23,484 research outputs found

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Mode Domain Spatial Active Noise Control Using Sparse Signal Representation

    Full text link
    Active noise control (ANC) over a sizeable space requires a large number of reference and error microphones to satisfy the spatial Nyquist sampling criterion, which limits the feasibility of practical realization of such systems. This paper proposes a mode-domain feedforward ANC method to attenuate the noise field over a large space while reducing the number of microphones required. We adopt a sparse reference signal representation to precisely calculate the reference mode coefficients. The proposed system consists of circular reference and error microphone arrays, which capture the reference noise signal and residual error signal, respectively, and a circular loudspeaker array to drive the anti-noise signal. Experimental results indicate that above the spatial Nyquist frequency,our proposed method can perform well compared to a conventional methods. Moreover, the proposed method can even reduce the number of reference microphones while achieving better noise attenuation.Comment: to appear at ICASSP 201

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Spatial Noise-Field Control With Online Secondary Path Modeling: A Wave-Domain Approach

    Get PDF
    Due to strong interchannel interference in multichannel active noise control (ANC), there are fundamental problems associated with the filter adaptation and online secondary path modeling remains a major challenge. This paper proposes a wave-domain adaptation algorithm for multichannel ANC with online secondary path modelling to cancel tonal noise over an extended region of two-dimensional plane in a reverberant room. The design is based on exploiting the diagonal-dominance property of the secondary path in the wave domain. The proposed wave-domain secondary path model is applicable to both concentric and nonconcentric circular loudspeakers and microphone array placement, and is also robust against array positioning errors. Normalized least mean squares-type algorithms are adopted for adaptive feedback control. Computational complexity is analyzed and compared with the conventional time-domain and frequency-domain multichannel ANCs. Through simulation-based verification in comparison with existing methods, the proposed algorithm demonstrates more efficient adaptation with low-level auxiliary noise.DP14010341

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    Active Noise Control Over Space: A Wave Domain Approach

    Get PDF
    Noise control and cancellation over a spatial region is a fundamental problem in acoustic signal processing. In this paper, we utilize wave-domain adaptive algorithms to iteratively calculate the secondary source driving signals and to cancel the primary noise field over the control region. We propose wave-domain active noise control algorithms based on two minimization problems: first, minimizing the wave-domain residual signal coefficients, and second, minimizing the acoustic potential energy over the region, and derive the update equations with respect to two variables, the loudspeaker weights and wave-domain secondary source coefficients. Simulation results demonstrate the effectiveness of the proposed algorithms, more specifically the convergence speed and the noise cancellation performance in terms of the noise reduction level and acoustic potential energy reduction level over the entire spatial region.DP14010341
    corecore