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ABSTRACT
With the growing ubiquity of Internet of Things (IoT), more complex
logic is being programmed on resource-constrained IoT devices,
almost exclusively using the C programming language. While C
provides low-level control over memory, it lacks a number of high-
level programming abstractions such as higher-order functions,
polymorphism, strong static typing, memory safety, and automatic
memory management.
We present Hailstorm, a statically-typed, purely functional pro-

gramming language that attempts to address the above problem.
It is a high-level programming language with a strict typing disci-
pline. It supports features like higher-order functions, tail-recursion,
and automatic memory management, to program IoT devices in
a declarative manner. Applications running on these devices tend
to be heavily dominated by I/O. Hailstorm tracks side effects like
I/O in its type system using resource types. This choice allowed us
to explore the design of a purely functional standalone language,
in an area where it is more common to embed a functional core
in an imperative shell. The language borrows the combinators of
arrowized FRP, but has discrete-time semantics. The design of the
full set of combinators is work in progress, driven by examples.
So far, we have evaluated Hailstorm by writing standard examples
from the literature (earthquake detection, a railway crossing system
and various other clocked systems), and also running examples on
the GRiSP embedded systems board, through generation of Erlang.

CCS CONCEPTS
• Software and its engineering → Compilers; Domain spe-
cific languages; •Computer systems organization→ Sensors
and actuators; Embedded software.
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1 INTRODUCTION
As the density of IoT devices and diversity in IoT applications con-
tinue to increase, both industry and academia are moving towards
decentralized system architectures like edge computing [38]. In edge
computation, devices such as sensors and client applications are
provided greater computational power, rather than pushing the
data to a backend cloud service for computation. This results in
improved response time and saves network bandwidth and energy
consumption [50]. In a growing number of applications such as
aeronautics and automated vehicles, the real-time computation is
more robust and responsive if the edge devices are compute capable.
In a more traditional centralized architecture, the sensors and

actuators have little logic in them; they rather act as data relaying
services. In such cases, the firmware on the devices is relatively sim-
ple and programmed almost exclusively using the C programming
language. However with the growing popularity of edge computa-
tion, more complex logic is moving to the edge IoT devices. In such
circumstances, programs written using C tend to be verbose, error-
prone and unsafe [17, 27]. Additionally, IoT applications written
in low-level languages are highly prone to security vulnerabilities
[7, 58].
Hailstorm is a domain-specific language that attempts to ad-

dress these issues by bringing ideas and abstractions from the
functional and reactive programming communities to program-
ming IoT applications. Hailstorm is a pure, statically-typed func-
tional programming language. Unlike impure functional languages
like ML and Scheme, Hailstorm restricts arbitrary side-effects and
makes dataflow explicit. The purity and static typing features of the
language, aside from providing a preliminary static-analysis tool,
provide an essential foundation for embedding advanced language-
based security techniques [54] in the future.
The programming model of Hailstorm draws inspiration from

the extensive work on Functional Reactive Programming (FRP)
[18]. FRP provides an interface to write reactive programs such
as graphic animations using (1) continuous time-varying values
called Behaviours and (2) discrete values called Events. The original
formulation of FRP suffered from a number of shortcomings such
as space-leaks [41] and a restrictive form of stream based I/O.
A later FRP formulation, arrowized FRP [46], fixed space leaks,

and in more recent work Winograd-Cort et al. introduced a notion
of resource types [66] to overcome the shortcomings of the stream
based I/O model. The work on resource types is a library in Haskell,
and is not suitable to run directly on resource-constrained hard-
ware. Hailstorm uses resource types to uniquely identify each I/O
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resource. It treats each resource as a signal function to track its
lifetime, and prevents resource duplication through the type system.
Hailstorm currently has a simple discrete time semantics, though
we hope to explore extensions later.

A Hailstorm program is compiled to a dataflow graph, which is
executed synchronously. The core of the language is a pure call-
by-value implementation of the lambda calculus. The synchronous
language of arrowized-FRP provides a minimal set of combinators
to which the pure core constructs of Hailstorm can be raised. This
language of arrows then enforces a purely functional way to interact
with I/O, using resource types.

Hailstorm, in its current version, is a work-in-progress compiler
which does not address the reliability concerns associated with node
and communication failures plaguing edge devices [58]. We discuss
the future extensions of the language to tackle both reliability and
security concerns in Section 7. We summarize the contributions of
Hailstorm as follows:

• A statically-typed purely functional language for IoT
applications. Hailstorm provides a tailored, purely func-
tional alternative to the current state of programming re-
source constrained IoT devices.

• Resource Types based I/O. Hailstorm builds on Winograd-
Cort et al’s work to provide the semantics and implemen-
tation of an alternate model of I/O for pure functional lan-
guages using resource types - which fits the streaming pro-
gramming model of IoT applications. (Section 4.1)

• Discrete time implementation Hailstorm uses the combi-
nators of arrowized FRP in a discrete time setting (Section
3).

• An implementation of the Hailstorm language.We im-
plement Hailstorm as a standalone compiler, with Erlang
and LLVM backends. We have run case studies on the GRiSP
embedded system boards [60], to evaluate the features of the
language. (Section 4). The compiler implementation and the
examples presented in the paper are made publicly available1.

2 LANGUAGE OVERVIEW
In this section we demonstrate the core features and syntax of
Hailstorm using running examples. We start with a simple pure
function that computes the 𝑛𝑡ℎ Fibonacci number.

def main : Int = fib 6

def fib : (Int -> Int)
= fib_help 0 1

def fib_help (a : Int) (b : Int) (n : Int) : Int
= if n == 0

then a
else fib_help (a + b) a (n - 1)

The simple program above, besides showing the ML-like syn-
tax of Hailstorm, demonstrates some features like (1) higher-order
functions (2) recursion (3) partial application (4) tail-call optimiza-
tion and (5) static typing. All top-level functions in a Hailstorm
program have to be annotated with the types of the arguments and
1https://abhiroop.github.io/ppdp-2020-artifact.zip

the return type, which currently allows only monomorphic types.
However certain built-in combinators supported by the language
are polymorphic which will be discussed in the following section.

The pure core of the language only allows writing pure functions
which have no form of interactions with the outside world. To
introduce I/O and other side effects, we need to describe the concept
of a signal function.

2.1 Signal Functions
A fundamental concept underlying the programming model of
Hailstorm is that of a Signal Function. Signal Functions, derived
from the work on arrowized-FRP [46], are functions that always
accepts an input and always returns an output.

Signal functions are analogous to the nodes of a dataflow graph.
Signal functions operate on signals which do not have any concrete
representation in the language. A signal denotes a discrete value
at a give point of time. Nilsson et al [46] use the electric circuit
analogy: a signal corresponds to a wire and the current flowing
through it, while signal functions correspond to circuit components.
An important distinction between Hailstorm and both classic and
arrowized-FRP is that signals are always treated as discrete entities
in Hailstorm unlike the continuous semantics enforced by FRP.

To create larger programs Hailstorm provides a number of built-
in combinators to compose signal functions. These combinators are
drawn from the Arrow framework [31] which is a generalization
of monads. Arrows allow structuring programs in a point-free style,
while providing mathematical laws for composition. We start by
presenting some of the core Hailstorm combinators2 and their types
for composing signal functions.

mapSignal# : (a -> b) -> SF a b
(>>>) : SF a b -> SF b c -> SF a c
(&&&) : SF a b -> SF a c -> SF a (b, c)
(***) : SF a b -> SF c d -> SF (a, c) (b, d)

Some of the built-in combinators in Hailstorm are polymorphic
and the type parameters a, b and c represent the polymorphic
types. mapSignal# is the core combinator which lifts a pure Hail-
storm function to the synchronous language of arrows, as a signal
function (See Fig 1).
Hailstorm then provides the rest of the built-in combinators to

compose signal functions while satisfying nine arrow laws [39].
One of the advantages of having a pure functional language is
that such laws can be freely used by an optimizing compiler to
aggressively inline and produce optimized code. The semantics of
composing signals with the arrow combinators is visually depicted
in Fig 1.

2Non-symbolic built-in combinators & driver functions in Hailstorm end with #
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Figure 1: Arrow combinators for signal functions

Nowwhere do signals actually come from? To answer this question
- a natural extension to signal functions is using them to interact
with I/O, which we discuss in the next section.

2.2 I/O
Hailstorm adopts a streaming programming model, where an effect-
ful program is constructed by composing various signal functions
in the program. The final program is embedded in a stream of input
flowing in and the program transforms that into the output.

Figure 2: A Hailstorm program interacting with the real
world

While this model of I/O adapts well with a pure functional lan-
guage, it is reminiscent of the now abandoned stream-based I/O
interface in Haskell. In Haskell’s early stream-based I/O model, the
type of the main function was [Response] → [Request]. The
major problems with this model are :

• All forms of I/O are restricted to happen at the main func-
tion leading to non-modular programs, especially in case
of applications running on IoT devices where I/O functions
dominate the majority of the program.

• It is non-extensible as the concrete types of Request and
Response need to be altered every time any new I/O facility
has to be added [48].

• There is also no clearmapping between an individual Request
and its Response [48].

Work by Winograd-Cort et al. on resource types [66] attempts
to address this problem by virtualizing real-world devices as signal
functions. What we mean here by "virtualizing" is that the scope of
a program is extended so that devices like sensors and actuators
are represented using signal functions. For example:

sensor : SF () Int
uart_rx : SF () Byte
actuator : SF Bool ()

We adopt this model in Hailstorm. The type parameter () repre-
sents a void type. There are no values in the language which inhabit
the () type. The () type always appears within a signal function.
So, an example like sensor : SF () Int - this represents an action
which when called, produces an integer.

One of the key aspects of designing a pure functional language
is this distinction between an expression that returns a value and
an action. When an action (like sensor : SF () Int) is evaluated,
it returns a representation of that function call rather than actually
executing the call itself. This distinction is the key to equational
reasoning in a purely functional program. In the absence of such a
distinction the following two expressions are no longer equivalent
although they represent the same programs.

-- Expression 1 : accepts an input and
-- duplicates that input to return a pair
let x = getInput -- makes one I/O call
in (x,x)

-- Expression 2 : accepts two inputs
-- returns both of them as a pair
(getInput, getInput) -- makes two I/O calls

After enforcing a difference between values and action in the
language, we soon encounter one of the pitfalls of treating a real-
world object as a virtual device - it allows a programmer to write
programs with unclear semantics. For example:

def foo : SF () (Int, Int) = sensor &&& sensor

Although the above program is currently type correct, it can
have two conflicting semantics - (1) either sensor &&& sensor
implies two consecutive calls to the sensor device or (2) a single call
emitting a pair. Given the type of the sensor function, the latter
is not supported and the former is incompatible with Hailstorm’s
discrete, synchronous semantics.

The notion of Resource Types seeks to solve this problem by label-
ing each device with a type-level identifier, such that duplicating a
device becomes impossible in the program. We change the type of
sensor to :

resource S

sensor : SF S () Int

The resource keyword in Hailstorm declares a type level identifier
which is used for labeling signal functions like sensor above. All the
built-in arrow combinators introduced previously are now enriched
with new type-level rules for composition as follows:

mapSignal# : (a -> b) -> SF Empty a b
(>>>) : SF 𝑟1 a b -> SF 𝑟2 b c -> SF (𝑟1 ∪ 𝑟2) a c
(&&&) : SF 𝑟1 a b -> SF 𝑟2 a c -> SF (𝑟1 ∪ 𝑟2) a (b, c)
(***) : SF 𝑟1 a b -> SF 𝑟2 c d -> SF (𝑟1 ∪ 𝑟2) (a, c) (b, d)

In the combinators above, the type parameters 𝑟1, 𝑟2 represent
polymorphic resource type variables, which act as labels for the
effectful signal functions. The combinator mapSignal# lifts a pure



Hailstorm function to a signal function without any effectful oper-
ations, and as a result the resource type is Empty. The combinators
>>>, &&& and ∗ ∗ ∗ compose signal functions, and result in a
disjoint-union of the two resources types. This type-level disjoint
union prevents us from copying the same resource using any of
these combinators. So in Hailstorm if we try this,

def foo : SF (𝑆 ∪ 𝑆) () (Int, Int) = sensor &&& sensor

we currently get the following upon compilation:

Type-Checking Error:
Error in "foo":
Cannot compose resources : S S containing same resource
Encountered in

sensor &&& sensor

The type rules associated with composingHailstorm combinators
and their operational semantics are presented formally in Section
3.2 and 3.3 respectively.

2.2.1 Example of performing I/O. We can distinguish the read and
write interface of a resource using two separate resource types. For
example, to repeatedly blink an LED we need two APIs - (1) to read
its status (2) to write to it. The drivers for these two functions have
the following types:

readLed# : SF R () Int
writeLed# : SF W Int ()

We use the integer 1 to represent light ON status and 0 for OFF.
The program for blinking the LED would be:

def main : SF (𝑅 ∪𝑊 ) () () =
readLed# >>> mapSignal# flip >>> writedLed#

def flip (s : Int) : Int =
if (s == 0) then 1 else 0

The above program runs the function main infinitely. It is possible
to adjust the rate at which we want to run this program, discussed
later in Section 2.5. This treatment of I/O as signal functions has
the limitation that each device (as well as their various APIs) has
to be statically encoded as a resource type in the program.

2.3 State
Hailstorm supports stateful operations on signals using the loop#
combinator.

loop# : c -> SF Empty (a, c) (b, c) -> SF Empty a b

The type of the loop# combinator is slightly different from the
type provided by the ArrowLoop typeclass in Haskell, in that it
allows initializing the state type variable c. The internal body of the
signal function encapsulates a polymorphic state entity. This entity
is repeatedly fed back as an additional input, upon completion of a
whole step of signal processing by the entire dataflow graph. Fig 3
represents the combinator visually.

Figure 3: The stateful loop# function

The loop# combinator can be used to construct the delay func-
tion as found in synchronous languages like Lustre [26], for encod-
ing state.

def delay (x : Int) : SF Empty Int Int =
loop# x (mapSignal# swap)

def swap (a : Int, s : Int) : (Int, Int) = (s, a)

2.4 A sample application
We now demonstrate the use of the Hailstorm combinators in a
sample application. The application that we choose is a simplified
version of an earthquake detection algorithm [65] which was first
used by Mainland et al. to demonstrate their domain specific lan-
guage for wireless sensor networks [42]. The figure below shows
the core dataflow graph of the algorithm.

Figure 4: The earthquake detection dataflow graph

The exponentially weighted moving average (EWMA) compo-
nent above is a stateful element. We assume the getSample input
function is a wrapper around a seismometer providing readings
of discrete samples. At the rightmost end, the Detection Event
would be another stateful entity which would include some form of
an edge detector. The entire program for the earthquake detection
is given in Fig 5.

The function edge in Fig 5 is a stateful edge detector which gen-
erates an action if a boolean signal changes from False to True. To
program this, we use an imaginary actuator (like an LED) in a GRiSP
board, which would glow red once if the input to it is 1, signalling
danger, and otherwise stay green signalling no earthquake.

2.5 Sampling rate
The combinators introduced so far execute instantaneously using
a logical clock. In Hailstorm, one logical time step includes the
following actions, in sequence -

• accepting a discrete sample of data from each of its connected
input devices

• passing the discrete sample through the dataflow graph
• finally passing a discrete value to the responsible actuator



resource S
resource E

def main : SF (𝑆 ∪ 𝐸) () () =
getSample >>> detect >>> edge

def detect : SF Empty Float Bool
= (ewma high &&& ewma low)
>>> (mapSignal# (\(hi : Float, lo : Float) =>

(hi / lo) > thresh))

def ewma (𝛼 : Float) : SF Empty Float Float
= let func = \(x : Float, x𝑜𝑙𝑑 : Float) =>

let x𝑛𝑒𝑤 = (𝛼 *. x) +. (1.0 -. 𝛼) *. x𝑜𝑙𝑑
in (x𝑛𝑒𝑤, x𝑛𝑒𝑤)

in loop# 0.0 (mapSignal# func)

-- constants
def low : Float = ...
def high : Float = ...
def thresh : Float = ...

def edge : SF E Bool () =
loop# False (mapSignal# edgeDetector) >>>
actuator

def edgeDetector (a : Bool, c : Bool) : (Int, Bool) =
if (c == False && a == True)
then (1, a)
else (0, a)

-- getSample : SF S () Float - Erlang driver
-- actuator : SF E Int () - Erlang driver

Figure 5: The earthquake detection algorithm

Aprogram returning a signal function continuously loops around,
streaming in input and executing the above steps, at the speed it
takes for the instructions to execute. However under most circum-
stances we might wish to set a slower rate for the program. The
rate# combinator is used for that purpose,

rate# : Float -> SF r a b -> SF r a b

The first argument to rate# is the length of the wall clock time
(in seconds) at which we wish to set the period of sampling input.
This helps us establish a relation between the wall clock time and
Hailstorm’s logical clock. We demonstrate the utility of the rate#
combinator using a Stopwatch example.

2.5.1 Stopwatch. We program a hypothetical stopwatch which
accepts an input stream of Ints where 1 represents START, 2 rep-
resents RESET and 3 represents STOP.

def f (g : Float) (a : Int, c : Float) : (Float, Float) =
let inc = c +. g in
case a of

1 ~> (inc, inc);
2 ~> (0.0,0.0);

_ ~> (c,c)

def stopwatch (g : Float) : SF Empty Int Float
= rate# g (loop# 0.0 (mapSignal# (f g)))

def main : SF (I U O) () () =
input >>> stopwatch 1.0 >>> output

In the above program, the rate# combinator uses the argument
g to set the sampling rate to 1 second, which in turn fixes the
granularity of the stopwatch as 1 second.

2.5.2 Limitation. In the current implementation of Hailstorm, an
operation like (rate# 𝑡2 (rate# 𝑡1 sf1)) would result in setting
the final sampling rate as 𝑡2, overwriting the value of 𝑡1. In the
programs presented here, we use a single clock, and hence a single
sampling rate. Libraries like Yampa [14] provide combinators like
𝑑𝑒𝑙𝑎𝑦 :: 𝑇𝑖𝑚𝑒 → 𝑎 → 𝑆𝐹 𝑎 𝑎 which allow oversampling for dealing
with multiple discrete sampling rates. As future work, we hope to
adopt oversampling operators for communication among signal
functions with different sampling rates.

2.6 Switches
A Hailstorm dataflow graph allows a form of dynamic, data-driven
switching within the graph. It accomplishes this using the switch#
combinator:

switch# : SF 𝑟1 a b -> (b -> SF 𝑟2 b c) -> SF (𝑟1 ∪ 𝑟2) a c

The first argument to switch# accepts a signal function whose
output data is used to switch between the various signal functions.
The strict typing of Hailstorm restricts the branches of the switch
to be of the same type, including the resource type. The switching
dataflow is visually presented in Fig 6.

Figure 6: A switch activating only the top signal function

2.6.1 Limitation. switch# is a restrictive combinator with a num-
ber of known limitations:
- switch# constrains all of its branches to be of the same type. This
is particularly restrictive when dealing with actuators where each
actuator would have their own resource type. We currently deal
with the notion of choice in the following way -
... >>> foo >>> (actuator1 *** actuator2)
-- instead of emitting a single value foo will emit a pair
-- of values encoded as (move actuator1, dont move actuator2)

The Arrow framework provides more useful combinators based
on the ArrowChoice typeclass which are currently absent from
Hailstorm.



- The switch# combinator is an experiment to describe expressions
of the form:
switch# input_signal_function
(\val => if <𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 on val>

then 𝑆𝐹1
else if <𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 on val>

then 𝑆𝐹2
else ...)

The combinator currently supports expression only of the above
form. Thus, we currently do not allow more general functions of
type (b→SF b c) as the second parameter to switch#, and so avoid
problems with possibly undefined runtime behaviour. However,
there is no check in the compiler to enforce this restriction. As
future work we hope to adopt the guards syntax of Haskell to
represent the second parameter as a collection of boolean clauses
and their corresponding actions.

3 SYNTAX, SEMANTICS AND TYPES
In the previous sections, we have given an informal treatment to the
most important syntactic parts of Hailstorm, for IoT applications,
and described the programming model using them. In this section,
we present the core syntax, type rules and operational semantics
of the main parts of Hailstorm.

3.1 Syntax
The set of types in the source language is given by the following
grammar.

𝜏 ::= () | Int | Float | Bool |𝜏1 → 𝜏2 |𝜏1
𝑟

=⇒ 𝜏2 | (𝜏1, 𝜏2)

The type 𝜏1
𝑟

=⇒ 𝜏2 represents a signal function type from a to b
with the resource type r i.e SF r a b.

The abstract syntax of the core expressions of Hailstorm is given
by the following grammar. The meta-variable 𝑥 ∈ 𝑉𝑎𝑟 ranges over
variables of the source language. Additionally we let 𝑖 ∈ Z and
𝑓 ∈ R. We use 𝑒 and 𝑒𝑠 𝑓 separately to denote ordinary expressions
and arrow based signal function expressions respectively.

𝑒 ::= 𝑥 |𝑖 |𝑓 |True|False|𝑖1 𝑏𝑖𝑛𝑜𝑝𝑖 𝑖2 |𝑓1 𝑏𝑖𝑛𝑜𝑝 𝑓 𝑓2

|𝑒1 𝑟𝑒𝑙𝑜𝑝 𝑒2 |if 𝑒1 then 𝑒2 else 𝑒3 |_𝑥 : 𝜏 . 𝑒 | (𝑒1 𝑒2)
| let 𝑥 = 𝑒1 in 𝑒2 | (𝑒1, 𝑒2) | fst# 𝑒 | snd# 𝑒

𝑒𝑠 𝑓 ::= mapSignal# (_𝑥.𝑒) |𝑒𝑠 𝑓 1 >>> 𝑒𝑠 𝑓 2

|𝑒𝑠 𝑓 1 &&& 𝑒𝑠 𝑓 2 |𝑒𝑠 𝑓 1 ∗ ∗ ∗ 𝑒𝑠 𝑓 2 |loop# 𝑒1 𝑒2

|switch# 𝑒1 (_𝑥.𝑒) |read#|write#
𝑏𝑖𝑛𝑜𝑝𝑖 ::= + | − | ∗
𝑏𝑖𝑛𝑜𝑝 𝑓 ::= +. | − . | ∗ . | /
𝑟𝑒𝑙𝑜𝑝 ::= > | < | >= | =< | ==

In the grammar above we describe two primitives for I/O called
read# and write#. In practise, as Hailstorm deals with a number
of I/O drivers there exists a variety of I/O primitives with varied
parameters and return types. However for the purpose of presenting
the operational semantics, we abstract away the complexity of the

drivers and use the abstracted read# and write# to describe the
semantics in Section 3.3.

3.2 Type rules
Hailstorm uses a fairly standard set of type rules except for the
notion of resource types. The typing context of Hailstorm employs
dual contexts, in that it maintains (1) Γ - a finite map from variables
to their types and (2)Δ - a finite set which tracks all the I/O resources
connected to the program.

Δ; Γ ::= · | Γ, 𝑥 : 𝜏

An empty context is given by ·. Additionally 𝑑𝑜𝑚(Γ) provides
the set of variables bound by a typing context.

In Fig 7, we show the most relevant type rules concerning signal
functions and their composition. The remaining expressions follow
standard set of type rules which is provided in its entirety in the
extended version of this paper [55].

Looking at the rule T-Mapsignal, a signal function such as 𝜏1
∅

=⇒
𝜏2 denotes the result of applying mapSignal# to a pure function.
This results in an expression with an empty resource type denoted
by ∅. A missing rule is the introduction of a new resource type in
the resource type context Δ. The resource type context is an append-
only store and a new resource is introduced using the keyword
resource. It can be defined using this simple reduction semantics

Δ; Γ ⊢ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 ⇝ Δ ∪ 𝑟 ; Γ
where⇝ denotes one step of reduction which occurs at compile-
time. The rules such as T-Compose, T-Fanout, T-Combine, T-Switch
apply a type-level disjoint union to prevent resource duplication.

3.3 Big-step Operational Semantics
In this section, we provide a big-step operational semantics of
our implementation of the Hailstorm language, by mapping the
meaning of the terms to the lambda calculus. We begin by defining
the values in lambda calculus that cannot be further reduced:

𝑉 ::= 𝑖 | 𝑓 | _𝑥.𝐸
i and f represent integer and float constants respectively. We

use n to represent variables and the last term denotes a lambda
expression. The syntax that we use for defining our judgements is
of the form :

𝑠1 ⊢ 𝑀 ⇓ 𝑉𝑖 , 𝑠2

The variables 𝑠1, 𝑠2 are finite partial functions from variables n
to their bound values 𝑉𝑖 ∈ 𝑉 . In case a variable n is unbound and s
is called with that argument it returns ∅. The above judgement is
read as starting at state 𝑠1 and evaluating the term M results in the
irreducible value 𝑉𝑖 ∈ 𝑉 while setting the final state to 𝑠2.

The first judgement essential for our semantics is this,

𝑠 ⊢ 𝑉 ⇓ 𝑉 , 𝑠

which means that the values V cannot be reduced further.
We use a shorthand notation 𝜌 (𝑛, 𝑠) to signify lookup the vari-

able n in s. Additionally, to make the semantics more compact we



Δ; Γ ⊢ 𝑒 : 𝜏1 → 𝜏2 (T-Mapsignal)

Δ; Γ ⊢𝑚𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑙# 𝑒 : 𝜏1
∅

=⇒ 𝜏2

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏2

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Compose)

Δ; Γ ⊢ 𝑒1 >>> 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ 𝜏3

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏1

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Fanout)

Δ; Γ ⊢ 𝑒1 &&& 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ (𝜏2, 𝜏3)

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏3

𝑟2
=⇒ 𝜏4 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Combine)

Δ; Γ ⊢ 𝑒1 ∗ ∗ ∗ 𝑒2 : (𝜏1, 𝜏3)
𝑟1∪𝑟2
=⇒ (𝜏2, 𝜏4)

Δ; Γ ⊢ 𝑒 : (𝜏1, 𝜏𝑐 )
∅

=⇒ (𝜏2, 𝜏𝑐 ) Δ; Γ ⊢ 𝑐 : 𝜏𝑐
(T-Loop)

Δ; Γ ⊢ 𝑙𝑜𝑜𝑝# 𝑐 𝑒 : 𝜏1
∅

=⇒ 𝜏2

Δ; Γ ⊢ 𝑡 : 𝐹𝑙𝑜𝑎𝑡 Δ; Γ ⊢ 𝑒 : 𝜏1
𝑟

=⇒ 𝜏2 𝑟 ∈ Δ
(T-Rate)

Δ; Γ ⊢ 𝑟𝑎𝑡𝑒# 𝑡 𝑒 : 𝜏1
𝑟

=⇒ 𝜏2

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏2 → 𝜏2

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Switch)

Δ; Γ ⊢ 𝑠𝑤𝑖𝑡𝑐ℎ# 𝑒1 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ 𝜏3

𝑟 ∈ Δ (T-Read)

Δ; Γ ⊢ 𝑟𝑒𝑎𝑑# : () 𝑟
=⇒ 𝜏

𝑟 ∈ Δ (T-Write)

Δ; Γ ⊢ 𝑤𝑟𝑖𝑡𝑒# : 𝜏
𝑟

=⇒ ()

Figure 7: Typing rules of signal functions in Hailstorm

𝑠 ⊢ 𝑒𝑥𝑝 ⇓ _𝑥.𝐸, 𝑠
(eval-Mapsignal)

𝑠 ⊢𝑚𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑙# 𝑒𝑥𝑝 ⇓ _𝑥 .𝐸, 𝑠

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3
(eval-Compose)

𝑠1 ⊢ 𝑒𝑥𝑝1 >>> 𝑒𝑥𝑝2 ⇓ _𝑥 .𝑉2 (𝑉1 𝑥), 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3
(eval-Fanout)

𝑠1 ⊢ 𝑒𝑥𝑝1 &&& 𝑒𝑥𝑝2 ⇓ _𝑥. < 𝑉1 𝑥,𝑉2 𝑥 >, 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3
(eval-Combine)

𝑠1 ⊢ 𝑒𝑥𝑝1 ∗ ∗ ∗ 𝑒𝑥𝑝2 ⇓ _𝑥._𝑦. < 𝑉1 𝑥,𝑉2 𝑦 >, 𝑠3

𝑠1 ⊢ 𝑖𝑛𝑖𝑡 ⇓ 𝑉𝑖 , 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝 ⇓ 𝑉1, 𝑠3 𝑛 ∉ 𝑑𝑜𝑚(𝑠3)
(eval-Loop-Init)

𝑠1 ⊢ 𝑙𝑜𝑜𝑝#𝑛 𝑖𝑛𝑖𝑡 𝑒𝑥𝑝 ⇓ _𝑥 .𝑓 𝑠𝑡 (𝑉1 (𝑥, 𝑉𝑠 )), 𝑠3 [𝑛 ↦→ 𝑠𝑛𝑑 (𝑉1 (𝑥, 𝑉𝑖 ))]

𝑠1 ⊢ 𝑖𝑛𝑖𝑡 ⇓ 𝑉𝑖 , 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝 ⇓ 𝑉1, 𝑠3 𝑛 ∈ 𝑑𝑜𝑚(𝑠3)
(eval-Loop)

𝑠1 ⊢ 𝑙𝑜𝑜𝑝#𝑛 𝑖𝑛𝑖𝑡 𝑒𝑥𝑝 ⇓ _𝑥 .𝑓 𝑠𝑡 (𝑉1 (𝑥, 𝜌 (𝑛, 𝑠3))), 𝑠3 [𝑛 ↦→ 𝑠𝑛𝑑 (𝑉1 (𝑥, 𝜌 (𝑛, 𝑠3)))]

𝑠1 ⊢ 𝑒2 ⇓ 𝑉 , 𝑠2 𝑠2 ⊢ 𝑒1 ⇓ _𝑥 .𝐸1, 𝑠3 𝑠3 ⊢ 𝐸1 [𝑥 ↦→ 𝑉 ] ⇓ 𝑉𝑓 , 𝑠4
(eval-App)

𝑠1 ⊢ (𝑒1 𝑒2) ⇓ 𝑉𝑓 , 𝑠3

𝑠1 ⊢ 𝑡 ⇓ 𝑉𝑡 , 𝑠2 [Ψ ↦→ 𝑉𝑡 ] 𝑠2 [Ψ ↦→ 𝑉𝑡 ] ⊢ 𝑒𝑥𝑝 ⇓ 𝑉 , 𝑠3
(eval-Rate)

𝑠1 ⊢ 𝑟𝑎𝑡𝑒# 𝑡 𝑒𝑥𝑝 ⇓ 𝑉 , 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ _𝑏.𝜎𝑏 [_𝑐.𝐸1, _𝑐.𝐸2, ..._𝑐.𝐸𝑛], 𝑠3
(eval-Switch)

𝑠1 ⊢ 𝑠𝑤𝑖𝑡𝑐ℎ# 𝑒𝑥𝑝1 𝑒𝑥𝑝2 ⇓ _𝑎.((_𝑏.𝜎𝑏 [_𝑐.𝐸1, _𝑐.𝐸2, ..._𝑐.𝐸𝑛]) (𝑉1 𝑎)) (𝑉1 𝑎), 𝑠3

(eval-Read)
𝑠 ⊢ 𝑟𝑒𝑎𝑑# ⇓ _𝑥.𝑟𝑒𝑎𝑑, 𝑠

(eval-Write)
𝑠 ⊢ 𝑤𝑟𝑖𝑡𝑒# ⇓ _𝑥 .(𝑤𝑟𝑖𝑡𝑒 𝑥), 𝑠

Figure 8: Big-Step Operational Semantics of signal functions in Hailstorm

use pairs <a,b> and their first and second projections, fst, snd.
They do not belong to V but it is possible to represent all three of
them using plain lambdas and function application - shown in the
extended version of this paper [55].

In Fig 8, we show the most relevant big-step operational seman-
tics concerning signal function based combinators. The remaining
expressions have standard semantics and the complete rule set is
provided in the extended paper [55]. In the rule eval-Rate, we use
Ψ to store the sampling rate. In our current implementation, when
composing signal functions with different sampling rates, the state
transition from 𝑠2 to 𝑠3 overwrites the first sampling rate.

In eval-Loop-Init and eval-Loop, the subscript n represents
a variable name that is used as a key, in the global state map s, to
identify each individual state.

For the rule eval-Switch, 𝜎𝑏 [_𝑐.𝐸1, _𝑐.𝐸2, ..._𝑐.𝐸𝑛] represents a
conditional expression that uses the value of b i.e. (𝑉1 𝑎) to choose
one of the several branches - _𝑐.𝐸𝑖 - and then supplies (𝑉1 𝑎) again
to the selected branch to actually generate a value of the stream.

Of special interest in Fig 8 are the rules eval-Read and eval-Write.
We need to extend our lambda calculus based abstract machine with
the operations, read and write, to allow any form of I/O. The ef-
fectful operations, read and write, are guarded by _s to prevent



any further evaluation, and as a result are treated as values. This
method is essential to ensure the purity of the language - by treating
effectful operations as values.

The programundergoes a partial evaluation transformationwhich
evaluates the entire program to get rid of all the _s guarding the
read operations. Given the expression _𝑥 .𝑟𝑒𝑎𝑑 the compiler sup-
plies a compile time token of type () which removes the 𝑙𝑎𝑚𝑏𝑑𝑎

and exposes the effectful function read. The partially evaluated
program is then prepared to conduct I/O. This approach is detailed
further in Section 4.1.
The big-step semantics of the language shows its evaluation

strategy. However to understand the streaming, infinite nature of
an effectful Hailstorm program we need an additional semantic
rule. A Hailstorm function definition is itself an expression and a
program is made of a list of such functions,

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::=𝑚𝑎𝑖𝑛 : [𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛]
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= 𝑒 |𝑒𝑠 𝑓

Each Hailstorm program compulsorily has a main function. After
the entire program is partially evaluated (described in Section 4.1)
and given that the main function causes a side effect (denoted by
() below), we have the following rule:

𝑠1 ⊢𝑚𝑎𝑖𝑛 ⇓ (), 𝑠2
(eval-Main)

𝑠1 ⊢𝑚𝑎𝑖𝑛 ⇓𝑚𝑎𝑖𝑛, 𝑠2

The eval-Main rule demonstrates the streaming and infinite
nature of a Hailstorm program when the main function is a signal
function itself. After causing a side effect, it calls itself again and
continues the stream of effects while evaluating the program using
the semantics of Fig 8.

4 IMPLEMENTATION
Here we describe an implementation of the Hailstorm language
and programming model presented in the previous sections. We
implement the language as a compiler - the Hailstorm compiler -
whose compilation architecture is described below.

Figure 9: The Hailstorm compilation architecture

The compiler pipeline starts by parsing a Hailstorm source file
and desugaring small syntactic conveniences provided to reduce
code size (such as case expressions). After desugaring, the Hail-
storm AST constituted of the grammar described in Section 3.1 is
generated. Next, typechecking of the AST using the type rules of
Fig 7 is done. After a program is typechecked, it is transformed into
the Hailstorm core language called L1.
The L1 language is an enriched version of the simply typed

lambda calculus (STLC) with only nine constructors. Unlike STLC,
L1 supports recursion by calling the name of a global function. It
is currently incapable of recursion using a let binding. L1 has a
simpler type system than the Hailstorm source, as it erases the
notion of resource types - which are exclusively used during type
checking.
The L1 language being considerably simpler, forms a sufficient

foundation for running correctness preserving optimization passes.
L1 attempts to get rid of all closures with free variables, as they are
primarily responsible for dynamic memory allocation. Additionally,
it attempts to inline expressions (primarily partial applications)
to further reduce both stack and heap memory allocation. The
optimization passes are described in further detail in Section 4.2.

The final optimization pass in L1 is a partial evaluation passwhich
specializes the program to convert it into an effectful program.
Before this pass, all I/O inducing functions are treated as values,
by guarding them inside a _ abstraction. This pass evaluates those
expressions by passing a compile-time token and turning the L1
non-effectful program into an effectful one. This pass is discussed
in further detail in Section 4.1.
Finally, the effectful Hailstorm program gets connected to one

of its backends. Recursion is individually handled in each of the
backends by using a global symbol table. We currently support an
LLVM backend [36] and a BEAM backend [4].

4.1 I/O
The I/O handling mechanism of the Hailstorm compiler is the es-
sential component in making the language pure. A pure functional
language allows a programmer to equationally reason about their
code. The entire program is written as an order independent set of
equations. However, to perform I/O in a programming language,
it is necessary to (1) enforce an order on the I/O interactions, as
they involve chronological effects visible to the user and (2) interact
with the real world and actually perform an effect.

To solve (1) we use the eval-App rule given in Fig 8. Hailstorm,
being a call-by-value implementation of the lambda calculus, fol-
lows ordering in function application by always evaluating the
function argument before passing it to the function. This seman-
tics of function application allows us to introduce some form of
ordering to the equations.

To solve (2) we have extended our pure lambda calculus core to
involve effectful operations like read and write. Again, as observed
in the semantic rules, eval-Read and eval-Write from Fig 8, the
effectful operations are guarded by _ abstractions to treat them
as values, rather than operations causing side-effects. This allows
us to freely inline or apply any other optimization passes while
preserving the correctness of the code. However, to finally perform
the side effect, we need to resolve this lambda abstraction at compile



time. We do this by partially evaluating [33] our program. Below
we describe the semantics of the partial evaluation step.

A Hailstorm program is always enforced (by the typechecker in
our implementation) to contain a main function. We shall address
the case of an effectful program i.e a main function whose return
type is an effectful signal function such as SF r () (). The () type
in the input and output parameters reflect that this function reads
from a real world source like a sensor and causes an effect such
as moving an actuator. The partial application pass is only fired
when the program contains the () type in either one of its signal
function parameter.

Let us name the main function above with the return type of SF
r () () as𝑚𝑎𝑖𝑛𝑠 𝑓 . Now𝑚𝑎𝑖𝑛𝑠 𝑓 is itself a function, embedded in
a stream of input and transforming the input to an output, causing
an effect. As it is a function we can write:𝑚𝑎𝑖𝑛𝑠 𝑓 = _𝑡 .𝐸.

Additionally in our implementation, after typechecking, a signal
function type 𝜏1

𝑟
=⇒ 𝜏2 is reduced to a plain arrow type - 𝜏1 → 𝜏2.

Now, using the two aforementioned definitions, we can write the
following reduction semantics:

𝑚𝑎𝑖𝑛𝑠 𝑓 = _𝑡 .𝐸 𝑚𝑎𝑖𝑛𝑠 𝑓 : () 𝑟
=⇒ () 𝜏1

𝑟
=⇒ 𝜏2 ⇝ 𝜏1 → 𝜏2

_𝑡 .𝐸 : () 𝑟
=⇒ () ⇝ _𝑡 .𝐸 : () → ()

(eval-Partial)
_𝑡 .𝐸 : () → () ⇝ 𝐸 [𝑡 ↦→ \ : ()]

where⇝ denotes one step of reduction and\ denotes an arbitrary
compile time token of type (). The final step, which produces
the expression 𝐸 [𝑡 ↦→ \ : ()], is the partial evaluation step. We
demonstrate this reduction semantics in action using an example:
read# : SF STDIN () Int
write# : SF STDOUT Int ()

def main : SF (STDIN U STDOUT) () () = read# >>> write#

We use the eval-Read, eval-Write and eval-Compose rules to
translate the main function above to
main = _𝑡 . (_𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) ( (_𝑥. 𝑟𝑒𝑎𝑑) 𝑡 )

Given the above definition of main, we can apply the reduction
rule eval-Partial and eval-App to get the following,

(Partial evaluation)
_𝑡 . (_𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) ((_𝑥. 𝑟𝑒𝑎𝑑) 𝑡) ⇝∗ (_𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) (𝑟𝑒𝑎𝑑)
Now the program is ready to create a side effect as the read

function is no longer guarded by a _ abstraction. The eval-App
rule guarantees that read is evaluated first and only then the value
is fed to write owing to the call-by-value semantics of Hailstorm.

4.1.1 Limitation. The Hailstorm type system doesn’t prevent a
programmer from writing write# >>> read#. The type of such
a program would be SF (STDOUT U STDIN) Int Int. As the
types do not reflect the () type, the partial evaluation pass is not
fired and the program simply generates an unevaluated closure -
which is an expected result given the meaningless nature of the
program. However, the type would allow composing it with other
pure functions and producing bad behaviour if those programs are
connected to meaningful I/O functions. This is simply solved by
adding the following type rule:

𝑟 ∈ Δ 𝑟 ≠ ∅ Δ; Γ ⊢ 𝜏1 = () ∨ 𝜏2 = ()
(T-Unsafe)

𝑒𝑥𝑝 : 𝜏1
𝑟

=⇒ 𝜏2

4.2 Optimizations
4.2.1 Lambda Lifting. Hailstorm, being a functional language, sup-
ports higher order functions (HOFs). HOFs frequently capture free
variables which survive the scope of a function call. For example:

1 def addFive (nr : Int) : Int =
2 let x = 5 in
3 let addX = \(y:Int) => x + y in
4 addX nr

Our implementation treats HOFs as closures which are capable of
capturing an environment by allocating the environment on the
heap. In line no. 3 above, the value of the variable x is heap allocated.
However, in resource constrained devices heap memory allocation,
is highly restrictive and any language targeting such devices should
attempt to minimize allocation.

Hailstorm applies a lambda-lifting [32] transformation to address
this. Lambda-lifting lifts a lambda expression with free variables
to a top-level function and then updates related call sites with a
call to the top-level function. The free variables then act as argu-
ments to the function. This effectively allocates them on the stack
(or registers). Owing to our restricted language and the lack of
polymorphism, our algorithm is less sophisticated than the orig-
inal algorithm devised by Johnsson. We describe the operational
semantics of our algorithm in the lambda-lifting rule below.
We use a slightly different notation from Section 3.3 here. 𝑃𝑛

is used to describe the entire program with its collection of top
level functions. We identify a modified program with 𝑃𝑛 [𝐺 (𝑥).𝐸]
to mean a new program with an additional global function G which
accepts an argument x and returns an expression E. Finally the
𝑓 𝑣 function is used find the set of free variables in a Hailstorm
expression.

𝑃1 ⊢ 𝑒𝑥𝑝 ⇓ _𝑥 . 𝐸, 𝑃2 𝑓 𝑣 (_𝑥. 𝐸) ≠ ∅
𝑓 𝑣 (_𝑥. 𝐸) = {𝑖1, ..., 𝑖𝑛} 𝑃2 ⊢ _𝑥. 𝐸 ⇓ 𝐸 ′, 𝑃3 [𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸]

𝑃1 ⊢ 𝑒𝑥𝑝 ⇓ 𝐸 ′, 𝑃3 [𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸]
The above rule returns a modified expression 𝐸 ′which consists of

a function call to𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸 with the free variables 𝑖1, ..., 𝑖𝑛 as
arguments. This rule is repeatedly run on local lambda expressions
until none has any free variables. It transforms the program foo
above to :
def addX' (x:Int) (y:Int) = x + y

def addFive (nr : Int) : Int =
let x = 5 in
addX' x nr

4.2.2 Inlining. The inlining transformation works in tandem with
the lambda lifter to reduce memory allocations. Inlining a lambda
calculus based language reduces to plain 𝛽 reduction. i.e ((_𝑥. 𝑀) 𝐸) ⇝
𝑀 [𝑥 ↦→ 𝐸]. Inlining subsumes optimization passes like copy-propagation
in a functional language. Our prototype inliner is relatively con-
servative in that (1) it doesn’t attempt to inline recursive functions
and (2) it doesn’t attempt inter-function inlining.
However, it attempts to cooperate with the lambda-lifter to re-

move all possible sites of partial applications, which are also heap
allocated, to minimize memory allocation. The program shown in
the previous section, undergoes the cycle in Fig 10



Figure 10: Lambda-lifting and inlining in action

The lambda lifting pass produces a partial application which is
further inlined to a single function call where the arguments can be
passed using registers. We show the generated LLVM code before
and after the optimization passes are run in the extended version of
this paper [55]. We show there the absence of any calls to malloc in
the optimized version of the code. Our inliner doesn’t employ any
novel techniques but it still has to deal with engineering challenges
like dealing with name capture [5], which it solves using techniques
from the GHC inliner [34].

4.3 Code Generation
The Hailstorm compiler is designed as a linear pass through a
tower of interpreters which compile away high level features, in the
tradition of Reynolds [51]. Here, we show the final code generation
for two of the more interesting combinators using C-like notation.

4.3.1 loop#. The loop# combinator models a traditional Mealy
machine whose output depends on the input as well as the current
state of the machine. In the following we see the code generated
for the delay combinator described in Section 2.3 which is itself
described using loop#.

In Erlang, the global variable of foo_state is modeled recur-
sively using a global state map, which is updated on every time
step. In the LLVM backend, the translation is very similar to the
C-notation shown above.

4.3.2 switch#. We show an example of the switch# combinator
when dealing with stateful branches

Figure 11: Code generation for switch#
The second parameter in the switch# type - (b→SF b c) - acts

like a macro which is unfolded into an if-then-else expression in the
L1 core language. The core language contains primops for getting
and setting state variables. The final L1 fragment that is generated
for the (b→SF b c) component of switch# (post partial evaluation
phase) is given below:
... -- s1 and s2 recursively in scope
let x = readInt() in
((_ val .

if(val % 2 == 0)
then (_ val2 .

let temp = s1 in
let _ = (set s1 to val2) in
writeInt (f temp))

else (_ val3 .
let temp = s2 in
let _ = (set s2 to val3) in
writeInt (f temp))

) x) x ....

From the above L1 fragment, the C like imperative code shown
in Fig. 11 is generated. The if-then-else expressions are translated to
case expressions in Erlang and the LLVM translation is very similar
to the C code. The global state map now stores two state variables
which are updated depending on the value of x. To make the oper-
ational aspect of the combinator clearer, we show the evolution of
the state variables through the various timesteps of the program:
INPUT: 2 3 4 5 6 7 8...
s1: 0 2 2 4 4 6 6...
s2: 1 1 3 3 5 5 7...
OUTPUT: 0 3 4 9 8 15 12...

4.4 Pull Semantics
In this section we discuss the semantics of data consumption in
our compiler. There exist two principle approaches (1) demand-
driven pull and (2) data-driven push of data. As Hailstorm’s signal
function semantics assume a continuous streaming flow of data
triggering the dataflow graph, our compiler adopts a pull based
approach which continuously polls the I/O drivers for data. The
program blocks until more data is available from the I/O drivers.
Let us take the earthquake detection example from Section 2.4.

The 𝑔𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑒 input function in the dataflow graph (Fig. 4) is a



wrapper around the driver for a simulated seismometer, which
when polled for data provides a reading. The rightmost edge of the
graph for the Detection Event pulls on the dataflow graph after
it completes an action and the rest of the graph in turn pulls on
getSample, which polls the simulated seismometer.
However, in certain devices such as UART, a push based model

is more prevalent, where data is asynchronously pushed to the
drivers. In such cases, to avoid dropping data the wrapper function
(such as getSample) needs to be stateful and introduce buffers that
store the data. The pseudocode of the wrapper function for such a
driver, written for our Erlang backend, would look like Fig 12.

loop(State)
receive

{hailstormcall, From, Datasize} ->
(Data, NewState) = extract_Data(Datasize, State),
From ! {ok, Data},
loop(NewState);

{uartdriver, Message} ->
NewState = buffer(Message, State),
loop(NewState);

end.

Figure 12: Enforcing pull semantics on push-based data

In Fig 12 there are two separate message calls handled. The data
transmission from the drivers is handled using the uartdriver
message call, which continuously buffers the data. On the other
hand, the Hailstorm program, upon finishing one cycle of compu-
tation, requests more data using the hailstormcall message, and
proceeds with the rest of the cycle.

4.4.1 Limitation. Elliott has criticized the use of pull semantics
[19] as beingwasteful in terms of the re-computation required in the
dataflow graph. He advocates a hybrid push-pull approach, which,
in case of continuously changing data, adopts the pull model, but in
the absence of any change in the data doesn’t trigger the dataflow
graph. This approach could be useful in resource constrained de-
vices, where energy consumption is an important parameter, and
we hope to experiment with this approach in future work.

4.5 The digital - analog interface
The runtime of Hailstorm has to deal with the boundary of discrete
digital systems and continuous analog devices. The input drivers
have to frequently discretize events that occur at some unknown
point of time into a stream of discrete data. An example is the
Stopwatch simulation from Section 2.5.1. The pressing of an ON
button in a stopwatch translates to the stream of ones (111...) and
when switched OFF the simulation treats that as a stream of zeroes.
This stream transformation is handled by the wrapper functions
around the input drivers.
On the contrary, for the output drivers a reverse translation

of discrete to continuous is necessary. We can take the example
of operating traffic lights (related demonstration in Section 5.1.2).
When operating any particular signal like GREEN supplying a
discrete stream of data (even at the lowest granularity) will lead to
a flickering quality of the light. In that case the wrapper function

for the light drivers employs a stateful edge detector, as discussed
in Section 2.4, to supply a new signal only in case of change.

4.6 Backend specific implementation
The backend implementation includes

• Memory management. The compiler attempts to minimize
the amount of dynamically allocated memory using lambda-
lifting and inlining such that the respective garbage collectors
have to work less. Future work hopes to experiment with
static memory management schemes like regions [61].

• Tail call optimization (TCO). Erlang itself does TCO and
LLVM supports TCO when using the fastcc calling con-
vention.

5 EVALUATION
5.1 Case Studies
In this section we demonstrate examples from the synchronous
language literature [30] written in Hailstorm.

5.1.1 Watchdog process. A watchdog process monitors a sequen-
tial order processing system. It raises an alarm if processing an
order takes more than a threshold time. It has two input signals - (1)
𝑜𝑟𝑑𝑒𝑟 : 𝑆𝐹 𝑂 () 𝐵𝑜𝑜𝑙 which emits𝑇𝑟𝑢𝑒 when an order is placed and
𝐹𝑎𝑙𝑠𝑒 otherwise, (2) 𝑑𝑜𝑛𝑒 : 𝑆𝐹 𝐷 () 𝐵𝑜𝑜𝑙 which also emits𝑇𝑟𝑢𝑒 only
when an order is done. For output we use - 𝑎𝑙𝑎𝑟𝑚 : 𝑆𝐹 𝐴 𝐵𝑜𝑜𝑙 ()
where an alarm is rung only when𝑇𝑟𝑢𝑒 is supplied. In the program
below we keep a threshold time for order processing as 3 seconds.

def f ((order : Bool, done : Bool),
(time : Int, openOrder : Bool)) : (Bool, (Int, Bool))

= if (openOrder == True && time > 3)
then (True,(time + 1, False)) -- set alarm once
else if (done == True)

then (False, (0, False)) -- reset
else if (order == True)

then (False, (0, True))
else (False, (time + 1, openOrder))

def watchdog : SF (O ∪ D ∪ A) () () = (order &&& done) >>>
(loop# (0, False) (mapSignal# f)) >>> alarm

def main : SF (O ∪ D ∪ A) () () = rate# 1.0 watchdog

5.1.2 A simplified traffic light system. We take the classic example
of a simplified traffic light system from the Lustre literature [53].
The system consists of two traffic lights, governing a junction of
two (one-way) streets. In the default case, traffic light 1 is green,
traffic light 2 is red. When a car is detected at traffic light 2, the
system switches traffic light 1 to red, light 2 to green, waits for 20
seconds, and then switches back to the default situation.

We use a sensor - 𝑠𝑒𝑛𝑠𝑜𝑟 : 𝑆𝐹 𝑆 () 𝐵𝑜𝑜𝑙 - which keeps returning
𝑇𝑟𝑢𝑒 as long as it detects a car. The system, upon detecting a sub-
sequent car, resets the wait time to another 20 seconds. We sample
from the sensor every second. For the traffic lights, we use 1 to
indicate green and 0 for red.



def lightSwitcher (sig : Bool, time : Int):((Int, Int), Int)
= if (time > 0)

then ((0,1), time - 1)
else if (sig == True)

then ((0,1), 20) -- reset
else ((1,0), 0) -- default

def lightController : SF (𝑆 ∪𝑇𝐿1 ∪𝑇𝐿2) () ((), ()) =
sensor >>> (loop# 0 (mapSignal# lightSwitcher)) >>>
(trafficLight1 *** trafficLight2)

def main : SF (𝑆 ∪𝑇𝐿1 ∪𝑇𝐿2) () () =
rate# 1.0 lightController

-- sensor : SF S () Bool
-- trafficLight1 : SF TL1 Int ()
-- trafficLight2 : SF TL1 Int ()

5.1.3 A railway level crossing.

The problem. We consider a two-track railway level crossing area
that is protected by barriers, that must be closed in time on the
arrival of a train, on either track. They remain closed until all trains
have left the area. The barriers must be closed 30 seconds before
the expected time of arrival of a train. When the area becomes
free, barriers could be opened, but it’s not secure to open them for
less than 15 s. So the controller must be warned 45 s before a train
arrives. Since the speed of trains may be very different, this speed
has to be measured, by detecting the train at two points separated
by a known distance. A first detector is placed 2500 m before the
crossing, and a second one 100 m after this first. A third is placed
after the crossing area, and records a train’s leaving. We divide our
solution into three programs.

The Detect Process. The passage of a train is detected by a me-
chanical device, producing a 𝑇𝑟𝑢𝑒 pulse - 𝑝𝑢𝑙𝑠𝑒 : 𝑆𝐹 𝑃 () 𝐵𝑜𝑜𝑙 -
only when a wheel runs on it (otherwise 𝐹𝑎𝑙𝑠𝑒). The detect pro-
cess receives all these pulses, but warns the controller only once,
on the first wheel. All following pulses are ignored.
def f (curr : Bool, old : Bool) : (Bool, Bool) =
if (curr == True && old == False)
then (True, curr) else (False, curr)

def detect : SF P () Bool =
pulse >>> loop# False (mapSignal# f)

A Track Controller. On each track, a controller receives signals
from two detectors. From Detect1 and Detect2, it must compute
the train’s speed, and warn the barriers 45 seconds before expected
time of arrival at crossing. At the maximum speed of 180 km/h, the
100 m between Detect1 and Detect2 are covered in 2 s. So, a clock
pulse every 0.1 s would be of good accuracy.
def t ((d1 : Bool, d2 : Bool), time:Float) : (Float, Float)
= case (d1, d2) of

(True, False) ~> (0.0,0.0);
(False, True) ~> ((24.0 *. (time +. 0.1) -. 45.0),0.0);
_ ~> (0.0, time +. 0.1)

def timer : SF Empty (Bool, Bool) Float

= rate# 0.1 (loop# 0.0 (mapSignal# t))

def trackController : SF (𝑃1 ∪ 𝑃2) () Float
= (detect1 &&& detect2) >>> timer

def detect1 : SF 𝑃1 () Bool = ...
def detect2 : SF 𝑃2 () Bool = ...

When a train approaches, the trackController calculates the
time for the train to reach the barrier and sends that value. In the
absence of a train it sends zeroes.

The Barriers Controller. It consists of an alarm - 𝑎𝑙𝑎𝑟𝑚 : 𝑆𝐹 (𝑃1 ∪
𝑃2) () 𝐵𝑜𝑜𝑙 which consumes the time values from the trackController
and returns𝑇𝑟𝑢𝑒 when an alarm is to be rung. The trackController
is also sampled every 0.1 second.
def g (sig : Float, time : Float) : (Bool, Float) =

if (sig > 0.0)
then (False, sig)
else if (time == 0.1)

then (True, 0.0)
else (False, time -. 0.1)

def alarm : SF (𝑃1 ∪ 𝑃2) () Bool
= trackController >>> rate# 0.1 (loop# 0.0 (mapSignal# g))

Given the alarms from the two separate tracks, the barrier con-
troller sends an open/close signal represented by 0 and 1 respec-
tively. In case a train is approaching in both of the tracks at the
same speed - the barrier for only track 1 is opened.
def alarm1 : SF (𝑃1 ∪ 𝑃2) () Bool = ...
def alarm2 : SF (𝑃3 ∪ 𝑃4) () Bool = ...

def openclose (sig : (Bool, Bool)) : (Int, Int) =
case sig of

(True, False) ~> (0, 1);
(False, True) ~> (1, 0);
(True , True) ~> (0, 1);
_ ~> (0, 0) -- (False, False)

def barrierController : SF (𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4) () (Int, Int)=
alarm1 &&& alarm2 >>> (mapSignal# openclose)

Finally, before sending the signal to the actuators (i.e the barriers),
we need an additional system clock that keeps each barrier open for
45 seconds, and ignores other signals in the interim. The handling
of the conversion of discrete signals to continuous is done by the
drivers for the actuators, as discussed in Section 4.5.
def gate ((x : Int, y : Int),

(t : Float, old : (Int, Int))) :
((Int, Int) , (Float, (Int, Int))) =

if (old ≠ (0,0) ∧ t > 0.0)
then (old, ((t -. 0.1), old)) -- persisting a signal
else if (x == 1 ∨ y == 1)

then ((x,y), (45.0, (x, y)))
else ((x,y), (0.0, (x,y)))

def main : SF (𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4 ∪ 𝐵1 ∪ 𝐵2) () ((), ()) =
rate# 0.1 (barrierController >>>

(loop# (0.0, (0,0)) (mapSignal# gate)) >>>
(barrier1 *** barrier2))



-- barrier1 : SF 𝐵1 Int ()
-- barrier2 : SF 𝐵2 Int ()

Note that the three instances of rate# all sample at the same in-
terval of 0.1 seconds. Hailstorm currently doesn’t have well defined
semantics for programs with multiple clock rates.

5.2 Microbenchmarks
Here we provide memory consumption and response-time micro-
benchmarks for the examples presented above using the Erlang
backend.

Figure 13: Memory consumption of programs

We measure the mean memory consumption for each program
over five runs, each of five minutes duration. Given the I/O driven
nature of the programs, the memory consumption shows little to
no fluctuations. The Erlang runtime (ERTS) upon initialization sets
up the garbage collector, initializes the lookup table and sets up the
bytecode-interpreter which occupies 30 MB of memory on average.
The actual program and its associated bookkeeping structures takes
up an average of 1.5 MB of memory in the programs above. The
garbage collector remains inactive throughout the program run.
The memory spike visible upon termination is the garbage collector
pausing the program and collecting all residual memory.

Program Run1(ms) Run2(ms) Run3(ms)

watchdog 7.7 8.65 11.4
traffic-light 3.81 3.04 2.12

train controller 29.72 28.05 29.8
Table 1: Response time measured in milliseconds

Table 1 shows the response time for the programs measured in
milliseconds. We measure the CPU Kernel time (CPUT) - which
calculates the time taken by the dataflow graph to finish one cycle
of computation. We show three separate runs where the Erlang
virtual machine is killed and restarted to reset the garbage collector.
Each of the numbers are an average of twenty iterations of data
processing. We use the erlang:statisticsmodule for measuring

time and in the applications I/O happens over the command line
interface, which explains the overall slow behaviour (tens of mil-
liseconds). The metrics are run on the erts-10.6.4 runtime and
virtual machine running on a Macbook-Pro with a 2.9 GHz Intel
Core i9 processor. A common observation is that the computation
takes less than 1% of the total wall clock time involved in the re-
sponse rate, showing that the I/O reading/writing times dominate
the final response rate.

An alternate benchmarking strategy which we used was to model
the input from the sensors as an in-memory structure (in Erlang)
and compute the total response time for processing those values
using the timer:tc module:

Program Run1(`s) Run2(`s) Run3(`s)

watchdog 97.3 106.7 98.7
traffic-light 110.8 120.2 115.1

train controller 144.3 128.1 138.7
The above values are all measured in microseconds which are av-

eraged over forty iterations each. As expected, using an in-memory
structure results in graph processing times that are much lower
than those in Table 1.

6 RELATEDWORK
6.1 Programming Languages for IoT
There has been recent work on designing embedded DSLs (EDSLs)
for IoT applications [11]. In EDSLs, I/O is handled by embedding
a pure core language inside a host language’s I/O model - which
is an approach that Hailstorm deliberately avoids. Given the I/O
dominated nature of IoT apps, we choose to focus much of our
attention on designing a composable stream based I/Omodel, rather
than only considering the pure core language, as many EDSLs do.
Other approaches like Velox VM [62] runs general purpose lan-

guages like Scheme on specialized virtual machines for IoT devices.
A separate line of work has been exploring restrictive, Turing-
incomplete, rule-based languages like IoTDSL [2] and CyprIOT
[9].

Juniper [29] is one of the few dedicated languages for IoT but it
exclusively targets Arduino boards. Emfrp [56] and its successor
XFRP [59] are most closely related to the goals of Hailstorm. How-
ever, their model of I/O involves writing glue code in C/C++ and
embedding the pure functional language inside it. Hailstorm has a
more sophisticated I/O integration in the language.
While IoT stands for an umbrella term for a large collection of

software areas, there has been research on declarative languages
for older and specialized application areas like:

• Wireless Sensor Networks (WSNs). There exists EDSLs like
Flask [42] and macroprogramming languages like Regiment
[45] and Kairos [24] for WSNs.

• Real Time Systems. Synchronous language like Esterel [10],
Lustre [26] are a restrictive set of languages designed specif-
ically for real time systems. Further extensions of these lan-
guages like Lucid Synchrone [12], ReactiveML [44], Lucy-n
[43] have attempted to makes them more expressive.

The applications demonstrated in the paper are expressible in
synchronous languages, albeit using a very different interface from
Hailstorm. While languages like Lustre and its extensions are pure



they restrict their synchronous calculus to the pure core language
and handle I/O using the old stream based I/O model of Haskell
[48]. Hailstorm explores the design space of pure functional pro-
gramming with the programming model and purity encompassing
the I/O parts as well.
In Lustre, a type system called the clock calculus ensures that

programs can run without any implicit buffering inside the pro-
gram. Strong safety properties such as determinism and absence
of deadlock are ensured at compile time, and programs are com-
piled into statically scheduled executable code. This comes at the
price of reduced flexibility compared to synchronous dataflow-like
systems, particularly in the ease with which bounded buffers can
be introduced and used. Mandel et al have studied n-synchronous
systems in an attempt to bring greater flexibility to synchronous
languages [43]. Hailstorm, in the presence of recursion, is unable to
statically predict memory usage but we plan future work on type
level encoding of buffer sizes to make memory usage more pre-
dictable. Polychronous languages like SIGNAL [8] and FRP libraries
like Rhine [6] provide static guarantees on correctness of systems
with multiple clocks - something that we hope to experiment with
in the future.
6.2 FRP
Hailstorm draws influence from the FRP programming model. Since
the original FRP paper [18], it has seen extensive research over
various formulations like arrowized FRP [46], asynchronous FRP
[16], higher-order FRP [35], monadic stream functions [47].
Various implementations have explored the choice between a

static structure of the dataflow graph (for example Elm [15]) or
dynamic structure, as in most Haskell FRP libraries [3] as well as
FrTime in Racket [13]. The dynamic graph structure makes the
language/library more expressive, allowing programs like sieves
[25].
The higher-order FRP implementation offers almost the local

maxima of tradeoffs, but at the cost of an extremely sophisticated
type system, which infests into the source language, compromising
its simplicity.

The loop# combinator inHailstorm is similar to the `-combinator
first introduced by Sheeran [57] and to the loopB combinator in
the Causal Commutative Arrows (CCA) paper [40]. CCA presents
a number of mathematical laws on arrows and utilizes them to
compile away intermediate structures and generate efficient FRP
code - a promising avenue for future work in Hailstorm.

FRP has seen adoption in various application areas. Application
areas related to our target areas of IoT applications include robotics
[64], real-time systems [63], vehicle simulations [21] and DSLs
discussed in detail in the previous section.
6.3 Functional I/O
A detailed summary of approaches to functional I/O was presented
by Gordon et al. [22]. Since then monadic I/O [23] has become
the standard norm for I/O in pure functional languages, with the
exception of Clean’s I/O system [1] based on uniqueness types.
More recently, there have been attempts at non mondaic I/O

using a state passing trick in the Universe framework [20]. The
latest work has been on the notion of resource types, proposed by
Winograd-Cort et al. [66], which is explored as a library in Haskell.
In effect, their library uses Haskell’s monadic I/O model; however,

they mention possible future work on designing a dedicated lan-
guage for resource types. Hailstorm explores that possibility by
integrating the idea of resource types natively in a language’s I/O
model. FRPNow! [49] provides an alternate monadic approach to
integrate I/O with FRP.

7 FUTUREWORK
Hailstorm is an ongoing work to run a pure, statically-typed, func-
tional programming language on memory constrained edge devices.
As such, there are a number of open avenues for research:

- Security. We hope to integrate support for Information Flow
Control (IFC) [28] - which uses language based privacy policies
to determine safe dataflow - in Hailstorm. Given that the effectful
combinators are based on the Arrow framework, we expect to build
on two lines of work - (1) integrating IFC with the Arrow typeclass
in Haskell [37] (2) a typeclass based technique to integrate IFC
without modifying the compiler [52] but one which relies on the
purity and static typing of the language.

- Reliability. Hailstorm currently doesn’t provide any fault toler-
ance strategies to mitigate various node/communication failures.
However, being hosted on the Erlang backend, we plan to experi-
ment with distributed versions of the arrow combinators where the
underlying runtime would use supervision trees to handle failures.
This would be a much more invasive change as the synchronous
dataflow model of the language is not practically suitable in a dis-
tributed scenario - leading to more interesting research directions
on macro-programming models [24].

- Memory constrained devices. The evaluation of this paper is car-
ried out on GRiSP boards which are relatively powerful boards. We
are currently working on developing a small virtual machine which
can interpret a functional bytecode instruction set and run on much
more memory constrained devices like STM32 microcontrollers.

8 CONCLUSION
We have presented the design and implementation of Hailstorm, a
domain specific language targeting IoT applications. Our evalua-
tion suggests that Hailstorm can be used to declaratively program
moderately complex applications in a concise and safe manner. In
the future, we hope to use the purity and type system of Hailstorm
to enforce language-based security constraints, as well as to in-
crease its expressiveness to enable the description of interacting
IoT devices in a distributed system.
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