
On the Modular Specification of NFPs: A Case Study

Antonio Moreno-Delgado, Javier Troya, Francisco Durán, and Antonio Vallecillo

GISUM/Atenea Research Group. Universidad de Málaga (Spain)
{amoreno,javiertc,duran,av}@lcc.uma.es

Abstract. The modular specification of non-functional properties of systems is
a current challenge of Software Engineering, for which no clear solution exists.
However, in the case of Domain-Specific Languages some successful proposals
are starting to emerge, combining model-driven techniques with aspect-weaving
mechanisms. In this paper we show one of these approaches in practice, and
present the implementation we have developed to fully support it. We apply our
approach for the specification and monitoring of non-functional properties us-
ing observers to a case study, illustrating how generic observers defining non-
functional properties can be defined in an independent manner. Then, correspon-
dences between these observers and the domain-specific model of the system can
be established, and then weaved into a unified system specification using ATL
model transformation. Such a unified specification can also be analyzed in a nat-
ural way to obtain the required non-functional properties of the system.

Key words: non-functional properties, domain-specific languages, model trans-
formations, weaving mechanisms

1 Introduction

Models and specifications of systems have been around the Software industry from
its very beginning, but Model-Driven Engineering (MDE) has come to articulate these
models so that the development of information systems can be automated. MDE has
raised the level of abstraction at which systems are developed in practice, yielding the
focus in the development of software to models. Today, models are being used not only
to specify systems, but also to simulate, analyze, modify and generate code of such
systems. The popularity of MDE is indeed continuously growing, mainly because of
the maturity of model transformation technologies.

MDE is at present being applied in many different scenarios, however it still needs
appropriate mechanisms to handle the development of complex systems. Although some
advances have happened in recent years, more powerful mechanisms for modularity
and reusability of models, metamodels and model transformations are still to come
if the technological solutions are to be applied on real developments. Together with
model transformations, the other key component making MDE so appealing is the use
of Domain-Specific Modeling Languages (DSMLs). The use of languages based on
concepts of the problem domain allow domain-experts, independently of their program-
ming skills, to construct or participate in constructing substantial parts of new systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62897969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Moreover, the implicit knowledge associated to specific domains may make it possi-
ble to provide much more extensive code generation, allowing, e.g., the production of
executable systems from relatively simple DSML-based models [11].

Using DSMLs, however, comes at the cost of having to develop a new language for
every new domain/application. The definition of a DSML involves at least three aspects:
abstract syntax, concrete syntax, and semantics. In MDE, the abstract syntax of a DSML
is usually defined by means of a metamodel, which basically is a model that describes
the concepts of the language, the relationships between them, and the structuring rules
that constrain the model elements and their combinations to respect the domain rules.
The concrete syntax is usually defined as a mapping between the metamodel concepts
and a textual or graphical notation. However, the way in which to define the semantics
of DSMLs is far from finding a consensus. Defining DSMLs by means of their structural
aspects—abstract and concrete syntaxes—allows the rapid development languages and
some of their associated tools, such as editors or browsers, but, to take full advantage
of MDE, and to allow further activities such as simulation or behavioral analysis, the
specification of such behavioral semantics of DSMLs is also required.

There currently are different proposals to represent DSML operational semantics,
using UML behavioral models [10], Abstract State Machines [3], in-place model trans-
formations [16], etc. In the context of MDE it seems natural to describe them by means
of models, so that they may be integrated in the MDE process and tools. Moreover,
since DSMLs and model transformations are the key artifacts in MDE, in-place model
transformations seem a natural way to specifying the behavior of DSMLs.

The use of in-place model transformations, either textual or graphical, provides a
very intuitive way to specify behavioral semantics, close to the language of the domain
expert and at an appropriate level of abstraction (see [6, 16]). In-place transformations
are defined by a set of rules, each of which represents a possible action of the system.
These rules are of the form [NAC]∗ × LHS → RHS, where LHS (left-hand side),
RHS (right-hand side) and NAC (negative application conditions) are model patterns
that represent certain (sub-)states of the system. The LHS and NAC patterns express
the conditions for the rule to be applied, whereas the RHS represents the effect of the
corresponding action. The transformation of the model proceeds by applying the rules
on sub-models of it in a non-deterministic order, until no further transformation rule is
applicable.

The definition of DSMLs by means of metamodels and in place-model transforma-
tions has been shown to be an effective mechanism. However, to make the develop-
ment of DSMLs efficient, we must be able to construct them from reusable building
blocks, given appropriate mechanisms to reuse and compose partial languages for new
domains. So far, the contributions in this direction are scarce though. Although there
are some proposals for the modularity and reusability of models and metamodels (see,
e.g., [7, 4]), there is very little for behavior definitions. The MetaDepth system [5] is
perhaps the currently most interesting proposal, where concepts, templates and mixing
layers are proposed for generic metamodeling, and where behavior defined for concepts
and templates, independently of metamodels, using EOL [13] or Java, can be reused.
For DSMLs whose dynamic behavior is defined with in-place model transformations,
there is no current support for modularity.



3

MC = MMC ⊕RlsC
g

�'
f

w�
MA = MMA ⊕RlsA

�'

MB = MMB ⊕RlsB

w�
MA ⊗MC MB = (MMA ⊗MMC MMB )⊕ (RlsA ⊗MMC⊕RlsC RlsB )

Fig. 1. Amalgamation in the category of DSMLs and DSML morphisms.

The semantics of DSMLs whose dynamics is described using in-place transforma-
tions is typically given by graph grammars [17]. Modularity and reusability of graph
transformation systems have been largely studied, with well established results on mod-
ularity, encapsulation, composition, etc. Based on these ideas, we developed in [20, 9] a
novel mechanism for the composition of DSMLs thus defined based on graph pushouts
and rule amalgamations. In [8], we proved that behavior was protected under certain cir-
cumstances. Based on these ideas, we present in this paper a novel implementation of
this composition operation of DSMLs, and illustrate its use on a case study describing
the check-in system of an airport.

Although our implementation is based on the e-Motions language and system [14,
15], both our approach and formal framework are applicable to any DSL specification
whose semantics is based on in-place model transformations. Moreover, while our work
is clearly motivated from the need of modularizing the specification of non-functional
properties (NFPs), the formal framework covers arbitrary conservative extensions of
such DSMLs. The e-Motions system allows the definition of visual DSMLs and their se-
mantics through in-place model-transformation rules, providing support for their anal-
ysis through simulation, reachability analysis, and model checking.

[19] builds on the ideas of the e-Motions framework to keep track of specific NFPs
by adding auxiliary objects to DSMLs. However, that approach requires the NFP speci-
fication and analysis component to be redefined from scratch for every new DSML. [20,
9] build on that work, but with the aim of introducing modularization to the definition
of NFPs so that different NFPs could be independently specified and later added. Here,
we apply ideas from [8] to support the modular definition of any kind of DSML.

Basically, given DSMLs A, B, and C, defined by respective metamodels and behav-
iors, Mi = MMi ⊕ Rls i , for i = A,B,C, the weaving of DSMLs A and B along C
will correspond to their amalgamation along C. Although we will illustrate it with ex-
amples along the paper and will describe its implementation in Section 5, let us just say
that given DSML morphisms f : C → A and g : C → B, which basically map each
element in its source DSML to its corresponding target element in the target DSML,
their amalgamation is constructed by constructing the pushout of the corresponding
metamodel morphisms (in the appropriate category) and the amalgamation of their rule
morphisms one by one. Figure 1 shows the amalgamation of DSMLs A and B along C.
The formal details for this construction can be found in [8].



4

Given the situation in Figure 1, it is of particular interest the case in which one of
the DSML morphisms, let us say f , is an inclusion, since then the DSML MC may
be seen as a parameter of MA. In this situation, it has been proved in [8] that if g
preserves and reflects behavior, and g reflects behavior (easily syntactically checkable),
then the induced morphism between MB and MA ⊗MC

MB is an inclusion, and more
importantly, it protects behavior. This result is very important, specifically, for our case
study, we will have that once we have defined the airport system, we can later merge
the DSMLs corresponding to the NFPs we are interested in with it with the guarantee
that its behavior will remain as originally defined.

The rest of the paper is structured as follows. Section 2 shows how we can use the
modularization described here to define independent languages for observers. Section 3
presents our case study and Section 4 describes how we apply our approach on it. Then,
Section 5 outlines the implementation. The paper finishes with some conclusions and
future work in Section 6.

2 Independent Definition of Observers

In communication networks, throughput is defined as the average rate of message de-
livery over a communication channel. However, the notion has also been used in other
disciplines, acquiring a more general meaning. We can define throughput as the aver-
age rate of work packages flowing through a system. Thus, the same generic notion
allows us to measure the number of information packages being delivered through a
network, the number of cars being manufactured in a production line, or the number of
passengers checking-in in an airport desk.

Given this more general definition, and given the description of a system, to measure
throughput we basically need to be able to count the number of items delivered or
produced, and calculate its quotient with time. We define a ThroughputOb observer class
with attributes counter and thp keeping these values. The metamodel for the DSML of
ThroughputOb observers may be the one depicted in Fig. 2(a). ThroughputOb observer
objects will basically count instances of some generic class Request, which, as we will
see in Sect. 4, will later be instantiated to passengers, as could be instantiated to data
packages or to cars. These ThroughputOb objects will be associated to specific systems,
so that we may e.g. measure the throughput of each of the connection in a network,
each of the production lines in a factory, or each of the check-in desks in an airport, as
we will see in Sect. 4.

In e-Motions, the concrete syntax is provided by a GCS (Graphical Concrete Syn-
tax) model. Given the concrete syntax to be used, depicted in Fig. 2(b), the behavior
of ThroughputOb objects is defined by transformation rules. Specifically, we describe
its behavior by the single rule in Fig. 2(c). This rule represents the way in which the
values of its counter and thp attributes are to be updated. This rule is intended to be
interpreted as generic: when a request disappears, the ThroughputOb observer gets up-
dated. Given a model in which there is a Server object s with a pending Request object
r, plus a ThroughputOb object tp, and the system clock clk—its LHS—it can evolve to
a system in which the request vanishes, and the observer object gets updated—its RHS.
A few further comments are due to fully understand this rule: (a) the clk object is an



5

(a) Abstract Syntax (b) C.S. (c) Behavior

Fig. 2. Throughput observer DSML definition.

instance of the predefined Clock class, which represents the pass of time in the system,
and whose time attribute keeps the time of the system since its start-up (see [14] for a
detailed presentation of the modeling of time in e-Motions); (b) since classes System,
Server and Request are generic, no concrete syntax is provided for them, and therefore
instances of them are represented as boxes; and (c) the rule heading (box on the rule)
shows its identifier, ThroughputRule, and the time that action takes, in this case some
non-deterministic value in the range [N, M], for some values N and M that will become
later instantiated (see Sect. 4). Note that this definition of throughput is rather naive,
since the thp attribute only changes when new requests are consumed. We have used
this definition here to simplify presentation. See [20] for a more accurate definition of
throughput. Note also that this DSML is not usable by itself, it is a generic DSML, and
will be instantiated before used. Please notice that the parameter part of generic DSMLs
is depicted shadowed in Fig. 2 and in all other generic DSML definitions.

Other performance analysis measures, as response time, resource consumption, etc.
may be defined similarly. This is indeed what is proposed in [18]. For instance, response
time may be defined as the amount of time needed for some request to be processed.
In the case of a production line it may be interpreted as the time a machine takes to
produce some component, or the time a router takes to deliver a package through a
specific connection for a network system. A DSML defining response time observers
is shown in Fig. 3, where the busyT attribute of a ResponseTime object represents the
time taken by a specific Server object to process a request, and with the RespTime
transformation rule in Fig. 3(b) modeling the request-processing atomic action.

The processing of a request is not always an atomic action though. We refer to the
time taken by non-atomic requests as cycle time, and define CycleTimeOb observers to
measure them. For us the difference between response time and cycle time is then just
a matter of granularity.

To measure cycle time we need to keep the time at which the request shows up, to
be able to calculate the elapsed time when it is completed. If we are to calculate the
mean cycle time, we need to update such value by keeping the number of processed
requests. Fig. 4(a) shows the metamodel of the Mean Cycle Time observer DSML. As
for the throughput observer in Fig. 2, a CycleTimeOb will be associated to a generic
System object, and will keep information on the number of attended requests (counter),
the sum of their arrival and exit times (arrivalTimes and exitTimes), and the calculated
mean cycle time (cycleT). The behavior of this DSML is defined by two transformation



6

(a) Abstract Syntax (b) Behavior: New request

Fig. 3. Response Time observer DSML definition.

(a) Abstract Syntax (b) Behavior: New request

(c) Behavior: Completed request

Fig. 4. Mean Cycle Time observer DSML definition.

rules: NewRequest, which models the inception of a request, depicted in Fig. 4(b), and
CompletedRequest, which models the ending of a request, depicted in Fig. 4(c).

3 An Airport Check-in System

As case study for our approach, we present the model of the check-in system of an
airport. It is basically a queue system, where we model the arrival, waiting and check-in
of passengers for a flight. A previous version of this case was presented in [2].

The check-in process is open for 2 hours, and the passengers arrival follows a Gaus-
sian distribution (bell-shaped curve), where the major number of passengers arrives one
hour before the closing. We assume there is a fixed number of check-in desks, 5, and we
follow the Anglo-Saxon model applied in systems with queues. Thus, there is a single
queue and a dispatcher. When a passenger arrives at the airport, the dispatcher forwards
him/her to an available check-in desk. If there is none available, the passenger waits
in the dispatcher’s queue. Furthermore, in order to keep the cost of the system low, the



7

number of open desks will be minimal at all times. One single desk is open at the begin-
ning, being the others opened or closed depending on the number of passengers in the
dispatcher’s queue. We assume that the time spent in opening/closing a desk is fixed.

To define the check-in system DSML, we define its abstract and concrete syntaxes,
and a semantics for it. The metamodel of our system is shown in Fig. 5. An Airport is
composed of Dispatchers and CheckInDesks. The former have associated one or more
instances of the latter. CheckInDesks may be open or close, according to their open at-
tribute. They have another attribute, serviceTime, that gives the average time in doing
the check-in of a passenger. Attributes thresholdMin and thresholdMax in a Dispatcher
are used to decide when queues are to be opened/closed. When the length of a Dis-
patcher’s queue goes above the thresholdMax, a new desk is opened, provided there is
at least a closed desk. When the length of the queue goes below the thresholdMin, an
open desk is closed, provided there are more than one open desks.

Fig. 5. Airport Metamodel

We can see the concrete syntax chosen for our case study in the initial model of the
system shown in Fig. 6(a). Then, we specify its semantics by means of a set of in-place
transformation rules. We have transformation rules for each of the actions that may
happen in the system. Thus, we have rules modeling the arrival of a new passenger,
the assignment of a check-in desk, the opening/closing of a check-in desk, etc. Rule
CheckInPassenger , that models the check-in of a passenger, is shown in Fig. 6(b). The
duration of the rule follows an exponential distribution with the desk’s serviceTime as
mean. The whole set of actions is available at [1].

4 Merge for Performance Analysis

In this section we apply the set of generic observers defined in Sect. 2 to the case study
presented in Sect. 3. It consists of weaving the metamodels of the observers, one by
one, with the metamodel of our system (Fig. 5), and the generic rules in the observers
with specific rules in our case study. We first present the weaves of the metamodels
and then of the behavioral rules. Finally, we present some performance results obtained
after simulating the resulting woven specifications.

4.1 Weaving Metamodels

To merge the metamodel of the throughput observer (Fig. 2(a)) and the metamodel
of the system (Fig. 5), we must specify the correspondences between their classes, at-



8

(a) Initial model (b) CheckInPassenger

Fig. 6. Initial rule and sample rule for our case study

tributes, and references (see Sect. 5.1). Here, the generic class System corresponds with
Airport, Server with CheckInDesk, and Request with Passenger. Regarding references,
servers matches with checkInDesk, and reqsts with passengers. The result of the bind-
ing of these metamodels is the inclusion of the ThroughputOb class and thp reference in
the metamodel of the system (Fig. 7). We can see that the observer gets associated with
the Airport class, which is the class representing the system (it contains the remaining
classes). It means that this observer is defined to measure the throughput of the system
as a whole.

As for the metamodel of the observer for the response time (Fig. 3(a)), the cor-
respondences are the following. Server class matches with CheckInDesk, and Request
with Passenger. Reference reqsts corresponds with passengers. The result of this bind-
ing is the inclusion of the ResponseTime class and respt reference in the metamodel of
the system (Fig. 7). Notice that the new class gets associated with CheckInDesk class,
meaning that, for this specific system, the observer dealing with the generic concept of
response time is going to monitor the specific concept of service time of the airport’s
check-in desks.

Finally, the binding for the metamodel of the mean cycle time (Fig. 4(a)) has to
be defined. Like in the throughput observer, System class matches with Airport, Server
with CheckInDesk, and Request with Passenger. As for the references, servers cor-
responds with checkInDesk, and reqsts with passengers. The outcome of this binding
is the inclusion of MeanCycleTime class and mct reference in the metamodel of the
system. In this case, the new observer is added to monitor the mean cycle time in the
system.

4.2 Weaving Behavioral Rules

If we want to measure the throughput of passengers attended by the check-in desks,
we need to bind the throughput observer update rule (Fig. 2(c)) with the rule in which
passengers are attended (Fig. 6(b)). Object r in the LHS of ThroughputRule matches



9

Fig. 7. Woven Metamodel

Fig. 8. Woven CheckInPassenger Rule

with p in CheckInPassenger, and s matches with c both in LHS and RHS. reqsts link
matches with passengers. The result of the weaving is the inclusion of the throughput
observer (tp) in the CheckInPassenger rule (Fig. 8).

Regarding the observer for the mean cycle time, its behavioral model consists of
two rules. CycleTimeArrival is bound with NewPassenger rule, while CycleTimeExit is
bound with CheckInPassenger rule. In both bindings, object r corresponds with object
p. The result of the second binding is the inclusion of the MeanCycleTime observer in
the CheckInPassenger rule, as shown in Fig. 8. The result of the other binding is not
shown due to space limitations (please see [1]).

Finally, the observer of the response time is going to measure, in this specific exam-
ple, the service time of the check-in desks. For this reason, RespTime rule (Fig. 3(b))
is to be bound with CheckInPassenger rule. The correspondences are as before, s cor-
responds with c, r with p, and respt with passengers. The result of the weave is the
inclusion of the response time observer in the CheckInPassenger rule (Fig. 8). As we
can see, the observer gets associated with the check-in desk.

All the observer objects need to be added in the system from the beginning. This
means including them in the initial model shown in Fig. 6(a). In fact, the observer
languages contain a rule where each observer is created. These rules have a binding
with the rule where the initial model is created, so that the observers are included in the



10

Fig. 9. Performance Results

system from the beginning (this is, they appear in the initial model, but we do not show
it for space reasons). The complete specification of this system, as well as the weaves,
is available from [1].

4.3 Performance Measures

In e-Motions, the semantics of real-time specifications is defined by means of transfor-
mations to another domain with well-defined semantics, namely Real-Time Maude. The
e-Motions environment not only provides an editor for writing the visual specifications,
but also implements their transformation, using ATL [12], into the corresponding formal
specifications in Maude. This approach enables the use of Maude’s facilities and tools
for executing and analyzing the system specifications once they are expressed in Maude.
In Maude, the result of a simulation is the final configuration of objects reached after
completing the rewriting steps, which is nothing but a model. The resulting model can
then be transformed back into its corresponding EMF notation, allowing the end-user to
manipulate it from the Eclipse platform. An important advantage with our approach is
that observers are also objects of the system, and therefore the values of their attributes
can be effectively used to know how the system behaved after the simulation is carried
out. In our case, the observers added to the system allow us to analyze the throughput
and mean cycle time in the system, as well as the service time of the check-in desks.

Fig. 9 shows the results of the simulations. In the X axe we have the time, expressed
in seconds. We are, consequently, showing the performance results during the system’s
lifetime, not only the value at the end of the simulation. We observe that the throughput
at the beginning is quite variable. This is normal since the data is still not very represen-
tative (very few passengers have arrived at the airport and realized the check-in). Same



11

Fig. 10. Correspondences Metamodel

thing happens with the mean cycle time. Then, both start to grow. The growth in the
mean cycle time is due to congestion of passengers, since the more passengers in the
airport, the longer they have to wait, and the higher the mean cycle time. Regarding the
throughput, if there are more passengers in the system, the are more passengers queuing
in the dispatcher’s queue and more desks are opened, so that more passengers realize
the check-in at the same time, what increases the throughput. The fact that passengers
arrive at the airport according to a bell-shaped curve, as explained in Sect. 3, is captured
in the number of check-in desks open, which is higher in the middle of the system’s life-
time. It is also captured in the last chart, which presents the number of passengers in
the airport at all times (the simulation is performed with 240 passengers).

5 Merging by Model Transformation

For the implementation of our prototype we have used ATL [12], a hybrid model trans-
formation DSL that provides declarative and imperative constructs. ATL transforma-
tions are unidirectional, operate on read-only source models, and produce write-only
target models. That is, during the execution of a transformation, source models may be
navigated, but changes are not allowed, and target models cannot be navigated.

5.1 Correspondences Specification

We have seen in Sect. 1 how to merge models we need to provide bindings between
them. In Sect. 4 we have seen how to merge a parameterized observer model MObs

with a DSML describing a system MDSL to be analyzed, we just need to provide a
binding, provided by a set of correspondences or matches between the elements in the
parameter part of MObs and those in MDSL. Specifically, the bindings between MMDSL

and MMObs , and between RlsDSL and RlsObs , are given by a model that conforms to
the correspondences metamodel shown in Fig. 10.

In a model conforming to the Correspondences metamodel, we have one object of
type MMMatching for each pair of metamodels that we want to weave. Objects of type
MMMatching contain as many classes (instances of type ClassMatching ) as corre-
spondences between classes in both metamodels exist. Each object of type ClassMatch-
ing stores the names of the classes in both metamodels that correspond. Regarding the



12

objects of type RefMatching , contained in the refs reference from MMMatching , they
store the matchings between references in both metamodels. Attributes obClassName
and DSLClassName keep the names of the source classes, while obRefName and
DSLRefName contain the names of the references.

Regarding the binding between rules, there is an object of type RuleMatching for
each pair of rules to weave. Objects of types ObjectMatching and LinkMatching contain
the correspondences between objects and links, respectively, in the rules. Specifically,
our correspondence models differentiate between the bindings established between left-
and right-hand side in rules. In our behavioral rules described within e-Motions, which
conform to the Behavior metamodel (presented in [14]), the objects representing in-
stances of classes are of type Object and they are identified by their id attribute, and
the links between them are of type Link , identified by their name, input and output
objects. Similar to the binding between metamodels, objects of type ObjectMatching
contain the identifier of the objects matching, and instances of LinkMatching store in-
formation about matchings between links (they store the identifier of the source classes
of the links as well as the name of the links).

5.2 Binding Process

Fig. 11 shows a schema of our merging transformation. It is split in two ATL transfor-
mations: WeaveMetamodels.atl , for weaving the metamodels MMDSL and MMObs ,
and WeaveBeh.atl , for weaving the behavioral rules RlsDSL and RlsObs . In this sec-
tion we sketch both transformations. A detailed documentation of the weaving process
is available in [18]. Note that GCS models also take part in the transformations, since
they store information about the concrete syntax of both models.

Both transformations work in two stages. First, they copy the original DSL model
into the output model. Second, any additions from the observer model are performed
according to the binding information from the weaving model. The second transforma-
tion builds on the models produced by the first one. In the following we explain the
sequential steps in both transformations.

WeaveMetamodels.atl

1. The output metamodel (MM
D̂SL

) is initialized with the metamodel of the DSL
(MMDSL). It is done in order to decorate the output metamodel afterwards, in the
third part of the transformation.

2. The output concrete syntax (GCS
D̂SL

) is initialized with the concrete syntax of the
DSL (GCSDSL) and of the observer objects (GCSObs ). Observer objects are iden-
tified because they do not have any correspondences with any object of (MMDSL),
only bindings for the parameter part are given.

3. Classes, references and attributes concerning non-functional properties (observers)
are included in the output metamodel (MM

D̂SL
).

WeaveBeh.atl

1. The output behavioral model (Rls
D̂SL

) is initialized with all the behavioral rules
(and their contained elements) of the DSL (RlsDSL).



13

Fig. 11. Transformation Schema

2. Observers are included in those rules of Rls
D̂SL

that have correspondences with
observer rules. This part basically decorates the left- and right-hand sides of these
rules by including the objects of the observer rules that do not have any matching.

3. In some cases, there are observer rules that need to be included, as they are, in the
output behavioral model. These rules do not have correspondences with any rule in
the DSL. This part of the transformation aims at including such rules in Rls

D̂SL
.

4. Finally, those rules in which there is no clock object but that need the current time
elapse get a clock object added.

6 Conclusions and Future Work

In this paper we have presented a novel implementation of a composition operation for
domain-specific modeling languages (DSMLs), and we have illustrated its use on a case
study describing the addition of observers in the check-in system of an airport. Although
our implementation is based on the e-Motions language and system, both our approach
and formal framework are applicable to any DSML specification whose semantics is
based on in-place model transformations.

We have successfully applied our approach, implemented it by means of a corre-
spondences metamodel and two ATL transformations, by weaving three observer lan-
guages, two of them containing general observers and the third one defining an indi-
vidual observer, with the DSML of a check-in airport system. We have also shown
how the observers included in the woven DSML are used to obtain metrics of different
non-functional properties throughout the lifetime of the system.

Although the approach presented in this paper and applied for the modular definition
of observers has been implemented and tested, it is still in a naive and early phase and
many things may need to be added, studied and improved. For example, we would like
to provide a graphical interface so that the bindings can be defined graphically. We also
need to study our approach for a wider variety of observers. In particular, we have to
study the case where there is no trivial alignment between the rules of the observers
and the systems. Furthermore, it would be ideal if some bindings could be realized
automatically, with no human intervention.



14

Acknowledgements. This work is partially funded by Research Projects TIN2011-
23795 and TIN2011-15497-E.

References
1. Atenea. Airport with a modular definition of observers, 2013. http:

//atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/
AirportModularObservers.

2. J. M. Bautista, J. Troya, and A. Vallecillo. Diseño y simulación de sistemas de colas con
e-Motions. In XVI Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD), 2011.

3. K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchoring with model
transformations. In Proc. of ECMDA-FA’05, LNCS 3748. Springer, 2005.

4. T. Clark, A. Evans, and S. Kent. Aspect-oriented metamodelling. The Computer Journal,
46(5):566–577, 2003.

5. J. de Lara and E. Guerra. Generic meta-modelling with concepts, templates and mixin layers.
In Proc. of MODELS’10 Part 1, LNCS 6394: 16–30. Springer, 2010.

6. J. de Lara and H. Vangheluwe. Defining visual notations and their manipulation through
meta-modelling and graph transformation. J. Visual Lang. Comput., 15(3–4):309–330, 2006.

7. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, 1998.

8. F. Durán, F. Orejas, and S. Zschaler. Behaviour protection in modular rule-based system
specifications. In Proc. WADT’12, LNCS 7841. Springer, 2013.

9. F. Durán, S. Zschaler, and J. Troya. On the reusable specification of non-functional properties
in DSLs. In Proc. SLE’12), LNCS 7745:332–351. Springer, 2012.

10. G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A graphical
approach to the operational semantics of behavioral diagrams in UML. In Proc. of UML’00,
LNCS 1939:323–337. Springer, 2000.

11. Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser. Code generation by model
transformation: A case study in transformation modularity. Software and Systems Modelling,
9(3):375–402, June 2010.

12. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model transformation tool. Science
of Computer Programming, 72(1–2):31–39, 2008.

13. R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. Polack. The design of a
conceptual framework and technical infrastructure for model management language engi-
neering. Procs. of ICECSS, pp. 162–171. IEEE, 2009.

14. J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for modeling time-dependent
behavior of DSLs. In Procs. VL/HCC’09, pp. 51–55. IEEE, 2009.

15. J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-time domain
specific visual languages. In Procs. WRLA’10, LNCS 6381:174–190. Springer, 2010.

16. J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-based behavioral se-
mantics of visual modeling languages with Maude. In Proc. of SLE’08, LNCS 5452:54–73.

17. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume I: Foundations. World Scientific, 1997.

18. J. Troya. On the Model-Driven Performance and Reliability Analysis of Dynamic Systems.
PhD thesis, Universidad de Málaga, 2013. http://www.lcc.uma.es/∼jtc/TroyaThesis.pdf.

19. J. Troya, J. E. Rivera, and A. Vallecillo. Simulating domain specific visual models by obser-
vation. In Proc. SpringSim’10, pp. 128:1–128:8. ACM, 2010.

20. J. Troya, A. Vallecillo, F. Durán, and S. Zschaler. Model-driven performance analysis of
rule-based domain specific visual models. Information and Software Technology, 55(1):88 –
110, 2013.


