 

breakers with relatively stable levels of SF6. Fig. 4 shows an 

example of a circuit breaker’s dataset, with the other datasets 

showing similar distributions. As seen in Fig. 4, the data could 

be described as relatively stable with a slight decrease in 

density, as well as large fluctuations between samples. It is 

thought that this slight decrease in SF6 might be the resultant 

of a small leak. 
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As seen in Table 1, there are a few circuit breakers that have 

N/A beside their upper bound calculated from the uncertainty 

in slope and y-intercept. This is due to the calculated 

uncertainty of the slope being greater than 100%, meaning that 

the slope would now be positive and the density increasing. 

This should not be the case since no refill has occurred and 

therefore is suggestive that no leak exists.  

Table 1 also shows one circuit breaker where no predicted 

lockout time is calculated, X610. This is due to a positive 

slope being calculated during linear regression for this circuit 

breaker, meaning that the recorded density during this sample 

period is increasing. This also indicates that no leak is present. 

It should be noted that a positive slope is not expected in 

relation to the density’s behavior and in this case it must be 

due to measurement error or as an effect from the ambient 

temperature. 

VI.  CIRCUIT BREAKER CASE STUDY 

This case study will demonstrate the output of the prognostic 

system using data from a circuit breaker that is definitely 

leaking SF6. Taking the dataset from Fig.1, the SF6 module 

performed linear regression on the data every 20 days. It 

should be noted that this is a moving window of 20 days 

across the dataset, meaning that 3 subsets of the data are 

examined individually: 

1. From 1 to 20 days 

2. From 21 to 40 days 

3. From 41 to 58 days. 

The length of time in this window is always a trade off 

between a quick and accurate prognosis. This number was 

investigated by performing prognosis with varying sample 

sizes. 20 days was found to be amongst the quickest and most 

accurate results. However, the prototype allows the moving 

window number, as well as the sample size of the data, to be 

easily changed if a more accurate solution is discovered with 

further research. 

The results of this examination can be seen in Table 2. The 

reason for the change in the predicted time to failure across the 

subsets is due to the greater variance of samples in the second 

subset. Taking into account the temperature effects in further 

research should reduce this variation. 

 

Comparing the bounds in Table 2 with the bounds in Table 

1, a lower standard deviation and uncertainty in the slope is 

present when there is a leakage. This means that when a 

leakage occurs there appears to be less fluctuation between 

samples/days and fewer outliers, creating a narrower range of 

predicted time to critical level. An open research question that 

arises from the results in Table 2 and also Table 1 is which 

uncertainty method should be used when trying to predict an 

accurate time to failure. 

VII.  FUTURE WORK 

The SF6 module described in this paper is intended to form 

part of an overall prognostic architecture for the ranking of 

circuit breakers based on maintenance priority. Fig. 5 shows 

the proposed architecture of this system, highlighting a 

combination of modules that have the potential to provide an 

enhanced insight into the condition and prognosis of a circuit 

breaker. Further work will focus on the creation of these 

additional modules, along with their corroboration, to provide 

a ranked list of maintenance priorities. 

Day Number of 

days until 

lockout from 

last sample (x) 

Bounds based 

on standard 

deviation of 

density 

Bounds based on 

uncertainty of slope and y-

intercept 

Lower Upper 

20 52 days x ± 8 days x - 13 days x + 22 days 

40 68 days x ± 12 days x - 23 days x + 62 days 

60 44 days x ± 8 days x - 17 days x + 10 days 

Fig. 4. 50 days of SF6 density data for circuit breaker X705. 

TABLE 2 

PROGNOSIS OF CIRCUIT BREAKER 

TABLE 1 

RANKED OUTPUT OF CIRCUIT BREAKERS FOR MAINTANENCE PRIORITY 

 
Order of 

Maintenance 

Circuit Breaker Number of days until 

lockout from last sample 

(x) 

Bounds based on 

standard deviation of 

density 

Bounds based on uncertainty of slope 

and y-intercept 

Lower Upper 

1. X505 336 days x ± 49 days x - 115 days x + 319 days 

2. X205 733 days x ± 55 days x - 263 days x + 867 days 

3. X130 760 days x ± 79 days x - 343 days x + 2741 days 

4. X705 1114 days x ± 83 days x - 510 days x + 4920 days 

5. X330 1317 days x ± 69 days x - 539 days x + 2750 days 

6. X105 1550 days x ± 89 days x - 734 days x +10828 days 

7. X305 1860 days  x ± 167 days x - 1174 days N/A 

8. X905 2575 days x ± 140 days x -1508 days N/A 

9. X605 2640 days x ± 139 days x - 1541 days N/A 

10. X405 4624 days x ± 208 days x - 3131 days N/A 

11. X610 No leak, the regression slope is positive 
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VIII.  CONCLUSIONS 

This paper has described how condition monitoring data can 

be used in a prognostic system to rank circuit breakers for 

maintenance priority based on their recorded SF6 density. 

During data mining, a linear relationship between SF6 density 

and time (days) was exposed when examining the leakage of 

SF6. This led to using linear regression as a basis for 

prognostics, predicting the number of days when the SF6 

density within a breaker would reach a critical level, known as 

lockout. 

In order to provide the asset manager with upper and lower 

bounds around the anticipated lockout time, the uncertainty of 

the predicted time was investigated through two different 

methods. First, by examining the standard deviation of the SF6 

density in a dataset, upper and lower bounds of a predicted 

day could be calculated. Second, the uncertainty of the slope 

and the uncertainty of the y-intercept in the linear regression 

equation were determined, and utilized, to predict alternative 

boundaries of the number of days to the critical level. 

The paper then provided a case study of the prognostic 

system using a dataset from a substation. Here the circuit 

breakers were ranked in order of their maintenance priority. 

Finally, a further case study was examined using data from a 

leaking circuit breaker, identifying a lower standard deviation 

and uncertainty in the slope when a leakage occurs. Providing 

the output displayed in these case studies to an asset manager 

could assist their maintenance decisions, potentially deferring 

maintenance of the circuit breaker safely to a time that was 

already planned. 
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