5,078 research outputs found

    Mechatronic Design: A Port-Based Approach

    Get PDF
    In this paper we consider the integrated design of a mechatronic system. After considering the different design steps it is shown that a port-based approach during all phases of the design supports a true mechatronic design philosophy. Port-based design enables use of consistent models of the system throughout the design process, multiple views in different domains and reusability of plant models, controller components and software processes. The ideas are illustrated with the conceptual and detailed design of a mobile robot

    On the Modular Specification of NFPs: A Case Study

    Get PDF
    The modular specification of non-functional properties of systems is a current challenge of Software Engineering, for which no clear solution exists. However, in the case of Domain-Specific Languages some successful proposals are starting to emerge, combining model-driven techniques with aspect-weaving mechanisms. In this paper we show one of these approaches in practice, and present the implementation we have developed to fully support it. We apply our approach for the specification and monitoring of non-functional properties using observers to a case study, illustrating how generic observers defining non-functional properties can be defined in an independent manner. Then, correspondences between these observers and the domain-specific model of the system can be established, and then weaved into a unified system specification using ATL model transformation. Such a unified specification can also be analyzed in a natural way to obtain the required non-functional properties of the system.This work is partially funded by Research Projects TIN2011-23795 and TIN2011-15497-E

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Graphical documentation to aid simulation studies of manufacturing

    Get PDF
    Computer processing power has developed to the stage where simulation has become an extremely popular and applicable way of representing real world systems for investigation. For the most part simulation studies as a whole can be long complex projects. Through-out the simulation industry there is a common consensus from available literature that certain steps should be followed to create a credible, successful simulation. While this is well known it appears that these guidelines are more “Do what I say, not as I do,” within the simulation community. In the experience of the author of this project simulation teams and modellers approach their own simulation studies in their own different ways, yet when the simulation study reaches its conclusion a credible simulation still has to be presented to a client or relevant party. For example a simulation modeller may often spend the most time and in turn resources on building the simulation model, yet this model will be next to useless without any documentation relating to the validation of said model. With good documentation being applied through-out a study, to each specific step, it only serves to make the succeeding steps easier to implement. This project highlights and uses the Systems Modelling Language (SysML) as a tool and method to develop diagrams to aid either the team or the modeller. These diagrams can be used as references when adhering to the steps of creating a credible, successful simulation study as well as a graphical support when presenting the entire simulation study to the client or relevant parties involved. This thesis also covers an independent assessment of the generated SYSML diagrams. Importantly when developing a method such as using SYSML as a graphical aid for simulation studies it must be reviewed by interested parties so that the areas that work well can be highlighted as well any areas which lack or need developing

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity

    Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm

    Get PDF
    Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved in the model integration process, discuss modelling and software development approaches, and present preliminary results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant reaction and transport in bed-sediments

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction

    Setting the basis of best practices and standards for curation and annotation of logical models in biology

    Get PDF
    International audienceThe fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled ‘Annotation and curation of computational models in biology’, organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements
    corecore