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ABSTRACT

Elements of gas turbine degradation, such as compressor
fouling, are recoverable through maintenance actions like
compressor washing. These actions increase the usable en-
gine life and optimise the performance of the gas turbine.
However, these maintenance actions are performed by a sep-
arate organization to those undertaking fleet management op-
erations, leading to significant uncertainty in the maintenance
state of the asset. The uncertainty surrounding maintenance
actions impacts prognostic efficacy. In this paper, we adopt
Bayesian on-line change point detection to detect the com-
pressor washing events. Then, the event detection informa-
tion is used as an input to a prognostic algorithm, advising an
update to the estimation of remaining useful life. To illustrate
the capability of the approach, we demonstrated our on-line
Bayesian change detection algorithms on synthetic and real
aircraft engine service data, in order to identify the compres-
sor washing events for a gas turbine and thus provide demon-
strably improved prognosis.

1. INTRODUCTION

Gas turbine engines are subject to operational degradation
which, over time, will reduce their performance. For effec-
tive fleet management, the ability to predict this degrada-
tion through prognostics is seen as a vital part of modern
health monitoring. Prognostics enables forward predictions
of the time to failure, thus offering a route to increase time
in-service and reduced disruption for improved asset manage-
ment. For accurate prognosis, knowledge of maintenance ac-
tions which affect the rate and state of degradation is of prime
importance but is often difficult to obtain and incorporate.

Maintenance actions like compressor washing increase the
usable engine life and the performance of the gas turbine.
These actions are performed at geographically dispersed loca-
tions by organisations independent to those performing fleet
management, which lead to uncertainty in the maintenance
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state of the asset. Organisational barriers do not permit the
feedback of whether an advised maintenance action is taken
or if maintenance is performed independent from fleet man-
agement advice. The uncertainty surrounding maintenance
actions impact the ability to accurately trend and extrapolate
the health degradation of a unit.

The solution proposed in this paper accurately detects mainte-
nance events directly from the measured service data through
a change detection algorithm. The event detection informa-
tion is subsequently used as an input to a prognostic algorithm
(Zaidan et al., 2013), advising the prognostic algorithm to up-
date the estimation of remaining useful life.

2. LITERATURE REVIEW

Prognosis seeks to estimate the future health state of an as-
set and this problem has been addressed through a num-
ber of approaches, such as particle filters (Schwabacher &
Goebel, 2007) and hidden Markov models (Tobon-Mejia et
al., 2011), which can capture uncertainty in the projection of
health state. Our work in Zaidan et al. (2013), provides a de-
terministic and efficient calculation which are then extended
in this paper to accommodate maintenance events.

The problem of change point detection or detecting abrupt
changes in time-series data has attracted a lot of research in
the statistics and data mining communities over the last three
decades (Basseville & Nikiforov, 1993; Brodsky & Dark-
hovsky, 1993; Gustafsson, 2000; Kawahara & Sugiyama,
2012). Change-point detection has been widely used in a
range of real-world problems such as signal segmentation of a
data stream (Tobon-Mejia et al., 2011), fraud detection in mo-
bile networks (Bolton & Hand, 2002), climate change detec-
tion (Reeves et al., 2007), motion detection in vision systems
(Ke et al., 2007), stock market prices (Chen & Gupta, 1997),
nuclear engineering (Fearnhead & Clifford, 2003), and the
aerospace domain (Fujimaki, 2005). These methods bring to
bear a selection of models, statistical techniques and thresh-
old selection policies to identify change events in data. It is
proposed in this work that a unified approach can be provided
with Bayesian change detection providing a rigorous means
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to utilise a statistic data model and incorporate expectations
about an impending change as a prior belief.

Generally, change-point detection methods can be classified
into two categories depending on the time of detection: ret-
rospective detection (batch processing), and on-line detection
(sequential processing). A retrospective change point detec-
tion method waits until the end of a fixed period of time, and
then uses all the data throughout the period of time to locate
the change points. For example, if we are going to detect
maintenance events with annual updating, we have to wait
until the end of the year to collect all the engine service data
before doing any analysis to locate temporarily the mainte-
nance actions. Although retrospective change point detection
requires longer reaction periods, it tends to give more robust
and accurate detection (Kawahara & Sugiyama, 2012). On
the other hand, on-line change point detection must detect
change points as soon as possible, this inevitably means act-
ing upon less information. To provide the most timely input
into the prognostic algorithms, on-line methods are the focus
of this paper.

Many of the previous Bayesian approaches to change point
detection have been retrospective (Barry & Hartigan, 1993;
Xuan & Murphy, 2007), and have demonstrated strong per-
formance for off-line datasets but are not suitable for mak-
ing instant decisions. A Bayesian on-line change point detec-
tion algorithm was recently introduced by Adams & MacKay
(2007), and in an alternative formulation by Fearnhead & Liu
(2007). While computational cost can be made to be approx-
imately linear in Fearnhead & Liu (2007) by applying resam-
pling strategies, a preferred recursive formulation by Adams
& MacKay (2007) provides a closed form solution that is lin-
ear and introduces no approximation errors. This closed-form
Bayesian algorithm, estimates the time since the last change
point, which is called the run-length. Adams and MacKay
used an underlying predictive model of the time series that is
updated at each sample point, to estimate the probability of
a new sample extending or resetting to zero the run-length.
Recently, the algorithm has been implemented to automatic
speech recognition systems to work in real-world environ-
ments (Chowdhury et al., 2012).

In this paper, we propose the integration of the on-line change
point detection algorithm (Adams & MacKay, 2007), with a
Bayesian-inference prognostic approach (Zaidan et al., 2013).
The prognostic algorithm is updated as new data is received
and outputs predictive probability distributions for the ex-
pected future health. The predictive distributions can be used
in the detection algorithm to incorporate step change dis-
covery into prognostic methodologies. The Bayesian meth-
ods employed effectively addresses the problems of novelty
threshold selection; the incorporation of prior knowledge;
and change detection with uncertain, noisy, and missing data.

To illustrate the capability of the approach, on-line Bayesian

change detection algorithm will be implemented on real air-
craft engine service data, in order to identify the compressor
washing events of a population for gas turbines.

3. MATHEMATICAL MODEL

3.1. Prognostic Model

The true degradation is unknown and we choose to model a
related health index of the asset which may be estimated from
noisy data collected from the system. The health index esti-
mate may in many systems be described as a probability dis-
tribution for a parametrically linear model which is projected
forward in time to give an anticipated future health index,
shown below in Equation (1):

x1:t = φ(t)Tw + ε (1)

where ε is a random error term that follows a normal distri-
bution ε ∼ N (0, σ2

n). In general, φ is a polynomial basis
function, w is a vector of weights and x1:t is the set of degra-
dation measurements. Here we choose φ(t) = (1, t)T as
an affine function form with t denoting time, but of course
variables other than time may be included such as variables
related to usage.

Data measured from the environment is modelled as a normal
distribution with mean φ(t)Tw and variance σ2. The like-
lihood distribution, p(x1:t|t,w, σ2) ∼ N (φ(t)Tw, σ2I),
is used with a prior distribution to calculate the parameters
of the posterior distribution. It is necessary to select an ap-
propriate prior distribution of our data in order to obtain an
analytically tractable posterior distribution, which is desir-
able for real-time, deterministic computation. We assume the
prior distribution is a normal-inverse gamma (NIG) distribu-
tion and written as p(w, σ2) ∼ NIG(w, V, a, b). The parame-
ters for the prior distribution (w, V, a, b) can be built from an
in-service database by way of ordinary least squares (OLS)
estimation.

The posterior distribution for the model parameters,
p(w, σ2|x1:t, t) ∝ p(x1:t|t,w, σ2)p(w|σ2)p(σ2), are
calculated based on a parametrised NIG distribution
(NIG(w∗, V ∗, a∗, b∗)) as detailed in Zaidan et al. (2013).

The predictive distribution (πt = p(xt+1|xt)), used to ex-
trapolate for prognosis, can be used to evaluate the belief that
a new data point belongs to the learnt mode by evaluating a
predictive student-t distribution populated from the posterior
updated model parameters. This distribution is constructed as
St(φ(t∗)Tw∗, b∗(1+φ(t∗)

TV ∗φ(t∗)), a
∗), and may be used

to calculate πt for data point xt+1.

3.2. Change-point Detection Technique

The detection of step change in engine performance data, is
performed to identify the compressor washing events of a gas
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turbine using a Bayesian on-line change point detection ap-
proach. This approach is based on Bayes’ theorem which
allows us to make some inference for event E from observed
data x. In other words, we can calculate the posterior proba-
bility P (E|x) of E given x by using the Bayes’ theorem:

p (E|x) ∝ p (x|E) p (E) = likelihood× prior (2)

In this work, our goal is to partition the engine data into seg-
ments, which each show a natural decline in performance,
separated by change events, where performance is recovered
through a maintenance action. The delineations between seg-
ments are called the change points.

To determine these change points, we use the run-length
method suggested by Adams & MacKay (2007), which is
based on the Bayes’ theorem. The data are independent and
identically distributed (i.i.d) between change points, and the
parameters are independent across the change points. The
positions of change-points are not specified in advance but
instead must be inferred from the data. The change point has
occurred if the run-length, rt, drops to zero; otherwise, the
run-length increases by one (rt = rt−1 + 1).

In this method, the predictions of the next data point should
consider all possible run-lengths and weigh them by the prob-
ability of the run-length given the data. By finding the most
probable run-length to be 0, i.e. an end to the current data
segment, we find a change point. Notationally, we write xt as
the data at time t and x1:t for the set of data {x1, x2, ....., xt},
in addition, x(r)

t is the set of most recent data corresponding
to run-length rt at time t.

The objective, for each time step t, is to estimate the run-
length distribution p (rt|x1:t) over the collected data. By ap-
plying a confidence threshold to the run-length distribution,
we can determine that the change point has occurred and then
setting rt = 0; or otherwise, conclude that it has not occurred
and increment run-length as rt = rt−1 + 1 . The probabil-
ity distribution for the run-length p (rt|x1:t) at time t can be
estimated sequentially to predict the change point.

The run-length distribution p (rt|x1:t) can be computed as

p (rt|x1:t) =
p (rt,x1:t)

p (x1:t)
(3)

with the probability of evidence calculable by marginalisa-
tion, p (x1:t) =

∑
rt
p (rt,x1:t).

The recursion relation for p (rt,x1:t) can then be derived
by writing as the marginal over rt−1, and noting x1:t =
{xt,x1:t−1}:

p (rt,x1:t) =
∑
rt−1

p (rt, rt−1, xt,x1:t−1) (4)

=
∑
rt−1

p (rt, xt|rt−1,x1:t−1) p (rt−1,x1:t−1) (5)

=
∑
rt−1

p (rt|rt−1) p
(
xt|rt−1,x

(r)
t

)
p (rt−1,x1:t−1) (6)

By exposing the previous time-step joint probability
p (rt−1,x1:t−1), a sequential estimate is possible.

The prior belief of change, p (rt|rt−1), only needs to con-
sider two possible states – the run-length increases or re-
sets to zero. By this binary condition, the method is made
tractable. Consequently, the joint distribution of p (rt,x1:t)
is computed for only these two cases: as a growth function
when rt = rt−1+1; or a change point function when rt = 0.

The expression p
(
xt|rt−1,x

(r)
t

)
is the predictive distribu-

tion given the only the previous data points to build models.
This is calculated by fitting probabilistic models to all possi-
ble rt−1 run-lengths of the data (x(r)

t ) using the model shown
in Equation (1), and assessing the probability of the data point
at xt given the predictive distribution for that model. The cal-
culated predictive distributions, which we label as π(r), for
the normally distributed data is calculated directly from the
student-t distribution, as outlined in Section 3.1. The detec-
tion of change point enables the model parameters to be reset
to some initial conditions.

Assuming that the prior probability of a change-point is given
by the pre-specified hazard rate (H) (which, for simplicity,
we assume to be independent of rt), then

p (rt|rt−1) =

1−H if rt = rt−1 + 1
H if rt = 0
0 otherwise

(7)

In this work we tuned the value of H empirically (to 0.02),
however the data could be used to select the value either by
a priori learning from fleet data or using on-line techniques
such as shown in Wilson et al. (2010), removing need for
heuristic tuning.

The proposed on-line change point detection algorithm ap-
plied to prognostics is summarised as follows:

1. Learn priors for degradation model parameters (using
OLS).

2. Initialise the run-length distribution p (rt−1) = 1.

3. Observe new datum xt.

4. Evaluate predictive probability using student-t distribu-
tions for all run-lengths π(r)

t

5. Evaluate the hazard function H (rt) (constant in this ex-
ample)

6. Evaluate the growth probabilities
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p (rt, x1:t) = p (rt−1,x1:t−1)π
(r)
t (1−H)

7. Calculate the change point probabilities
p (rt = 0, x1:t) =

∑
rt
p (rt−1,x1:t−1)π

(r)
t H

8. Calculate the evidence
p (x1:t) =

∑
rt−1

p (rt,x1:t)

9. Determine the run-length distribution
p (rt|x1:t) =

p(rt,x1:t)
p(x1:t)

10. Apply a threshold to the run-length distribution to de-
termine if a change point has been detected. Reset the
run-length as rt = 0, and goto step 2; or, increment
rt = rt−1 + 1

11. Update the degradation model parameters distribution
through the steps outlined in Section 3.1 to calculate the
predictive p(xt+1|rt−1,x

(r)
t ) for all possible run-lengths

12. Estimate the remaining useful life (RUL) by project-
ing forward the degradation model parameters using the
prognostic model (Zaidan et al., 2013)

13. Return to Step 3.

4. CASE STUDY

Gas turbine engines become fouled with airborne contami-
nants such as unburned fuel, oil, solids and pollen which en-
crust compressor components. Proper operation and mainte-
nance can be used to minimize the fouling type losses. For ex-
ample, compressor washing can be used as effective method
to maintain the compressor efficiency and prevent significant
fouling to occur. The washing of gas turbine compressors
maximize the power output, and fuel efficiency, as well as in-
crease the life time of the compressors components (Kurz &
Brun, 2001; Malinge & Courtenay, 2007; GE, 2008).

As engine degradation happens, the engine efficiency will de-
crease. Consequently, the fuel consumption will increase to
generate the required thrust. As a result the temperature of the
engine will increase, and therefore the global health of the en-
gines can be derived from the core flow temperature measured
at the turbine exit (Marinai et al., 2003). The temperature
is named either Exhaust Gas Temperature (EGT) or Turbine
Gas Temperature (TGT). An estimate of the difference be-
tween the certified TGT maximum (redline) and a projection
of TGT to full-rated take-off at reference conditions is named
TGT margin (Malinge & Courtenay, 2007). The TGT margin
is usually used to monitor the overall performance of the en-
gine through Engine Health Monitoring (EHM) to detect the
shifts performance for each engine, indicating the need for
inspection/maintenance, and to forecast the remaining useful
life of the engines.
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Figure 1. Example data of a single engine’s measured value of
TGT margin over a number of maintenance events, the time
region of which are shown with black rectangles. The solid
black line shows a regression fit of the linear model to the data
received by time index 0.2, and the dotted line the projection
of future values.

In general, the estimation of RUL is at the centre of system
prognostics and health management. RUL gives operators es-
timation for decision making by quantifying how much time
is left until functionality of engine is lost. RUL can be de-
fined as the difference between present time and the time
when the prediction of TGT margin crosses the zero TGT
margin. Figure 1 shows an example of the TGT margin sig-
nal with compressor washing events. The measured value of
TGT margin is presented as blue dots and suspected mainte-
nance action (detected visually by step changes in the data)
are highlighted to occur at some time within the rectangular
region. The model presented in Equation 1 is fitted to the
data received up until time index 0.2 (black line), from which
point a projection is made (the techniques of prognosis are
not the focus of this paper but those projections also incorpo-
rate uncertainty bounds not shown). It is clear that inclusion
of the effects of compressor washing is needed for accurate
estimation of RUL.

In the following section, we experimentally investigate the
performance of the proposed algorithm using synthetic and
real-world datasets.

4.1. Case study 1: Synthetic Dataset

In this first case study, the on-line Bayesian change point de-
tection algorithm will be tested on synthetic data. Technique
verification with synthetic data is an important method to
evaluate the performance prior to testing to real-world dataset
because the ground truth is available, in contrast to the real
data which is subject to uncertainty in the true event times
and the measured TGT margin. The synthetic data is gen-
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erated to have similar noise and shape characteristics to the
real data in Figure 1, and provides the true health index and
change point times corrupted by the artificial noise.
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Figure 2. Synthetic Data: The graph represents the degrada-
tion signal (blue dots) (segmented by two change events) and
the probabilities of zero run-length at each time instant for the
on-line technique validated against an off-line technique.

The graph in Figure 2 shows an artificial time-series signal
containing two change points, which can be visually identi-
fied at intervals spaced 30% along the time index axis. Super-
imposed on this figure are the probabilities of zero run-length
at each time point calculated from two different change de-
tection approaches. The on-line method described in Section
3.2 is validated against visual inspection and a widely cited
off-line (retrospective) technique (Ruggieri, 2013). The on-
line technique can clearly be thresholded to provide a change
detection indication, however the probabilities of zero-length
are lower in magnitude and time resolution compared to the
off-line technique, though sufficient for our application this
implies lower robustness.
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Figure 3. RUL estimation for synthetic data: The true RUL
(dotted blue line), the estimated RUL (red line) with change
detection, and the estimated RUL without change point de-
tection (dashed green line) are shown.

A possible enhancement to decision making is to exploit the
property of this on-line algorithm to calculate the probabil-
ity of all run-lengths at each time step, not only zero-length.

Because the confidence in a change detection increases as n
more data points are collected, the most probable run-length
after a true change time will occur at run-length n data points
after the true change. A simple strategy is thus to observe the
probability mass at low run-lengths (empirically it was found
0-5 points were sufficient, see Table ??) and compare this to
the probability of the run length increasing, this change in
probability mass around an event is an effective measure of
detection robustness. Enhancements can also be made com-
putationally by strategies such as not carrying very low run-
length probabilities to the next algorithm iteration, this is dis-
cussed in Turner et al. (2009).

Figure 3 shows the mean of the estimated RUL from the prog-
nostic algorithm with (red line) and without (green dashed
line) change detection. This estimate is made at every ob-
servation time over the asset life and compared against the
known true RUL. It is clear how the estimated RUL increased
after detecting a change point event through a reset of the
prognostic algorithm, whereas with no change detection the
estimate of RUL diverges to infinity. Due to the periodic na-
ture of synthetic signal, setting the model priors to the poste-
rior estimate before the change events means that the initial
model learning shown at the start of the training period is
avoided, this is only appropriate for perfect repair.
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Figure 4. The TGT margin data is shown in the upper plot,
with the mean RUL estimate for the prognostic algorithm
with and without change detection in the lower plot

4.2. Case study 2: Real-World Dataset

Having validated the effectiveness of change detection and
prognostic strategy, we apply the proposed method to real-
world datasets, the results are shown in Figure 4. The x-axis
is the time index which is the normalised number of flights,
and the y-axis embodies the health index which is the nor-
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malised TGT margin, this is shown by the blue dots in the
upper plot. The lower plot shows the mean RUL estimate for
the prognostic algorithm with and without change detection.
The step changes in RUL can be shown to visually coincide
with significant events in the data at t=0.37 and 0.74, indica-
tive of a compressor wash.

As with many prognostic applications with real data, the lack
of ground true degradation for the real data makes an estimate
of performance problematic. In addition, there is right cen-
soring (asset removal) of the data before the crossing of the
functional failure TGT margin threshold of zero degrees. To
obtain an approximation of ground truth, the linear model was
first trained on all available data and the zero margin crossing
of this model used to generate the approximation to true RUL.
The lack of ground truth also extends to the unavailability of
true cause for the shift in TGT margin and the exact time.

Notwithstanding the difficulties in obtaining ground truth,
some confidence can be developed by testing the change
detection performance on synthetic data. Visual inspection
of 50 sets of engine data were used to estimate the log
ratio of step change magnitude (the signal of interest) to
noise (SNR) for various suspected events. This ratio was
found to be greater than one for the events in the data. By
generating synthetic data with a set of noise characteristics
and applying the change detection, Table ?? was created. As
SNR decreases the change in probability mass for run-length
around the change event decreased, the time accuracy can be
measured by the sample interval width. For the highest SNR
example, the probability mass shifted by 85 percent from
growth to run-length reset over 2 samples (0.85 detection
probability within 1 data point), whereas for at SNR of
-0.2 only 5 percent change in probability occurred over ±3
samples. These quantified results, and observations from
the real data, motivated the application to the full set of
real engine data. In these tests, observed suspected changes
were detected within a 5 observation interval at greater than
90% probability mass change, but the accuracy is difficult to
quantify with precision since the ground truth information is
not available.

Table 1. Change Detection Performance

Probability Mass Change
in sample interval

SNR ±1 ±3 ±5

5.1 0.85 1.00 1.00
2.8 0.80 1.00 1.00
1.2 0.40 0.95 1.00
0.5 0.20 0.95 1.00
-0.2 0.00 0.05 0.40
-0.9 0.00 0.01 0.05

Despite this unavoidable limitation of the data, the applica-
tion to the service data validates the principle of the approach,

with its performance verified with synthetic data.

5. CONCLUSIONS AND FUTURE PROSPECTS

Compressor washing increases the usable engine life and op-
timises the performance of the gas turbine. However, there
are uncertainties about the timing and true effect of mainte-
nance actions. These uncertainties surrounding maintenance
actions impact prognostic efficacy because there is no in-
formation when the prognostic algorithm should be adjusted
to accommodate performance changes arising from mainte-
nance action. A Bayesian change point detection method was
developed, to be illustrative of the possible prognostics fusion
approach, in this paper to detect these maintenance events
from the data.

The proposed method of on-line change point detection al-
gorithm was implemented on an example of real aircraft en-
gine service data, in order to identify the compressor washing
events of a gas turbine and thus demonstrate the possibility of
improved prognosis. Using synthetic data, the robustness of
the approach was evaluated for both the detection and impact
on underlying ground-truth prognosis. The event detection
information was used as an input to a prognostic algorithm,
advising the prognostic algorithm to update the estimation of
remaining useful life.

In future research work, the following areas could be consid-
ered: the hazard rate for maintenance events could be learnt
in advance from fleet datasets based on time and degradation,
and exploiting this prior parameter to improve sensitivity; and
issues regarding the computational efficiency of the change
detection approach should be studied. In addition, while the
change detection is effective at locating in time the change,
there is further analysis needed to incorporate how to handle
this event. The performance recovery is not perfect after each
event and events later in the life of the turbine recover less
performance, the data is to be mined to determine a distribu-
tion for expected recovery and this can be used to intelligently
inform the reset of the prognostic estimation. The algorithms
arising from this work are planned for integration into fleet
management software to allow access to a vast array of data
and thus facilitate robust testing.
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