12 research outputs found

    Clausal Resolution for Modal Logics of Confluence

    Get PDF
    We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.Comment: 15 pages, 1 figure. Preprint of the paper accepted to IJCAR 201

    Minimal structures for modal tableaux: Some examples

    Get PDF
    In this paper we present some examples of decision procedures based on tableau calculus for some mono- and multimodal logics having a semantics involving properties that are not easily representable in tree-like structures (like e.g. density, confluence and persistence). We show how to handle them in our framework by generalizing usual tableaux (which are trees) to richer structures: rooted directed acyclic graphs

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics

    Get PDF
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    Optimal methods for reasoning about actions and plans in multi-agent systems

    Get PDF
    Cet travail présente une solution au problème du décor inférenciel. Nous réalisons cela en donnant une éducation polynomiale d'un fragment du calcul des situations vers la logique épistémique dynamique (DEL). En suite, une nouvelle méthode de preuve pour DEL, dont la complexité algorithmique est inférieure à celle de la méthode de Reiter pour le calcul de situations, est proposée. Ce travail présente aussi une nouvelle logique pour raisonner sur les actions. Cette logique permet d'exprimer formellement "qu'il existe une suite d'action conduisant au but". L'idée étant que, avec la quantification sur les actions, la planification devient un problème de validité. Une axiomatisation et quelques résultats d'expressivité sont donnés, ainsi qu'une méthode de preuve basée sur les tableaux sémantiques.This work presents a solution to the inferential frame problem. We do so by providing a polynomial reduction from a fragment of situation calculus to espistemic dynamic logic (DEL). Then, a novel proof method for DEL, such that the computational complexity is much lower than that of Retier's proof method for situation caluculs, is proposed. This work also presents a new logic for reasoning about actions. This logic allows to formally express that "there exists a sequence of actions that leads to the goal". The idea is that, with quantification over actions, planning can become a validity problem. An axiomatisation and some expressivity results are provided, as well as a proof method based on sematic tableaux
    corecore