279 research outputs found

    Automatic Verification of Erlang-Style Concurrency

    Full text link
    This paper presents an approach to verify safety properties of Erlang-style, higher-order concurrent programs automatically. Inspired by Core Erlang, we introduce Lambda-Actor, a prototypical functional language with pattern-matching algebraic data types, augmented with process creation and asynchronous message-passing primitives. We formalise an abstract model of Lambda-Actor programs called Actor Communicating System (ACS) which has a natural interpretation as a vector addition system, for which some verification problems are decidable. We give a parametric abstract interpretation framework for Lambda-Actor and use it to build a polytime computable, flow-based, abstract semantics of Lambda-Actor programs, which we then use to bootstrap the ACS construction, thus deriving a more accurate abstract model of the input program. We have constructed Soter, a tool implementation of the verification method, thereby obtaining the first fully-automatic, infinite-state model checker for a core fragment of Erlang. We find that in practice our abstraction technique is accurate enough to verify an interesting range of safety properties. Though the ACS coverability problem is Expspace-complete, Soter can analyse these verification problems surprisingly efficiently.Comment: 12 pages plus appendix, 4 figures, 1 table. The tool is available at http://mjolnir.cs.ox.ac.uk/soter

    Property-Based Testing - The ProTest Project

    Get PDF
    The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis. The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang

    Improved semantics and implementation through property-based testing with QuickCheck

    Get PDF

    Optimizing Abstract Abstract Machines

    Full text link
    The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.Comment: Proceedings of the International Conference on Functional Programming 2013 (ICFP 2013). Boston, Massachusetts. September, 201

    Safe Concurrency Introduction through Slicing

    Get PDF
    Traditional refactoring is about modifying the structure of existing code without changing its behaviour, but with the aim of making code easier to understand, modify, or reuse. In this paper, we introduce three novel refactorings for retrofitting concurrency to Erlang applications, and demonstrate how the use of program slicing makes the automation of these refactorings possible

    Mailbox Abstractions for Static Analysis of Actor Programs

    Get PDF
    Properties such as the absence of errors or bounds on mailbox sizes are hard to deduce statically for actor-based programs. This is because actor-based programs exhibit several sources of unboundedness, in addition to the non-determinism that is inherent to the concurrent execution of actors. We developed a static technique based on abstract interpretation to soundly reason in a finite amount of time about the possible executions of an actor-based program. We use our technique to statically verify the absence of errors in actor-based programs, and to compute upper bounds on the actors\u27 mailboxes. Sound abstraction of these mailboxes is crucial to the precision of any such technique. We provide several mailbox abstractions and categorize them according to the extent to which they preserve message ordering and multiplicity of messages in a mailbox. We formally prove the soundness of each mailbox abstraction, and empirically evaluate their precision and performance trade-offs on a corpus of benchmark programs. The results show that our technique can statically verify the absence of errors for more benchmark programs than the state-of-the-art analysis

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Hailstorm : A Statically-Typed, Purely Functional Language for IoT Applications

    Get PDF
    With the growing ubiquity of Internet of Things (IoT), more complex logic is being programmed on resource-constrained IoT devices, almost exclusively using the C programming language. While C provides low-level control over memory, it lacks a number of high-level programming abstractions such as higher-order functions, polymorphism, strong static typing, memory safety, and automatic memory management.We present Hailstorm, a statically-typed, purely functional programming language that attempts to address the above problem. It is a high-level programming language with a strict typing discipline. It supports features like higher-order functions, tail-recursion and automatic memory management, to program IoT devices in a declarative manner. Applications running on these devices tend to be heavily dominated by I/O. Hailstorm tracks side effects like I/O in its type system using resource types. This choice allowed us to explore the design of a purely functional standalone language, in an area where it is more common to embed a functional core in an imperative shell. The language borrows the combinators of arrowized FRP, but has discrete-time semantics. The design of the full set of combinators is work in progress, driven by examples. So far, we have evaluated Hailstorm by writing standard examples from the literature (earthquake detection, a railway crossing system and various other clocked systems), and also running examples on the GRiSP embedded systems board, through generation of Erlang

    Modelling and verifying contract-oriented systems in Maude

    Get PDF
    We address the problem of modelling and verifying contractoriented systems, wherein distributed agents may advertise and stipulate contracts, but — differently from most other approaches to distributed agents — are not assumed to always behave “honestly”. We describe an executable specification in Maude of the semantics of CO2, a calculus for contract-oriented systems [6]. The honesty property [5] characterises those agents which always respect their contracts, in all possible execution contexts. Since there is an infinite number of such contexts, honesty cannot be directly verified by model-checking the state space of an agent (indeed, honesty is an undecidable property in general [5]). The main contribution of this paper is a sound verification technique for honesty. To do that, we safely over-approximate the honesty property by abstracting from the actual contexts a process may be engaged with. Then, we develop a model-checking technique for this abstraction, we describe an implementation in Maude, and we discuss some experiments with it
    corecore