1,394 research outputs found

    Direct data-driven control of constrained linear parameter-varying systems: A hierarchical approach

    Get PDF
    In many nonlinear control problems, the plant can be accurately described by a linear model whose operating point depends on some measurable variables, called scheduling signals. When such a linear parameter-varying (LPV) model of the open-loop plant needs to be derived from a set of data, several issues arise in terms of parameterization, estimation, and validation of the model before designing the controller. Moreover, the way modeling errors affect the closed-loop performance is still largely unknown in the LPV context. In this paper, a direct data-driven control method is proposed to design LPV controllers directly from data without deriving a model of the plant. The main idea of the approach is to use a hierarchical control architecture, where the inner controller is designed to match a simple and a-priori specified closed-loop behavior. Then, an outer model predictive controller is synthesized to handle input/output constraints and to enhance the performance of the inner loop. The effectiveness of the approach is illustrated by means of a simulation and an experimental example. Practical implementation issues are also discussed.Comment: Preliminary version of the paper "Direct data-driven control of constrained systems" published in the IEEE Transactions on Control Systems Technolog

    Sampled-Data Model Predictive Tracking Control for Mobile Robot

    Get PDF
    In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Model predictive control based on LPV models with parameter-varying delays

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Model Predictive Control (MPC) strategy based on Linear Parameter Varying (LPV) models with varying delays affecting states and inputs. The proposed control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. Moreover, the solution of the optimization problem associated with the MPC design is achieved by solving a series of Quadratic Programming (QP) problem at each time instant. This iterative approach reduces the computational burden compared to the solution of a non-linear optimization problem. A pasteurization plant system is used as a case study to demonstrate the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft

    Stochastic model predictive control of LPV systems via scenario optimization

    Get PDF
    A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper. It is assumed that the time-varying parameters have stochastic nature and that the system's matrices are bounded but otherwise arbitrary nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted parameter trajectories (‘scenarios') are considered. This problem is convex and its solution is a priori guaranteed to be probabilistically robust, up to a user-defined probability level p. The p level is linked to M by an analytic relationship, which establishes a tradeoff between computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features of the approach are illustrated by a numerical example

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations
    corecore