
Optimal
Methods for
Reasoning about
Actions and Plans in
Multi-agent Systems

Tiago de Lima

Institut de Recherche en Informatique de Toulouse

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en ligne de l'Université Toulouse III - Paul Sabatier

https://core.ac.uk/display/12095314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE TOULOUSE
ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE ET

TÉLÉCOMMUNICATIONS DE TOULOUSE
INSTITUT DE RECHERCHE EN INFORMATIQUE DE TOULOUSE

OPTIMAL METHODS FOR REASONING

ABOUT ACTIONS AND PLANS IN

MULTI-AGENT SYSTEMS

Thesis presented and defended by

TIAGO DE LIMA

at Toulouse on the 22nd of October 2007 to obtain the degree of
Docteur en Informatique de l’Université de Toulouse

Supervisor: Andreas Herzig

Commetee:

Nicholas Asher (examiner) Philippe Balbiani (examiner)
Patrick Blackburn (reviewer) Martin Cooper (president)
Andreas Herzig (supervisor) Gerhard Lakemeyer (reviewer)
Lambèr Royakkers (examiner)

Supported by the Programme Alßan,
the European Union Programme of High Level Scholarships for Latin America,

scholarship number E04D041703BR.

Acknowledgements

I worked along three years on this thesis. It is unlikely that I will be able to remember
the names of all the people that I should acknowledge for that. If your name should
be listed here but it is not, I am awfully sorry for that. And please, accept my sincere
acknowledgments right now.

First, special thanks to my supervisor Andreas Herzig and also to Philippe Bal-
biani and Hans van Ditmarsch for co-authoring, extremely valuable discussions, im-
portant advising, support and help.

Thanks to the members of the cometee of my thesis defense, Nicholas Asher,
Philipe Balbiani, Patrick Blackburn, Martin Cooper, Andreas Herzig, Gerhard Lake-
meyer and Lambèr Royakkers for the comments and discussions during the de-
fense. Thanks to Alexandru Baltag and Tomohiro Hoshi for co-authoring. Thanks
to Barteld Kooi, Teo Kuipers and the Department of Theoretical Philosophy of the
University of Groningen, for the invitation to Groningen, exiting discussions and
very nice stay. Thanks to Olivier Roy, Joel Uckelman, Sara Uckelman and Jonathan
Zvesper for the invitations and accommodation in Amsterdam. Thanks to Marcos
Castilho, Alexandre Direne, and Michel Gagnon for the support, advising and help
in the very beginning. Thanks to Guillaume Aucher, Megyn Bienvenu, Olivier Gas-
quet, Philippe Muller, Jérôme Lang, Emiliano Lorini, Bilal Said, Nicolas Troquard,
and Ivan Varzinczak for some nice discussions and friendship. And special thanks
to Mounira Kourjieh, Antonio de Lima, Marli de Lima, Tatiele de Lima and Thammi
de Lima for other support. I would also like to thank the Programme Alßan for the
financial support, and the Institut de Recherche en Informatique de Toulouse, where
this thesis was developed.
And finally, thank you, the reader, for reading my thesis.

Tiago de Lima
Toulouse, October 2007

v

Contents

1 Introduction 1

2 Searching for an Adequate Formalism 5
2.1 Introduction . 5
2.2 Scope of This Work . 5

2.2.1 Reasoning Tasks . 5
2.2.2 A Taxonomy of Dynamic Systems 6
2.2.3 Extensional Versus Intensional Representations 7
2.2.4 Parsimony and the Frame Problem 7

2.3 Situation Calculus . 8
2.3.1 Syntax and Semantics . 9
2.3.2 Conditional Plans . 11
2.3.3 “Knowledge, Action, and the Frame Problem” 13
2.3.4 Situation Calculus Regression . 17
2.3.5 A Variant of Situation Calculus 20

2.4 Epistemic Logic . 23
2.5 Epistemic Dynamic Logic . 27

2.5.1 Syntax and Semantics . 27
2.5.2 Meaningful Plans . 30
2.5.3 The Dependence Relation . 31
2.5.4 Modal Logic Regression . 32

2.6 Discussion and Conclusion . 36

3 A Framework for Epistemic and Ontic Change 37
3.1 Introduction . 37
3.2 The Separation Theorem . 37
3.3 How Many Kinds of Epistemic Actions Are There? 39

4 Optimal Methods for Reasoning 43
4.1 Introduction . 43
4.2 Reiter-style Action Theories . 44

4.2.1 Action Descriptions . 44
4.2.2 Models for an Action Description 45

vii

viii Contents

4.2.3 Validity in D-models . 46

4.2.4 Modal Logic Regression . 47

4.3 Dynamic Epistemic Logic . 48

4.3.1 Syntax . 48

4.3.2 Semantics . 48

4.4 From Toronto to Amsterdam . 50

4.5 Optimal Regression . 52

4.5.1 Eliminating Assignments . 52

4.5.2 Eliminating Announcements . 54

4.5.3 Eliminating Both . 55

4.6 Discussion and Conclusion . 55

5 Reasoning with Analytic Tableaux 57

5.1 Introduction . 57

5.2 A Tableau Method for Public Announcement Logic 57

5.3 Tableau Strategies . 60

5.4 Related Work and Discussion . 67

6 Searching for Plans 69

6.1 Introduction . 69

6.2 Syntax and Semantics . 70

6.3 Semantic Results . 71

6.3.1 Validities . 71

6.3.2 Expressivity . 74

6.3.3 Knowability . 75

6.4 Axiomatisation . 76

6.5 A Tableau Method for Arbitrary Announcements 79

6.6 Discussion, Further Work and Conclusion 81

7 Conclusion 83

Bibliography 87

A Long Proofs 95

A.1 Observations Are General . 95

A.2 Relation Between PAL and EDLo . 98

A.3 Polynomial Translation . 100

A.4 From D-models to DEL-models . 102

A.5 Soundness and Completeness of the Tableau Method 107

Abstract 115

Contents ix

Resumé 117
Chapitre 1 : Introduction . 117
Chapitre 2 : À la recherche d’un formalisme approprié 119
Chapitre 3 : Une logique pour le changement épistémique et ontique 120
Chapitre 4 : Méthodes optimales pour le raisonnement 121
Chapitre 5 : Le raisonnement avec tableaux analytiques 124
Chapitre 6 : À la recherche des plans . 124
Chapitre 7 : Conclusion . 125

Resumo 129

Glossary 131

Chapter 1

Introduction

Conceived as a complex human activity, reasoning about actions and plans relies on
the ability of relating cause and effect. The subject is vast and is an object of study
of several science fields such as philosophy, computer science and logic. Results of
these studies provide essential theoretical foundations for building automated sys-
tems. As good examples, we have systems for manufacturing, software engineering,
robotics, logistics, education and entertainment. To better illustrate what we mean
by the term ‘reasoning’ here, we give below a simple example inspired by a puzzle
of Smullyan (1992).

EXAMPLE 1 (THE LADY OR THE TIGER)
The environment consists of an individual, called agent, that inhabits a room with
two doors. These doors may be opened by the agent and, if so, behind each one the
agent will either find the lady, or the tiger. If the agent opens a door and finds the
lady, then she will marry him, and if he finds the tiger, then it will kill him. The
available actions are:

• listen1 and listen2. By performing one of those, the agent listens to what hap-
pens behind the respective door, which results in hearing the tiger roaring if
there is one behind the door; and

• open1 and open2. By performing it, the agent opens the respective door, which
results in marrying the lady, or being killed by the tiger, depending on what is
behind the door.

This example is used all along this thesis. It describes what we call a dynamic
system. An example of initial state of this system could be: the agent is alive and
not married, the lady is behind door 1 and the tiger is behind door 2. While an
example of goal could be: the agent is alive and married. When a dynamic system is
accompanied by an initial state and a goal, it is called a planning problem. A solution
to the planning problem is a sequence of actions, or plan, whose execution leads to
a state where the goal is satisfied. When a dynamic system is accompanied also by

1

2 Chapter 1. Introduction

a plan, it is called a plan verification problem. The plan verification succeeds when the
given plan is a solution to the planning problem.
Note that the system of Example 1 has knowledge-producing actions listenk. This

kind of action does not necessarily change the physical state of the world, but is able
to change the epistemic state of the agent. This means that we allow incomplete state
descriptions: for example, it may be the case that the agent does not know what is
behind each door. In this case, to avoid be killed he must perform listening actions
and then, based on the information acquired at execution time, decides which door
to open. Such scenarios thus require that plans be conditional, i.e., they branch on the
result of the evaluation of some information acquired at execution time.

Our ultimate aim is to provide a formalism for dynamic system descriptions.
This formalism should accommodate every significant element for reasoning about
actions and plans in scenarios like the one of Example 1. We also intend that this for-
malism can be used for specification of automated systems. Therefore, we address
the question whether an effective inference procedure exists, as well as how effi-
cient it is. The term ‘effective’ here means that the procedure must be able to decide
whether a solution to the problem exists and, if so, return it. And we use the term
‘efficient’ here to mean that the computational complexity of the procedure should
be as lower as possible.
One of the first formalisms used to attain this objective is a dialect of second-

order logic proposed by McCarthy (1968), named situation calculus. This formalism
presented two main problems. First, the corresponding inference procedure is only
semi-decidable. Second, it had no satisfactory solution to the frame problem.
The representational frame problemwas pointed out byMcCarthy andHayes (1969).

Roughly, it consists in the impossibility of giving a compact description of a dynamic
system. More than twenty years later, Reiter (1991) provided a partial solution to
this problem in the situation calculus. However, the associated inference procedure
provided is too resource consuming. The problem of designing an efficient inference
method for a formalism that solves the frame problem was named the inferential
frame problem by Thielscher (1999).

One of the main contributions of this thesis is a solution to the inferential frame
problem. First, we show that Reiter’s solution to the representational frame problem
can be encoded in the dynamic epistemic logic proposed by van Ditmarsch et al. (2005).
We do so by providing a polynomial reduction from situation calculus to dynamic
epistemic logic. Then, we provide a new proof method for the latter, whose compu-
tational complexity is much lower than the method proposed by Reiter. Moreover,
we prove that this proof method is optimal.
Dynamic epistemic logic is very suitable for formalization of the plan verification

problem, but not for the planning problem. The reason is that in this setting, plan
verification amounts to validity checking, while planning demands the construction
of the plan. In other words, it is more or less like if a part of the formula were lacking,
and one should find the right piece for completing it. It is the reason why we pro-
pose here another logic in which one can, roughly speaking, quantify over epistemic

3

actions. This is the second main contribution of this thesis. This logic, called arbitrary
public announcement logic, allows to formally state that ‘there are actions that lead to
the goal’. We also provide a proof method for it based on tableaux. Our hope is that
future extensions of this method will allow planning in dynamic epistemic logic.

This thesis is organized as follows. The next chapter defines the scope of study
of this work and presents a short state of the art of the subject. There we present the
situation calculus, Reiter’s solution to the frame problem and the regressionmethod.
In addition, we present a way of encoding that solution in modal logic and also show
how to perform regression in modal logic.
The contributions of this thesis are presented from the third chapter onwards.

Two results from (Herzig and de Lima, 2006) are presented in Chapter 3. The first
one is the decomposition theorem. It states that one can encode every action into a
sequence of two actions of specific kinds: the first one is purely epistemic and the
second one is purely ontic. The second result proves the generality of a specific kind
of purely epistemic action. We show that in single-agent scenarios, a simple kind
of epistemic action called observation is enough to encode every possible purely
epistemic action.
In the fourth chapter, we present the solution to the inferential frame problem

that we have proposed in (van Ditmarsch et al., 2007a). We first show how to encode
a decidable fragment of situation calculus in dynamic epistemic logic. After that,
we extend the polynomial reduction method proposed by Lutz (2006). The method
proceeds by a stepwise elimination of dynamic operators, thus reducing the original
formula to an epistemic formula. We also consider multiple agents and the com-
mon knowledge operator. In all the cases the complexity of our method matches
the complexity of the underling epistemic logic. It follows that validity checking is
in coNP for the single-agent case, in PSPACE for multiple agents, and in EXPTIME
when common knowledge is involved.
The fifth chapter presents an alternative theorem proving method for public an-

nouncement logic based on analytic tableaux. The method, proposed in (Balbiani
et al., 2007b), is modular, allowing the definition of theorem proving methods for
the latter logic where its epistemic logic is K, KT, S4 and S5. We also propose opti-
mal strategies for the first two cases.
The sixth chapter presents arbitrary public announcement logic. This is a logic

proposed in (Balbiani et al., 2007a), that allows for quantification over public an-
nouncements. A sound and complete axiomatisation is provided.
We draw conclusions and discuss future works in Chapter 7.

Chapter 2

Searching for an Adequate
Formalism

2.1 Introduction

This chapter is a short description of the state of the art of the subject of this thesis.
We start by an identification of distinct types of reasoning and some scenarios com-
monly addressed in the current literature on reasoning about actions. In the sequel,
we present two different state of the art approaches to reasoning with incomplete
information: situation calculus and epistemic dynamic logic. The two approaches
turn out to be very similar. A short discussion about these similarities is in the end
of the chapter.

2.2 Scope of This Work

2.2.1 Reasoning Tasks

At least three types of reasoning can be identified. Given a sequence of actions,
prediction is the task of describing the world after their occurrence, and explanation is
the task of describing the world before their occurrence.1 For the third task, called
planning, a current description of the world (the initial state) and a goal are also
given. It then consists in finding the sequence of actions whose occurrence in the
initial state satisfies the goal.
Here we also identify a fourth task, called plan verification: let an initial state, a

goal and also a sequence of actions be given. This task consists in checking whether
the sequence of actions is a solution to the planning problem.
Note that if one supposes that the set of all states and all action sequences are enu-

merable, then the possibility of verifying plans implies the possibility of performing

1One would perhaps prefer to call these two tasks respectively deduction and abduction.

5

6 Chapter 2. Searching for an Adequate Formalism

the first three tasks. This is the reason why in great part of this work we are mainly
concerned about this task. However, an efficient way of realizing the other tasks is
commonly desirable. We address planning later on this work, in Chapter 6.

2.2.2 A Taxonomy of Dynamic Systems

We formally define a dynamic system description by the tuple 〈S,A, T 〉, where S is a
set of states, A is a set of actions, and T is a relation that models actions transitions.
Therefore, T can be defined as a function that maps elements of S × A into S. In
this deterministic setting, a plan verification problem is the tuple 〈∆, s0, G〉, were ∆ is
a dynamic system description, s0 ∈ S is the initial state, and G ⊆ S is a set of goal
states. A plan is a sequence of actions a0, a1, . . . , an−1 of A. If for all 0 ≤ i < n,
T (si, ai) = si+1 and sn ∈ G, then this plan is a solution for the associated planning
problem and in this case plan verification succeeds, else it fails.
This class of dynamic systems has been studied in several different ways. No-

tably, three approaches received great attention: state space search, such as described
in (Penberthy and Weld, 1992), plan space search, such as in (Blum and Furst, 1997),
and logical satisfiability, such as in (Kautz and Selman, 1992, 1999).
The definition of dynamic system description given above can be generalised

to accommodate more realistic phenomena. For instance, the transition function T
can be defined as a mapping from elements of S × A into probability distributions
over S. Now, it accommodates non-deterministic actions. This means that action
results are not predictable, but they are indeed observable. That is, once an action
is executed, the agent receives complete and accurate feedback about its results and
therefore knows in which state he is. Plan verification and planning problems are
redefined accordingly, but solutions are no longer (simple) plans, because the agent
must act based on the feedback received at execution time. In this setting, plans
must be conditional, i.e., they have branches that correspond to decisions to be taken
at execution time.
To the latter class, one can still add partial observability. That is, the agent does not

necessarily perceive all changes caused by the actions. Formally, it can be modelled
by providing a set of possible observations Ω and an observation function O. This
function maps A × S into discrete probability distributions over Ω. As the agent
cannot be sure in which state he is, the initial state is replaced by a belief state, i.e.,
by a set b0 ⊆ S of possible initial states. Partially observable planning and plan
verification problems are redefined accordingly, and, in this setting, solutions must
be conditional plans that map belief states to actions.
Systems where action results are non-deterministic are also called uncertain, and

are frequentlymodelled byMarkov decision process (MDP), and by partially observ-
able Markov decision process (POMDP). Formalisations of planning problems with
Markov decision processes are proposed, for example, by Kaelbling et al. (1998),
Boutilier et al. (1999), and Bonet and Geffner (2001).
In this work we study a particular case of the latter class of systems in which

actions are deterministic and the agent has incomplete knowledge about the initial state.
Then the transition relation is defined as in the deterministic case, but the initial state

2.2. Scope of This Work 7

is a belief state. As for partially observable systems, solutions are conditional plans
that map belief states to actions.

2.2.3 Extensional Versus Intensional Representations

Markov decision processes approaches have the disadvantage of requiring exten-
sional representations. That is, one must keep in memory the entire belief state space.
As this set is huge (the belief state space is exponentially larger than the state space),
their representation is infeasible.
One way of avoiding huge representations is the use of intentional representa-

tions. It amounts to representing states and belief states with sets of multi-valued
fluents. Let P be a finite set of fluents, each state of S is now labelled by the set of
fluents that hold in it. This means that in this approach S = P(P). Going one step
further, some approaches propose the representation of states by logical formulas.
For example, suppose that the set of fluents contains alive and married (Example
1). The formula alive ∧ ¬married represents all the states in which the agent is alive
and not married. This approach also permits compact representations of the entire
system by providing a set ∆ of formulas. Allied to an inference procedure, one can
address plan verification using theorem proving methods.
These ideas are not new. Logics for reasoning about actions and plans are pro-

posed, for example, by McCarthy (1968), Sandewall (1992, 1995) and Gelfond and
Lifschitz (1993). In addition, logical representations also motivated different ap-
proaches. For example, some of them replaced theorem proving by satisfiability
checking, such as seen above and also in (Majercik and Littman, 2003), or by model
checking, such as in (Cimatti et al., 1997).
Current state of the art logics still propose generalisations to multi-agent scenar-

ios. As we use this approach in this work, we are therefore faced to the problem of
representing a still larger set of states, since the initial state in this case is a set of
belief states. To be compact, the representation of such sets is done using the ideas
of Hintikka (1962), also followed by Moore (1980) and many others. They enrich
the language with an epistemic operator ‘K’. The formula Kilady1 represents all the
states where agent i “knows” (or “believes”) that the lady is behind door 1.

2.2.4 Parsimony and the Frame Problem

The different proposed logics differ in expressivity. Thus, once the decision of using
intensional representations is taken, one must choose the most adequate of them.
The adequation of a logic is measured by its capability of expressing all desired phe-
nomena and is counterbalanced by the representational parsimony of its language. This
concept is extensively explored by Shanahan (1997). We outline his ideas here.
First, remember that we now suppose that a system description is a set of for-

mulas ∆ written in a logical language. Second, note that this language is defined
in terms of its logical operators, the set A of actions, and the set P of fluents. Then,
the representational parsimony criterion asserts that, to be considered acceptable,
the language must permit complete descriptions that are no larger thanO(|P |+ |A|).

8 Chapter 2. Searching for an Adequate Formalism

In addition, the effort required to add new information has to be proportional to the
size of this information. For example, if one wants to add a new action to the domain
description that directly affects n fluents, then it should require no more than O(n)
new sentences.

The problem of designing a language that respects this criterion was named the
frame problem,2 by McCarthy and Hayes (1969). They showed that one of the most
used formalisms for reasoning, the situation calculus, does not respect this crite-
rion. The reason is that in principle domain descriptions must explicit the interac-
tion between every action and fluent. Then such a description obviously has at least
O(|P | × |A|) formulas.

Since then, some formalisms that avoid the frame problem were proposed. One
example is the very restrictive language STRIPS, proposed by Fikes and Nilsson
(1971).

More than twenty years later, Reiter (1991) provided a solution to the frame prob-
lem in the situation calculus whose language is expressive enough to addressmost of
the desired phenomena. This approach is based on the hypothesis that due to inertia,
actions change only a small part of the world and the rest is left unchanged. Then
the formalisation defined by Reiter permits that systems be entirely described with
O(|P | + |A|) formulas. This approach was extended latter by Scherl and Levesque
(1993) to deal with partially observable domains. However, the associated infer-
ence procedure, called regression, is too resource consuming. For suppose that ϕ is
a formula whose validity is to be checked. Regression consists in reducing ϕ to an
equivalent formula reg(ϕ) that does not mention actions. Then, a well-known and
more efficient proof method can be used. But reg(ϕ) can be exponentially larger
than ϕ. Therefore, the computational complexity of the entire method is too high.
Other tentatives of solving the frame problem while maintaining high expressive-
ness were plagued by the same problem, which was named the inferential frame prob-
lem by Thielscher (1999).

But, what computational complexity should we expect? For example, Bylander
(1994) showed that in STRIPS, planning is PSPACE-complete and therefore plan ver-
ification is in PTIME. Note however, that this was obtained for that specific language.
In the way plan verification and planning were defined, their complexity depends
on the complexity of validity, and consequence checking in the logic used. Then the
best we can do is to search the least complex formalism that allows the description
of the largest class of dynamic systems.

2.3 Situation Calculus

The dialect of second-order logic called situation calculus was one of the first for-
malisms used in reasoning about actions. Proposed by McCarthy (1968), it was not
used in practical applications. The main reason of this restriction is the fact that

2Here we also call this problem representational frame problem, in contrast with the inferential frame prob-
lem, defined latter on.

2.3. Situation Calculus 9

there was no satisfactory solution to the representational frame problem, and the
corresponding inference procedure is only semi-decidable.
After some decades, Reiter (1991) proposed a partial solution to the frame prob-

lem in situation calculus, as well as a procedure for reasoning called regression, which
is decidable for a sub-class of problems. Since then, situation calculus has being
largely used in specification of dynamic systems. Some programming languages,
such as GOLOG (Levesque et al., 1997), were built, and the formalism also received
a number of extentions such as for concurrent actions (Gelfond et al., 1991), proba-
bilistic (noisy) actions (Bacchus et al., 1999), among many others.
In this section we present syntax and semantics of a decidable fragment of the

situation calculus, as well as Reiter’s solution to the frame problem and regression.
Both were extended later by Scherl and Levesque (1993) to deal with incomplete
knowledge. We thus present this extention here and also illustrate its use with the
running example given in the introduction. The definitions given here follow those
given in (Reiter, 2001a).

2.3.1 Syntax and Semantics

The full language of the situation calculus is a many sorted second-order predicate
language with equality. In this work however, we drop functional symbols and re-
strict the arities of relational fluents to one.

DEFINITION 2 (LANGUAGE LSit)
The language LSit is a many sorted second-order predicate language with equality.
It has two disjoint sorts: one for situations (or states), denoted by S, one for actions,
denoted by A, and one for everything else, denoted by O. Its alphabet contains the
operators ¬, ∧ and ∀, and also the following items:

• countably many predicate symbols, called relational fluents, of sort S;

• the functional symbol do of sort (A× S) → S;

• the predicate symbols:

– Rdo of sort A× S × S,

– ⊏ of sort S × S,

– Poss of sort A× S, and

– R of sort S × S;

• the constant symbol s0 of sort S;

• countably many variable symbols of sorts S, A and O; and

• countably many variable symbols for relational fluents and for the predicates
of the language.

10 Chapter 2. Searching for an Adequate Formalism

The constant s0 is used for designate the actual situation. All the other situations
are directly or indirectly “linked” to s0 by do or R. The function domodels the tran-
sitions associated to actions. do(a, s) is the result of executing action a in situation
s. The predicate R is an accessibility relation that models the agent’s knowledge. If
R(s′, s) holds, then the agent considers that s′ is possible at s.3 The predicate Poss
models the executability preconditions of actions. If Poss(a, s) holds, then the action
a is executable in s.
To simplify notation, we use the classical abbreviations for the operators ∨,→,↔

and ∃, and also the following one:

K(ϕ−1, s)
def
= ∀s′(R(s′, s) → ϕ−1[s′])

where the formula ϕ−1 is ϕ, but with the removal of the last position argument from
all the fluents of ϕ, and the formula ϕ[s] is ϕ, but with the introduction of s as the
last argument on all its fluents. For example, K(lady1, s) abbreviates the formula
∀s′(R(s′, s) → lady1(s

′)), which means that in every possible situation accessible
from s, the lady is behind door 1. In other words, the agent knows that there is a
lady behind door 1 in situation s.

DEFINITION 3 (Sit-MODEL)
A Sit-model is an ordinary Tarski model that satisfies all the formulas in the set Φfdi

of foundational domain independent axioms, defined as follows:

Φfdi = {(do(a1, s1) = do(a2, s2)) → (a1 = a2 ∧ s1 = s2),

∀p(∀s(Init(s) → p(s)) ∧ ∀a, s(p(s) → p(do(a, s))) → ∀s(p(s))),

¬(s ⊏ s0),

(s ⊏ do(a, s′)) ↔ (s ⊏ s′ ∨ s = s′),

R(s′, s) → (Init(s) ↔ Init(s′))}

where Init(s) is an abbreviation of ¬∃a, s′(s = do(a, s′)).

Note the similarity between these axioms and Peano Arithmetic. The first axiom
eliminates finite cycles and confluence. The second axiom is a second-order induc-
tion which guarantees that every situation must be obtained by repeatedly applying
the function do. The third and fourth axioms inductively define an ordering⊏ in the
set S. The second and fifth axioms together define the way situations are connected
by the accessibility relation R.
These axioms guarantee that the set of situations form a forest. One of its trees is

rooted in the initial situation s0 and all other roots are related to it by R. Each root
represents a possible initial situation according to the knowledge of the agent.
Depending on the definition of knowledge one wants to use, accessibility rela-

tions in Sit-models must moreover respect some relational properties. They can be
among the following:

3Note that the “arrow” is from s to s
′, i.e., the positions of s and s

′ are inverted.

2.3. Situation Calculus 11

• Reflexivity (true knowledge):
∀s.R(s, s)

• Transitivity (positive introspection):

∀s, s′, s′′.(R(s′, s) ∧R(s′′, s′)) → R(s′′, s)

• Symmetry:
∀s, s′.R(s′, s) → R(s, s′)

• Euclidicity (negative introspection):

∀s, s′, s′′.(R(s′, s) ∧R(s′′, s)) → R(s′, s′′)

From now on, we name ΦR the set of formulas that describe all the relational
properties of R.
The notions of satisfiability, validity and valid consequence are defined as for

second-order logic. Let ϕ ∈ LSit, Γ ⊆ LSit andM be a Sit-model, we noteM |= ϕ for
M satisfies ϕ, |=Sit ϕ for ϕ is valid in situation calculus, and Γ |=Sit ϕ for ϕ is a valid
consequence of Γ in situation calculus.

2.3.2 Conditional Plans

DEFINITION 4 (PLANNING TASK IN Sit)
Let a theory formed by the set Φfdi of foundational domain independent axioms, a
system description ∆, and a description of the initial situation I be given. And let a
goal formula ϕ(s)with a single free variable s be given. Then the simple planning task
in situation calculus is to find a sequence of actions a1, . . . , an of A such that:

Φfdi ∪ ∆ ∪ I |=Sit ϕ(do(an(. . . (do(a1, s0)) . . .)))

This definition is not adequate for planning under incomplete knowledge. The
reason can be explained using Example 1: in order to keep alive, the agent must
avoid opening the tiger’s door. But since he does not know in advance behind which
door the tiger is, he can only decide what to do at execution time, after evaluating
the result of a listening action. Therefore the planmust have some kind of branching.
Branching actions in situation calculus were proposed by Levesque (1996). In

fact, he defines a general robot programming language that also contains looping ac-
tions. Programs written in this language include both ordinary and sensing actions,
and are trivially executable by a machine.

DEFINITION 5 (ROBOT PROGRAM)
A robot program (or simply program) is inductively defined as follows:

• nil and exit are robot programs;

• if a ∈ A and π is a robot program, then seq(a, π) is a robot program;

12 Chapter 2. Searching for an Adequate Formalism

• if a is a binary sensing action and π and π′ are both robot programs, then
branch(a, π, π′) is a robot program; and

• if π and π′ are robot programs, then loop(π, π′) is a robot program.

Similarly to the function do, which returns the result of performing a given action
in some situation, it is necessary to say what is meant by performing a program in
some situation. It leads to a definition of the predicate Rdo below.

DEFINITION 6 (PREDICATE Rdo)
The predicate Rdo(π, s, s′) means that π terminates legally when its execution starts
in s and s′ is the final situation. In other words, it is defined as:

Rdo(π, s, s′)
def
= ∀p(ϕ→ p(π, s, s′, 1))

where ϕ is the conjunction of the universal closure of the following.

1. Termination normal case:
p(nil , s, s, 1)

2. Termination loop body:
p(exit , s, s, 0)

3. Ordinary actions:

Poss(a, s) ∧ p(π′, do(a, s), s′, x) → p(seq(a, π′), s, s′, x)

4. Sensing actions, true case:

Poss(a, s) ∧ sr(a, s) ∧ p(π′, do(a, s), s′, x) → p(branch(a, π′, π′′), s, s′, x)

5. Sensing actions, false case:

Poss(a, s) ∧ ¬sr(a, s) ∧ p(π′′, do(a, s), s′, x) → p(branch(a, π′, π′′), s, s′, x)

6. Loops, exit case:

p(π′, s, s′′, 0) ∧ p(π′′, s′′, s′, x) → p(loop(π′, π′′), s, s′, x)

7. Loops, repeat case:

p(π′, s, s′′, 1) ∧ p(loop(π′, π′′), s′′, s′, x) → p(loop(π′, π′′), s, s′, x)

Intuitively, p(π, s, s′, 0) holds when π starts in s and ends in s′ with exit , and
p(π, s, s′, 1) holds when π starts in s and ends in s′ with nil .

DEFINITION 7 (PLANNING TASK IN Sit WITH INCOMPLETE KNOWLEDGE)
Given a theory formed by the foundational domain independent axioms Φfdi, which
includes the definition of Rdo given above, a domain description ∆, a description
of the initial situation I , and a goal formula ϕ(s) with a single free variable s, the
planning task in situation calculus under incomplete knowledge is to find a robot program
(or conditional plan) π such that:

Φfdi ∪ ∆ ∪ I |=Sit ∀s(R(s, s0) → ∃s′(Rdo(π, s, s′) ∧ ϕ(s′)))

2.3. Situation Calculus 13

2.3.3 “Knowledge, Action, and the Frame Problem”

It was using situation calculus that McCarthy and Hayes (1969) pointed out the dif-
ficulty imposed by the representational frame problem in reasoning about actions.
After that, several partial solutions were proposed, for example by (Haas, 1987), and
by (Schubert, 1990). None of them however, is fully satisfactory. We present here
yet another partial solution, proposed by Reiter (1991). We also incorporate the ex-
tention to incomplete knowledge proposed by Scherl and Levesque (1993) that was
redesigned later by Scherl and Levesque (2003). We call this solution the RSL’s partial
solution to the frame problem, or RSL for short.
RSL relies on a number of simplifying hypothesis. The most important are listed

below.

H1 All actions are deterministic.

H2 Each action is either a purely ontic (i.e., non-knowledge-producing) or a sens-
ing action.

H3 All the laws that define the behaviour of the actions are known by the agent.

H4 All action occurrences are perceived by the agent.

H5 Action precondition completeness: for each action constant a, it is possible to give
a single formula ψa(s) that characterises the condition under which a is exe-
cutable, where the only free variable in this formula is s.

H6 Causal completeness: for each fluent constant p, it is possible to give a finite set
of action constants that may flip the truth value of p.

H7 Effect precondition completeness: for each relational fluent p(a, s), where p and a
are constants, it is possible to give a single formula ψp(a, s) that characterises
all the conditions under which a flips the truth value of p to true (or to false) in
the successor situation. Again, the only free variable in these formulas is s.

H8 The length of the formula ψp(a, s) in H7 is roughly proportional to the number
of actions that affect the value of the fluent.

H9 Relatively few actions affect a given fluent.

H10 Inertia: The set of fluents affected by an action is much smaller than the entire
set of fluents of the language.

Hypothesis H1 is about the nature of the world. This hypothesis is implemented
by the fact that do is a function.
Hypothesis H2 is based on the distinction between ontic actions and epistemic

(knowledge-producing) actions: the former modify the world while the latter makes
the agent learn facts about the world. This hypothesis is motivated by the assertion
that every action can be split in a purely ontic action and in an purely epistemic
action. This assertion is folklore in the literature on reasoning about actions (for

14 Chapter 2. Searching for an Adequate Formalism

example, see Shapiro et al. (2000)). We then suppose from now on, that A = Ao ∪Ae,
where Ao contains only purely ontic actions and Ae contains only sensing actions.
Hypotheses H3 and H4 say that the agent’s knowledge about actions types and

about actions instances are accurate. In the case of purely ontic actions o ∈ Ao, they
are implemented by the following successor state axiom for knowledge:

OSSK. ∀o, s, s′(R(s′, do(o, s)) ↔ ∃s′′(Poss(o, s′′)∧

(s′ = do(o, s′′)) ∧R(s′′, s)))

and in the case of purely epistemic actions, they are implemented by:

ESSK. ∀e, s, s′.R(s′, do(e, s)) ↔ ∃s′′.Poss(e, s′′)∧

(s′ = do(e, s′′)) ∧R(s′′, s)∧

(sr(e, s) = sr(e, s′′))

where the function sr, that ranges over {yes, no}, is the result of the sensing action e.
This function must be defined for each sensing action of Ae. For example, suppose
there is an action sensepwhose executionmakes the agent knowwhether a relational
fluent p holds or not. Then sr can be defined by:

(sr(sensep, s) = x) ↔ (((x = yes) ∧ p(s)) ∨ ((x = no) ∧ ¬p(s)))

Intuitively, OSSK and ESSK ensure that: if after the occurrence of the action a in
s the agent considers the situation s′ possible, then there exists a situation s′′ such
that the agent considers possible in s and the occurrence of a in s′′ results in s′. This
property is called perfect recall in (Fagin et al., 1995). In other words, no action is able
to make the agent forget facts. In the case of a sensing action e, ESSKmoreover says
that if the execution of e in s produces some epistemic result when executed in s,
given by the function sr, then e produces the same epistemic result when executed
in s′′.
In addition, it is interesting to note that due to the latter two axioms, some rela-

tional properties of R, such as reflexivity, transitivity, symmetry and euclidicity, are
true in the set of all situations if and only if they are true in all initial situations.
Scherl and Levesque (2003) also show that SSKs entail several desired properties.

One of them is the no-side-effect property of epistemic actions, that corresponds to:

∀e, s, p.p(s) ↔ p(do(e, s))

It says that sensing actions do not modify facts about the world.
RSL implements the other six hypotheses by requiring that the action precondi-

tions and effects be described using a collection of formulas in some specific form.
Among other things, it requires that these formulas have the property defined in the
sequel.

DEFINITION 8 (UNIFORM FORMULAS)
Let s be a term of sort situation. The set of formulas in LSit uniform in s, is recursively
defined as follows:

2.3. Situation Calculus 15

• if p is a relational fluent, then p(s) is uniform in s;

• if ϕ ∈ LSit does not mention a term of sort S, then ϕ is uniform in s; and

• if ϕ and ψ are uniform in s, then so are ¬ϕ, ϕ ∧ ψ and ∀x.ϕ, provided x is a
variable not of the sort S.

That is, ϕ is uniform in s if: it does not mention the predicate Poss; it does not
mention the predicate ⊏; it does not quantify over situations; it does not mention
equality on situations; and if it mentions a term of the sort situation in the situation
argument position of a fluent, then that term is s.

DEFINITION 9 (BASIC ACTION THEORY)
A basic action theory is a set of axioms:

Θ = Φfdi ∪ ΦR ∪ {OSSK,ESSK} ∪ Φuna ∪ Φap ∪ Φss ∪ Φsf ∪ Φs0

such that:

• Φuna is a set of unique-name axioms for actions, that contains a formula of the
form:

a1 6= a2

for each pair of different action names a1 and a2;

• Φap is a set of action-precondition axioms, that contains, for each o ∈ Ao, a single
formula of the form

∀a, s.Poss(a, s) ↔ ψa(s)

where ψa is uniform in s;

• Φss is a set of successor-state axioms, that describe the effects of purely ontic
actions. It contains, for each relational fluent p, a single formula of the form

∀a, s.p(do(a, s)) ↔ ψp(a, s)

where ψp(a, s) is uniform in s;

• Φsf is the set of sensed fluent axioms describing the effects of sensing actions. It
contains, for each sensing action e ∈ Ae, a single formula of the form:

∀s, x.(sr(e, s) = x) ↔ (((x = yes) ∧ p(s)) ∨ ((x = no) ∧ ¬p(s)))

where p is the fluent whose truth value is known after the execution of e;4 and

• Φs0 is the set of formulas that describes the initial situation. It only contains
formulas that are uniform in s0.

4Scherl and Levesque (2003) use an example to explain that it is possible to formalise complex sensing
actions. That is, actions whose result is sensing the truth value of more complex formulas. However, a
general form of sensed axioms is not provided. It thus remains unclear which are the constraints to be
respected in these cases.

16 Chapter 2. Searching for an Adequate Formalism

The uniformity of ψa(s) and ψp(a, s) ensures that action preconditions and ac-
tion effects are completely determined by the current situation s. Moreover, under
hypotheses H6–H10 ontic actions only change a small part of the world, leaving the
rest unchanged. It follows that |Θ| = O(|P | + |A|) (Reiter, 2001a). In addition, note
that H9 implies that there is no action changing the truth value of an infinity of flu-
ents. Therefore, RSL is a solution to the representational frame problem.

EXAMPLE 10
We illustrate RSL’s solution by showing a formalisation of Example 1. We use the
fluent lady1 to mean that the lady is behind door 1. Thus the formula ¬lady1 means
that the lady is behind door 2 and the tiger is behind door 1. The first thing to be
given is the unique-name axioms for actions:

Φuna = {listen1 6= listen2,

listen1 6= open1,

listen1 6= open2,

listen2 6= open1,

listen2 6= open2,

open1 6= open2 }

Next, the action-preconditions axioms:

Φap = {∀s(Poss(listen1, s) ↔ alive(s)),

∀s(Poss(listen2, s) ↔ alive(s)),

∀s(Poss(open1, s) ↔ alive(s)),

∀s(Poss(open2, s) ↔ alive(s)) }

Then, the successor-state axioms:

Φss = { ∀a, s(alive(do(a, s)) ↔ (alive(s) ∧

¬(a = open1 ∧ ¬lady1(s)) ∧

¬(a = open2) ∧ lady1(s)))),

∀a, s(married(do(a, s)) ↔ (((a = open1) ∧ lady1(s)) ∨

((a = open2) ∧ ¬lady1(s)) ∨

married(s))))),

∀a, s(lady1(do(a, s)) ↔ lady1(s)) }

The sensed fluent axioms:

Φsf = { ∀s, x(sr(listen1, s) = x) ↔ (((x = yes) ∧ lady1(s)) ∨

((x = no) ∧ ¬lady1(s))),

∀s, x(sr(listen2, s) = x) ↔ (((x = yes) ∧ ¬lady1(s)) ∨

((x = no) ∧ lady1(s))) }

2.3. Situation Calculus 17

And finally, the initial situation.

Φs0 = {K(alive ∧ ¬married , s0)}

Let the goal be described by ϕ(s) = K((alive ∧ married), s). Then a solution to the
planning problem is a robot program π such that:

Θ |=Sit ∀s(R(s, s0) → ∃s′(Rdo(π, s, s′) ∧ ϕ1[s′]))

For example, the plan branch(listen1, seq(open2, nil), seq(open1, nil)) is such a solu-
tion.

2.3.4 Situation Calculus Regression

In this section we present an effective procedure for reasoning using RSL’s solution.
It is based on goal regression, proposed by Waldinger (1977). Roughly, the idea is to
start with the goal formula and reason backwards in order to reach the initial state.
If the initial state is reachable and the path has been memorised, then one obtains the
solution plan.
In situation calculus it corresponds to starting with a complex formula that repre-

sents the goal and applying successive “simplifications” in order to obtain an equiv-
alent formula which does not mention actions and whose only situation term men-
tioned is the initial situation s0. Once it is done, the foundational domain axioms
are no longer necessary to prove that such a formula is entailed by the theory, which
reduces the problem to a first-order theorem proving task.
Regression cannot be applied to any formula of LSit though. The following defi-

nition ensures that a given goal can be regressed.

DEFINITION 11 (REGRESSABLE FORMULAS)
A formula ϕ ∈ LSit is regressable if and only if:

• each term of the sort situation mentioned by ϕ has the syntactic form

do(an, do(an−1, . . . do(a1, s0) . . .))

for some n ≥ 0, where a1, . . . , an are terms of the sort action;

• ϕ does not quantify over situations; and

• ϕ does not mention the predicate symbol ⊏, nor does it mention any equality
atom s = s′ for terms s, s′ of sort situation.

In the sequel, we present a definition of the regression operator compiled from
Reiter (2001a) and Scherl and Levesque (2003).

DEFINITION 12 (Sit REGRESSION OPERATOR)
Let an action theoryΘ be given. The regression operator regΘ is defined inductively as
follows:

18 Chapter 2. Searching for an Adequate Formalism

1. If ϕ is a non-fluent atom, including equality atoms; or ϕ is a fluent atom, or a
‘K’ fluent whose situation argument is the situation constant s0, then

regΘ(ϕ) = ϕ

2. If Φap contains ∀x(Poss(x) ↔ ψx), then

regΘ(Poss(a, s)) = regΘ(ψa(s))

3. If p is a fluent (other than ‘K’) and Φss contains ∀x, y(p(do(x, y)) ↔ ψp(x, y)),
then

regΘ(p(do(a, s))) = regΘ(ψp(a, s))

4. If Φsf contains ∀y, z((sr(a, y) = z) ↔ ψa(z, y)), then

regΘ(sr(a, s) = x) = regΘ(ψa(x, s))

5. If a is not a knowledge-producing action, then

regΘ(K(ϕ, do(a, s))) = K(Poss(a) → regΘ(ϕ[do(a, s′)])−1, s)

where s′ is a new variable of sort situation.

6. If a is a knowledge-producing action, then

regΘ(K(ϕ, do(a, s))) = ∃y((sr(a, s) = y) ∧

K((Poss(a) ∧ (sr(a) = y)) → regΘ(ϕ[do(a)])−1, s))

7. If ϕ and ψ are formulas, then

(a) regΘ(¬ϕ) ⇒ ¬ regΘ(ϕ)

(b) regΘ(ϕ ∧ ψ) ⇒ regΘ(ϕ) ∧ regΘ(ψ)

(c) regΘ(∀x(ϕ)) ⇒ ∀x(regΘ(ϕ))

That the regression operator can be safely used for reasoning in situation calcu-
lus, is guaranteed by the following theorem.

THEOREM 13 (REGRESSION (Reiter, 2001a))
Let Θ be a basic action theory, let ϕ be a regressable sentence, and let ΦR be any sub-
set of the accessibility relation properties reflexive, symmetric, transitive and euclidian.
Then:

Θ |=Sit ϕ iff Φuna ∪ ΦR ∪ Φs0 |=FOL regΘ(ϕ)

2.3. Situation Calculus 19

EXAMPLE 14
We use the theory Θ defined in Example 10 to regress the goal:

K((married ∧ alive), do(open1, do(listen1, s0)))

For the first step we use the clause 5, that gives us:

regΘ(K((married ∧ alive), do(open1, do(listen1, s0)))) =

regΘ(K(Poss(open1) → regΘ((married ∧ alive)[do(open1, s)])
−1, do(listen1, s0)))

Now, for simplicity, we perform the innermost regression separately:

regΘ((married ∧ alive)[do(open1, s)])

= regΘ(married(do(open1, s))) ∧ regΘ(alive(do(open1, s))) (by clause 7)

= regΘ((open1 = open1 ∧ lady1(s)) ∨

(open1 = open2 ∧ ¬lady1(s)) ∨

married(s)) ∧

regΘ(alive(s) ∧

¬(open1 = open1 ∧ ¬lady1(s))

¬(open1 = open2 ∧ lady1(s))) (by clause 3)

=((open1 = open1 ∧ lady1(s)) ∨

(open1 = open2 ∧ ¬lady1(s)) ∨

married(s)) ∧

(alive(s) ∧

¬(open1 = open1 ∧ ¬lady1(s)) ∨

¬(open1 = open2 ∧ lady1(s))) (by clauses 7, 1 and 3)

The resultant formula is equivalent to alive(s) ∧ lady1(s). For simplicity, we now
use this shorter equivalent formula and name it ψ. We then continue performing the
outermost regression. By clause 6 we have:

regΘ(K(Poss(open1) → ψ−1, do(listen1, s0)))

= regΘ(∃y(sr(listen1, s0) = x ∧ K((Poss(listen1) ∧ sr(listen1) = x) →

regΘ((Poss(open1) → ψ−1)[do(listen1, s0)])
−1, s0)))

20 Chapter 2. Searching for an Adequate Formalism

Again, we perform the innermost regression separately:

regΘ((Poss(open1) → ψ−1)[do(listen1, s0)]) =

= regΘ(Poss(open1, do(listen1, s0))) →

(regΘ(alive(do(listen1, s0))) ∧

regΘ(lady1(do(listen1, s0))))) (by clause 7)

=alive(s0) →

((alive(s0) ∧

¬(listen1 = open1 ∧ lady1) ∧

¬(listen1 = open2 ∧ ¬lady1)) ∧

lady1(s0)) (by clauses 2 and 3)

This is equivalent to alive(s0) → lady1(s0). We continue with the outermost formula:

regΘ(∃x(sr(listen1, s0) = x ∧ K((Poss(listen1) ∧ sr(listen1) = x) →

(alive → lady1), s0)))

= ∃x(regΘ(sr(listen1, s0) = x) ∧

regΘ(K((Poss(listen1) ∧ sr(listen1) = x) → (alive → lady1), s0)))

(by clause 7)

= ∃x((((x = yes) ∧ lady1(s0)) ∨ ((x = no) ∧ ¬lady1(s0))) ∧

K((alive ∧ (sr(listen1) = x)) → (alive → lady1), s0)

(by clauses 4, 7, 2 and 1)

As expected, the only situation mentioned by the resulting formula is s0. This for-
mula characterises a situation in which the execution of listen1 and then of open1

leads to the goal.

2.3.5 A Variant of Situation Calculus

Because situation calculus is defined axiomatically, properties about action theories
that are not direct etailments are very hard to prove. An example of this difficulty is
the very long proof given by Reiter (2001b) for the fact that if Kϕ entails Kψ ∨ Kχ
in a theory Θ, then Kϕ entails Kψ in Θ, or Kϕ entails Kχ in Θ. Aiming at having a
“more workable” semantics for situation calculus, Lakemeyer and Levesque (2004)
(see also Lakemeyer and Levesque, 2005) proposed a variant of it called ES. This
logic is not as expressive as the entire situation calculus, but it handles the action
theories defined by Reiter.

The main difference between these two formalisms is the supression of situation
terms from the language of ES. The predicate do is replaced by the dynamic operator
[·]. A formula of the form [a]ϕ is read ‘ϕ holds after action a’. The language of ES

2.3. Situation Calculus 21

also contains a modal operator ‘K’,5 that was an abbreviation in situation calculus.
A formula of the form Kϕ is read ‘the agent knows that ϕ’. In addition, ES contains
a new operator �. The formula �ϕ is read ‘ϕ holds after any sequence of actions’.6

ES formulas are evaluated in tuples of the form 〈e, s, α〉 such that:

• s ∈ S is a function from P × A∗ to {0, 1} and from U × A∗ to P ∪ A, where U
is the set of variables of the language. It determines truth values of fluents and
co-referring standard names for variables after any sequence of actions in A∗;

• e ⊆ S is the epistemic state of the agent; and

• α ∈ A∗ is a (possibly empty) sequence of actions.

The satisfaction relation is inductively defined by:

〈e, s, α〉 |= t1 = t2 iff s(t1, α) is identical to s(t2, α)

〈e, s, α〉 |= p iff s(p, α) = 1

〈e, s, α〉 |= ¬ϕ iff not 〈e, s, α〉 |= ϕ

〈e, s, α〉 |= ϕ ∧ ψ iff 〈e, s, α〉 |= ϕ and 〈e, s, α〉 |= ψ

〈e, s, α〉 |= ∀x.ϕ iff for all std. names n of the right sort, 〈e, s, α〉 |= ϕ[x/n]

〈e, s, α〉 |= Kϕ iff for all s′ ∈ e, 〈e, s′, α〉 |= ϕ

〈e, s, α〉 |= [a]ϕ iff 〈e, s, α · s(a, α)〉 |= ϕ

〈e, s, α〉 |= �ϕ iff for all α′ ∈ A∗, 〈e, s, α · α′〉 |= ϕ

Lakemeyer & Levesque show that the same properties of knowledge as for situa-
tion calculus arise from this definition. For example, we have positive introspection,
i.e., �(Kϕ → KKϕ), negative introspection, i.e., �(¬Kϕ → K¬Kϕ), and also the
following epistemic successor state axiom for knowledge:

SSK. �([a]Kϕ↔ ((SF (a) ∧ K(SF (a) → [a]ϕ)) ∨

(¬SF (a) ∧ K(¬SF (a) → [a]ϕ))))

where SF is a special rigid predicate of the language such that the truth value of
SF (a) is known by the agent after the execution of the action a.
Action theories for ES are defined analogously as for situation calculus. That is,

a theory Θ is a set of formulas Φuna ∪ Φap ∪ Φss ∪ Φsf ∪ Φs0 , such that:

• Φuna contains a formula of the form a1 6= a2 for each pair of different action
names a1 and a2;

• Φap contains one formula of the form ∀a.�(poss(a) ↔ ψa), where ψa is a fluent
formula (i.e., a formula that does not mention Poss, SF , �, [a] or ‘K’);

5ES also have the ‘only knows’ operator ‘OK’. It allows, for instance, to infer more about the ignorance
of the agent. However, this operator is not taken into account by regression and its translation to situation
calculs is not provided. Therefore we decided to not include it in this short analysis.
6The logic ES also contains non-rigid predicates and second-order quantification. We do not pay at-

tention to these here.

22 Chapter 2. Searching for an Adequate Formalism

• Φss contains formulas of the form ∀a.�([a]p ↔ ψp(a)), where each ψp(a) is a
fluent formula;

• Φsf contains formulas of the form ∀a.�([a]SF (a) ↔ χa), where each χa is a
fluent formula; and

• Φs0 is a set of fluent formulas without free variables that describe the initial
situation.

Then, using axiom SSK above, the definition of the regression procedure for ES

is very similar to that for situation calculus (note that regressable formulas in ES

do not mention the operator �). Let ǫ be an empty sequence of actions and let an
action theory Θ be given. The regression operator regΘ is inductively defined on ϕ
as follows:

1. regΘ(α, t1 = t2) = (t1 = t2);

2. regΘ(α, p) for a fluent p is inductively defined on α by:

(a) regΘ(ǫ, p) = p,

(b) regΘ(α · a, p) = regΘ(α, ψp(a));

3. regΘ(α, SF (a)) = regΘ(α, χa);

4. regΘ(α, poss(a)) = regΘ(α, ψa);

5. regΘ(α,¬ϕ) = ¬ regΘ(α, ϕ);

6. regΘ(α, ϕ1 ∧ ϕ2) = regΘ(α, ϕ1) ∧ regΘ(α, ϕ2);

7. regΘ(α, ∀x.ϕ) = ∀x. regΘ(α, ϕ);

8. regΘ(α,Kϕ) is defined inductively on α by:

(a) regΘ(ǫ, α) = K(regΘ(ǫ, ϕ)),

(b) regΘ(α · a,Kϕ) = regΘ(α, (SF (a) ∧ K(SF (a) → [a]ϕ)) ∨ (¬SF (a) →
K(¬SF (a) → [a]ϕ)));

9. regΘ(α, [a]ϕ) = regΘ(α · a, ϕ).

Thus, ES uses quantification over actions to solve the representational frame
problem (just as RSL’s solution), but has not situation terms just as modal logics
of actions and modal logics of knowledge.

2.4. Epistemic Logic 23

2.4 Epistemic Logic

From this point on, all logics used in this thesis extend epistemic logics in a way or
in another. We call epistemic logics, a family of modal logics that use possible worlds
semantics to represent agent’s knowledge or beliefs. This idea, originally proposed
by Hintikka (1962), has been largely developed in more recent works (Fagin et al.,
1995), (Meyer and van der Hoek, 1995) and (van Ditmarsch et al., 2007b).

DEFINITION 15 (LANGUAGES LELC , LEL AND LPL)
Let P be a countable set of propositional letters, and let N be a finite set of agents.
The language of epistemic logic with common knowledge LELC is defined by the
following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ

where p ranges over P , i ranges over N , and G ranges over P(N). We also define
the language of epistemic logic without common knowledge LEL as the language
obtained from LELC by dropping the operator ‘C’; and the language of propositional
logic LPL as the language obtained from LEL by dropping the operator ‘K’.

The formula Kiϕ is read ‘agent i knows (or believes) that ϕ’, and the formula
CGϕ is read ‘all agents in group G commonly know (or believe) that ϕ’. We use the

common abbreviations for the operators ⊤,⊥, ∨,→,↔ and ‘K̂’. The later is the dual

of ‘K’, defined by K̂iϕ
def
= ¬Ki¬ϕ. And we define the ‘everybody knows’ operator

‘E’ as:

EGϕ
def
=

∧

i∈G

Kiϕ

where G ranges over P(N). In addition, let ‘M’be one of the operators ‘Ki’, ‘EG’ or
‘CG’. We sometimes write Mℓϕ to abbreviateM . . .Mϕ, wereM is repreated ℓ times
for ℓ ≥ 0, andM0ϕ is simply ϕ.
The formula EGϕ is read ‘every agent in groupG knows (or believes) that ϕ’. We

indeed need the operator ‘C’ of common knowledge (or common belief) to represent,
for example, that something is a convention in a group of agents. In this sense, saying
that something is known by everybody in the group of agents G is different from
saying that something is commonly known in the group of agents G. As a classical
example, consider the following, proposed by von Wright (1951):

Every driver must drive on the right side of the road. (2.1)

It was Lewis (1969) that first noted that even if every driver knows (2.1), it is still
possible that some driver will rationally choose to drive on the left side of the road.
To see this, suppose that there are only two drivers (agents), i.e., N = {i, j}. Also
suppose that everybody knows (2.1), and let us note it ENp. Now, it may be the
case that the agent i does not know that agent j knows p, i.e., it may be the case that
¬KiKjp. In this case i considers possible that j drives on the left side. Then, i may
decide to drive on the left side, because he does not feel really safe about driving
on the right side. Lewis goes further and also show that it is not enough that, in

24 Chapter 2. Searching for an Adequate Formalism

addition, everybody knows that everybody knows p. That is, it is not enough to have
ENENp, because it may be the case that agent i does not know that agent j knows
that i knows p, i.e., it may be the case that ¬KiKjKip. In other words, i considers
possible that j considers possible that i drives on the left side. Then i considers
possible that j drives on the left side. Then i may decide to drive on the left side.
Reasoning by induction, Lewis concludes that for any k ∈ N, it is not enough having
ENp ∧E2

Np ∧ · · · ∧ EkNp. To be a convention, we should have an infinite conjunction.
That is, the formula CGϕ should be equivalent to EGϕ ∧ E2

Gϕ ∧ . . . ad infinitum.
The later is equivalent to the following recursive definition CGϕ ↔ CG(ϕ ∧ EGϕ).
It follows that the operator ‘C’ is a fix point operator that adds expressivity to the
language. Its meaning can also be captured by the semantics given below.

DEFINITION 16 (EPISTEMIC MODEL)
An epistemic model is a tuple 〈S,R, V 〉, where:

• S is a nonempty set of possible worlds;

• R : N → P(S × S) associates an accessibility relation Ri to each i ∈ N ; and

• V : P → P(S) associates an interpretation Vp ⊆ S to each p ∈ P .

Let M = 〈S,R, V 〉 be an epistemic model and let s ∈ S, we call the pair (M, s) a
pointed epistemic model. For convenience, we define Ri(s) as the set {s′ | (s, s′) ∈ Ri}.

DEFINITION 17 (SATISFACTION RELATION)
Let (M, s) be a pointed epistemic model. The satisfaction relation ‘|=’ between pointed
epistemic models and formulas in LELC is inductively defined as follows:

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff notM, s |= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ

M, s |= Kiϕ iff Ri(s) ⊆ JϕKM

M, s |= CGϕ iff (
⋃

i∈G

Ri)
+(s) ⊆ JϕKM

where JϕKM = {s ∈ S | M, s |= ϕ} is the extension of ϕ in the model M , and the
operator ‘+’ in the last clause means transitive closure.

In the pointed epistemic model (M, s), the distinguished world s is interpreted as
the actualworld, and the set Ri(s) is the set of worlds that agent i considers possible
at s. Then a formula ϕ is known by agent i if and only if ϕ holds in all possible
worlds that are accessible for agent i, i.e., iff ϕ holds in all worlds of Ri(s). For
the operator ‘C’ we use the transitive closure of relations Ri. Then a formula ϕ is
commonly known by all agents, if and only if ϕ holds in all possible worlds that are
“reachable” from s.
A formula ϕ ∈ LELC is ELC-valid if and only if for all pointed epistemic mod-

els (M, s), (M, s) |= ϕ. All ELC-valid formulas can be derived in the Hilbert-style
axiomatisation given below:

2.4. Epistemic Logic 25

PL. all tautologies from classical propositional logic
K. Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)
C. CGϕ→

∧
i∈G Ki(ϕ→ CGϕ)

MP. From ⊢ELC ϕ and ⊢ELC ϕ→ ψ, infer ⊢ELC ψ
N. From ⊢ELC ϕ, infer ⊢ELC Kiϕ
I. From ⊢ELC ϕ→ EG(ϕ ∧ ψ), infer ⊢ELC ϕ→ CGψ

Note that in the axiomatisation given above, from the validity Kiϕ, we cannot
derive ϕ. In other words, when we say in the logic that an agent “knows” ϕ, ϕ
does not necessarily hold in the actual world. That is, the operator ‘K’ does not
respect the so-called ‘true knowledge’ property, and is therefore more accepted for
the definition of belief. To have ‘true knowledge’, one should impose that for all
formulas ϕ, Kiϕ → ϕ be valid in all epistemic models. This can be done by adding
one more axiom scheme to the axiomatisation of the logic, or by requiring that each
relation Ri be reflexive. Similarly, other properties can be required for knowledge,
according to the definition of knowledge one wants to use. Below, we list the most
common properties present in the recent literature of reasoning about knowledge:

• Reflexivity (or ‘true knowledge’): for all s ∈ S, s ∈ Ri(s). Axiom scheme:

T. Kiϕ→ ϕ

• Seriality: for all s ∈ S, there exists s′ ∈ Ri(s). Axiom scheme:

D. Ki¬ϕ→ ¬Kiϕ

• Symmetry: for all s, s′ ∈ S, if s′ ∈ Ri(s), then s ∈ Ri(s
′); Axiom scheme:

B. Kiϕ→ Ki¬Ki¬ϕ

• Transitivity (or ‘positive introspection’): for all s, s′, s′′ ∈ S, if s′ ∈ Ri(s) and
s′′ ∈ Ri(s

′), then s′′ ∈ Ri(s); Axiom scheme:

4. Kiϕ→ KiKiϕ

and

• Euclidicity (or ‘negative introspection’): for all s, s′, s′′ ∈ S, if s′ ∈ Ri(s) and
s′′ ∈ Ri(s), then s′′ ∈ Ri(s

′). Axiom scheme:

5. ¬Kiϕ→ Ki¬Kiϕ

A class of epistemic models, is the set of all epistemic models that respect a subset
of the properties above. Below, we list the classes that we address in this thesis and
their respective names.

• K: no restrictions;

26 Chapter 2. Searching for an Adequate Formalism

• KT: each Ri is reflexive;

• S4 (or KT4): each Ri is reflexive and transitive;

• KD45: each Ri is serial, transitive and euclidian; and

• S5 (or KT5): each Ri is reflexive and euclidian.

We note two things. First, K is also the class of all epistemic models. Second, we
have the following relations between the above classes: S5 ⊂ S4 ⊂ KT ⊂ K, and also
S5 ⊂ S4 ⊂ KD45 ⊂ K. From now on whenever an epistemic model is in K, we call it
a K-model. Similarly, we also use the terms KT-, KD45-, S4-, and S5-model.

DEFINITION 18 (VALIDITY, SATISFIABILITY AND VALID CONSEQUENCE)
Let C ∈ {K,KT, S4,KD45, S5}, and let Ψ ⊆ LELC. A formula ϕ ∈ LELC is:

• C-valid (noted: |=C ϕ) if and only if for all pointed C-models (M, s), (M, s) |= ϕ;

• C-satisfiable if and only if 6|=C ¬ϕ; and

• a valid C-consequence of Ψ (notation: Ψ |=C ϕ) if and only if for all pointed
C-models (M, s), if for all ψ ∈ Ψ, (M, s) |= ψ, then (M, s) |= ϕ.

Because of the relations between classes of models mentioned above, we obvi-
ously have that an ELC-valid formula is also K-, KT-, S4-, KD45- and S5-valid. We
therefore abuse notation and write |=ELC ϕ (instead of |=K ϕ) to mean that ϕ is valid
in all classes of epistemic models.

Before closing this section, we list several known complexity results for epistemic
logics. All of them were shown by Halpern and Moses (1992). Without the operator
‘C’ (i.e., for LEL), satisfiability checking is:

• NP-complete for |N | = 1 in KD45 and S5;

• PSPACE-complete for |N | ≥ 2 in KD45 and S5; and

• PSPACE-complete for any number of agents in K, KT and S4.

With the operator ‘C’ (i.e., for LELC), satisfiability checking is:

• PSPACE-complete for |N | = 1 in S4, KD45 and S5;

• EXPTIME-complete for |N | ≥ 2 in S4, KD45 and S5; and

• EXPTIME-complete for any number of agents in K and KT.

2.5. Epistemic Dynamic Logic 27

2.5 Epistemic Dynamic Logic

Epistemic dynamic logic (EDL) is a “union” of epistemic logic with propositional dy-
namic logic (PDL). The latter is presented, for example, in (Harel et al., 2000). EDL

was proposed by Herzig et al. (2000a) as an alternative formalism for reasoning
about actions and plans.7 As situation calculus, this logic uses modal operators ‘K’
to represent agent’s knowledge. But instead of the function do, EDL leaves situations
implicit and uses modal operators 〈·〉. The formula 〈a〉ϕmeans that ϕ holds after the
execution of a.

In this section we show how EDL can be used to model dynamic systems by
following the same “path” as in Section 2.3. That is, we start with its syntax and
semantics, and then we define meaningful plans, a solution to the frame problem,
and finish with the definition of a regression operator.

2.5.1 Syntax and Semantics

DEFINITION 19 (LANGUAGE LEDL)
Let P be a countable set of propositional letters, let A be a countable set of (abstract)
action letters and let N = {i}. The language of epistemic dynamic logic LEDL is the
set of formulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [α]ϕ

α ::= a | ?ϕ | α ;α | α ∪ α

where p ranges over P , and a ranges over A.

We use the common abbreviations for the operators ⊤, ⊥, ∨,→,↔, and 〈·〉. The

latter is defined by 〈a〉ϕ
def
= ¬[a]¬ϕ.

In this logic, contrarily to situation calculus, situation terms are not part of the
language, for they are left implicit. For instance, the intended meaning of a formula
ϕ that does not mention the modal operators [·] is that ϕ holds in the initial situation.
The formula Kiϕ is read ‘the agent knows (or believes) that ϕ’. In other words, ϕ
holds in all situations that the agent considers possible at the initial one. That is, it
has the same intuitive meaning as the formula Ki(ϕ

−1, s0) of the situation calculus.
The formula [α]ϕ is read ‘ϕ holds after every possible execution of α’. Then the
formula 〈a〉ϕ has the same intuitive meaning as ϕ−1[do(a, s0)] in situation calculus.
Note however that determinism is not imposed by the language of EDL.

This language also defines action operators. The operator ‘?’ is read ‘if’,8 the op-
erator ‘ ;’ is read ‘and then’ (or ‘sequence’) and the operator ∪ is ‘nondeterministic
choice’. Note however that EDL does not provide a constructor for modelling loops.
The PDL operator ‘∗’, normally used for that is not present in this logic. In some

7A similar (yet more expressive) logic was proposed by Koons and Asher (1994).
8In PDL literature, this action is normally called ‘test’ (Harel et al., 2000).

28 Chapter 2. Searching for an Adequate Formalism

situations, the impossibility of this kind of construction can be seen as a strong limi-
tation. But, as pointed out by Castilho et al. (1997), the version of PDL without ‘∗’ is
strongly complete,9 while full PDL is not.

DEFINITION 20 (EDL-MODEL)
An EDL-model is a tuple 〈S,R, T, V 〉, such that:

• S is a nonempty set of possible worlds (also called states or situations);

• R ⊆ (S × S) is a reflexive and euclidian relation;

• T : A → (S × S) associates a binary transition relation Ta ⊆ (S × S) to each
a ∈ A;

• V : P → P(S) associates an interpretation Vp ⊆ S to each p ∈ P ; and

• R and each Ta respect the interaction constraint: (Ta ◦R) ⊆ (R ◦ Ta).

The relation R models the agent’s knowledge. For convenience we also define
R(s) = {s′ | (s, s′) ∈ R}. Then, the set R(s) is the set of worlds that the agent consid-
ers possible at s. Similarly, the relation Ta models the transition relation associated
to the abstract action a. Letting Ta(s) = {s′ | (s, s′) ∈ Ta}, Ta(s) is the set of possible
results of the execution of a in s.
The interaction constraint ensures that the worlds that the agent considers pos-

sible after the execution of a, i.e., (Ta ◦ R)(s), are a subset of the outcomes of a in
the worlds that the agent considers possible at s, i.e., (R ◦ Ta)(s). In other words, all
worlds in (Ta ◦ R)(s) have an antecedent. This is the EDL version of perfect recall,
named no-forgetting by its authors.
LetM be an EDL-model as defined above and let s ∈ S, we call the pair (M, s) a

pointed EDL-model. The distinguished world s is intuitively interpreted as the actual
world (or the initial situation).

DEFINITION 21 (SATISFACTION RELATION)
Let (M, s) be a pointed EDL-model, the satisfaction relation ‘|=’ between pointed EDL-
models and formulas in LEDL is inductively defined as follows:

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff notM, s |= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ

M, s |= Kiϕ iff R(s) ⊆ JϕKM

M, s |= [a]ϕ iff Ta(s) ⊆ JϕKM

where JϕKM = {s′ | M, s′ |= ϕ} is the extension of ϕ in the modelM .

9A proof system is (weakly) complete if and only if |= ϕ implies ⊢ ϕ. And it is strongly complete if
and only if for all pairs (Ψ, ϕ),Ψ |= ϕ implies Ψ ⊢ ϕ.

2.5. Epistemic Dynamic Logic 29

DEFINITION 22 (VALIDITY, SATISFIABILITY AND VALID CONSEQUENCE)
Let Ψ ⊆ LEDL. A formula ϕ ∈ LEDL is:

• EDL-valid (notation: |=EDL ϕ) if and only if for all pointed EDL-models (M, s),
(M, s) |= ϕ;

• EDL-satisfiable if and only if 6|=EDL ¬ϕ; and

• a valid EDL-consequence of Ψ (notation: Ψ |=EDL ϕ) if and only if for all pointed
EDL-models (M, s), if for all ψ ∈ Ψ, (M, s) |= ψ, then (M, s) |= ϕ.

Note that there is no clause for the action operators. Let α1, α2 be complex ac-
tions. Formulas containing complex actions are interpreted by means of the follow-
ing abbreviations:

[?ϕ]ψ
def
= ϕ→ ψ

[α1 ;α2]ϕ
def
= [α1][α2]ϕ

[α1 ∪ α2]ϕ
def
= [α1]ϕ ∧ [α2]ϕ

For convenience we moreover define the following action operators:

skip
def
= ?⊤

if ϕ thenα1 elseα2
def
= (?ϕ ;α1) ∪ (?¬ϕ ;α2)

The intuitive interpretation of the operator skip is ‘do nothing’, and the construc-
tion if ϕ thenα1 elseα2 means ‘if ϕ holds, then execute α1, else execute α2’.
It follows from standard results in modal logic on Sahlqvist formulas (Blackburn

et al., 2001a) that all EDL-valid formulas can be derived in the following Hilbert-style
axiomatisation:

PL. all tautologies from classical propositional logic
K(Ki). Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)
T(Ki). Kiϕ→ ϕ
5(Ki). ¬Kiϕ→ Ki¬Kiϕ
K([a]). [a](ϕ→ ψ) → ([a]ϕ→ [a]ψ)
NF. Ki[a]ϕ→ [a]Kiϕ
MP. From ⊢EDL ϕ and ⊢EDL ϕ→ ψ, infer ⊢EDL ψ
N(Ki). From ⊢EDL ϕ, infer ⊢EDL Kiϕ
N([a]). From ⊢EDL ϕ, infer ⊢EDL [a]ϕ

Axioms K(Ki) and K(a) are standard axioms for epistemic and dynamic logics
respectively. Axiom T(Ki) corresponds to reflexivity of relation R: everything that
the agent knows is true. This is also called true knowledge in the literature of reason-
ing about knowledge. Axiom 5(Ki) corresponds to euclidicity of R: if the agent does
not know something, then he knows that he does not know it. It is also called neg-
ative introspection. Axioms T(Ki) and 5(Ki) together imply transitivity of R, which

30 Chapter 2. Searching for an Adequate Formalism

corresponds to the scheme Kiϕ → KiKiϕ: if the agent knows something, then he
knows that he knows it. This latter property is also called positive introspection. Fi-
nally, axiom NF corresponds to ‘no-forgetting’: if the agent knows in advance that
after the execution of a ϕ holds, then he indeed knows ϕ after the execution of a.

THEOREM 23 (Herzig et al. (2000a))
Validity checking in EDL is PSPACE-hard and consequence checking is EXPTIME-
hard.

This result follows from the fact that EDL extends epistemic logic, where valid-
ity checking is PSPACE-complete and consequence checking is EXPTIME-complete
(cf. Section 2.4).

EXAMPLE 24
We reuse Example 1 to see how to write down a system description in EDL. The
following formulas are examples of effect laws, i.e., they describe the result of the
execution of the abstract actions in A.

lady1 → [listen1]Kilady1

lady1 → [open1]married

¬lady1 → [open1]¬alive

Below, some examples of executability laws. These formulas describe the conditions
under which the abstract actions in A are executable.

〈listen1〉⊤ ↔ alive

〈open1〉⊤ ↔ alive

And now, some examples of so-called frame axioms. That is, formulas that describe
everything that does not change by the execution of each action.

lady1 → [listen1]lady1 ¬lady1 → [listen1]¬lady1

alive → [listen1]alive ¬alive → [listen1]¬alive

married → [listen1]married ¬married → [listen1]¬married

lady1 → [open1]lady1, ¬lady1 → [open1]¬lady1

¬alive → [open1]¬alive married → [open1]married

2.5.2 Meaningful Plans

Let the set ∆ be a system description containing formulas such as in Example 24.
Let an initial situation be described by the formula ϕ0 and a goal be described by
the formula ψ be given. The simple plan verification task in EDL can be defined
analogously as in situation calculus. Given a complex action α, this is the task of
verifying whether the following holds:

∆ |=EDL ϕ0 → 〈α〉ψ

2.5. Epistemic Dynamic Logic 31

For instance, it holds for ϕ0 = alive ∧ ¬married , ψ = alive ∧ married and α =
listen1 ; ((?¬lady1 ; open2) ∪ (?lady1 ; open1)). Note however, that similarly to situ-
ation calculus this definition of plan verification is not adequate. As claimed by
Levesque (1996), “the agent needs to know how to execute the program”. For ex-
ample, the agent may not know whether lady1 holds or not. Then, similarly to the
conditional plans defined in Section 2.3.2 the complex actions in EDL must be re-
stricted.

DEFINITION 25 (LANGUAGE LEDLm)
Let P be a countable set of propositional letters, let A be a countable set of (abstract)
action letters, and letN = {i}. The language of epistemic dynamic logic with meaningful
plans LEDLm is the set of formulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [π]ϕ

π ::= a | skip | π ;π | if τ thenπ elseπ

τ ::= Kiϕ | ¬τ | τ ∧ τ | Kiτ

where p ranges over P and a ranges over A.

In this definition the formulas τ are the epistemically interpretable formulas. That is,
the formulas whose truth value can be evaluated by the agent. Then, the complex
actions π are themeaningful plans. That is, the plans that can be executed by the agent.
In addition, to define plan verification correctly, the descriptions of the initial

situation and the goal must also be redefined. Then, let∆ be a system description, ϕ0

be an epistemically interpretable formula that describes the initial situation, ψ ∈ LPL

be a goal description, and let π be a meaningful plan. Then plan verification in EDL is
the task of verifying whether the following holds:

∆ |=EDL ϕ0 → 〈π〉ψ

Validity checking in EDL is PSPACE-hard. Nevertheless, the computational com-
plexity of plan verification is much lower.

THEOREM 26 (Herzig et al. (2000a))
Plan verification in EDL is Πp

2-complete.

2.5.3 The Dependence Relation

The logic defined does not respect the parsimony criterion. As shown in Example 24,
system descriptions require all the frame axioms. In order to decrease their size one
can, for example, take the approach of Castilho et al. (1997), described in this section.

DEFINITION 27 (DEPENDENCE RELATION)
A dependence relation Dep is a binary relation between primitive actions and literals.
That is, Dep ⊆ (A× L), where the set L = P ∪ {¬p | p ∈ P} is the set of literals, and
where P is the set of propositional letters of the language.

32 Chapter 2. Searching for an Adequate Formalism

Note that Dep is not in the object language, but in the metalanguage. It is used to
restrict the models of EDL.

DEFINITION 28 (Dep-MODEL)
Let Dep be a dependence relation, a Dep-model is an EDL-model such that for all
s, s′ ∈ S and for all a ∈ A, if s′ ∈ Ta(s), then:

• (a, p) 6∈ Dep and s 6∈ Vp implies s
′ 6∈ Vp; and

• (a,¬p) 6∈ Dep and s ∈ Vp implies s′ ∈ Vp.

The satisfaction relation and also the corresponding notions of Dep-validity (no-
tation: |=Dep ϕ), valid Dep-consequence (notation: Ψ |=Dep ϕ) and Dep-satisfiability
are redefined for Dep-models similarly as for EDL-models (see Definition 21).

Syntactically, the additional constraint of the above definition corresponds to the
following axiom scheme:

Pre([a]). ¬l → [a]¬l if (a, l) 6∈ Dep

EXAMPLE 29
For our running example, the dependence relation Dep can be defined as follows:

{(open1,married), (open1,¬alive), (open2,married), (open2,¬alive)}

Note that all the frame axioms of Example 24 are now valid. For suppose that, e.g.,
the pointed Dep-model (M, s) does not satisfy the formula alive → [listen1]alive .
Then, we have that (M, s) |= alive and also that there exists s′ ∈ Tlisten1

(s) such
that, (M, s′) |= ¬alive . But, because (listen1,¬alive) 6∈ Dep, we have that for all
s′ ∈ Tlisten1

(s), (M, s′) |= alive , which leads to a contradiction.

It is argued by Castilho et al. (1997) that these sets can be expected to be much
smaller than |P | × |A|. Therefore, the dependence relation can be used to solve the
representational frame problem.

2.5.4 Modal Logic Regression

The partial solution to the frame problem in modal logics, proposed by Demolombe
et al. (2003), is presented in this section. Similarly to RSL, it makes several simpli-
fying assumptions that, in fact, correspond to almost all the assumptions made in
Section 2.3.3. Nevertheless, some of them must be adapted to the present frame-
work. Hypotheses H1, H3, H4, H9 and H10 of page 13 stay the same. The other ones
are replaced by:

H2 All actions are purely ontic.

H5 Action precondition completeness: for each a ∈ A, it is possible to give a single
formula Poss(a) ∈ LPL which describes the executability precondition of a.
Moreover, it is supposed that this precondition is complete: if Poss(a) does
not hold, then the action a is not executable.

2.5. Epistemic Dynamic Logic 33

H6 Causal completeness: for each p ∈ P , it is possible to provide two finite sets
Cause+(p) ⊆ A and Cause−(p) ⊆ A, which contain the positive and negative
possible “causes” of p respectively. Moreover, it is supposed that these two
sets are complete: if a 6∈ Cause+(p), then the execution of a can never make p
true. Symmetrically, if a 6∈ Cause−(p), then the execution of a can never make
p false.

H7,H8 Effect precondition completeness: for each p ∈ P and each a ∈ Cause+(p), it is
possible to give a single formula γ+(a, p) ∈ LPL which describes the positive ef-
fect precondition of p by a. Symmetrically for each p ∈ P and each a ∈ Cause−(p),
it is possible to give a single formula γ−(a, p) ∈ LPL which describes the neg-
ative effect precondition of p by a. Moreover, it is supposed that these effect pre-
conditions are complete: if γ+(a, p) does not hold, then the execution of a can
never make p true. Symmetrically, if γ−(a, p) does not hold, then the execution
of a can never make p false.

Hypothesis H1 is implemented by the following axiom scheme:

Det. ¬[a]ϕ→ [a]¬ϕ

Hypotheses H3, H4 are implemented by the successor state axiom scheme for
knowledge below.

OSSK. [a]Kiϕ↔ (〈a〉⊤ → Ki[a]ϕ)

EDL does not have an ESSK because of H2. Based on results of Herzig et al.
(2000b), the authors of this solution argue that it does not represent “much loss of
generality”. In fact, we establish in Section 3.3 a stronger result that supports this
assumption. Then we leave to that section the discussion about the generality of
the axiom OSSK, and as a consequence, the generality of the regression method pre-
sented in this section.
The other hypotheses are implemented as follows. Suppose that all the Poss(a),

Cause+(p), Cause−(p), γ+(a, p), γ−(a, p) are given. Then we define the dependence
relation and the set ∆g of global axioms as follows:

• for every ai ∈ Cause+(p) put (ai, p) in Dep, and for every aj ∈ Cause−(p) put
(aj ,¬p) in Dep;

• for every a ∈ A, add the following executability axiom to∆g :

Poss(a) ↔ 〈a〉⊤

• for every p ∈ P and every ai ∈ Cause+(p), add the following two effect axioms
to ∆g:

γ+(ai, p) → [ai]p

(¬γ+(ai, p) ∧ ¬p) → [ai]¬p

34 Chapter 2. Searching for an Adequate Formalism

• for every p ∈ P and every aj ∈ Cause−(p) add the following two effect axioms
to ∆g:

γ−(aj , p) → [aj]¬p

(¬γ−(aj , p) ∧ p) → [aj]p

All together results in the following.

THEOREM 30 (Demolombe et al. (2003))
Let Dep and ∆g be obtained from the sets Poss(a), Cause+(p), Cause−(p), γ+(a, p)
and γ−(a, p), then

• if (a, p) 6∈ Dep and (a,¬p) 6∈ Dep, then
{Det,OSSK} ∪ ∆g |=Dep [a]p↔ (Poss(a) → p).

• if (a, p) 6∈ Dep and (a,¬p) ∈ Dep, then
{Det,OSSK} ∪ ∆g |=Dep [a]p↔ (Poss(a) → (p ∧ ¬γ−(a, p))).

• if (a, p) ∈ Dep and (a,¬p) 6∈ Dep, then
{Det,OSSK}∆g |=Dep [a]p↔ (Poss(a) → γ+(a, p) ∨ p).

• if (a, p) ∈ Dep and (a,¬p) ∈ Dep, then
{Det,OSSK} ∪ ∆g |=Dep [a]p↔ (Poss(a) → γ+(a, p) ∨ (p ∧ ¬γ+(a, p))).

This result gives us what is necessary to define the regression operator for EDL.

DEFINITION 31 (EDL REGRESSION OPERATOR)
Let the dependence relation Dep be given. The regression operator regDep is induc-
tively defined as follows:

1. regDep(p) = p;

2. regDep(¬ϕ) = ¬ regDep(ϕ);

3. regDep(ϕ ∧ ψ) = regDep(ϕ) ∧ regDep(ψ);

4. regDep(Kiϕ) = Ki regDep(ϕ);

5. regDep([a]p) = Poss(a) → p,
if (a, p) 6∈ Dep and (a,¬p) 6∈ Dep;

6. regDep([a]p) = Poss(a) → (p ∧ ¬γ−(a, p)),
if (a, p) 6∈ Dep and (a,¬p) ∈ Dep;

7. regDep([a]p) = Poss(a) → (γ+(a, p) ∨ p),
if (a, p) ∈ Dep and (a,¬p) 6∈ Dep;

8. regDep([a]p) = Poss(a) → (γ+(a, p) ∨ (p ∧ ¬γ−(a, p))),
if (a, p) ∈ Dep and (a,¬p) ∈ Dep;

2.5. Epistemic Dynamic Logic 35

9. regDep([a]¬ϕ) = ¬(Poss(a) → regDep(ϕ));

10. regDep([a](ϕ ∧ ψ)) = regDep([a]ϕ) ∧ regDep([a]ψ);

11. regDep([a]Kiϕ) = (Poss(a) → Ki regDep([a]ϕ)).

THEOREM 32 (EDL REGRESSION)
Suppose that ∆g and Dep are obtained from Poss, Cause+, Cause−, γ+ and γ− as
defined above. Then regDep(ϕ) ∈ LEL and∆g |=Dep ϕ if and only if |=S5 regDep(ϕ).

EXAMPLE 33
To illustrate regression we reuse Example 1 and apply the operator regDep to a very
simple formula ϕ = [open1]Ki(alive ∧ married). First though, it is necessary to pro-
vide the system description ∆ as required by the method. Note that, in fact, it is not
necessary to provide details about every action, since there is only one action in the
formula ϕ. But for the sake of the illustration the descriptions of all actions are given.
We start by the action preconditions:

Poss(listen1) = Poss(listen2) = Poss(open1) = Poss(open2) = alive

Next, we provide the sets of possible causes:

Cause+(married) = {open1, open2} Cause−(married) = ∅

Cause+(alive) = ∅ Cause−(alive) = {open1, open2}

Cause+(lady1) = ∅ Cause−(lady1) = ∅

And then, the effect preconditions:

γ+(open1,married) = lady1 γ+(open2,married) = ¬lady1

γ−(open1, alive) = ¬lady1 γ−(open2, alive) = lady1

The dependence relation Dep is then generated as follows (cf. Example 29):

{(open1,married), (open2,married), (open1,¬alive), (open2,¬alive)}

Note that actions listen1 and listen2 are not purely ontic. That is, by performing, e.g.,
listen1, the agent learns something. Therefore, the regression method just defined
cannot be performed for this action.10 But for the ontic actions open1 and open2 it
works:

regDep([open1]Ki(alive ∧ married) =

=Poss(open1) → Ki regDep([open1](alive ∧ married))

=Poss(open1) → Ki(regDep([open1]alive) ∧ regDep([open1]married))

=Poss(open1) → Ki((alive ∧ lady1) ∧ (lady1 ∧ married))

Note that the resulting formula holds in the states where the goal (alive∧married)
is reachable by only executing open1, as expected.

10In fact, the listening actions of this example could be decomposed into two ontic actions. The way
of doing this is explained in (Herzig et al., 2000b). We go into more details about this in Section 3.3.
Therefore, we postpone the discussion until there.

36 Chapter 2. Searching for an Adequate Formalism

2.6 Discussion and Conclusion

At this point, the similarities between the formalisms presented in Sections 2.3 and
2.5 became apparent. It shows that EDL can be used instead of situation calculus
(or logic ES). Note in addition that although sometimes claimed as an “essential
feature”, quantification over actions is not really necessary, as we saw in Section 2.5.
Then the choice between all these logics seems to be a matter of taste. In the rest

of the work however, we will see that it is not as simple as that. Being a modal logic,
EDL is more easily related to other modal logics independently developed in the
“dynamic logic tradition”. These logics have a long tradition in the investigation of
concepts such as common knowledge, relativised common knowledge, public and
private observations, and others that are interesting in multi-agent scenarios.
This, added to the fact that we prefer the simpler syntax and semantics of EDL,

without situation terms or quantification, made us choose the latter as the formalism
in which we continue our investigations.

Chapter 3

A Framework for Epistemic and
Ontic Change

3.1 Introduction

In this chapter, we address mono-agent environments where all action laws are
known and events are public (hypotheses H3 and H4 of page 13). Our aim is to
design a simple framework able to deal with scenarios where the agent does not
have complete information about the world. This framework is in terms of epistemic
dynamic logic (EDL), presented in Section 2.5.1.
We first show that in EDL every action can be decomposed into an epistemic ac-

tion followed by an ontic action. We then show that epistemic actions can be reduced
to sequences of observations. In the end of the chapter we show that the latter kind
of action is closely related to public announcements of public announcement logic
(Plaza, 1989).

3.2 The Separation Theorem

Roughly, purely ontic actions stand for actions that do not involve any perception:
the agent only knows that action a has been performed, without learning about its
(possibly nondeterministic or conditional) effects. On the other hand, purely epis-
temic actions cannot change facts about the world. Typical examples are sensing
actions (testing whether a proposition is true or not) and observations (learning that
a proposition is true). The definitions below make precise this distinction.

DEFINITION 34 (PURELY ONTIC ACTION)
The action o ∈ A is purely ontic in an EDL-model 〈S,R, T, V 〉, if and only if To satisfies
the two properties below.

• Epistemic determinism: if t, u ∈ To(s), then R(t) = R(u).

37

38 Chapter 3. A Framework for Epistemic and Ontic Change

• No-learning: if t ∈ (R ◦ To)(s) and To(s) 6= ∅, then t ∈ (To ◦R)(s).

Epistemic determinism corresponds to the fact that the agent cannot distinguish
between nondeterministic outcomes of an action: whether the coin falls heads or
tails, the agent only knows that a coin has been tossed and that the disjunction holds.
No-learning corresponds to the fact that if the agent considers that t is a possible
outcome of execution of o in s, then the agent keeps on considering t to be a possible
world after o. Syntactically, for a given system description∆, o is purely ontic if and
only if the two following properties hold for all ϕ ∈ LEDL (Herzig et al., 2000b):

EDet. ∆ |=EDL 〈o〉Kiϕ→ [o]Kiϕ

NL. ∆ |=EDL [o]Kiϕ→ ([o]⊥ ∨ Ki[o]ϕ)

DEFINITION 35 (PURELY EPISTEMIC ACTION)
The action e ∈ A is purely epistemic in an EDL-model 〈S,R, T, V 〉, if and only if it
satisfies the following property.

• Preservation: if t ∈ Te(s), then for all p ∈ P , (s ∈ Vp iff t ∈ Vp).

Preservation corresponds to the fact that epistemic actions do not change the
world. Syntactically, e is purely epistemic in the models of a system description
∆ if and only if the following hold for all ϕ ∈ LPL (Herzig et al., 2000b):

Pre. ∆ |=EDL ϕ→ [e]ϕ

Now, we show that these two kinds of actions are all we need: every transition
relation can be decomposed appropriately.

THEOREM 36 (SEPARATION)
Let a ∈ A and let ϕ ∈ LEDL. The formula ϕ is EDL-satisfiable if and only if there exist
actions o and e such that: o is purely ontic, e is purely epistemic, and ϕ[a/(e; o)] (the
formula obtained by replacing a by e; o in ϕ) is EDL-satisfiable.

PROOF SKETCH. From right to left is obvious.
From left to right is established by introducing intermediate worlds that correspond
to the outcome of action o.

It enables us to make a partition in the set A of abstract actions. From now on, it
is formed by the union of two disjoint sets: Ae of purely epistemic and Ao of purely
ontic actions. In addition, the conditions just given can become now axiom schemes
in our framework. Therefore, in addition to the axioms schemes of EDL, given in
Section 2.5.1, our framework also have the following ones. Let ψ ∈ LPL, ϕ ∈ LEDL,
e ∈ Ae, and let o ∈ Ao:

EDet(o). 〈o〉Kiϕ→ [o]Kiϕ

NL(o). Ki[o]ϕ→ ([o]⊥ ∨ Ki[o]ϕ)

Pre(e). ψ → [e]ψ

This decomposition permits a separated analysis of each of these two kinds of
actions as we make in the next section.

3.3. How Many Kinds of Epistemic Actions Are There? 39

3.3 How Many Kinds of Epistemic Actions Are There?

We start our analysis by considering the most basic kind of epistemic action: obser-
vations.1 It can roughly be understood as an exogenous event that makes the agent
observe that ϕ holds. It is noted !ϕ. Then the formula [!ϕ]ψ is read ‘ψ holds after all
possible observations of ϕ’. We now consider a variant of EDLwhere observations is
the only kind of epistemic actions allowed. We therefore restrict our attention to the
following language.

DEFINITION 37 (LANGUAGE LEDLo)
The language of the epistemic dynamic logic with observations LEDLo is the set of
formulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [α]ϕ

α ::= o | !ϕ | ?ϕ | α ;α | α ∪ α

where p ranges over P and o ranges over Ao.

DEFINITION 38 (EDLo-MODEL)
An EDLo-model is an EDL-model such that every T!ϕ satisfies the following con-
straints:

1. Preservation: if s′ ∈ T!ϕ(s), then for all p ∈ P , s ∈ Vp iff s′ ∈ Vp;

2. Executability: M, s 6|= ϕ if and only if T!ϕ(s) = ∅;

3. Determinism: ifM, s |= ϕ, then T!ϕ(s) is a singleton; and

4. No-forgetting and no-learning: if s′ ∈ T!ϕ(s), then R(s′) = (R ◦ T!ϕ)(s).

The first constraint says that observations are purely epistemic actions. The sec-
ond constraint says that truth of ϕ is a necessary condition for executability of !ϕ.
The third condition says that observations are deterministic. And the fourth condi-
tion says that (according to Definition 34) observations are also purely ontic actions!
It can be shown that the following formulas involving observations are validities

in this framework:

Pre(!). ψ → [!ϕ]ψ for all ψ ∈ LPL

Exe(!). ϕ↔ 〈!ϕ〉⊤

Det(!). 〈!ϕ〉ψ → [!ϕ]ψ

NF(!). Ki[!ϕ]ψ → [!ϕ]Kiψ

NL(!). [!ϕ]Kiψ → ([!ϕ]⊥ ∨ Ki[!ϕ]ψ)

However, other kinds of epistemic actions exist. For instance, listen1 (Example 1)
is not an observation. It is what we call a test: given a formula ϕ it returns whether ϕ

1This action is also called test that in some different approaches.

40 Chapter 3. A Framework for Epistemic and Ontic Change

holds or not. We note this kind of action !!ϕ, and the formula [!!ϕ]ψ is read ‘ψ holds
after all possible tests of ψ’. For example, listen1 can be written ‘!!lady1’.

2

In fact, the action listen1 is conditional: the test depends on the context. It is
noted, !!ϕ condψ, where ψ is the condition for the test whether ϕ. The same may
also be applied to observations. Then, the formula [!ϕ condψ]χ is read ‘under the
condition ψ, χ holds after all possible observations of ϕ’. For example, listen1 is
!!lady1 cond alive . We can see these constructions as abbreviations:

〈!ϕ condψ〉χ
def
= 〈!ψ〉〈!ϕ〉χ

〈!!ϕ〉χ
def
= 〈!ϕ〉χ ∨ 〈!¬ϕ〉χ

〈!!ϕ condψ〉χ
def
= 〈!ψ〉〈!!ϕ〉χ

We leave to the reader the confirmation that all these definitions match the intuitions
behind the actions introduced above.

At least tests are definable in terms of observations. But other kinds of purely
epistemic actions may be conceived. We want to have all of them in our logic. The
theorem below gives what we want. It says that every purely epistemic action can
be defined in terms of observations.

THEOREM 39 (OBSERVATIONS ARE GENERAL)
Suppose that P and A are finite. Let ϕ ∈ LEDL and let e be a deterministic purely
epistemic action. The formula ϕ is satisfiable in finite models if and only if there
exists a (complex) observation ǫ such that ϕ[ǫ/e] is satisfiable in finite models.

PROOF SKETCH. For a detailed proof the reader can see Appendix A.1.
From right to left: since ǫ is purely epistemic, take Te = Tǫ.
From left to right: supposeM, s |= ϕ. To every s ∈ S, we can associate a characteristic
formula δ(s) such thatM, s |= (s′) iff s and s′ satisfy the same formulas. For a proof
the reader can refer to van Benthem (2006). Now, we show that Te = TS

s∈S(?δ(s) ;γ(s)),

where γ(s) =
∨
t∈(Te◦R◦T−1

e)(s) δ(t) by using the fact that: ∀s, t, t
′ ∈ S, if t ∈ T!γ(s)(s)

and t′ ∈ Te(s) then t and t′ satisfy the same epistemic formulas.

In other words, in EDL, sequences and nondeterministic compositions of obser-
vations suffice to express every kind of purely epistemic action.

In fact, the operator ‘!’ is very closely related to public announcements of public
announcement logic (PAL), originally proposed by Plaza (1989). Both PAL and EDLo
have the same set of validities for announcements and ‘!’ operators respectively. In
other words, we have the following.

2This kind of action is also named test if or sensing in the literature. Do not confuse this operator with
‘?’, that we call here ‘if’.

3.3. How Many Kinds of Epistemic Actions Are There? 41

THEOREM 40
The following schemes are valid in EDLo.

[!ϕ]p↔ (ϕ→ p)

[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)

[!ϕ](ϕ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ)

[!ϕ]Kiψ ↔ (ϕ→ Ki[!ϕ]ψ)

PROOF. It is in Appendix A.2.

Some recent works (van Ditmarsch and Kooi, 2006a; van Ditmarsch et al., 2005)
show that PAL is very suitable for modelling multi-agent communications. In addi-
tion, it is possible to incorporate other notions such as belief and common knowl-
edge. PAL is itself a special case of other communication logics proposed, for exam-
ple, by Baltag and Moss (2004); Gerbrandy (1999); van Ditmarsch et al. (2005). This
suggests that EDLo can be extended to handle all these notions.

Chapter 4

Optimal Methods for Reasoning

4.1 Introduction

In this chapter we provide a solution to the inferential frame problem in the propo-
sitional case. Motivated by the results given in Section 3.3, among all possible epis-
temic actions we only consider observations: all agents observe that some propo-
sition holds in the world, and update their epistemic state accordingly. We give
a satisfiability-preserving polynomial transformation eliminating action operators
from formulas. This provides an optimal procedure for reasoning about actions:
both, in Reiter’s approach case (without knowledge operators) and in the Scherl &
Levesque’s approach case, the decision procedure works in nondeterministic poly-
nomial time. In the multi-agent case it works in polynomial space, and in the pres-
ence of common knowledge it works in exponential time. All these results are opti-
mal because they match the complexity of the underlying epistemic logic.
Technically, our approach is built on recent progress in dynamic epistemic logics

(DELC) (van Ditmarsch et al., 2005; Kooi, 2007). In this family of logics situation
terms are left implicit, and there is no quantification over actions.1 Thus the central
device in Reiter’s solution is not available. We show that nevertheless one can do
without it, and recast this framework in DELC.2 This logic has two kinds of actions:
announcements and assignments. Announcements can be used to model observa-
tions, while assignments are enough for modelling world-altering (ontic) actions.
DELC being an extension of Plaza’s public announcement logic, we extend Lutz’ op-

1If there were, a dynamic logic formulation of SSAs could be as in logic ES (see Section 2.3.5):

∀x.([x]p ↔ (poss(x) → (
_

{ai:p∈eff +(ai)}

(x = ai ∧ γ
+(ai, p))

∨ (p ∧
^

{a′

j
:p∈eff−(a′

j
)}

¬(x = a
′
j ∧ γ

−(a′
j , p))))))

2The same idea is outlined independently by van Benthem (2007). Another effort to bring together the
situation calculus and modal logics was done by Blackburn et al. (2001b).

43

44 Chapter 4. Optimal Methods for Reasoning

timal decision procedure for the latter (Lutz, 2006) to DELC, and show that we keep
optimality: checking satisfiability in DELC is shown to have the same complexity as
checking satisfiability in the underlying epistemic logic.
The remainder of the chapter is organised as follows: Sections 4.2 and 4.3 respec-

tively extends the solution to the frame problem proposed in (Demolombe et al.,
2003) to epistemic actions, and introduces dynamic epistemic logics. Section 4.4 con-
tains the translation of RSL’s approach into dynamic epistemic logic. Section 4.5
contains decision procedures for satisfiability checking in DELC for single-agent and
multi-agent cases, as well as for the case of common knowledge.

4.2 Reiter-style Action Theories

In this section we extend the account of Reiter’s solution proposed by (Demolombe
et al., 2003), where Reiter-style action theories are formulated in a propositional dy-
namic logic (PDL) framework.

4.2.1 Action Descriptions

Let us make the same simplifying assumptions listed in Section 2.5.4. Also let A be a
countable set of action letters (abstract atomic actions), and let a range over A.

DEFINITION 41 (ACTION DESCRIPTION)
An action description is a tuple 〈poss , eff +, eff −, γ+, γ−〉 such that:

• poss : A→ LELC assigns an executability precondition to each action;

• eff + : A→ P(P) assigns a finite set of possible positive effects to each action;

• eff − : A→ P(P) assigns a finite set of possible negative effects to each action;

• γ+ is a family of functions γ+(a) : eff +(a) → LELC. For each atom p in eff +(a),
it assigns a precondition for the action amaking p true; and

• γ− is a family of functions γ−(a) : eff −(a) → LELC. For each atom p in eff −(a),
it assigns a precondition for the action amaking p false.

If eff +(a) = eff
−(a) = ∅, then a is a purely epistemic action. In the sequel, all

epistemic actions are observations.
Note that: H3 and H4 make the functions inD not depend on agents; H1 ensures

that for any action a, its effect can be characterised by γ+(a) and γ−(a); Finiteness of
eff + and eff − is due to H9; and H10 allows to claim that the representational frame
problem is solved by such action descriptions.
In addition to H1–H10, we assume:

H11. All γ+(a, p) ∧ γ−(a, p) are inconsistent in ELC.

4.2. Reiter-style Action Theories 45

Remark. Demolombe et al. (2003) restrict the ranges of poss , γ+ and γ− to formu-
las in LPL. We have extended their range to formulas in LELC (with common knowl-
edge). This allows, for example, the description of actions such as ‘make a phone
call’, whose precondition of execution is that the phone number is known.
To illustrate the definition, we introduce a very simple single-agent example in-

volving an ontic action and two epistemic actions.

EXAMPLE 42
A robot does not know whether the light is on or not. The available ontic action is
toggling a switch, with:

poss(toggle) = ⊤

eff +(toggle) = {light}

eff
−(toggle) = {light}

γ+(toggle, light) = ¬light

γ−(toggle, light) = light

The observations are oDark and oBright , with:

poss(oDark) = ¬light poss(oBright) = light

eff +(oDark) = ∅ eff −(oDark) = ∅

eff +(oBright) = ∅ eff −(oBright) = ∅

4.2.2 Models for an Action Description

Let D be an action description for the action letters in A. Models for D are obtained
by adding transition relations to epistemic models (see Section 2.4).

DEFINITION 43 (D-MODEL)
AD-model is a tuple 〈S,R, T, V 〉, where 〈S,R, V 〉 is an epistemic model and

• T : A→ P(S × S) associates a relation Ta to each a ∈ A.

Letting Ta(s) = {s′ | (s, s′) ∈ Ta}, D-models must moreover satisfy the following
constraints:

C1. No-forgetting: (Ta ◦Ri)(s) ⊆ (Ri ◦ Ta)(s).

C2. No-learning: if Ta(s) 6= ∅ then (Ri ◦ Ta)(s) ⊆ (Ta ◦Ri)(s).

C3. Determinism: if t1, t2 ∈ Ta(s) then t1 = t2.

C4. Executability: Ta(s) 6= ∅ iff 〈S,R, V 〉, s |= poss(a).

C5. Postcondition (ontic): if t ∈ Ta(s), then

• p 6∈ eff
+(a) and s 6∈ Vp implies t 6∈ Vp;

46 Chapter 4. Optimal Methods for Reasoning

• p 6∈ eff −(a) and s ∈ Vp implies t ∈ Vp;

• p ∈ eff +(a) and 〈S,R, V 〉, s |= γ+(a, p) implies t ∈ Vp;

• p ∈ eff −(a) and 〈S,R, V 〉, s |= γ−(a, p) implies t 6∈ Vp;

• p ∈ eff
+(a) and 〈S,R, V 〉, s 6|= γ+(a, p) and s 6∈ Vp implies t 6∈ Vp; and

• p ∈ eff −(a) and 〈S,R, V 〉, s 6|= γ−(a, p) and s ∈ Vp implies t ∈ Vp.

The relation Ta models the transition relation associated to the abstract action a.
Ta(s) is the set of possible results of the execution of action a at s. Concerning the
constraints, C1 implements H3 and H4. It guarantees that every world in the set
(Ta ◦ Ri)(s) has an antecedent. This is also called perfect recall in (Fagin et al., 1995).
In other words, there is no action able to make agents forget facts. C2 is motivated by
H3–H1. For epistemic actions learning about the mere occurrence of an observation
is sufficient for each agent to make his epistemic state evolve: the execution of an
observation action a eliminates the possible worlds where poss(a) is false. C1 and
C2 together correspond to Scherl & Levesque’s SSA for knowledge in the case of
an ontic action. C3 is motivated by H1. C4 defines the condition for an action be
executable. C5 corresponds to Reiter’s SSA for facts (as opposed to knowledge).
Note that its consistency is guaranteed by H11: otherwise there could be a world s
where both γ+(a, p) and γ−(a, p) hold, in which case we should have both t ∈ Vp
and t 6∈ Vp for every t ∈ Ta(w).

4.2.3 Validity in D-models

We now introduce a combination of epistemic logic and PDL which will be inter-
preted in D-models. The language LD extends LELC with dynamic operators. It is
defined by the BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | [a]ϕ

where p ranges over P , i over N , G over P(N), and a over A.

Remark. The solution presented in Section 2.5.4 supposes that there is only one
agent. We do not make this restriction here and, in addition, consider common
knowledge.
We define the satisfaction relation ‘|=’ as for ELC, plus:

M, s |= [a]ϕ iff Ta(s) ⊆ JϕKM

A formula ϕ ∈ LD is:

• D-valid (|=D ϕ) if and only if for all pointed D-models (M, s), (M, s) |= ϕ; and

• D-satisfiable if and only if 6|=D ¬ϕ.

4.2. Reiter-style Action Theories 47

[a]p↔ (poss(a) → p) if p 6∈ eff +(a) ∪ eff −(a) (4.1)

[a]p↔ (poss(a) → (γ+(a, p) ∨ p)) if p ∈ eff +(a) and p 6∈ eff −(a) (4.2)

[a]p↔ (poss(a) → (¬γ−(a, p) ∧ p)) if p 6∈ eff +(a) and p ∈ eff −(a) (4.3)

[a]p↔ (poss(a) → (γ+(a, p) ∨ (¬γ−(a, p) ∧ p))) if p ∈ eff +(a) ∩ eff −(a) (4.4)

[a]¬ϕ↔ (poss(a) → ¬[a]ϕ) (4.5)

[a](ϕ1 ∧ ϕ2) ↔ ([a]ϕ1 ∧ [a]ϕ2) (4.6)

[a]Kiϕ↔ (poss(a) → Ki[a]ϕ) (4.7)

Table 4.1: Relevant D-validities (cf. Section 2.5.4, Theorem 30)

For our running example we have:

6|=D [toggle]Kilight

|=D [oDark][toggle]Kilight

|=D ¬Ki¬light → [toggle]¬Kilight

Remark. Although epistemic actions do not change the world, note that [a]poss(a)
is not D-valid, even if a is an epistemic action. To see this, consider a such that
poss(a) is the so-called Moore-sentence: p ∧ ¬Kip. Then after learning that p ∧ ¬Kip
holds the agent will know that p, hence ¬Kip does not hold any longer.

4.2.4 Modal Logic Regression

Let an action description D be given. Table 4.1 shows a number of valid equiva-
lences. In each of those validities the complexity of the formula under the scope
of the dynamic operator [·] decreases from the left to the right of the operator ‘↔’.
For formulas without the common knowledge operator this allows for the defini-
tion of a procedure regD , called regression in (Reiter, 2001a), that repeatedly applies
these equivalences until the resulting formula does not contain dynamic operators
any more. It follows that for every domain description D and formula ϕ without
operator ‘C’ we have:

|=D ϕ iff |=ELC regD(ϕ)

For example, [toggle]Kilight can be reduced to poss(toggle) → Ki[toggle]light (by
4.7) and then to Ki¬light (by 4.4). And the formula [oDark]Ki¬light can be reduced
to poss(oDark) → Ki[oDark]¬light (by 4.7) and then to ¬light → Ki(¬light → ¬light)
(by 4.1). The latter being ELC-valid, it follows that |=D [oDark][toggle]Kilight .

Unfortunately, regD is a suboptimal procedure because there are formulas such
that regD(ϕ) is exponentially larger than ϕ (Reiter, 2001a, Section 4.6).

48 Chapter 4. Optimal Methods for Reasoning

4.3 Dynamic Epistemic Logic

A different tradition in modelling knowledge and change has been followed in, for
example, Plaza (1989), Baltag et al. (1998) and van Benthem (2006). Logics in this
tradition are, e.g., those of van Ditmarsch et al. (2005) and Kooi (2007), which are
based on public announcements and public assignments.

4.3.1 Syntax

DEFINITION 44 (LANGUAGES LDELC AND LDEL)
The language of dynamic epistemic logic with common knowledge LDELC is the set of for-
mulas ϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | [ϕ]ϕ | [σ]ϕ

σ ::= ǫ | p :=ϕ, σ

where p ranges over P , i ranges over N , G ranges over P(N), and ǫ is an empty
assignment. Similarly to ELC, we define the language of dynamic epistemic logic
without common knowledge LDEL as the language obtained fromLDELC by dropping
the operator ‘C’.

Again, the formula [α]ϕ is read ‘ϕ holds after all possible executions of α’. When
α is the formula ϕ, we say that it is the public announcement of ϕ. The action p :=ϕ
is the public assignment of the truth value of ϕ to the atom p. For example, p :=⊥
is a public assignment, and Ki[p :=⊥]¬p is a formula. When assignments are made
in parallel, the same propositional letter can appear only once on the left hand side
of the operator ‘:=’. For convenience, we identify complex assignments of the form
(p1 :=ϕ1, . . . , pn :=ϕn) with sets of the form {p1 :=ϕ1, . . . , pn :=ϕn}, thus ǫ is iden-
tified with ∅.
The fragment ofDELCwithout assignments is Plaza’s public announcement logic

with common knowledge (PALC) (Plaza, 1989), whose fragment without common
knowledge we note PAL.
Announcements model epistemic actions, while assignments model ontic actions.

For example, the epistemic action oDark of Example 42 is modelled as¬light , and the
ontic action toggle as the assignment σtoggle = (light :=¬light), i.e., the truth value of
light is toggled.

4.3.2 Semantics

DEFINITION 45 (SATISFACTION RELATION)
Formulas in LDELC are interpreted in epistemic models. The satisfaction relation ‘|=’ is
extended with the following two clauses:

M, s |= [ϕ]ψ iff M, s |= ϕ implies Mϕ, s |= ψ

M, s |= [σ]ϕ iff Mσ, s |= ϕ

4.3. Dynamic Epistemic Logic 49

[ϕ]p↔ (ϕ→ p)

[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

[ϕ](ψ1 ∧ ψ2) ↔ ([ϕ]ψ1 ∧ [ϕ]ψ2)

[ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ)

[σ]p↔ σ(p)

[σ]¬ϕ↔ ¬[σ]ϕ

[σ](ϕ ∧ ψ) ↔ ([σ]ϕ ∧ [σ]ψ)

[σ]Kiϕ↔ Ki[σ]ϕ

Table 4.2: Relevant DELC-validities.

whereMϕ andMσ are updates of the epistemic modelM that are defined as:

Mϕ = 〈Sϕ, Rϕ, V ϕ〉

Sϕ = S ∩ JϕKM

Rϕi = Ri ∩ (JϕKM × JϕKM)

V ϕ(p) = Vp ∩ JϕKM

and

Mσ = 〈S,R, V σ〉

V σ(p) = Jσ(p)KM

and where σ(p) is the formula assigned to p in σ. If there is no such formula, i.e., if
there is no p :=ϕ in σ, then σ(p) = p. (In particular ǫ(p) = p for all p.)

DEFINITION 46 (VALIDITY AND SATISFIABILITY)
A formula ϕ ∈ LDELC is:

• DELC-valid (notation: |=DELC ϕ) if and only if for all pointed epistemic models
(M, s), (M, s) |= ϕ; and

• DELC-satisfiable if and only if 6|=DELC ¬ϕ.

For example,Kip→ [q := p]Kiq is DELC-valid. Some DELC-validities are listed in
Table 4.2. When there are no operators ‘C’ then the equivalences in Table 4.2 obvi-
ously allow the definition of a regression procedure regDEL, that eliminates dynamic
operators from an expression (van Ditmarsch et al., 2005):

|=DEL ϕ iff |=ELC regDEL(ϕ)

DEL-regression has the same problem of D-regression: the size of the formula
regDEL(ϕ) can be exponentially larger than that of ϕ. An example is the family of

50 Chapter 4. Optimal Methods for Reasoning

formulas defined in (Lutz, 2006, Theorem 2):

ϕ0 = ⊤

ϕn+1 = 〈〈ϕn〉¬Ki¬⊤〉¬Kj¬⊤

Moreover, no such equivalences exist for the operator ‘C’ (Baltag et al., 1998).
In the next sections we provide a better solution. The first step is to formally link

Reiter-style action descriptions D with DELC.

4.4 From Toronto to Amsterdam

The D-validities presented in Table 4.1 are similar to the DELC-validities presented
in Table 4.2. We show in this section that:

• the executability preconditions poss in D can be modelled in DELC as public
announcements, because once an action is executed, all the agents now know
that it was executable at the previous instant; and

• the changes brought about by actions can be modelled as public assignments.

DEFINITION 47 (TRANSLATION δD)
Let an action description D be given. We define the translation δD inductively as
follows:

δD(p) = p

δD(¬ϕ) = ¬δD(ϕ)

δD(ϕ ∧ ψ) = δD(ϕ) ∧ δD(ψ)

δD(Kiϕ) = KiδD(ϕ)

δD(CGϕ) = CGδD(ϕ)

δD([a]ϕ) = [poss(a)][σa]δD(ϕ)

where σa is the complex assignment:

{p :=γ+(a, p) ∨ p | p ∈ eff +(a) and p 6∈ eff −(a)} ∪

{p :=¬γ−(a, p) ∧ p | p 6∈ eff +(a) and p ∈ eff −(a)} ∪

{p :=γ+(a, p) ∨ (¬γ−(a, p) ∧ p) | p ∈ eff +(a) ∩ eff −(a)}

Note that δD(a) is well-defined because H9 guarantees that eff +(a) and eff −(a)
are finite.
For example, δD([oDark]¬light) = [¬light][ǫ]¬light , which is equivalent to ⊤ (re-

member that ǫ is the empty assignment); and also:

δD([toggle]¬light) = [⊤][light :=¬light ∨ (¬light ∧ light)]¬light

which is equivalent to light .

4.4. From Toronto to Amsterdam 51

We now show that this translation is polynomial. First we define the function
‘len’ that returns the length of a given expression. In the case of sets and tuples, we
count the length of each element and also the commas and delimeters. That is, the
length of a given set X is:

len(X) = 1 +
∑

x∈X

(1 + len(x))

while for a given tuple Y = 〈y1, . . . , yn〉 it is

len(Y) = 1 +
n∑

k=1

(1 + len(yk))

For formulas in LELC, we use the recursive definition that follows (note that G is a
set):

len(p) = 1

len(¬ϕ) = 1 + len(ϕ)

len(ϕ ∧ ψ) = 1 + len(ϕ) + len(ψ)

len(Kiϕ) = 2 + len(ϕ)

len(CGϕ) = 1 + len(G) + len(ϕ)

For formulas in LD we also use:

len([a]ϕ) = 2 + len(ϕ)

and for formulas in LDELC we also use (we consider σ as a set of assignments):

len([ϕ]ψ) = 1 + len(ϕ) + len(ψ)

len([σ]ϕ) = 1 + len(σ) + len(ϕ)

len(p :=ϕ) = 2 + len(ϕ)

For example, len([{p := q, q := p∧q}]Kip = 1+len({p := q, q := p∧q})+len(Kip) =
12 + 2 + 1 = 15.

LEMMA 48 (POLYNOMIAL TRANSLATION)
Let D be a finite Reiter-style action description and let ϕ ∈ LD. Then len(δD(ϕ)) ≤
O(len(D) × len(ϕ)).

PROOF. It is given in Appendix A.3.

Now, the following correspondence holds (see also Tables 4.1 and 4.2).

THEOREM 49
Let D be a Reiter-style action description and let ϕ ∈ LD . Then ϕ is D-satisfiable if
and only if δD(ϕ) is DELC-satisfiable.

PROOF. It is given in Appendix A.4.

Hence D-satisfiability is polynomially reduced to DELC-satisfiability.

52 Chapter 4. Optimal Methods for Reasoning

4.5 Optimal Regression

We now give a polynomial satisfiability-preserving reduction from DELC to ELC.
The idea is first eliminate assignments, and then apply Lutz’ reduction (Lutz, 2006)
to eliminate announcements.

4.5.1 Eliminating Assignments

We apply a technique that is fairly standard in automated theorem proving (Non-
nengart and Weidenbach, 2001).

THEOREM 50 (ASSIGNMENT ELIMINATION)
Let [p1 :=ϕ1, . . . , pn :=ϕn]ψ be a subformula of a formula χ in LDELC. Let ψ′ be ob-
tained from ψ by substituting every occurrence of pk by xpk

, where xpk
is a new

propositional letter not occurring in χ. Let χ′ be obtained from χ by replacing
[p1 :=ϕ1, . . . , pn :=ϕn]ψ by ψ′. Let B abbreviate the conjunction of equivalences (bi-
implications)

∧
1≤k≤n(xpk

↔ ϕk).

1. For |N | = 1. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if

χ′ ∧
∧

ℓ≤md(ϕ)

Kℓ
iB

is DEL-satisfiable, where the modal depth md(ϕ) is the maximal number of
nested modal operators of ψ.

2. For |N | ≥ 2. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if

χ′ ∧
∧

ℓ≤md(ϕ)

EℓNB

is DEL-satisfiable.

3. If χ ∈ LDELC, then χ is DELC-satisfiable if and only if

χ′ ∧ CNB

is DELC-satisfiable.

PROOF. To simplify suppose that the subformula of χ is [p :=ϕ]ψ. We do the last
case here. The other ones are analogous, and left to the reader.

From the left to the right. Suppose that M = 〈S,R, V 〉 is an epistemic model such
thatM, s |= χ. Then we construct an epistemic modelMxp

= 〈S,R, Vxp
〉, where

Vxp
(p) = Vp for all p 6= xp and

Vxp
(xp) = JϕKM

4.5. Optimal Regression 53

First, note thatMxp
, s |= χ (because xp does not appear in χ).

Second, note thatMxp
|= xp ↔ ϕ (because JxpKMxp

= JϕKMxp
).

ThereforeMxp
, s |= CN (xp ↔ ϕ), i.e.,Mxp

, s |= CNB.

Third, note that for every t ∈ S we have that:
Mxp

, t |= [p :=ϕ]ψ
iffMp :=ϕ

xp
, t |= ψ

iffMp :=ϕ
xp

, t |= ψ′ (because V p :=ϕ
xp

(p) = V p :=ϕ
xp

(xp)).
ThereforeMxp

|= [p :=ϕ]ψ ↔ ψ′

ThereforeMxp
, s |= χ′ ∧ CNB.

From the right to the left.
Suppose w.l.o.g. thatM is generated from s.
Suppose thatM, s |= χ′ ∧ CN (xp ↔ ϕ).
ThenM |= xp ↔ ϕ, i.e., V (xp) = JϕKM .
Then, for all t ∈ S:
M, t |= ψ′ iffMp :=ϕ, t |= ψ (because V (xp) = JϕKM = V p :=ϕ(p)).
In other words,M |= ψ′ ↔ [p :=ϕ]ψ.
ThereforeM, s |= χ.

Intuitively, the conjuncts Kℓ
i(xpk

↔ ϕk) set the value of the new letter xpk
to that

of ϕk. To guarantee that the equivalences hold everywhere in the model we need to
use a master modality. In the case of DEL we use the ‘everybody knows’ operator,
that has to be iterated up to the modal depth of the formula.
Renaming avoids exponential blow-up. This allows the definition of reduction

operators regDEL, regDELC that iteratively eliminate all assignments.
For example, consider the formula ¬[¬light][light :=¬light]Kilight . Its reduction

is ¬[¬light]Kixlight ∧ Ki(xlight ↔ ¬light).

THEOREM 51
regDEL and regDELC are polynomial transformations, and preserve satisfiability in the
respective logics.

PROOF. Satisfiability-equivalence follows from Theorem 50.

For the common-knowledge case we prove that the size of the reduction of χ is at
most len(χ) × (len(χ) + 6), and for the case of DEL we prove that the size of the
reduction of χ is at most len(χ)2×(len(χ)+6). Indeed, in Theorem 50 the size of χ′ is
at most len(χ), the size of each equivalence inB is at most len(χ)+4, and the number
of these equivalences is bound by the number of (atomic) assignments in χ, which is
at most len(χ). In the case of operators ‘K’ and ‘E’ the number of equivalences has
to be multiplied by the modal depth of χ, which is at most len(χ).

1. For |N | = 1. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if regDEL(χ) is
PAL-satisfiable;

2. For |N | ≥ 2. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if regDEL(χ) is
PAL-satisfiable;

54 Chapter 4. Optimal Methods for Reasoning

3. If χ ∈ LDELC, then χ is DELC-satisfiable if and only if regDELC(χ) is PALC-
satisfiable.

4.5.2 Eliminating Announcements

Once assignments are eliminated, we can eliminate announcements by Lutz’ proce-
dure. For simplicity we show only the case without common knowledge.
First we compute the set of contextual subformulas which are inductively defined

as follows.

Sub(p) = {(ǫ, p)}

Sub(¬ϕ) = Sub(ϕ) ∪ {(ǫ,¬ϕ)}

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {(ǫ, ϕ ∧ ψ)}

Sub(Kiϕ) = Sub(ϕ) ∪ {(ǫ,Kiϕ)}

Sub([ϕ]ψ) = Sub(ϕ) ∪ {(ϕ · τ, χ) | (τ, χ) ∈ Sub(ψ)} ∪ {(ǫ, [ϕ]ψ)}

where τ denotes lists, ǫ is the empty list, and ‘·’ is concatenation.
Intuitively, Sub(ϕ) is the set of relevant subformulas of ϕ together with the se-

quence of announcements in the scope of which they occur. (τ, ψ) ∈ Sub(ϕ) means
that subformula ψ of ϕ is in the scope of the sequence τ of announcements. Now, let
ϕ be a multi-agent formula whose DEL-satisfiability is to be decided. We introduce a
set of fresh propositional letters Pϕ = {xτψ | (τ, ψ) ∈ Sub(ϕ)}. Then the reduction of
ϕ is:

regDEL(ϕ) = xǫϕ ∧
∧

ℓ≤md(ϕ)

∧

(τ,ψ)∈Sub(ϕ)

EℓN(Bτψ)

wheremd(ϕ) is the modal depth of ϕ, EℓNϕ abbreviatesEN . . .ENϕ (ℓ times), and the
bi-implications Bτψ are inductively defined as follows:

Bτp = xτp ↔ p
Bτ¬ϕ = xτ¬ϕ ↔ ¬xτϕ
Bτϕ∧ψ = xτϕ∧ψ ↔ (xτϕ ∧ xτψ)

BτKiϕ
= xτKiϕ

↔ Ki(
∧
µ∈pre(τ) x

µ
µ/τ → xτϕ)

Bτ[ϕ]ψ = xτ[ϕ]ψ ↔ (xτϕ → xτ ·ϕψ)

and where pre(τ) is the set of true prefixes of τ and µ/τ is the leftmost symbol of τ
that is not in µ. When the sequence τ is empty, then the conjunction collapses to true.
Bτψ guarantees that x

τ
ψ is true exactly where ψ is true.

When applied to a formula in LDEL without assignments, regDEL returns a for-
mula in LEL. For example, consider the formula ¬[p]Kip. The set of relevant bi-
implications is B = {xǫ¬[p]Kip

↔ ¬xǫ[p]Kip
, xǫ[p]Kip

↔ (xǫp → xǫ·pKip
), xǫ·pKip

↔ Ki(x
ǫ
p →

xǫ·pp), xǫ·p ↔ p, xǫ ↔ p}. Then regDEL(¬[p]Kip) = xǫ
¬[p]Kip

∧ Ki

∧
B, which suc-

cessively implies xǫp, ¬x
ǫ·p
Kip
, and ¬Ki(x

ǫ
p → xǫ·pp). The latter is inconsistent with

Ki(x
ǫ·p ↔ p) and Ki(x

ǫ ↔ p)which are the last two bi-implications prefixed by Ki.

4.6. Discussion and Conclusion 55

THEOREM 52 (Lutz (2006))
PAL-satisfiability has the same computational complexity as EL-satisfiability.

4.5.3 Eliminating Both

Via Theorem 49 one obtains:

COROLLARY 53
D-satisfiability has the same compuational complexity as EL-satisfiability.

In particular, when each Ri is an equivalence relation,D-satisfiability is:

1. NP-complete if |N | = 1;

2. PSPACE-complete if |N | ≥ 2; and

3. EXPTIME-complete if common knowledge is involved.

4.6 Discussion and Conclusion

We have modelled the frame problem in dynamic epistemic logic by providing cor-
respondents for situation calculus style ontic and observation actions, and we have
given complexity results using that translation. As far as we know, this is the first
optimal decision procedure for a Reiter-style solution to the frame problem.
Our results apply to the plan verification problem:3 let an action description D,

an LELC-formula ϕ describing the initial situation, an LELC-formula ψ describing the
goal, and a sequence of actions (or plan) made up of the actions a1, . . . , an ∈ A be
given, we have to decide whether:

|=D ϕ→ 〈a1〉 . . . 〈an〉ψ

Upper bounds follow from Corollary 53. Lower bounds are obtained because satis-
fiability of χ can be checked by putting D = ∅, ϕ = ¬χ, n = 0 and ψ = ⊥. Therefore,
the plan verification problem inherits the complexity of the underlying logic.
Scherl & Levesque’s epistemic extension of Reiter’s solution allows for sensing

actions !!ϕ, which test whether some formula ϕ is true. Such sensing actions can be
viewed as abbreviating the nondeterministic composition of two announcements:
!!ϕ = ϕ ∪ ¬ϕ. The expansion of such abbreviations leads to exponential blow-up,
which does not allow us to extend our approach and integrate primitive sensing
actions: it is not clear how the associated successor state axiom (cf. axiom ESSK in
Section 2.3.5)

[!!ϕ]Kiψ ↔ ((ϕ→ Ki(ϕ→ [!!ϕ]ψ)) ∧ (¬ϕ→ Ki(¬ϕ→ [!!ϕ]ψ)))

could be transformed into a polynomial transformation. Further evidence that the
presence of sensing actions increases complexity is provided by the result in (Herzig
et al., 2000a) that plan verification in this case is Πp

2-complete. We leave integration
of sensing actions as future work.

3Called “projection problem” in (Scherl and Levesque, 2003, p.22).

Chapter 5

Reasoning with Analytic
Tableaux

5.1 Introduction

Traditionally, proof systems for dynamic epistemic logics are obtained by means of
reduction axioms. In the particular case of PAL, they permit the translation of each
formula in LPAL into an equivalent formula in LEL. The well-known proof system
for PAL is therefore obtained by just extending that of EL by the former’s reduction
axioms. It follows that both logics have the same expressivity. Nevertheless the
translated formula can be exponentially larger than the original one. That is, PAL is
strictly more succinct. This is the reason why PAL is considered to be more conve-
nient for reasoning about knowledge (van Benthem et al., 2006). Curiously however,
satisfiability checking in PAL is PSPACE-complete (Lutz, 2006), as well as in EL.
In this chapter, we present a tableau-calculus for PAL. The method decides satis-

fiability without reducing PAL-formulas to another language.

5.2 A Tableau Method for Public Announcement Logic

We present in this section a proof method for public announcement logic that uses
tableaux. Exactly in the same way as all other tableau methods, given a formula ϕ,
it systematically tries to construct a model for it. When it fails, ϕ is inconsistent and
thus its negation is valid.
We present a modular method that can be used whenever the underling epis-

temic logic is any one of K, KT, S4 and S5. If no restriction is imposed over the
accessibility relations inR, then we call the resultant logic K-PAL. If eachRi is reflex-
ive, then the resultant logic is called KT-PAL. If each Ri is reflexive and transitive,
then we call the resultant logic S4-PAL. And finally, if each Ri is reflexive, transitive
and symmetric, then we call the resultant logic S5-PAL.

57

58 Chapter 5. Reasoning with Analytic Tableaux

In our representation formulas are prefixed by a number that represents possible
worlds in the model, similar to (Fitting, 1983, Chapter 8). Formulas are also prefixed
by finite sequences of announcements corresponding to successive model restric-
tions, as in (Lutz, 2006). Given a finite sequence of formulas ψk = (ψ1 . . . ψk), for
each 1 ≤ i ≤ k, the sequence (ψ1 . . . ψi) is noted ψi whereas ψ0 = ǫ denotes the
empty sequence. In addition, we writeM |ψ forMψ, andM |ψk forM |ψ1| . . . |ψk.

DEFINITION 54 (LABELLED FORMULA)
A labelled formula is a triple λ = (ψk, x, ϕ)where

• ψk is a finite sequence (ψ1 . . . ψk) of formulas in LPAL;

• x ∈ N; and

• ϕ ∈ LPAL.

The pair ψk, x is the label of the formula ϕ. It represents the possible world named x
in the epistemic model named ψk.

DEFINITION 55 (SKELETON)
A skeleton is a ternary relation Σ ⊆ (N × N × N) that represents the accessibility
relations. A branch is a pair b = (Λ,Σ) where Λ is a set of labelled formulas and Σ is
a skeleton.

DEFINITION 56 (TABLEAU)
A tableau is a set T i = {bi1, b

i
2, . . . } of branches. A tableau T

i+1 is obtained from a
tableau T i if and only if T i+1 = (T i \ {bij}) ∪B for some b

i
j = (Λ,Σ) ∈ T i and some

finite set B of branches generated from bij by the application of one of the tableau
rules defined below:

R¬: if (ψk, x,¬¬ϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)},Σ)}.

R∧: if (ψk, x, ϕ1 ∧ ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψ
k, x, ϕ2)},Σ)}.

R∨: if (ψk, x,¬(ϕ1 ∧ ϕ2)) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)},Σ), (Λ ∪ {(ψk, x,
¬ϕ2)},Σ)}.

RK: if (ψk, x,Kiϕ) ∈ Λ and (i, x, x′) ∈ Σ, then B = {(Λ0,Σ), . . . (Λk,Σ)}, where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ

k−2, x′, ψk−1), (ψ
k−1, x′,¬ψk)}

Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′, ϕ)}.

RT: if (ψk, x,Kiϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)},Σ)}.

5.2. A Tableau Method for Public Announcement Logic 59

R4: if (ψk, x,Kiϕ) ∈ Λ and (i, x, x′) ∈ Σ, then B = {(Λ1,Σ), . . . (Λk+1,Σ)},
where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ

k−2, x′, ψk−1), (ψ
k−1, x′,¬ψk)}

Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′,Kiϕ)}.

R5↑: if (ψk, x,Kiϕ) ∈ Λ and (i, x′, x) ∈ Σ, then B = {(Λ1,Σ), . . . (Λk+1,Σ)},
where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ

k−2, x′, ψk−1), (ψ
k−1, x′,¬ψk)}

Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′,Kiϕ)}.

RK̂: if (ψk, x,¬Kiϕ) ∈ Λ, then B = {(Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk),

(ψk, x′,¬ϕ)},Σ ∪ {(i, x, x′)})} for some x′ that does not appear in Λ.

R[·]: if (ψk, x, [ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)},Σ), (Λ ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)},Σ)}.

R〈·〉: if (ψk, x,¬[ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψ
kϕ1, x,¬ϕ2)},Σ)}.

Given a formula ϕ ∈ LPAL, the tableau T
0 def

= {b01}
def
= {({(ǫ, 0, ϕ)}, ∅)} is the initial

tableau for ϕ. A tableau for ϕ is a tableau that can be obtained from the initial tableau
for ϕ by successive applications of tableau rules.

The Rules R¬, R∧ and R∨ are standard. The intuition behind rules R[·] and
R〈·〉 reflects the semantics of public announcements. The model (M, s) satisfies [ψ]ϕ
if and only if (M, s) satisfies ¬ψ or it satisfies ψ and the restricted model satisfies
ϕ. Rule R〈·〉 is the dual of rule R[·]. The rules for the knowledge operators are
quite different from their correspondent in EL. When a new world x′ is created in

M |ψ0|ψ1| . . . |ψk by rule RK̂, we must be sure that this world can consistently belong
toM and that it is not deleted by one of the announcements of the sequence. In the
case of rule RK, the world x′ was already created, but possibly in a model restricted
by a different sequence of announcements. We therefore must be sure that x′ would
also be present in a model generated by the sequence of announcements we have in
hand. This is also the case for rules R4 (transitivity) and R5↑ (symmetry), but not for
rule RT (reflexivity), because in the latter we do not visit a different world.

The tableau method for K-PAL consists on rules R¬, R∧, R∨, RK, RK̂, R[·] and
R〈·〉. For KT-PAL, we also have rule RT. For S4-PAL, we have all rules for KT-PAL

plus rule R4. And for S5-PAL, we have all rules for S4-PAL plus rule R5↑.

60 Chapter 5. Reasoning with Analytic Tableaux

1. ǫ, 0,¬[p ∧ ¬Kip]¬(p ∧ ¬Kip)
2. ǫ, 0, p ∧ ¬Kip (R〈·〉 : 1)
3. p ∧ ¬Kip, 0,¬¬(p ∧ ¬Kip) (R〈·〉 : 1)
4. p ∧ ¬Kip, 0, p ∧ ¬Kip (R¬ : 3)
5. p ∧ ¬Kip, 0, p (R∧ : 4)
6. p ∧ ¬Kip, 0,¬Kip (R∧ : 4)

7. ǫ, 1, p ∧ ¬Kip (i, 0, 1) ∈ Σ (RK̂ : 6)

8. p ∧ ¬Kip, 1,¬p (RK̂ : 6)
9. ǫ, 1, p (R∧ : 7)
10. ǫ, 1,¬Kip (R∧ : 7)

closed (8, 9)

Figure 5.1: Closed tableau for the formula [p ∧ ¬Kip]¬(p ∧ ¬Kip).

DEFINITION 57
Let b = (Λ,Σ) be a branch. The set of labelled formulas Λ is blatantly inconsistent if

and only if {(ψk, x, ϕ), (ψk, x,¬ϕ)} ⊆ Λ or {(ψk, x, p), (χℓ, x,¬p)} ⊆ Λ. The branch b
is closed if and only if Λ is blatantly inconsistent. The branch b is open if and only if it
is not closed. A tableau is closed if and only if all its branches are closed. A tableau is
open if and only if it has at least one open branch.

Note that (ψk, x, p) and (χℓ, x,¬p) are inconsistent because boolean formulas are
preserved through announcements.

EXAMPLE 58
Consider the formula [p ∧ ¬Kip]¬(p ∧ ¬Kip). In Figure 5.1 the tableau method is
used to show its validity in K-PAL. Note that in this formula the announcement
corresponds to the so-called Moore sentence (van Ditmarsch and Kooi, 2006a): “p is
true and agent a does not know it”. When it is true and publicly announced, all the
agents, in particular agent i, become aware of it. Then the sentence becomes false
just after being announced.

THEOREM 59 (SOUNDNESS AND COMPLETENESS)
For C ∈ {K,KT, S4, S5}, there is a closed C-PAL-tableau for ¬ϕ if and only if ϕ is
C-PAL-valid.

PROOF. The proof is in Appendix A.5.

5.3 Tableau Strategies

In the way the method is defined, redundant applications of tableau rules are al-
lowed. In particular, they can be applied indefinitely often. Therefore it may never

5.3. Tableau Strategies 61

stop. In this section we define strategies for the application of the tableau rules. They
are inspired by the “tableau construction” defined in (Halpern and Moses, 1992).
When a set of labelled formulas Λ is not saturated under one or more tableau

rules, we say that λ ∈ Λ is a witness to this fact if the given rule, or rules, were still
not applied to λ. For convenience, we further use notation Λ(x) for the set of labelled
formulas of x, defined by {(ψk, ϕ) | (ψk, x, ϕ) ∈ Λ}. And we also use notation Λ(x, i)
for the set of labelled formulas of agent i in x, defined by {(ψk,Kiϕ) | (ψk, x,Kiϕ) ∈
Λ} ∪ {(ψk,¬Kiϕ) | (ψk, x,¬Kiϕ) ∈ Λ}.
The strategy defined below is for S5-PAL. It constructs a tree of nodes s whose

labels are tableau branches L(s) = (Λs,Σs) generated by the application of tableau
rules to their antecedents.

STRATEGY 60
Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the initial branch
for ϕ0, i.e., the pair L(s0) = (Λs0 ,Σs0), where Λs0 = {(ǫ, 0, ϕ0)} and Σs0 = ∅.

2. Repeat until neither step 2(a) nor step 2(b) below applies.

(a) World saturation: if s is a leaf with label L(s) such that L(s) is open and
not saturated under rules R¬, R∧, RT, R〈·〉, ∨, R[·], RK, R4 and R5↑, and
λ ∈ Λs is a witness to this fact, then do:

i. if λ = (ψk, x,¬¬ϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

ii. if λ = (ψk, x, ϕ1 ∧ ϕ2) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ1), (ψ

k, x, ϕ2)} and Σs′ = Σs. And then go to step 2.

iii. if λ = (ψk, x,Kiϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

iv. if λ = (ψk, x,¬[ϕ1]ϕ2) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ1), (ψ

kϕ1, x, ϕ2)} and Σs′ = Σs. And then go to step 2.

v. if λ = (ψk, x,¬(ϕ1∧ϕ2)) then create two successors s1 and s2 such that
Λs1 = Λs∪{(ψk, x,¬ϕ1)} andΣs1 = Σs, andΛs2 = Λs∪{(ψk, x,¬ϕ2)}
and Σs2 = Σs. And then go to step 2.

vi. if λ = (ψk, x, [ϕ1]ϕ2) then create two successors s1 and s2 such that
Λs1 = Λs ∪ {(ψk, x,¬ϕ1)} and Σs1 = Σs, and Λs2 = Λs ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)} and Σs2 = Σs. And then go to step 2.

vii. if λ = (ψk, x,Kiϕ) and (i, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−1},
create a successor si such that Λsi

= Λs ∪ {(ψj, x′, ψj+1) | 0 ≤ j <
i} ∪ {(ψi, x′,¬ψi+1)} and Σsi

= Σs, and also create a successor node
sk such that Λsk

= Λs ∪{(ψj , x′, ψj+1) | 0 ≤ j < k}∪{(ψk, x′, ϕ)} and
Σsk

= Σs. And then go to step 2.

viii. if λ = (ψk, x,Kiϕ) and (i, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−1},
create a successor si such that Λsi

= Λs ∪ {(ψj, x′, ψj+1) | 0 ≤ j <
i} ∪ {(ψi, x′,¬ψi+1)} and Σsi

= Σs, and also create a successor node

62 Chapter 5. Reasoning with Analytic Tableaux

sk such that Λsk
= Λs ∪ {(ψj , x′, ψj+1) | 0 ≤ j < k} ∪ {(ψk, x′,Kiϕ)}

and Σsk
= Σs. And then go to step 2.

ix. if λ = (ψk, x,Kiϕ) and (i, x′, x) ∈ Σ, then for each i ∈ {0, 1, . . . , k−1},
create a successor si such that Λsi

= Λs ∪ {(ψj, x′, ψj+1) | 0 ≤ j <
i} ∪ {(ψi, x′,¬ψi+1)} and Σsi

= Σs, and also create a successor node
sk such that Λsk

= Λs ∪ {(ψj , x′, ψj+1) | 0 ≤ j < k} ∪ {(ψk, x′,Kiϕ)}
and Σsk

= Σs. And then go to step 2.

(b) Create a new world: if s is a leaf with label L(s) such that L(s) is open,

world-saturated and not saturated under rule RK̂ and λ = (ψk, x,¬Kiϕ)
is a witness to this fact, then do steps i, ii and iii below. And then go to
step 2.

i. generate a new natural number x′ that does not appear in Σs and
create a label L′ = (Λ′,Σ′), where Λ′ = {(ψj , x′, ψj+1) | 0 ≤ j <
k} ∪ {(ψk, x′,¬ϕ)} and Σ′ = {(i, x, x′)}.

ii. if there is a sequence of natural numbers y0, y1, . . . , yn such that yn =
x and for all 0 ≤ i < n, (i, yi, yi+1) ∈ Σs and Λs(x, i) = Λs(y0, i)
and Λ′ ⊆ Λs(y1), then create a successor s

′ such that Λs′ = Λs and
Σs′ = Σs ∪ {(i, x, y1)}.

iii. if step 2(b)ii does not apply, then create a successor s′ such that Λs′ =
Λs ∪ Λ′ and Σs′ = Σs ∪ Σ′.

3. If s is a leaf and its label L(s) is open, then return true, else return false.

Simple modifications of Strategy 60 above give us strategies for the other logics
we consider here. A strategy for S4-PAL can be obtained by removing step 2(a)ix.
By removing steps 2(a)viii and 2(a)ix, we obtain a strategy for KT-PAL. And by
removing steps 2(a)iii, 2(a)viii and 2(a)ix we obtain a strategy for K-PAL.

Note that step 2(b)ii has a loop test. This is crucial to guarantee that the process

halts for S4-PAL and S5-PAL. Before applying rule RK̂, which means that a new
“world” x′ will be created, it verifies that there is no loop.

We continue by proving termination. After that we prove soundness and com-
pleteness for S5-PAL only. Proofs for the other logics are similar and left to the reader.
We first need a definition and a lemma.

DEFINITION 61 (LABELLED SUB-FORMULAS)
The set of labelled sub-formulas of ϕ, Sub(ϕ), and the set of labelled sub-formulas of ϕ and

its negations, Sub+(ϕ), are recursively defined as follows (cf. definition of contextual

5.3. Tableau Strategies 63

sub-formulas on page 54):

Sub(p)
def
= {(ǫ, p)}

Sub(¬ϕ)
def
= Sub(ϕ) ∪ {(ǫ,¬ϕ)}

Sub(ϕ ∧ ψ)
def
= Sub(ϕ) ∪ Sub(ψ) ∪ {(ǫ, ϕ ∧ ψ)}

Sub(Kiϕ)
def
= Sub(ϕ) ∪ {(ǫ,Kiϕ)}

Sub([ψ]ϕ)
def
= Sub(ψ) ∪ {(ψχk, ϕ′) | (χk, ϕ′) ∈ Sub(ϕ)} ∪ {(ǫ, [ψ]ϕ)}

Sub+(ϕ)
def
= Sub(ϕ) ∪ {(ψk,¬ϕ′) | (ψk, ϕ′) ∈ Sub(ϕ)}

LEMMA 62

1. | Sub(ϕ0)| ≤ len(ϕ0).

2. For all (ψk, ϕ) ∈ Sub(ǫ, ϕ0), k ≤ len(ϕ0).

3. | Sub+(ϕ)| ≤ 2 × len(ϕ).

Items 1 and 2 are proved in (Lutz, 2006) and 3 is an obvious consequence of them.

THEOREM 63
For all ϕ ∈ LPAL, Strategy 60 creates a finite tree for ϕ.

PROOF. Let aLPAL-formula ϕ be given. Because Sub+(ϕ) is finite, each step generates
a finite number of immediate successors. Then, by the fact that the initial tree for ϕ
is a single node (and, in particular, it is finite), each step of the strategy generates a
finite tree.
We now show that each step is applied finitely often. Let len(ϕ) = n. By Lemma

62, the number of labelled sub-formulas of ϕ and its negations is bounded by 2n.
Then after 2n applications of step 2(a) all the leafs of the tree are world-saturated.
This means that there can be at most 2n applications of step 2(a) between two subse-
quent applications of step 2(b).
Now, note that there exists at most 22n different subsets of Sub+(ϕ). This means

that the loop tests can fail at most 22n times. It immediately follows that step 2(b)
can be applied at most 22n times. Therefore, Strategy 60 always creates a finite tree
and thus always halts.

THEOREM 64
For all ϕ0 ∈ LPAL, ϕ0 is S5-PAL-satisfiable if and only if Strategy 60 for ϕ0 returns
true.

PROOF. From the left to the right. We show that if ϕ is S5-PAL-satisfiable, then
the tree for ϕ generated by Strategy 60 will have at least one leaf whose label is an

64 Chapter 5. Reasoning with Analytic Tableaux

open tableau branch. We do this by showing that all steps preserve satisfiability.
This proof is along the lines of the first part of the proof of Theorem 59. The only
remarkable difference is the step 2(b)ii: suppose that (ψk, x,¬Kiϕ) ∈ Λs and that the
loop test succeeds. This means that there is a sequence y0,y1,. . . ,yn such that yn = x
and for all 0 ≤ i < n, (i, yi, yi+1) ∈ Σs, and s has a successor s′ such thatΛs′ = Λs and
Σs′ = Σs ∪ {(i, x, y1)}. We then consider the (unfolded) tableau branch L

′ = (Λ′,Σ′)
such that Λ′ = Λs′ ∪ {(χℓ, x′, ϕ′) | (χℓ, y1, ϕ

′) ∈ Λs′} and Σ′ = (Σs \ {(i, x, y1)}) ∪
{(i, x, x′), (i, x′, y2)}. Clearly, L′ is satisfiable if and only if L(s′) is satisfiable. By
hypothesis, there is an epistemic structureM = 〈S,R, V 〉 and a function f : N → S

that satisfy L(s). Then there exists s ∈ Sψ
k

such that f(x)Rψ
k

i s. We thus consider

the function f ′ : N → S such that for all integer x that occur in Λ′, f ′(x)
def
= f(x) and

f ′(x′)
def
= s. Therefore L(s′) is satisfiable.

From the right to the left. If Strategy 60 for ϕ returns true, then the tree for ϕ has
a leaf s such that L(s) is open and saturated. Then we use this node to construct a
model M = 〈S,R, V 〉 that satisfies ϕ as follows. S contains all x that appear in Σs;
R is the reflexive, transitive and symmetric closure of all triples (i, x, x′) ∈ Σs; and
each Vp contains all x such that (ψk, x, p) ∈ Λs for some ψk. We then proceed by
induction on the length of labelled formulas where the induction hypothesis is: if
L(s) is an open saturated branch that contains (ψk, x, ϕ′) and len(ψk, x, ϕ′) < n, then
M |ψ0, x |= ψ1, . . . ,M |ψk−1, x |= ψk, andM |ψk, x |= ϕ′. This is done along the lines
of the second part of the proof of Theorem 59. The details are left to the reader.

The depth of the tree created in Strategy 60 is exponential on the size of the input
formula. However, S5-PAL is proven to be in PSPACE (Lutz, 2006), which means that
this algorithm is not optimal. Below, we present optimal strategies for logics K-PAL

and KT-PAL.
Similarly to the “tableau construction” defined in (Halpern and Moses, 1992),

instead of labelling the nodes of the tree with entire tableau branches, in our next
strategy, node labels contain formulas of only one world x. Hence, we now use pairs
of the form λ = (ψk, ϕ) that, for convenience, are called labelled formulas as well (note
that x is no longer necessary). But our algorithm differs from that of (Halpern and
Moses, 1992) in a crucial point: suppose that L(s) contains the formula (ψk,Kiϕ).
When an i-successor node s′ of s is created, one cannot immediately add the labelled
formula (ψk, ϕ) to L(s′). The reason is that the world s′ can have been deleted by
some announcement in the sequence ψk (cf. tableau rules RK, R4 and R5↑). Then, in
step 2(b), before adding this labelled formula to L(s′), the algorithm “verifies” that
each ψi is true in s′. This is implemented with an auxiliary set Γs′ .

STRATEGY 65
Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the pair L(s0) =
(Λs0 ,Γs0), where Λs0 = {(ǫ, ϕ0)} and Γs0 = ∅.

2. Repeat until neither 2(a) nor 2(b) below applies:

5.3. Tableau Strategies 65

(a) Local saturation: if s is a leaf with label L(s) such that L(s) is open and not
saturated under rules R¬, R∧, R∨, RK and RT, and λ ∈ Λs is a witness to
this fact, then do:

i. if λ = (ψk,¬¬ϕ) ∈ Λs then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

ii. if λ = (ψk, ϕ1 ∧ ϕ2) ∈ Λs then create successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ1), (ψ

k, ϕ2)} and Γs′ = Γs. And then go to step 2.

iii. if λ = (ψk,Kiϕ) ∈ Λs then create successor s
′ such that Λs′ = Λs ∪

{(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

iv. if λ = (ψk,¬[ϕ1]ϕ2) ∈ Λs then create a successor s
′ such that Λs′ =

Λs ∪ {(ψk, ϕ1), (ψ
kϕ1, ϕ2)} and Γs′ = Γs. And then go to step 2.

v. if λ = (ψk,¬(ϕ1 ∧ϕ2)) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk, ϕ1)} and Γs1 = Γs, and Λs2 = Λs ∪ {(ψk, ϕ2)}
and Γs2 = Γs. And then go to step 2.

vi. if λ = (ψk, [ϕ1]ϕ2) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk,¬ϕ1)} and Γs1 = Γs, and Λs2 = Λs ∪ {(ψk, ϕ1),
(ψkϕ1, ϕ2)} and Γs2 = Γs. And then go to step 2.

vii. if λ = (ψk, ϕ) ∈ Γs then for each i ∈ {0, 1, . . . , k−1}, create a successor
si such that Λsi

= Λs ∪ {(ψj, ψj+1) | 0 ≤ j < i} ∪ {(ψi,¬ψi+1)}
and Γsi

= Γs \ {λ}, and also create a successor sk such that Λsk
=

Λs ∪ {(ψj , ψj+1) | 0 ≤ j < k} ∪ {(ψk, ϕ)} and Γsk
= Γs \ {λ}. And

then go to step 2.

(b) Create new worlds: if s is a leaf with label L(s)which is local saturated and

not saturated under rule RK̂, then for each labelled formula of the form
λ = (ψk,¬Kiϕ) ∈ Λs that is witness to this, create an i-successor s′ such
that Λs′ = {(ψj , ψj+1) | 0 ≤ j < k} ∪ {(ψk,¬ϕ)} and Γs′ = {(χk

′

, ϕ′) |

{(χk
′

,Kiϕ
′)} ∈ Λs}). And then go to step 2.

(c) Mark nodes: if the node s with label L(s) is not marked sat, then mark it
sat if either:

• Λs is not local saturated and one of its successor is marked sat;

• Λs is local saturated, it is not blatantly inconsistent and Λs does not
contain labelled formulas of the form (ψk,¬Kiϕ); or

• Λs is local saturated and s has successors and all of them are marked
sat.

3. If the root of the tree is marked sat, then return true, else return false.

The strategy above can be modified for other two logics we consider here. For
K-PAL we remove step 2(a)iii, and for S4-PAL, we replace step 2(b) by the following:

2 (b’) Create new worlds: if s is a leaf with label L(s) which is local saturated and

not saturated under rule RK̂, then for each labelled formula of the form λ =
(ψk,¬Kiϕ) ∈ Λs that is a witness to this, then do steps i, ii and iii below. And
then go to step 2.

66 Chapter 5. Reasoning with Analytic Tableaux

i. create a label L′ = (Λ′,Γ′), where Λ′ = {(ψj, ψj+1) | 0 ≤ j < k} ∪

{(ψk,¬ϕ)} and Γ′ = {(χk
′

, ϕ′), (χk
′

,Kiϕ
′) | (χk

′

,Kiϕ
′) ∈ Λs}).

ii. if there is no node s′′ in the path from the root to s such that Ls′′ = L′, then
create an i-successor node s′ with label L(s′) = L′.

iii. if step 2(b)ii does not apply, then create an i-arrow to the node s′′ such that
L(s′′) = L′.

Note that we also have a loop test in step 2(b’)ii. The idea is the same as in Strat-
egy 60, but here, we also compare the sets Γ. We also remark that it is not possible
to use the same idea to define a strategy for S5-PAL. We address this question in
Section 5.4. In the sequel, we prove termination, soundness and completeness for
S4-PAL only. We leave other cases to the reader.

THEOREM 66
For all ϕ ∈ LPAL, Strategy 65 creates a finite tree for ϕ.

PROOF. The proof is essentially the same as for Theorem 63.

THEOREM 67
For all ϕ ∈ LPAL, ϕ is S4-PAL-satisfiable if and only if Strategy 65 for ϕ returns true.

PROOF. From the left to the right. We show that if ϕ is S4-PAL-satisfiable, then the
tree for ϕ generated by Strategy 65 has its root marked sat. We do this by showing
that all steps preserve satisfiability. This proof is along the lines of the first part of
proof of Theorem 59. The differences are steps 2(a)vii and 2(b’). Note that step 2(a)vii
performs essentially the same task as steps 2(a)vii and 2(a)viii of Strategy 60. So their
proof of soundness is very similar. For step 2(b’), note that it is similar to step 2(b) of
Strategy 60. So its proof of soundness is also similar. We omit details here.

From the right to the left. If Strategy 65 for ϕ returns true, then the root s0 is marked
sat. Then, there is a sub-tree such that all its nodes are marked sat. We use this
tree to construct a model M = 〈S,R, V 〉 that satisfies ϕ in the following way. S
contains all s in the sub-tree such that s is local saturated; each Ri is the reflexive
and transitive closure of pairs (s, s′) of nodes in S such that s′ is a descendent of an
i-successor of s; and each Vp contains all s ∈ S such that (ψk, p) ∈ Λs for some ψk.
The proof continues along the lines of the second part of the proof of Theorem 59.
We omit details here.

We continue by showing computational complexity of Strategy 65 for K-PAL and
KT-PAL. Remark that no optimal procedure is achieved for S4-PAL. We discuss this
in Section 5.4.

THEOREM 68 (COMPLEXITY)
The tableau system for K-PAL andKT-PAL can be implemented in polynomial space.

5.4. Related Work and Discussion 67

PROOF. We first show that the height of the trees, generated by Strategy 65, are
polynomial in len(ϕ). The tree construction starts with the root node s0 whose label
is L(s0) = ({λ0}, ∅). Suppose that len(λ0) = n. Note that by Lemma 62 step 2(a) can
be applied at most 2n times before generating a node s such that Λs is either closed
or saturated. Also note that at this stage Γs is empty. Now, suppose that Λs is local
saturated. Also suppose that s′ is a local saturated descendent of an i-successor of
s. Note that the K-modal depth of Λs′ is less than that of Λs. Because the number of
Ki operators in ϕ is at most n, the root of the tree can have at most n i-descendents
in the same branch of the tree. From this fact and the observation made before, it
follows that the tree has height at most O(n2).
We now prove that a depth first exploration of the trees can be made using a

polynomial amount of memory. To see this, remember that by Lemma 62 we have
that for all nodes s in the tree, |L(s)| ≤ 4n. Then we can use a vector of 4n bits
to encode the label of each node in the tree. We do this by setting to 1 the bit that
corresponds to the formulas that are present in L(s). Each step of Strategy 65 can
produce at most 2n different immediate successors. Then, for each node, we can use
a vector of 4n2 bits to memorise all the choices to be explored after the backtrack. It
follows that we need at most O(n5) bits of memory to explore the entire tree.

5.4 Related Work and Discussion

We considered versions of PAL where the underlying epistemic logic obeys combi-
nation of principles T, 4 and 5. We did not consider the axiom D (Kiϕ → ¬Ki¬ϕ)
alone, i.e., epistemic logics such as KD and KD45. The reason is that in both systems
the axiom T (Kiϕ→ ϕ) is derivable for any boolean formula ϕ. To see this, note that
if we have axiom D, then (Kip ∧ ¬p) → 〈¬p〉⊥ is valid.
Recently, another tableau method for S5-PAL was proposed by de Boer (2006).

Apart from some aesthetic differences, this method is very similar to ours. However,
no proof of decidability is provided.
Strategy 65 is based on the optimal strategy for EL presented in (Halpern and

Moses, 1992). Note however that instead of our rule R5↑, Halpern and Moses use a

rule that propagates all formulas prefixed byKi and K̂i operators to the i-successors.
As this rule alone is not complete for S5, they also need to saturate the nodes under
sub-formulas (which is called full propositional tableau). But note that such a rule
would not be sound in our setting. For example, suppose that in node s with label
L(s) we have that (ψ,¬Kiϕ) ∈ Λs. Because it may be the case that Λs also con-
tains (ǫ,¬ψ), we cannot add neither (ψ, ϕ) nor (ψ,¬ϕ) to Λs at the risk of making
it blatantly inconsistent. Then, we cannot have our set of formulas saturated under
sub-formulas in this way. Strategy 65 is not optimal for S4-PAL. An example is the
formula ¬Kip0 ∧ Ki[q1]Kip1 ∧ Ki[q2]Kip2 ∧ · · · ∧ Ki[qk]Kipk, for which Strategy 65
generates a tree containing a branch with 2k different i-successors.

Chapter 6

Searching for Plans

6.1 Introduction

In the end of Chapter 4 we argue that plan verification can be formalised in dynamic
epistemic logic. However, it seems that this logic is not suitable for addressing plan-
ning. The reason is that planning demands the construction of the plan. That is, it is
more or less like if a part of the formula were lacking, and one should find the right
piece for completing it. To try to address this issue, we propose a new logic. In this
first attempt though, we restrict our attention to epistemic actions only.

The idea is to have a formalism wherein we can express what becomes true with-
out explicit reference the actions realizing that. For example, when p is true, it be-
comes known by announcing it. Formally, in public announcement logic, p→ [p]Kip
is valid. This is equivalent to 〈p〉Kip which stands for ‘the announcement of p can
be made and after that agent i knows p’. It follows that there is an announcement ψ,
namely ψ = p, that makes the agent know that p, slightly more formally: ∃ψ.〈ψ〉Kip.
We introduce a modal operator that expresses exactly that:

♦Kip

Obviously, the truth of this expression depends on the model: p has to be true. In
case p is false, we have ♦Ki¬p instead. Therefore the formula ♦(Kip∨Ki¬p) is valid.
The corresponding logic is called arbitrary public announcement logic (APAL).

In section 6.2 we define the language LAPAL and its semantics. In section 6.3
we prove some interesting validities and discuss the expressivity of the language,
as well as its usefullness in addressing ‘Fitch’s knowability paradox’ (van Benthem,
2004; Brogaard and Salerno, 2004). In section 6.4 we provide a Hilbert-style axiomati-
sation. In section 6.5 we expand the tableau calculus given in Chapter 5 to arbitrary
public announcement logic. Section 6.6 discusses some possible future work and
draws conclusions.

69

70 Chapter 6. Searching for Plans

6.2 Syntax and Semantics

DEFINITION 69 (LANGUAGE LAPAL)
LetN be a finite set of agents, and P be a countable set of atoms. The language LAPAL

of arbitrary public announcement logic is inductively defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ϕ]ϕ | �ϕ

where p ranges over P and i ranges over N .

For �ϕ, read ‘ϕ holds after any public announcement’. We also use the abbrevi-

ation for the operator ♦, defined as ♦ϕ
def
= ¬�¬ϕ. For ♦ϕ, read ‘ϕ holds after some

public announcement’.

DEFINITION 70 (SEMANTICS OF APAL)
Formulas in LAPAL are interpreted in S5-models. Let M be an S5-model, the extra
clause needed for the operator � is as follows (note the restriction of ψ to LEL):

M, s |= �ϕ iff for all ψ ∈ LEL, M, s |= [ψ]ϕ

For the semantics of the dual operator, we have that M, s |= ♦ϕ if and only if
there exists ψ ∈ LEL such thatM, s |= 〈ψ〉ϕ.

DEFINITION 71 (VALIDITY AND SATISFIABILITY)
A formula ϕ in LAPAL is:

• APAL-valid (notation: |=APAL ϕ) if and only if for all pointed S5-models (M, s),
for all ψ ∈ LEL, (M, s) |= [ψ]ϕ; and

• APAL-satisfiable if and only if 6|=APAL ¬ϕ.

EXAMPLE 72
A valid formula of the logic is ♦(Kip ∨ Ki¬p). To prove this, let (M, s) be arbitrary.
EitherM, s |= p orM, s |= ¬p. In the first case,M, s |= ♦(Kip∨Ki¬p), becauseM, s |=
〈p〉(Kip ∨ Ki¬p) – the latter is true becauseM, s |= p andMp, s |= Kip; in the second
case, we analogously deriveM, s |= ♦(Kip∨Ki¬p) becauseM, s |= 〈¬p〉(Kip∨Ki¬p).

This example also illustrates how to check validity of formulas with diamonds in
APAL. The meaning of |=APAL ♦ϕ is:

(i) for all (M, s), there exists ψ ∈ LEL such thatM, s |= 〈ψ〉ϕ,

which is different from: (ii) there exists ψ ∈ LEL such that for all (M, s),M, s |= 〈ψ〉ϕ.
The latter is incorrect. Note that if we were assuming (ii), then ♦(Kip∨Ki¬p)would
be not valid.

6.3. Semantic Results 71

We choose to restrict the quantification in � over formulas of LEL. Because the
intended meaning of the operator � is a quantification over announcements, one
could also try to define its semantics by one of the following alternatives:

M, s |= �ϕ iff for all ψ ∈ LAPAL, M, s |= [ψ]ϕ (6.1)

M, s |= �ϕ iff for all S′ ⊆ S containing s, M |S′, s |= ϕ (6.2)

M, s |= �ϕ iff for all ψ ∈ LPAL, M, s |= [ψ]ϕ (6.3)

The alternative (6.1) is not well-defined because �ϕ can itself be such announce-
ment ψ. Our semantics avoids this problem because the formula [ψ]ϕ is less complex
than �ϕ in the lexicographic order on LAPAL.
The alternative (6.2) is similar to the proposition of Fine (1970) for quantification

over propositional variables in modal logic. This version is not desirable because it
permits some “strange” restrictions. For example, consider the modelM = 〈S,R, V 〉
whereS = {1, 1′, 0, 0′},Ri = {(1, 1), (1, 0), (0, 1), (0, 0), (1′, 1′), (1′, 0′), (0′, 1′), (0′, 0′)},
Rj = {(1, 1), (1, 1′), (1′, 1), (1′, 1′), (0, 0), (0, 0′), (0′, 0), (0′, 0′)}, and Vp = {1, 1′}. This
model is graphically represented in the figure below:

1 0

1′ 0′

j

i

i
j

Now, assume that we are using alternative (6.2). One can restrict the model to S′ =
{1, 1′, 0′}. However, because 0 and 0′ are bisimilar, one cannot write a formula that
correspond to such a restriction, which means that the restriction to S′ should not
correspond to a public announcement. One further evidence is the fact thatM, 1 |=
♦(Kip ∧ ¬KjKip), becauseM |S′, 1 |= (Kip ∧ ¬KjKip). In other words, it seems that
one can restrict the model in such a way that only one agent perceives the occurrence
of the action. And again, this would not be a public announcement.
Considering the alternative (6.3), one argument is that PAL has the same expres-

sive power of EL. Then whatever model restriction that can result from a formula in
LPAL, it can also be obtained by some formula in LEL.

6.3 Semantic Results

6.3.1 Validities

THEOREM 73
Let ϕ, ψ ∈ LAPAL. Then:

1. |=APAL �p↔ p

2. |=APAL �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ)

3. |=APAL �ϕ→ ϕ

72 Chapter 6. Searching for Plans

4. |=APAL �ϕ→ ��ϕ

5. |=APAL Ki�ϕ→ �Kiϕ (but not in the other direction)

6. |=APAL ϕ implies |=APAL �ϕ

PROOF. Let (M, s) be any pointed epistemic model, and let p ∈ P and ϕ ∈ LAPAL be
arbitrary.

1. From the left to the right, see case 3 below.
From the right to the left, supposeM, s |= p
iff s ∈ Vp.
Suppose thatM, s |= ψ, for some ψ ∈ LEL.
Then s ∈ V ψp
iffMψ, s |= p.
Then ifM, s |= ψ, thenMψ, s |= p.
ThenM, s |= [ψ]p.

2. Straightforward.

3. Suppose thatM, s |= �ϕ.
Then, in particular,M, s |= [⊤]ϕ
iffM, s |= ϕ (becauseM⊤ = M).

4. Suppose thatM, s |= ♦♦¬ϕ.
Then there exists χ, χ′ ∈ LEL such thatM, s |= 〈χ〉〈χ′〉¬ϕ.
Then there exists χ, χ′ ∈ LEL such thatM, s |= 〈χ ∧ 〈χ〉χ′〉¬ϕ
(because 〈χ ∧ 〈χ〉χ′〉¬ϕ↔ 〈χ〉〈χ′〉¬ϕ is valid in PAL).
Then there exists ψ ∈ LEL such that ψ is equivalent to χ ∧ 〈χ〉χ′ in PAL.
Then there exists ψ ∈ LEL such thatM, s |= 〈ψ〉¬ϕ
iffM, s |= ♦¬ϕ.

5. Suppose thatM, s |= Ki�ϕ
iff for all t ∈ Ri(s),M, t |= �ϕ
iff for all t ∈ Ri(s), for all ψ ∈ LEL,M, t |= ψ impliesMψ, t |= ϕ.
Then for all t ∈ Ri(s), for all ψ ∈ LEL, if M, s |= ψ, then M, t |= ψ implies
Mψ, t |= ϕ.
Then for all ψ ∈ LEL, if M, s |= ψ, then for all t ∈ Ri(s), M, t |= ψ implies
Mψ, t |= ϕ.

Then for all ψ ∈ LEL, ifM, s |= ψ, then for all t ∈ Rψi (s),Mψ, t |= ϕ
iff for all ψ ∈ LEL, ifM, s |= ψ, thenMψ, t |= Kiϕ
iff for all ψ ∈ LEL,M, s |= [ψ]Kiϕ
iffM, s |= �Kiϕ.

6. Suppose that |=APAL ϕ.
Then for all χ ∈ LPAL, |=APAL [χ]ϕ (by necessitation rule in PAL).
Then for all ψ ∈ LEL, |=APAL [ψ]ϕ.
Then |=APAL �ϕ.

6.3. Semantic Results 73

The following theorem (for an arbitrary set of agents N) will be helpful to show
that in the single-agent case every formula is equivalent to a formula in LEL.

THEOREM 74
Let ϕ,ϕ0, . . . , ϕn ∈ LPL, i.e., booleans, and ψ ∈ LAPAL.

1. |=APAL �ϕ↔ ϕ

2. |=APAL �K̂iϕ↔ ϕ

3. |=APAL �Kiϕ↔ Kiϕ

4. |=APAL �(ϕ ∨ ψ) ↔ (ϕ ∨ �ψ)

5. |=APAL �(K̂iϕ0 ∨ Kiϕ1 ∨ · · · ∨ Kiϕn) ↔ (ϕ0 ∨ Ki(ϕ0 ∨ ϕ1) ∨ . . . ∨ Ki(ϕ0 ∨ ϕn))

PROOF.

1. We have that |=PAL 〈ψ〉ϕ↔ ϕ, for all ψ ∈ LPAL.
Therefore, |=APAL �ϕ↔ ϕ.

2. From the right to the left.
It follows from the fact that for all ϕ ∈ LPL, |=PAL ϕ→ 〈ϕ〉Kiϕ.
From the left to the right. If follows from the fact that for all ψ ∈ LEL, |=PAL

〈ψ〉Kiϕ→ 〈ψ〉ϕ and that ϕ↔ ♦ϕ by point 1.

3. From the right to the left holds because axiom T applies for ♦.

From the left to the right holds because 〈ψ〉K̂iϕ↔ K̂iϕ is valid in PAL.

4. From the right to the left: first, ♦ distributes over ∧, and second, |=APAL ♦ϕ↔ ϕ
by point 1.
From the left to the right: first, ϕ ∧ ♦ψ is equivalent (by point 1) to �ϕ ∧ ♦ψ.
Now, let χ be an announcement realising ψ in a given pointed structure (M, s),
i.e.,M, s |= 〈χ〉ψ.
This implies also thatM, s |= χ.
From that and �ϕ it follows thatM, s |= χ ∧ [χ]ϕ, i.e.,M, s |= 〈χ〉ϕ.
ThereforeM, s |= 〈χ〉(ϕ ∧ ψ) so alsoM, s |= ♦(ϕ ∧ ψ).

5. We show this case for n = 1.
From the right to the left.

LetM, s be arbitrary and suppose M, s |= �(Kiϕ0 ∧ K̂iϕ1). Let ψ be the epis-
temic formula such thatM, s |= 〈ψ〉(Kiϕ0 ∧ Kiϕ1). In the modelM |ψ we now

have thatM |ψ, s |= K̂iϕ1. Let t be such that t ∈ Ris, alsoM |ψ, t |= ϕ0. There-

fore M |ψ, t |= ϕ0 ∧ ϕ1, and therefore, M |ψ, s |= K̂i(ϕ0 ∧ ϕ1). So M |ψ, s |=
ϕ0 ∧Ki(ϕ0 ∧ ϕ1) and as ϕ0 and ϕ1 are booleans alsoM, s |= ϕ0 ∧ Ki(ϕ0 ∧ ϕ1).1

From the left to the right.

1Alternatively, one can use more straightforwardly the S5 validity (Kiϕ0∧ bKiϕ1) → (Kiϕ0∧ bKi(ϕ0∧
ϕ1)).

74 Chapter 6. Searching for Plans

Suppose thatM, s |= ϕ0 ∧ K̂i(ϕ0 ∧ ϕ1). Consider the modelM |ϕ0, t |= ϕ1. So

M |ϕ0, s |= K̂iϕ1. Also M |ϕ0, s |= Kiϕ0, because ϕ0 is boolean. So M |ϕ0, s |=

Kiϕ0 ∧ K̂iϕ1 and thereforeM, s |= ♦(K̂iϕ0 ∧ K̂iϕ1).

6.3.2 Expressivity

Let N = {i}. A formula is in normal form when it is a conjunction of disjunctions of

the form ϕ∨ K̂iϕ0 ∨Kiϕ1 ∨ · · · ∨Kiϕn. Every formula in single-agent epistemic logic
(K45 and therefore also in) S5 is equivalent to a formula in normal form (Meyer and
van der Hoek, 1995).

THEOREM 75
If there is only one agent, every formula in APAL is equivalent to a formula in S5.

PROOF. By induction on the number of occurrences of �. Put the epistemic formula
in the scope of an innermost � in normal form. First, we distribute � over the con-

junction (by Theorem 73.2). We now get formulas of the form �(ϕ ∨ K̂iϕ0 ∨ Kiϕ1 ∨
· · · ∨ Kiϕn). These are reduced by application of Theorem 74.4 and 74.5 to formulas
of the form ϕ0 ∨ Ki(ϕ0 ∨ ϕ1) ∨ · · · ∨ Ki(ϕ0 ∨ ϕn).

THEOREM 76
APAL is strictly more expressive than PAL.

PROOF. Consider the formula ϕ = ♦(Kip∧ ¬KjKip). Suppose, towards a contradic-
tion, that there exists an epistemic formula ψ that is equivalent to ϕ. Then, ψ only
contains a finite subset of atoms of P . Now, consider the modelM = 〈S,R, V 〉 such
that S = {1, 0}, Ri = {(1, 1), (1, 0), (0, 1), (0, 0)}, Rj = {(1, 1), (0, 0)}, and Vp = {1}
for all atoms p in ψ. This model is graphically represented in the figure below:

1 0
i

Now consider the model M ′ = 〈S′, R′, V ′〉 such that S′ = {11, 01, 10, 00},
R′
i = {(11, 11), (11, 01), (01, 11), (01, 01), (10, 10), (10, 00), (00, 10), (00, 00)},

R′
j = {(11, 11), (11, 10), (10, 11), (10, 10), (01, 01), (01, 00), (00, 01), (00, 00)},

V ′
p = {11, 10} for all atom p in ψ and V ′

q = {11, 01} for all atom q not in ψ. This
model is graphically represented in the figure below:

11 01

10 00

j

i

i
j

Clearly,M, 1 |= ψ if and only ifM ′, 10 |= ψ. And alsoM, 1 6|= ♦(Kip ∧ ¬KjKip). But
becauseM ′, 10 |= 〈p ∧ ¬q〉(Kip ∧ ¬KjKip), we have thatM ′, 10 |= ♦(Kip ∧ ¬KjKip).
Then ψ is not equivalent to ϕ, which is a contradiction. Therefore such a formula ψ
does not exist.

6.3. Semantic Results 75

THEOREM 77
Arbitrary public announcement logic is not compact.

PROOF. Take the following infinite set of formulas:

{[ψ](Kip→ KjKip) | ψ ∈ LEL} ∪ {¬�(Kip→ KjKip)}

By the semantics of �, this set is not satisfiable. Nevertheless we show that any
finite subset is satisfiable (what contradicts compactness). Let

{[ψk](Kip→ KjKip) | 1 ≤ k ≤ n and ψk ∈ LEL} ∪ {¬�(Kip→ KjKip)}

be a finite subset, and let q be a proposition letter that is distinct from p and does
not occur in any of the sentences ψk, where 1 ≤ k ≤ n. Take now the pointed
epistemic model (M ′, 10) as in the proof of Theorem 76. As shown above, we have
M ′, 10 |= ♦(Kip ∧ ¬KjKip), and thus M ′, 10 |= ¬�(Kip → KjKip). On the other
hand, for the pointed epistemic model (M, 1) of the proof of Theorem 76, we have
that M, 1 6|= ♦(Kip ∧ ¬KiKip), i.e., M, 1 |= �(Kip → KjKip). By the semantics of
�, it follows that M, 1 |= [ψk](Kip → KjKip) for all 1 ≤ k ≤ n. But q does not
occur in any of these formulas, so their truth-values must be the same at (M ′, 10)
and (M, 1) (since as shown above, the two pointed epistemic models are bisimilar
w.r.t. the language without q). Thus we have M ′, 10 |= [ψk](Kip → KjKip) for all
1 ≤ k ≤ n. Putting these together, we see that our finite set of formulas is satisfied at
the state (M ′, 10).

6.3.3 Knowability

In (Balbiani et al., 2007a), some other interesting results are achieved. For instance,
the paper presents the characterisation of interesting fragments of APAL. Namely,
‘positive’, ‘preserved’, ‘successful‘ and ‘knowable’ formulas.
The positive LAPAL formulas intuitively correspond to formulas that do not express

ignorance, i.e., in epistemic logical (LEL) terms: in which negations do not precede
Ki operators. The fragment of positive formulas is defined by the following BNF:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | [¬ϕ]ϕ | �ϕ

The negation in [¬ϕ]ϕ is there for technical reasons but unfortunately makes ‘pos-
itive’ somewhat of a misnomer.
The preserved LAPAL formulas preserve truth under arbitrary (epistemically defin-

able) model restrictions (relativisation). They are (semantically) defined as those ϕ
for which |=APAL ϕ → �ϕ. There is no corresponding semantic principle in public
announcement logic that express truth preservation.
We will prove that positive formulas are preserved. Restricted to epistemic logic

without common knowledge, this was observed by van Benthem (2006). van Dit-
marsch and Kooi (2006a) extend this to public announcement logic, with clause
[¬ϕ]ϕ (and with common knowledge operators; however without van Benthem’s
characterisation result). Note that the announcement must be true to be executable,

76 Chapter 6. Searching for Plans

which, when seen as a disjunction, explains the negation in [¬ϕ]ϕ. Surprisingly, we
can expand this fragment with �ϕ for arbitrary announcement logic.

THEOREM 78 (Balbiani et al. (2007a))
Positive formulas are preserved.

We do not know whether the preserved formulas are (logically equivalent to)
positive. An answer to this question seems hard. It would extend van Benthem’s
results in (van Benthem, 2006).
Another semantic notion is that of ‘success’. ‘Successful formulas’ are believed

after their announcement, or, in other words, after ‘revision’ with that formula.
This precisely corresponds to the postulate of ‘success’ in AGM belief revision (Al-
chourrón et al., 1985). Formally, ϕ is a successful formula iff [ϕ]ϕ is valid (see van
Ditmarsch and Kooi (2006a), elaborating an original but slightly different proposal
made by Gerbrandy and Groeneveld (1997)). The validity of [ϕ]ϕ corresponds to the
validity of ϕ → [ϕ]Kiϕ (van Ditmarsch and Kooi, 2006a): announced formulas are
believed after their true announcement.

THEOREM 79
Preserved formulas are successful.

PROOF. If |=APAL ϕ → �ϕ, then |=APAL ϕ → [ϕ]ϕ which is equivalent to |=APAL [ϕ]ϕ.

COROLLARY 80
Positive formulas are successful.

Fitch investigated the formulas that, if true, can become known (Brogaard and
Salerno, 2004). Consider a multi-agent version. We define the knowable formulas as
those for which, for all agents i ∈ N , |=APAL ϕ → ♦Kiϕ. We can now observe that,
e.g.:

THEOREM 81
Positive, preserved and successful formulas are knowable.

PROOF. Observe that ϕ → �ϕ implies ϕ → [ϕ]Kiϕ; and this implies ϕ → 〈ϕ〉Kiϕ;
and this implies ϕ→ ♦Kiϕ.

We did not investigate the knowable formulas in depth. Some knowable formu-
las are not positive, for example ¬Kip: if true, announce ⊤ and Ki¬Kip (still!) holds.
Therefore, ¬Kip→ ♦Ki¬Kip.

6.4 Axiomatisation

In this section we propose an axiomatisation for LAPAL. Let ♯ be a new symbol and
let ϕ ∈ LAPAL. Following the technique suggested by Goldblatt (1982), we define
necessity forms inductively as follows:

6.4. Axiomatisation 77

• ♯ is a necessity form;

• if ψ is a necessity form, then ϕ→ ψ is a necessity form;

• if ψ is a necessity form, then [ϕ]ψ is a necessity form; and

• if ψ is a necessity form,then Kiψ is a necessity form.

Note that each necessity form has a unique occurrence of ♯. If ψ is a necessity
form and ϕ ∈ LAPAL, then ψ(ϕ) is obtained from ψ by replacing ♯ in ψ with ϕ.
Necessity forms are used in the derivation rule R(�) of the axiomatisation, shown
below.

PL. all tautologies from classical propositional logic

K(K). Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)

T(K). Kiϕ→ ϕ

4(K). Kiϕ→ KiKiϕ

5(K). ¬Kiϕ→ Ki¬Kiϕ

PA1. [ϕ]p↔ (ϕ→ p)

PA2. [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

PA3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

PA4. [ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ)

PA5. [ϕ][ψ]χ ↔ [(ϕ ∧ [ϕ]ψ)]χ

APA. �ϕ→ [ψ]ϕ for ψ ∈ LEL

MP. From ⊢APAL ϕ and ⊢APAL ϕ→ ψ, infer ⊢APAL ψ

N(K). From ⊢APAL ϕ, infer ⊢APAL Kiϕ

N([·]). From ⊢APAL ϕ, infer ⊢APAL [ψ]ϕ

N(�). From ⊢APAL ϕ, infer ⊢APAL �ϕ

R(�). From ⊢APAL ϕ([χ]ψ) for all χ ∈ LEL, infer ⊢APAL ϕ(�ψ)

DEFINITION 82
A formula ϕ ∈ LAPAL is a theorem (notation: ⊢APAL ϕ) if and only if it belongs to the
least set of formulas containing all axioms and closed under the derivation rules.

All axioms and rules are sound. In particular, the ruleR(�) is correct with respect
to the semantics, i.e., if |=APAL ϕ([χ]ψ) for all χ ∈ LEL, then |=APAL ϕ(�ψ).
In the above formulation, the rule R(�) is infinitary. In (Balbiani et al., 2007a), it

is shown that this rule can be replaced by the following:

R′(�) From ⊢APAL ϕ([p]ψ), infer ⊢APAL ϕ(�ψ)

where p does not occur in ϕ nor in ψ

78 Chapter 6. Searching for Plans

EXAMPLE 83
For an example of derivation in the above axiomatisation using the axiom and rule
for �, we show that the valid formula �ϕ → ��ϕ is also a theorem. Note that in
step 4 of the derivation we use that �p → [q]♯ is a necessity form and that in step 5
of the derivation we use that �p→ ♯ is a necessity form.

1. ⊢APAL [(q ∧ [q]r)]p ↔ [q][r]p by PA5

2. ⊢APAL �p→ [(q ∧ [q]r)]p by APA

3. ⊢APAL �p→ [q][r]p by 1, 2, PL andMP

4. ⊢APAL �p→ [q]�p by 3 and R′(�)

5. ⊢APAL �p→ ��p by 4 and R′(�)

The main effect of rule R(�) is that it makes the canonical model (consisting of
all maximal consistent sets of formulas closed under the rule) standard for �. Let us
see how. In the remainder of this section, most proof details are omitted. A complete
proof can be found in (Balbiani et al., 2007a).
A set x of formulas is called a theory if it satisfies the following conditions:

• x contains the set of all theorems of LAPAL; and

• x is closed under modus ponens and R(�).

Obviously the least theory is the set of all theorems and the largest theory is the
set of all formulas. The latter theory is called the trivial theory. A theory x is said to be
consistent if⊥ 6∈ x. We shall say that a theory x is maximal if for all formulas ϕ, ϕ ∈ x
or ¬ϕ ∈ x. Let x be a set of formulas. For all formulas ϕ, let x+ϕ = {ψ | ϕ→ ψ ∈ x}.
For all agents i, letKix = {ϕ | Kiϕ ∈ x}. For all formulas ϕ, let [ϕ]x = {ψ: [ϕ]ψ ∈ x}.

LEMMA 84
Let x be a theory, ϕ be a formula, and i be an agent. Then x + ϕ, Kix and [ϕ]x are
theories. Moreover x+ ϕ is consistent if and only if ¬ϕ 6∈ x.

PROOF. The proof is based on the fact that x is closed under modus ponens and
R(�).

LEMMA 85
Let x be a consistent theory. There exists a maximal consistent theory y such that
x ⊆ y.

PROOF. This is the Lindenbaum Lemma for the arbitrary announcement logic. The
proof can be done as in (Goldblatt, 1982).

DEFINITION 86 (CANONICAL MODEL)
The canonical model of LAPAL is the structureMc = 〈S,R, V 〉 defined as follows:

• S is the set of all maximal consistent theories;

6.5. A Tableau Method for Arbitrary Announcements 79

• For all agents i, Ri is the binary (equivalence) relation on S defined by xRiy iff
Kix = Kiy;

• For all atoms p, Vp is the subset of S defined by x ∈ Vp iff p ∈ x.

LEMMA 87 (TRUTH)
Let ϕ be a formula in LAPAL. Then for all maximal consistent theories x and for all

finite sequences ψk = (ψ1, . . . , ψk) of formulas in LAPAL such that ψ1 ∈ x, [ψ1]ψ2 ∈ x,
. . ., [ψ1] . . . [ψk−1]ψk ∈ x:

Mψk

c , x |= ϕ⇔ [ψ1] . . . [ψk]ϕ ∈ x

PROOF. The proof is by induction on ϕ.

As a result we have:

THEOREM 88 (SOUNDNESS AND COMPLETENESS)
Let ϕ be a formula. Then ϕ is a theorem iff ϕ is valid.

PROOF. Soundness is immediate, following the observations at the beginning of this
section. Completeness follows from Lemmas 84, 85, and 87.

6.5 A Tableau Method for Arbitrary Announcements

Now, we generalise the method given in section 5.2 to arbitrary announcements. We
reuse labelled formulas for LAPAL, as introduced in definition 54.

DEFINITION 89 (TABLEAU (CONTINUATION))
A tableau for the formula ϕ ∈ LAPAL is defined as in Definition 56. The tableau rules
are the same, plus the following ones:

R�: If (ψk, n,�ϕ) ∈ Λ, then B = {〈Λ ∪ {(ψk : n : [χ]ϕ)},Σ〉} for any χ ∈ LEL.

R♦: If (ψk, n,¬�ϕ) ∈ Λ, then B = {〈Λ ∪ {(ψk : n : ¬[p]ϕ)},Σ〉} for some p ∈ P that
does not occur in Λ.

These rules are similar to Smullyan’s tableau rules for closed first-order formulas
(Smullyan, 1968; Letz, 1999). They reflect that the operator � quantifies over an-
nouncements. In tableau rule �, this operator is eliminated by replacing it by an
arbitrary formula in LEL. Tableau rule R♦ is more curious though: instead of replac-
ing the operator by an announcement of a formula in ψ ∈ LEL, we replace it by an
announcement of a new propositional letter. The intuitive argument here is the fol-
lowing. Since this new propositional letter does not occur in the branch, we are free
to give it an arbitrary interpretation to represent a specific restriction in the model.
In this way, we make the calculus simpler because it is not necessary to make a ‘good
choice’ at the moment of the application of rule R♦.

80 Chapter 6. Searching for Plans

1. ǫ, 0,¬[¬�¬Kip]Kip
2. ǫ, 0,¬�¬Kip (R〈·〉 : 1)
3. ¬�¬Kip, 0,¬Kip (R〈·〉 : 1)
4. ǫ, 0,¬[q]¬Kip (R♦ : 2)
5. ǫ, 0, q (R〈·〉 : 4)
6. q, 0,¬¬Kip (R〈·〉 : 4)
7. q, 0,Kip (R¬ : 6)

8. ǫ, 1,¬�¬Kip (i, 0, 1) ∈ Σ (RK̂ : 3)

9. ¬�¬Kip, 1,¬p (RK̂ : 3)
10. q, 1, p (RK : 7)

closed (9, 10)

Figure 6.1: Closed tableau for the formula [♦Kip]Kip.

EXAMPLE 90
Consider the formula [♦Kip]Kip. Note that it is valid in APAL since its announcement
corresponds to the sentence: ‘there is an announcement after which agent i knows
that p’. That is, it is publicly announced that p can be known. This means that p is
true and thus now agent i knows it. In Figure 6.1 we use the tableaumethod to show
that this formula is APAL-valid.

THEOREM 91 (SOUNDNESS AND COMPLETENESS (CONTINUATION))

There is a closed APAL-tableau for ¬ϕ if and only if ϕ is APAL-valid.

PROOF. This is an easy extension of the proof of theorem 59. The details are in
Appendix A.5.

This tableaumethod can be used for giving us a proof of semi-decidability of this
logic.

THEOREM 92
The set of APAL-valid formulas of LAPAL is recursively enumerable.

PROOF. First note that the same argument used in the proof of Theorem 63 can
be used to show that each tableau rule generates a finite tableau. Then, by com-
pleteness, we have that for all formulas ϕ, all closed tableaux for ϕ are finite. Then,
consider a procedure that enumerates all pairs (ϕ, T) such that T is a closed tableau.
For each pair, the procedure verifies if T is a tableau for ¬ϕ. When the checking is
finished, it generates another pair and performs another round of checking, and so
on ad infinitum.

6.6. Discussion, Further Work and Conclusion 81

6.6 Discussion, Further Work and Conclusion

We proposed an extension of public announcement logic with an operator � that
expresses what is true after arbitrary announcements. We proved several validities
involving that operator, gave a sound and complete infinitary axiomatisation, and a
labelled tableau calculus.

At a first glance, it may seem that the operator � of APAL is the same as the one
of the logic ES (Lakemeyer and Levesque, 2004) (see also Lakemeyer and Levesque,
2005), dicussed in Section 2.3.5. There are some differences between them though.
In ES this operator quantifies over atomic actions, while in APAL it quantifies over
formulas. In addition, all epistemic actions are sensing actions in ES, while in APAL

they are public announcements. And finally, and most importantly, the ES operator
also quantifies over ontic actions. Nevertheless, it is worth noting that we were able
to show in this chapter a reduction (or regression) procedure for the APAL operator
� in single-agent settings. We leave as an open question, whether this procedure can
be exteded for the operator � of logic ES.

Some further issues in the logic APAL and in its tableau calculus might be in-
teresting and fruitful to pursue. For instance, we know that the model checking
problem in APAL is decidable under the assumption that models are finite and that
only a finite number of atoms changes value in a given model. This result is not
trivial because of the quantification implicit in the operator �.
In addition, we hope that if the logic is decidable, an adapted version of the

tableau calculus proposed here could be used for planning. This is possible along
the same idea proposed by Castilho et al. (1999). Suppose that we have a closed
tableau for the formula:

ϕ ∧ �¬ψ

where ϕ describes an initial situation and ψ a goal. This means that the formula ϕ→
♦ψ is valid, i.e., the goal ψ is reachable. Then we take all the branches of the closed
tableau and remove those branches that are closed without involving a subformula
of �¬ψ. For the remaining branches we extract finite sequences ψk = (ψ1 . . . ψk) of
announcements. Then the (nondeterministic) plan associated to the tableau is the
nondeterministic composition of all these sequences of announcements. For exam-
ple, suppose that ϕ = ⊤ and ψ = Kip∨Ki¬p. In this case, the nondeterministic plan
would be p ∪ ¬p.
Another interesting research track would be the expansion of the language of

APALwith additional modal operators. Notably, common knowledge and public as-
signments. However, if we apply a recent unpublished result of van Ditmarsch and
Kooi (2006b), we have that the introduction of public assignments in APAL leads to
a trivialisation of the problem: in finite models all satisfiable formulas are realizable
in such a logic, or, more formally, given arbitrary finite (M, s) and satisfiable ϕ, there
is always a sequence of announcements and assignments α such that (M, s) |= 〈α〉ϕ.
In other words, every (satisfiable) goal is reachable!

Then it seems that the idea of quantifying over actions does not lead to a good
formalisation of planning. Remember though, that the operator� quantifies over the

82 Chapter 6. Searching for Plans

whole set of actions. In a realistic setting, each agent should have a set of available
actions and the quantification should be done over these sets. For example, a blind
agent should not be able to announce that the light is on, where the concept of ability
used here is the one defined by van der Hoek et al. (1994) (see also van der Hoek
et al., 2000). In addition, even if the action is available for the agent, it must be
executable by the agent. To use the same terminology of Section 2.5.2, the action must
be meaningful. For example, the agent should not be able to announce that the light
is on if he does not know wheather the light is on or not. We believe that with such
restrictions the problem will not be trivial any more.

Chapter 7

Conclusion

The research performed in this thesis started from the idea of extending the approach
of Demolombe et al. (2003) to account for epistemic actions. In this framework, the
Reiter (1991) solution to the frame problem – which addresses only factual change
– is encoded into the modal logic EDL. One of the restrictions imposed is that all
actions should respect the no-learning principle. At first glance, it seemed improba-
ble that a genuine (or evenmeaningful) epistemic action could respect this principle.
However, we find a kind of epistemic action that does: observations (Chapter 3)
respect no-learning, and are indeed able to make agents’ epistemic states evolve.

Observations are an interesting kind of epistemic action, but do not seem to be
expressive enough. For instance, they are different from sensing actions, formalised
for example in the framework of Scherl and Levesque (2003). This is why we needed
to demonstrate that all epistemic actions can be encoded by “complex” observations.
This result is stated as the ‘observations are general’ theorem in Section 3.3.

After that, we showed that observations were nothing but public announcements,
and that factual change in EDL were very similar to public assignments. Public an-
nouncements and public assignments are actions present in dynamic epistemic logic
(DEL). DEL is a family of logics studied in the “Dutch tradition” of reasoning about
actions and knowledge. In DEL, actions are viewed as model transformations. By
trying to understand the relations between all these notions, we ended up by realiz-
ing that both approaches – EDL and DEL – could, so to speak, do the same job. The
technical result is the polynomial translation from EDL to DEL of Section 4.4.

The existing reasoning method available for DEL, made up of reduction axioms,
were too resource consuming. The next step then was to find an efficient method
allowing to automatically reasoning in this setting. That is, we started to look for a
solution to the inferential frame problem: the problem of finding an efficient reason-
ing method for a formalism that solves the representational frame problem. At this
point, we splitted the work into two research tracks. In one of them, we extended
an existing proof method, proposed by Lutz (2006), that accounts for a fragment of
DEL. In the other track, we developed a tableau method for DEL.

The first track turned out to be more fruitful and we ended up with an optimal

83

84 Chapter 7. Conclusion

proof method for the full logic DEL as we wanted. The extension of Lutz’ method
proposed here, also accounts for ontic change, and is the only optimal proof method
for this logic up to now.
The second track did not give us a proof method for the full logic DEL, but re-

sulted in a novel proof method for one of its fragments: public announcement logic
(PAL). We also provided optimal tableau strategies for deciding satisfiability in two
special cases: K-PAL and KT-PAL. And in addition, we have reasons to believe that
optimal strategies for S4-PAL and S5-PAL exist.
Note that these results also contribute to bringing together two different research

communities of reasoning about actions and knowledge. The “Toronto community”,
whose adepts developed several extensions to the situation calculus, and the “Am-
sterdam community”, whose adepts use dynamic epistemic logic formalisations of,
essentially, the same problems. Some ideas about the similarities between situation
calculus and dynamic epistemic logic were independently outlined by van Benthem
(2007). Here we go further, and formally prove the connections between them.
The last objective pursued in this workwas a proper treatment of the task of plan-

ning. Note that plan verification, the problem that we address usingDEL, can be seen
as validity checking. However, this is not the case for planning, because the latter
demands the construction of a plan. We therefore designed another formalism called
arbitrary public announcement logic (APAL). This is our first effort towards a proper
treatment of the planning task using modal logic. In fact, we do not really address
planning using APAL, but a still different problem that lies between plan verification
and planning: the plan existence problem. Even for this task though, APAL is not ideal.
The first reason is that APAL does not account for ontic change. The second reason is
that if we permit that the diamond operator of APAL quantifies over plans, then they
must be meaningful plans, as defined in Section 2.5.2. The third, and main, reason
is that APAL quantifies over the set of all epistemic actions, and not over the set of
“possible epistemic actions for each agent”, as would be more adequate. To exem-
plify why this distinction is important, suppose a blind agent in a room. This agent
should not be able to observe (by means of its own capabilities) whether the light is
on or off. Because each agent has limited capabilities and cannot execute whatever
observation, the quantification over all of them is not realistic. Many results for APAL

were achieved however. We provided a Hilbert-style axiomatisation and a tableau
method. And we also provided some results concerning its expressivity.

A straightforward extension of the tableau method defined in Chapter 5 should
be enough to permit the definition of decision procedures for DEL with public as-
signments (ontic change). The rules to be added are simple. Note that if [p :=ψ]ϕ is
satisfiable, then either both ψ and p are false after the assignment, or both ψ and p
are true after the assignment. This corresponds to a kind of cut rule, as the following
one:

R := if (ψk, x, [p :=ψ]ϕ) ∈ Λ, then
B = {(Λ∪{(ψk, x,¬ψ), (ψk(p :=ψ), x,¬p), (ψk(p :=ψ), x, ϕ)},Σ), (Λ∪{(ψk, x, ψ),
(ψk, (p :=ψ), x, p), (ψk(p :=ψ), x, ϕ)},Σ)}.

85

It is not clear however, whether this extension can lead to optimal decision proce-
dures.
One of the most interesting questions raised by this work was alreadymentioned

in Section 4.6. Our proof method would not be optimal if sensing actions !!ϕ were
defined as primitive operators in DEL. It is not clear how the associated reduction
axiom:

Ki[!!ϕ]ψ ↔ ((ϕ→ Ki(ϕ→ [!!ϕ]ψ)) ∧ (¬ϕ→ Ki(¬ϕ→ [!!ϕ]ψ)))

can be “efficiently” integrated in Lutz’ reduction. We know that satisfiability in DEL

with sensing actions is PSPACE-hard. The form of the reduction axioms implies that
this problem is in EXPSPACE. We leave as an open question the precise complexity
class of the satisfiability problem of the logic with sensing actions.
One could also introduce other kinds of actions into the present framework. An

(almost) straightforward extension is the integration of non-public actions. This can
be done by enriching the action descriptions defined in Section 4.2 with binary ac-
cessibility relations R : N → (A × A). Then action descriptions take a form that is
similar to action models proposed by Baltag et al. (1998). In Baltag et al.’s approach,
actions in A are linked by arrows that are labelled by agents in N . We interpret this
as follows: if (a, b) ∈ Ri, then whenever action a occurs, agent i believes that action
b occurs. In particular, when b = skip, the occurrence of a is not perceived by agent
i. Therefore, this action is not public. By using a slightly different version of DEL,
Baltag et al. define model transformations for this kind of actions. Reduction axioms
are also provided. From the latter and the results achieved by this thesis, it follows
that non-public actions can also be easily introduced in the framework of situation
calculus.

Bibliography

Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: partial meet contraction and revision functions. Journal of Symbolic Logic,
50:510–530, 1985.

Fahiem Bacchus, Joseph Halpern, and Hector Levesque. Reasoning about noisy sen-
sors and effectors in the situation calculus. Artificial Intelligence, 111(1–2):171–208,
1999.

Philippe Balbiani, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomo-
hiro Hoshi, and Tiago de Lima. What can we achieve by arbitrary announce-
ments? A dynamic take on Fitch’s knowability. In Dov Samet, editor, Proceedings of
the eleventh Theoretical Aspects of Rationality and Knowledge conference (TARK), pages
42–51. Presses universitaires de Louvain, 2007a.

Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima. A
tableau method for public announcement logics. In N. Olivetti, editor, Proceedings
of the International Conference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods (TABLEAUX), volume 4548 of Lecture Notes in Artificial Intelligence
(Lecture Notes in Computer Science), pages 43–59. Springer-Verlag, 2007b.

Alexandru Baltag and Lawrence Moss. Logics for epistemic programs. Synthese, 139
(2):165–224, 2004.

Alexandru Baltag, Lowrence Moss, and Slawomir Solecki. The logic of common
knowledge, public announcements, and private suspicions. In Proceedings of the
seventh Theoretical Aspects of Rationality and Knowledge conferene (TARK), pages 43–
46. Morgan Kaufmann Publishers Inc., 1998.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001a.

Patrick Blackburn, Jaap Kamps, and Maarten Marx. Situation calculus as hybrid
logic: First steps. In P. Brazdil and A. Jorge, editors, Proceedings of the Tenth Por-
tuguese Conference on Artificial Intelligence (EPIA), volume 2258 of Lecture Notes in
Computer science, pages 253–260. Springer-Verlag, 2001b.

87

88 Bibliography

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300, 1997.

Blai Bonet and Hector Geffner. Planning and control in artificial intelligence: A uni-
fying perspective. Applied Intelligence, 14(3):237–252, 2001.

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Struc-
tural assumptions and computational leverage. Journal of Artificial Intelligence Re-
search, 11:1–94, 1999.

Berit Brogaard and Joe Salerno. Fitch’s paradox of knowability. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab, Cen-
ter for the Study of Language and Information, Stanford University, Summer
2004. URL http://plato.stanford.edu/archives/sum2004/entries/
fitch-paradox/.

Tom Bylander. The computational complexity of propositional strips planning. Ar-
tificial Intelligence, 69(1–2):165–204, 1994.

Marcos Castilho, Luis Fariñas del Cerro, Olivier Gasquet, and Andreas Herzig.
Modal tableaux with propagation rules and structural rules. Fundamenta Infor-
maticae, 32(3/4):1–17, 1997.

Marcos Castilho, Olivier Gasquet, and Andreas Herzig. Formalizing action and
change in modal logic I: the frame problem. Journal of Logic and Computation, 9
(5):701–735, 1999.

Alessandro Cimatti, Enrico Giunchiglia, Fausto Giunchiglia, and Paolo Traverso.
Planning via model checking: a decision procedure for AR. In S. Steel and
R. Alami, editors, Proceedings of the Forth European Conference on Planning (ECP),
Lecture Notes in Computer Science, Volume 1348, pages 130–142. Springer Verlag,
September 24–26 1997. ISBN 3-540-63912-8.

Mathijs de Boer. Praktische bewijzen in public announcement logica (Practical proofs
in public announcement logic). Master’s thesis, Department of Artificial Intelli-
gence, University of Groningen, 2006. in Dutch.

Robert Demolombe, Andreas Herzig, and Ivan Varzinczak. Regression in modal
logic. Journal of Applied Non-Classical Logics, 13(2):165–185, 2003.

Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
Knowledge. The MIT Press, 1995.

Richard Fikes and Nils Nilsson. STRIPS: a new approach to the application of theo-
rem proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

Kit Fine. Propositional quantifiers in modal logic. Theoria, 36(3):336–346, 1970.

Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel Publishing
Company, 1983.

89

Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic
programs. Journal of Logig Programming, 17(2/3&4):301–321, 1993.

Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov. What are the limitations
of situation calculus. In Robert Boyer, editor, Essays in Honor of Woody Bledsoe,
pages 167–180. Kluwer Academic Publishers Group, 1991.

Jelle Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, ILLC, University of Am-
sterdam, 1999.

Jelle Gerbrandy andWillem Groeneveld. Reasoning about information change. Jour-
nal of Logic, Language and Information, 6(2):147–169, 1997.

Robert Goldblatt. Axiomatising the Logic of Computer Programming, volume 130 of
Lecture Notes in Computer Science. Springer, 1982.

Andrew Haas. The case for domain-specific frame axioms. In F. M. Brown, editor,
The Frame Problem in Artificial Intelligence. Morgan Kaufmann, 1987.

Joseph Halpern and Yoram Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:311–379, 1992.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundations of Com-
puting Sereies. The MIT Press, 2000.

Andreas Herzig and Tiago de Lima. Epistemic actions and ontic actions: A unified
logical framework. In Jaime Simão Sichman, Helder Coelho, and Solange Oliveira
Rezende, editors, Advances in Artificial Intelligence – IBERAMIA-SBIA 2006, vol-
ume 4140 of Lecture Notes in Artificial Intelligence (Lecture Notes in Computer Science),
pages 409–418. Springer-Verlag, 2006.

AndreasHerzig, Jérôme Lang, Dominique Longin, and Thomas Polacsek. A logic for
planning under partial observability. In Proceedings of the Seventeenth Conference on
Artificial Intelligence (AAAI) and the Twelfth Conference on Innovative Applications of
Artificial Intelligence (IAAI), pages 768–773. The AAAI Press, 2000a.

Andreas Herzig, Jérôme Lang, and Thomas Polacsek. A modal logic for epistemic
tests. In Werner Horn, editor, Proceedings of the Fourteenth European Conference on
Artificial Intelligence (ECAI), pages 553–557. IOS Pres, 2000b.

Jaakko Hintikka. Knowledge and Belief. Cornell University Press, 1962.

Leslie Kaelbling, Michael Littman, and Anthony Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134,
1998.

Henry Kautz and Bart Selman. Planning as satisfiability. In J. LLoyd, editor, Proceed-
ings of the Tenth European Conference on Artificial Intelligence (ECAI), pages 359–379,
1992.

90 Bibliography

Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning. In
Thomas Dean, editor, Proceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 318–325, San Francisco, 1999. Morgan Kaufmann.

Barteld Kooi. Expressivity and completeness for public update logic via reduction
axioms. Journal of Applied Non-Classical Logics, 17(2):231–253, 2007.

Robert Koons and Nicholas Asher. Belief revision in a changing world. In Proceed-
ings of the eleventh Theoretical Aspects of Rationality and Knowledge conference (TARK),
pages 321–340. ACM, 1994.

Gerhard Lakemeyer and Hector Levesque. Situations, si! Situation terms, no! In
Proceedings of the International Conference on Knowledge Representation and Reasoning
(KR), pages 516–526. AAAI Press, 2004.

Gerhard Lakemeyer and Hector Levesque. Semantics for a useful fragment of the
situation calculus. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, pages 490,496. Professional Book Center, 2005.

Reinhold Letz. Tableau methods for modal and temporal logics. In M. D’Agostino,
D. Gabbay, R. Hähnle, and J. Possega, editors, Handbook of Tableau Methods, pages
125–196. Kluwer Academic Publishers, 1999.

Hector Levesque. What is planning in presence of sensing? In Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI) and the Eighth Annual
Conference on Innovative Applications of Artificial Intelligence (IAAI), volume 2, pages
1139–1146. The AAAI Press, 1996.

Hector Levesque, Reymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard
Scherl. GOLOG: A logic programming language for dynamic domains. Journal
of Logic Programming, 31(1–2):59–83, 1997.

David Lewis. Convention, A Philosophical Study. Harvard University Press, 1969.

Carsten Lutz. Complexity and succintness of public announcement logic. In P. Stone
and G. Weiss, editors, Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 137–144, 2006.

Stephen Majercik and Michael Littman. Contingent planning under uncertainty via
stochastic satisfiability. Artificial Intelligence, 147(1-2):119–162, 2003.

John McCarthy. Situations, actions and causual laws. In M. Minsky, editor, Semantic
Information Processing, pages 410–417. The MIT Press, 1968.

John McCarthy and Patrick Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors,Machine Intelli-
gence 4, pages 463–502. Edinburgh University Press, 1969.

91

John-Jules Meyer and Wiebe van der Hoek. Epistemic Logic for AI and Computer Sci-
ence. Number 41 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1995.

Robert Moore. Reasoning about knowledge and action. Technical Note 191, SRI
International, 1980.

Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal
forms. In Handbook of Automated Reasoning, pages 335–367. North Holland, 2001.

J. Scott Penberthy and Daniel Weld. UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proceedings of the International Conference on Knowledge Representa-
tion and Reasoning (KR), pages 103–114, 1992.

Jan Plaza. Logics of public communications. In M. L. Emrich, M. Hadzikadic, M. S.
Pfeifer, and Z. W. Ras, editors, Proceedings of the Fourth International Symposium on
Methodologies for Intelligent Systems (ISMIS), pages 201–216, 1989.

Reymond Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz, editor,
Papers in Honor of JohnMcCarthy, pages 359–380. Academic Press Professional Inc.,
1991.

Reymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press, 2001a.

Reymond Reiter. On knowledge-based programming with sensing in the situation
calculus. ACM Transactions on Computational Logic, pages 433–437, 2001b.

Erik Sandewall. Features and fluents. A systematic approach to the representation of
knowledge about dynamical systems. Technical Report LiTH-IDA-R-92-30, IDA,
Linköping Univesity, 1992.

Erik Sandewall. Features and Fluents. The Representation of Knowledge about Dynamical
Systems, volume 1. Oxford University Press, 1995.

Richard Scherl and Hector Levesque. The frame problem and knowledge-producing
actions. In Proceedings of the Eleventh National Conference on Artificial Intelligence
(AAAI), pages 689–695. The AAAI Press, 1993.

Richard Scherl and Hector Levesque. Knowledge, action and the frame problem.
Artificial Intelligence, 144(1–2):1–39, 2003.

Lenhart Schubert. Monotonic solution of the frame problem in the situation calcu-
lus: An efficient method for worlds with fully specified actions. In H. Kynburg,
R. Loui, and G. Carlson, editors, Knowledge Representation and Defeasible Reasoning,
pages 23–67. Kluwer Academic Publishing, 1990.

Murray Shanahan. Solving the Frame Problem. The MIT Press, 1997.

92 Bibliography

Steven Shapiro, Maurice Pagnucco, Yves Lespérance, and Hector Levesque. Iterated
belief change in the situation calculus. In Proceedings of the Seventh International
Conference on Principles and Knowledge Representation and Reasoning (KR), pages 527–
538, 2000.

Raymond Smullyan. First-Order Logic. Springer-Verlag, 1968.

Raymond Smullyan. The Lady or the Tiger? and Other Logic Puzzles Including a Math-
ematical Novel That Features Godel’s Great Discovery. Random House Puzzles &
Games, 1992.

Michael Thielscher. From situation calculus to fluent calculus: State update axioms
as a solution to the inferential frame problem. Artificial Intelligence, 111(1-2):277–
299, 1999.

Johan van Benthem. Dynamical odds and ends. Technical Report ML-1998-08, ILLC,
University of Amsterdam, 1998.

Johan van Benthem. What one may come to know. Analysis, 64(2):95–105, 2004.

Johan van Benthem. “One is a Lonely Number”: logic and communication. In
Z. Chatzidakis, P. Koepke, andW. Pohlers, editors, Logic Colloquium’02, volume 27
of Lecture Notes in Logic, pages 96–129. ASL & A.K. Peters, 2006.

Johan van Benthem. Modal logic meets situation calculus. Manuscript, 2007.

Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication and
change. Information and Computation, 204(11):1620–1662, 2006.

Wiebe van der Hoek, Bernd van Linder, and John-JulesMeyer. A logic of capabilities.
In Anil Nerode and Yuri Matiyasevich, editors, Proceedings of the Third International
Symposium Logical Foundations of Computer Science, volume 813 of Lecture Notes in
Computer Science, pages 366–378. Springer, 1994.

Wiebe van der Hoek, Bernd van Linder, and John-Jules Meyer. On agents that have
the ability to chose. Studia Logica, 65:79–119, 2000.

Hans van Ditmarsch and Barteld Kooi. The secret of my success. Synthese, 151(2):
201–232, 2006a.

Hans van Ditmarsch and Barteld Kooi. The logic of ontic and epistemic change. URL
http://arxiv.org/abs/cs.LO/0610093v1. Manuscript, 2006b.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic
logic with assignment. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. Singh,
and M. Wooldridge, editors, Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 141–148. ACM,
2005.

Bibliography 93

Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima. Optimal regression for
reasoning about knowledge and actions. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, pages 1070–1075. AAAI Press, 2007a.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2007b.

Georg von Wright. An Essay in Modal Logic. North-Holland, 1951.

RichardWaldinger. Achieving several goals simutaneously. In E. Elock andD.Michi,
editors,Machine Intelligence, volume 8, pages 94–136. Ellis Harwood, 1977.

Appendix A

Long Proofs

A.1 Observations Are General

Here we provide a detailed proof for Theorem 39 of Section 3.3. For simplicity, we
sometimes use infix notation for relations in this section. For example, sTes

′ means
that (s, s′) ∈ Te.

DEFINITION 93
Let M be an EDLo-model, s, t ∈ S are epistemicaly bisimilar (notation: s

epi

- t) if and
only if there exists a non-empty relation Z ⊂ S × S such that:

1. s and t satisfy the same propositional letters of P ;

2. The forth condition: if (sZt & sRs′), then ∃t′(s′Zt′ & tRt′); and

3. The back condition: if (sZt & tRt′), then ∃s′(s′Zt′ & sRs′).

Now, we present a theorem of (van Benthem, 2006) (It is also in (van Benthem,
1998)). It establishes that epistemicaly bisimilar worlds can be characterised by epis-
temic formulae.

THEOREM 94
(van Benthem, 2006) Consider any finite multi-S5 model (M, s). There exists a finite
set of formulae δ(si) (1 ≤ i ≤ k) such that (a) each world satisfies one of them, (b) no
world satisfies two of them (i.e., they define a partition of the model), and (c) if two
worlds satisfy the same formula δ(si), then they agree on all epistemic formulae.

Since we can characterise epistemicaly bisimilar worlds syntactically, then we
have the following result.

LEMMA 95
LetM be an EDLo-model.

∀s, t, t′ ∈ S((t ∈ T!γ(s)(s) & t′ ∈ Te(s)) ⇒ t
epi

- t′)

95

96 Appendix A. Long Proofs

where γ(s) =
∨
t∈(Te◦R◦T−1

e)(s) δ(t)

PROOF. LetM and s be given. Let Z = {(t, t′) ∈ S × S | ∃v, vT!γ(s)t & vTet
′}. Now,

suppose that (t, t′) ∈ Z , we prove that Z is an epistemic bisimulation:

1. t and t′ satisfy the same propositional letters.
It follows from the fact that ∀p ∈ P (t ∈ V (p) ⇔ s ∈ V (p)), by Definition 38,
and that ∀p ∈ P (s ∈ V (p) ⇔ t′ ∈ V (p)), by Definition 35.

2. The forth condition: (tZt′ & tRu) ⇒ ∃u′(uZu′ & t′Ru′).
suppose that (tZt′ & tRu),
then s(T!γ(s) ◦R)u,
then s(R ◦ T!γ(s))u, by No-forgetting,
then ∃v(sRv & vT!γ(s)u),
then T!γ(s)(v) 6= ∅,
thenM, v |= γ(s), by condition 2 of Definition 38,
then δ(v) is in the disjunction γ(s), by Theorem 94,
then s(Te ◦R ◦ T−1

e)v, by the definition of γ(s),
then ∃u′(s(Te ◦R)u′ & vTeu

′),
then uZu′, because vT!γ(s)u and vTeu

′

and also t′Ru′, because sTet′ and s(Te ◦R)u′ and e is deterministic.

3. The back condition: (tZt′ & t′Ru′) ⇒ ∃u(uZu′ & tRu).
suppose that (tZt′ & t′Ru′),
then s(Te ◦R)u′,
then s(R ◦ Te)u′, by No-forgetting,
then ∃v(sRv & vTeu

′),
then s(Te ◦R ◦ T−1

e)v,
then δ(v) is in the disjunction γ(s), by the definition of γ(s),
thenM, v |= γ(s), by Theorem 94,
then T!γ(s)(v) 6= ∅, by condition 2 of Definition 38,
then ∃u.vT!γ(s)u,
then uZu′, because vT!γ(s)u and vTeu

′

and also R(u) = (R ◦ T!γ(s))(v), by condition 4 of Definition 38,
then tRu, because sRv and sT!γ(s)t.

In the sequel, we show that the action e and its corresponding complex observa-
tion ǫ are exactly the same. We start by proving it for epistemic formulae.

LEMMA 96
Let ϕ ∈ LEL and let ǫ =

⋃
s∈S(?δ(s′) ; !γ(s′)δ(s)). M, s |= [e]ϕ iffM, s |= [ǫ]ϕ.

PROOF.

• From left to right: suppose thatM, s |= [e]ϕ,
iff ∀s′ ∈ Te(s).M, s′ |= ϕ.

A.1. Observations Are General 97

– Suppose that Te(s) = ∅,
then (Te ◦R ◦ T−1

e)(s) = ∅,
then γ(s) = ⊥,
then notM, s |= γ(s),
then T!γ(s)(s) = ∅, by condition 2 of Definition 38,
then ∀s′ ∈ T!γ(s)(s).M, s′ |= ϕ,
thenM, s |= [!γ(s)]ϕ,
thenM, s |= δ(s) → [!γ(s)]ϕ,
thenM, s |= [?δ(s′) ; !γ(s′)]ϕ.

– Suppose that t ∈ Te(s),
thenM, t |= ϕ
and s ∈ (Te ◦R ◦ T−1

e)(s), because R is reflexive,
then δ(s) is in the disjunction γ(s),
thenM, s |= γ(s),
then ∃t′.T!γ(s)(s) = {t′}, by condition 3 of Definition 38,

then t
epi

- t′, by Lemma 95,
thenM, t′ |= ϕ,
then ∀u ∈ T!γ(s)(s)(M,u |= ϕ),
thenM, s |= [!γ(s)]ϕ,
thenM, s |= δ(s) → [!γ(s)]ϕ,
thenM, s |= [?δ(s′) ; !γ(s′)]ϕ.

We also have that ∀s′ 6
epi

- s(notM, s |= δ(s′)), by Theorem 94,

then ∀s′ 6
epi

- s(M, s |= δ(s′) → [!γ(s′)]ϕ),

then ∀s′ 6
epi

- s(M, s |= [?δ(s′) ; !γ(s′)]ϕ),
then ∀s′(M, s |= [?δ(s′) ; !γ(s′)]ϕ),
thenM, s |=

∧
s′∈S [?δ(s′) ; !γ(s′)]ϕ,

thenM, s |= [
⋃
s′∈S(?δ(s′) ; !γ(s′)]ϕ.

• From right to left: suppose thatM, s |= [
⋃
s′∈S(?δ(s′) ; !γ(s′)]ϕ,

iffM, s |=
∧
s′∈S [?δ(s′) ; !γ(s′)]ϕ,

iff ∀s′ ∈ S.M, s |= [?δ(s′) ; !γ(s′)]ϕ,
iff ∀s′ ∈ S.M, s |= δ(s′) → [!γ(s)]ϕ,
iff ∀s′ ∈ S. ifM, s |= δ(s′) thenM, s |= [!γ(s′)]ϕ,
iff ∀s′ ∈ S. ifM, s |= δ(s′) then ∀s′′ ∈ T!γ(s′)(s).M, s′′ |= ϕ.

Suppose t such thatM, s |= δ(t): iff s
epi

- t, by Theorem 94,

Then ∀s′
epi

- s(∀s′′ ∈ T!γ(s′)(s)(M, s′′ |= ϕ)).

– Suppose t such that t
epi

- s and T!γ(t)(s) = ∅:
then notM, s |= γ(t), by condition 3 of Definition 38,

98 Appendix A. Long Proofs

then notM, t |= γ(t), because γ(t) ∈ LEL,
then δ(t) is not in the disjunction γ(t), by Theorem 94,
then t 6∈ (Te ◦R ◦ T−1

e)(t),
then Te(t) = ∅, because R is reflexive,
then ∀t′ ∈ Te(t)(M, t′ |= ϕ),
thenM, t |= [e]ϕ,

thenM, s |= [e]ϕ, because s
epi

- s.

– Suppose t, u such that t
epi

- s and u ∈ T!γ(t)(s):
thenM, s |= γ(t), by condition 2 of Definition 38
thenM, t |= γ(t), because γ(t) ∈ LEL,
then δ(t) is in the disjunction γ(t), by Theorem 94,
then t ∈ (Te ◦R ◦ T−1

e)(t),
then Te(t) 6= ∅,

∗ Suppose v′ such that v′ ∈ Te(t):

then v′
epi

- v, by Lemma 95,
thenM, v′ |= ϕ.

Then ∀v′ ∈ Te(t)(M, v′ |= ϕ),
thenM, t |= [e]ϕ,

thenM, s |= [e]ϕ, because s
epi

- s.

COROLLARY 97
Let ϕ ∈ LEDL and let e and ǫ be as above.

M, s |= ϕ iffM, s |= ϕ[ǫ/e]

PROOF. Straightforward by induction on ϕ. The base case is Lemma 96.

THEOREM 39 (OBSERVATIONS ARE GENERAL) Suppose that P and A are finite. Let
ϕ ∈ LEDL and let e be a deterministic purely epistemic action. The formula ϕ is
satisfiable in finite models if and only if there exists a (complex) observation ǫ such
that ϕ[ǫ/e] is satisfiable in finite models.

PROOF. From right to left: since ǫ is purely epistemic, take Te = Tǫ. From left to
right: straightforward by Corollary 97.

A.2 Relation Between PAL and EDLo

In this section, we show that ‘!ϕ’ is in fact a public announcement of ϕ. We do this
by proving that all axioms involving the public announcements in PAL are derivable
in EDLo for the operator ‘!’.

A.2. Relation Between PAL and EDLo 99

LEMMA 98
|=EDLo 〈!ϕ〉ψ ↔ (ϕ ∧ [!ϕ])

PROOF. For all ϕ, ψ ∈ LEDLo:

1. ⊥ → ¬ψ PL
2. [!ϕ](⊥ → ¬ψ) by Generalisation in 1
3. [!ϕ]⊥ → [!ϕ]¬ψ by Modus ponens in K and 2
4. ¬ϕ↔ [!ϕ]⊥ Det(!)
5. ¬ϕ→ [!ϕ]¬ψ by Subst. of equivalents in 3 and 4
6. 〈!ϕ〉ψ → ϕ by PL in 4 and 5
7. 〈!ϕ〉ψ → [!ϕ]ψ Det(!)
8. 〈!ϕ〉ψ → (ϕ ∧ [!ϕ]ψ) by PL in 6 and 7
9. ψ → (¬ψ → ⊥) PL
10. [!ϕ](ψ → (¬ψ → ⊥)) by Generalisation in 9
11. [!ϕ]ψ → [!ϕ](¬ψ → ⊥) by Modus ponens in K and 10
12. [!ϕ]ψ → ([!ϕ]¬ψ → [!ϕ]⊥) by Modus ponens in K and 11
13. [!ϕ]ψ → (〈!ϕ〉⊤ → 〈!ϕ〉ψ) PL in 12
14. ϕ↔ 〈!ϕ〉⊤ Exe(!)
15. [!ϕ]ψ → (ϕ→ 〈!ϕ〉ψ) by Subst. of equivalents in 13 and 14
16. ([!ϕ]ψ ∧ ϕ) → 〈!ϕ〉ψ by PL in 15
17. 〈!ϕ〉ψ ↔ (ϕ ∧ [!ϕ]ψ) by PL in 8 and 16

THEOREM 99
The following schemes are valid in EDLo.

1. [!ϕ]p↔ (ϕ→ p)

2. [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)

3. [!ϕ](ϕ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ)

4. [!ϕ]Kψ ↔ (ϕ→ K[!ϕ]ψ)

PROOF. Scheme 2 is equivalent to Lemma 98. Scheme 3 is valid because of the axiom
K. Scheme 4 corresponds to both axioms NL and NF. Below, we prove scheme 1.

100 Appendix A. Long Proofs

For all p ∈ P and all ϕ ∈ LEDLo:

1. ¬p→ [!ϕ]¬p Pre(!)
2. (¬p ∧ ϕ) → ([!ϕ]¬p ∧ ϕ) by PL in 1
3. ([!ϕ]¬p ∧ ϕ) ↔ 〈!ϕ〉¬p Lemma 98
4. (¬p ∧ ϕ) → 〈!ϕ〉¬p by Subst. of equivalents in 2 and 3
5. [!ϕ]p→ (ϕ→ p) by PL in 4
6. ⊥ → p PL
7. [!ϕ](⊥ → p) by Generalisation in 6
8. [!ϕ](⊥ → p) → ([!ϕ]⊥ → [!ϕ]p) K(!)
9. [!ϕ]⊥ → [!ϕ]p by Modus ponens in 7 and 8
10. ¬ϕ↔ [!ϕ]⊥ Exe(!)
11. ¬ϕ→ [!ϕ]p by Subst. of equivalents in 9 and 10
12. p→ [!ϕ]p Pre(!)
13. (ϕ→ p) → [!ϕ]p by PL in 11 and 12
14. ([!ϕ]p↔ (ϕ→ p) by PL in 5 and 13

And finally, we prove that the axioms of EDLo are sound in PAL.

THEOREM 100
The following schemes are valid in PAL.

1. ψ → [ϕ]ψ (for ϕ ∈ LPL)

2. ϕ↔ 〈ϕ〉⊤

3. 〈ϕ〉ψ → [ϕ]ψ

4. [ϕ]Kψ → ([ϕ]⊥ ∨ K[ϕ]ψ)

PROOF. Scheme 1 is valid because p→ [ϕ]p is valid. Schemes 2 and 3 are straightfor-
ward by the semantics of ‘!’ in PAL. Scheme 4 is valid because it follows from scheme
2 and the axiom [ϕ]Kψ ↔ (ϕ→ K[ϕ]ψ) of the proof system of PAL.

A.3 Polynomial Translation

LEMMA 48 Let D be a finite Reiter-style action description and let ϕ ∈ LD. Then
len(δD(ϕ)) ≤ O(len(D) × len(ϕ)).

PROOF. First, we recall that each eff +(a), eff −(a), γ+(a) and γ−(a) are finite. In
addition, len(D) = 6 + len(poss) + len(eff +) + len(eff −) + len(γ+) + len(γ−), and
len(γ+(a)) = 1 +

∑
p∈eff +(a) (1 + len(γ+(a, p))), and analogously for len(γ−(a)). We

prove by induction on the length of ϕ that len(δD(ϕ)) ≤ 8 × len(D) × len(ϕ):

A.3. Polynomial Translation 101

Induction base: len(ϕ) = 1; hence ϕ = p for some atomic p.
Then len(δD(p)) = len(p) = 1 ≤ 8 × len(D).

Induction hypothesis: if len(ϕ) ≤ n, then len(δD(ϕ)) ≤ 8 × len(D) × len(ϕ).

Induction step:

1. len(δD(¬ϕ))

= len(¬δD(ϕ))

= 1 + len(δD(ϕ))

< 8 × len(D) + len(δD(ϕ)) (because 1 < 8 × len(D))

≤ 8 × len(D) + 8 × len(D) × len(ϕ) (by induction hypothesis)

= 8 × len(D) × (1 + len(ϕ))

= 8 × len(D) × len(¬ϕ)

2. Analogously to point 1, we prove that len(δD(ϕ∧ψ)) ≤ 8× len(D)× len(ϕ∧ψ).

3. Analogously to point 1, we prove that len(δD(Kiϕ)) ≤ 8 × len(D) × len(Kiϕ).

4. len(δD([a]ϕ)) = len([poss(a)][σa]δD(ϕ)) (by Definition 47)

= 2 + len(poss(a)) + len(σa) + len(ϕ)

We have that

len(σa) =
∑

p∈eff +(a) & p6∈eff −(a)

7 + len(γ+(a, p)) +

∑

p∈eff −(a) & p6∈eff +(a)

8 + len(γ−(a, p)) +

∑

p∈eff +(a)∩eff −(a)

9 + len(γ+(a, p)) + len(γ−(a, p))

<
∑

p∈eff +(a) & p6∈eff −(a)

7 + 1 + len(γ+(a, p)) +

∑

p∈eff −(a) & p6∈eff +(a)

7 + 1 + len(γ−(a, p)) +

∑

p∈eff +(a)∩eff−(a)

7 + (1 + len(γ+(a, p))) + (1 + len(γ−(a, p)))

=
∑

p∈eff +(a)

7 +
∑

p∈eff −(a)

7 +

∑

p∈eff +(a)

1 + len(γ+(a, p)) +

∑

p∈eff −(a)

1 + len(γ−(a, p))

102 Appendix A. Long Proofs

≤ 7 × len(eff +(a)) + 7 × len(eff −(a)) + len(γ+(a)) + len(γ−(a))

Then

len(δD([a]ϕ))

≤ 2 + 7 × len(D) + len(δD(ϕ))

< 8 × len(D) + len(δD(ϕ)) (because 2 < len(D))

≤ 8 × len(D) + 8 × len(D) × len(ϕ) (by induction hypothesis)

= 8 × len(D) × (1 + len(ϕ))

≤ 8 × len(D) × (2 + len(ϕ))

= 8 × len(D) × (len([a]ϕ))

A.4 From D-models to DEL-models

THEOREM 49 Let D be a Reiter-style action description and let ϕ ∈ LD. Then ϕ is
D-satisfiable if and only if δD(ϕ) is DELC-satisfiable.

PROOF. Let an action descriptionD be given, and letA be the set of actions described
in D. For each epistemic model N and each a ∈ A, we define the structure Na =
〈Sa, Ra, V a〉 such that

sa ∈ Sa iff N, s |= poss(a)

(sa1 , s
a
2) ∈ Rai iff sa1 , s

a
2 ∈ Sa and (s1, s2) ∈ Ri

sa ∈ V ap iff sa ∈ Sa and N, s |= γ+(a, p) ∨ (¬γ+(a, p) ∧ p)

We define the set seq(A) as the set of all action sequences of A by the following
BNF:

τ ::= ǫ | τa

where ǫ denotes the empty sequence and a ranges over A. We also extend the defi-
nition of len(·) to sequences by stipulating len(ǫ) = 0 and len(τa) = 1 + len(τ).

Now, let N ǫ = N and letN τa = (N τ)a. We define the structure:

ND = 〈SD, RD, TD, V D〉

A.4. From D-models to DEL-models 103

such that

SD =
⋃

τ∈seq(A)

Sτ

RDi =
⋃

τ∈seq(A)

Rτi

V Dp =
⋃

τ∈seq(A)

V τp

TDa =
⋃

τ∈seq(A)

{(sτ , sτa) | a ∈ A and sτ ∈ Sτ and sτa ∈ Sτa}

LEMMA 101
ND is aD-model.

PROOF. We must show that ND satisfies all the five constraints of the definition of
D-models in page 45. We do only the first two cases here; the other ones are easier
and left to the reader.

No-forgetting.
Suppose that t ∈ (TDa ◦RDi)(s).
Then there exists s′ ∈ TDa (s) such that t ∈ RDi (s′).
Then there exists τ ∈ seq(A) such that s ∈ Sτ and s′, t ∈ Sτa

and there also exists t′ ∈ Sτ such that t ∈ TDa (t′)
(by the definition of ND).
then t ∈ Rτai (s′) iff t′ ∈ Rτi (s)
(by the definition of ND).

No-learning.
Suppose that TDa (s) 6= ∅ and t ∈ (RDi ◦ TDa)(s).
Then there exists s′ ∈ TDa (s)
and there also exists t′ ∈ RDi (s) such that t ∈ TDa (t′).
Then there exists τ ∈ seq(A) such that s, t′ ∈ Sτ and s′, t ∈ Sτa

(by the definition of ND).
Then t ∈ Rτai (s′) iff t′ ∈ Rτi (s).
(by the definition of ND).

LEMMA 102
Let M = 〈S,R, T, V 〉 be a D-model. Let N = 〈S,R, V 〉 be the epistemic model

generated fromM . Then (ND, s) is bisimilar to (M, s) for every s ∈ S.

PROOF. We define the relation Z ⊆ SD × S as the union
⋃
τ∈seq(A) Z

τ where:

s ∈ Zǫ(tǫ) iff t = s

s ∈ Zτa(tτa) iff there are s′ and tτ such that

s ∈ Ta(s
′) and tτa ∈ TDa (tτ) and s′ ∈ Zτ (tτ)

104 Appendix A. Long Proofs

We first show that each Zτ is an epistemic bisimulation between N τ andM . That
is, that the following holds.
if s ∈ Zτ (tτ), then:

1. tτ ∈ V τp iff s ∈ Vp;

2. if t′ ∈ Rτi (t
τ), then there exists s′ such that s′ ∈ Ri(s) and s′ ∈ Zτ (t′); and

3. if s′ ∈ Ri(s), then there exists t′ such that t′ ∈ Rτi (t
τ) and s′ ∈ Zτ (t′).

The proof is by induction on len(τ).

Induction base.
Suppose that len(τ) = 0.
Then s ∈ Zǫ(tǫ)
iff s = t, from what the three cases follow.

Induction hypothesis.
If len(τ) ≤ n, then s ∈ Zτ (tτ) implies that Zτ is an epistemic bisimulation between
(N τ , tτ) and (M, s).

Note that the induction hypothesis implies that if ϕ ∈ LELC, then (N τ , sτ) |= ϕ iff
(M, s) |= ϕ.

Induction step.
Suppose that τa ∈ seq(A), and len(τ) = n, and s ∈ Zτa(tτa).

1. Suppose that tτa ∈ V τap
iff there are s′ and tτ such that s ∈ Ta(s

′) and tτa ∈ TDa (tτ) and s′ ∈ Zτ (tτ)
(by the definition of Zτa),
and tτa ∈ Sτa and (N τ , tτ) |= γ+(a, p) ∨ (¬γ+(a, p) ∧ p)
(by the definition of N τa)
iff (M, s′) |= γ+(a, p) ∨ (¬γ+(a, p) ∧ p)
(by the induction hypothesis)
iff s ∈ Vp.

2. Suppose that u ∈ Rτai (tτa)
iff there are s′ and tτ such that s ∈ Ta(s

′) and tτa ∈ TDa (tτ) and s′ ∈ Zτ (tτ)
(by the definition of Zτa).
Then there exists u′ such that u′ ∈ Rτi (t

τ) and u ∈ TDa (u′)
(because ND respects No-forgetting).
Then there exists v′ such that v′ ∈ Ragent(s

′) and v′ ∈ Zτ (u′)
(by the induction hypothesis)
and (N τ , u′) |= poss(a)
(because T (u′) 6= ∅ and ND respects Determinism).
Then (M, v′) |= poss(a)
(by the induction hypothesis)
iff there exists v such that v ∈ Ta(v

′)
(becauseM respects Executability).

A.4. From D-models to DEL-models 105

Then v ∈ Ri(s)
(becauseM respects No-learning)
and u ∈ Zτa(tτa)
(by the definition of Zτa).

3. Suppose that v ∈ Ri(t).
Analogously to the previous point, we show that there exists u such that u ∈
Rτai (tτi) and v ∈ Zτa(u).

Now, note that becauseZ contains Zτ for all τ ∈ seq(A), Z is an epistemic bisimu-
lation betweenND andM . As a consequence, we have that if s ∈ Z(t) and ϕ ∈ LELC,
then NDs |= ϕ iffM, t |= ϕ.
We now do one more step and show that Z is a full bisimulation between ND

andM .

Suppose that s ∈ Z(t).
Then there exists τ ∈ seq(A) such that t = tτ and s ∈ Zτ (tτ)
(by the definition of Z).

1. Suppose that t′ ∈ TDa (tτ)
iff t′ = tτa ∈ Sτa

(by the definition of TDa)
iff N τ , tτ |= poss(a)
(by the definition of Sτa)
iffM, s |= poss(a)
(because Zτ is an epistemic bisimulation between (N τ , tτ) and (M, s))
iff there exists s′ such that s′ ∈ Ta(s)
(becauseM respects Executability)
iff s′ ∈ Zτa(tτa)
(by the definition of Zτa).
Then s′ ∈ Z(tτa)
(by the definition of Z).

2. Suppose that s′ ∈ Ta(s)
iffM, s |= poss(a)
(becauseM respects Executability)
iff N τ , tτ |= poss(a)
(because Zτ is an epistemic bisimulation between (N τ , tτ) and (M, s))
iff there exists tτa such that tτa ∈ Sτa

(by the definition of Sτa)
iff tτa ∈ TDa (tτ)
(by the definition of TDa)
iff s′ ∈ Zτa(tτa)
(by the definition of Zτa).
Then s′ ∈ Z(tτa)
(by the definition of Z).

106 Appendix A. Long Proofs

LEMMA 103
LetN be an epistemic model. Then (N, s) |= δD(ϕ) if and only if (ND, s) |= ϕ

PROOF. In this proof we use the fact that if (N, s) |= poss(a), then (Na, sa) -
((Nposs(a))σa , s), where ‘-’ denotes the bissimilarity relation defined in (Blackburn
et al., 2001a).

The proof is by induction on the number of connectives of ϕ.

Induction base. Suppose that ϕ = p for some p ∈ P .
Then δD(ϕ) = p, and we obviouslly have that (N, s) |= p iff (ND, s) |= p.

Induction hypothesis. If the number of connectives of ϕ is less than n, then (N, s) |=
δD(ϕ) iff (ND, s) |= ϕ.

Induction step. We consider four cases:

1. Suppose that ϕ = ¬ψ and N, s |= δD(¬ψ)
iff N, s |= ¬δD(ψ)
iff N, s 6|= δD(ψ)
iff ND, s 6|= ψ (by the induction hypothesis)
iff ND, s |= ¬ψ.

2. N, s |= δD(ψ ∧ χ)
iff N, s |= δD(ψ) ∧ δD(χ)
iff N, s |= δD(ψ) and N, s |= δD(χ)
iff ND, s |= ψ and ND, s |= χ (by the induction hypothesis)
iff ND, s |= ψ ∧ χ.

3. N, s |= δD(Kiψ)
iff N, s |= KiδD(ψ)
iff for all s′ ∈ Ri(s), N, s′ |= δD(ψ)
iff for all s′ ∈ RDi (s), N, s′ |= δD(ψ)
(because Ri(s) = Rǫi(s) = RDi (s)— by the definition of RDi)
iff for all s′ ∈ RDi (s), ND, s′ |= ψ
(by the induction hypothesis)
Iff ND, s |= Kiψ.

4. N, s |= δD([a]ψ)
iff N, s |= [poss(a)][σa]δD(ψ)
iff N, s |= poss(a) implies Nposs(a), s |= [σa]δD(ψ)
iff N, s |= poss(a) implies (Nposs(a))σa , s |= δD(ψ)
iff ND, s |= poss(a) implies (Nposs(a))σa , s |= δD(ψ)
(because poss(a) ∈ LELC and by Lemma 102)
iff ND, s |= poss(a) implies Na, sa |= δD(ψ)
(because (Nposs(a))σa , s - Na, sa)
iff ND, s |= poss(a) implies (Na)D, sa |= ψ
(by the induction hypothesis)
iff ND, s |= poss(a) implies ND, sa |= ψ

A.5. Soundness and Completeness of the Tableau Method 107

(by the fact that (Na)D is a sub-tree of ND)
iff ND, s |= [a]ψ.
(by the fact that TDa (s) = {sa}).

Now, the main theorem follows straightforwardly:

From the left to the right. Suppose thatM is aD-model such that (M, s) |= ϕ
iff (ND, sǫ) |= ϕ (by Lemma 102)
iff (N, sǫ) |= δD(ϕ) (by Lemma 103).

From the right to the left.
Suppose that N is an epistemic model such that (N, s) |= δ(ϕ).
ThenMD is aD-model (by Lemma 101)
and (MD, sǫ) |= ϕ (by Lemma 103).

A.5 Soundness and Completeness of the TableauMethod

Proof of Theorem 91 is an extension of proof of Theorem 59. We thus put both to-
gether here.

THEOREM 59 AND 91 (SOUNDNESS AND COMPLETENESS)
For C ∈ {K,KT, S4, S5}, there is a closed C-APAL-tableau for ¬ϕ if and only if ϕ is
C-APAL-valid.

PROOF. From the left to the right. We prove that if ϕ is satisfiable, then there is no
closed tableau for ϕ. We do this by showing that all tableau rules preserve satisfia-
bility. In other words, let T i be a tableau for a given formula that contains a branch
b = (Λ,Σ), we show that if b is satisfiable, then the set of branches B generated by
any tableau rule has also at least one satisfiable branch. We therefore need to define
what is meant by satisfiability of branches.

DEFINITION 104
The branch b is satisfiable if and only if there exists an epistemic structure M =
〈S,R, V 〉 and a function f from N to S such that for all (i, x, x′) ∈ Σ, f(x)Rif(x′)
and for all (ψk, x, ϕ) ∈ Λ:

M |ψ0, f(x) |= ψ1, M |ψ1, f(x) |= ψ2, . . . ,M |ψk−1, f(x) |= ψk, M |ψk, f(x) |= ϕ

Suppose that the branch b = (Λ,Σ) is satisfiable. The proofs for rules ¬, ∧ and
∨ are straightforward and left to the reader. We then prove that rule K is sound. If
(ψk, x,Kiϕ) ∈ Λ and (i, x, x′) ∈ Σ, then the application of rule K generates all the
branches bj = (Λj ,Σ) for 1 ≤ j ≤ k + 1where

108 Appendix A. Long Proofs

Λ1 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)}
Λ3 = Λ ∪ {(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3)}

...
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ

k−2, x′, ψk−1), (ψ
k−1, x′,¬ψk)}

Λk+1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′, ϕ)}.
By hypothesis, there exists an epistemic structure M = 〈S,R, V 〉 and a function f
from N to S such that for all (i, x, x′) ∈ Σ, f(x)Rif(x′) and M |ψ0, f(x) |= ψ1, . . . ,
M |ψk−1, f(x) |= ψk and M |ψk, f(x) |= Kiϕ. Then, M |ψk, f(x′) |= ϕ. Then, one of
the following conditions holds:
M |ψ0, f(x′) |= ¬ψ1 or
M |ψ0, f(x′) |= ϕ1,M |ψ1, f(x′) |= ¬ψ2 or
M |ψ0, f(x′) |= ϕ1,M |ψ1, f(x′) |= ψ2,M |ψ2, f(x′) |= ¬ψ3 or
...

M |ψ0, f(x′) |= ϕ1, . . . ,M |ψk−2, f(x′) |= ψk−1,M |ψk−1, f(x′) |= ¬ψk or
M |ψ0, f(x′) |= ϕ1, . . . ,M |ψk−1, f(x′) |= ψk,M |ψk, f(x′) |= ϕ.
Therefore one of the branches bj is satisfiable.

Rules T, 4 and 5 are proved to be sound in a similar way. In these cases we also
use the fact that Ri is respectively reflexive, transitive and symmetric. We omit the
details here.

For rule K̂ suppose that (ψk, x,¬Kiϕ) ∈ Λ. Then the application of rule K̂ gener-
ates only one branch b1 = (Λ1,Σ1) such that Λ1 = Λ∪{(ψ0, x′, ψ1), . . . , (ψ

k−1, x′, ψk),
(ψk, x′,¬ϕ)} and Σ1 = Σ ∪ {(i, x, x′)} for some x′ that does not occur in Λ. By hy-
pothesis, there exists an epistemic structureM = 〈S,R, V 〉 and a function f from N

to S such that M |ψ0, f(x) |= ψ1, . . . , M |ψk−1, f(x) |= ψk and M |ψk, f(x) |= ¬Kiϕ.

Then, there exists s ∈ Sψ
k

such that f(x)Rψ
k

i s andM |ψ0, s |= ψ1, . . . ,M |ψk, w |= ψk
andM |ψk, s |= ¬ϕ. We thus consider the function f ′ : N → S such that for all x that
occur in Λ, f ′(x) := f(x) and f ′(x′) := s. Therefore, b1 is satisfiable.

For rule R[·] suppose that (ψk, x, [ϕ1]ϕ2) ∈ Λ. Then the application of the rule
R[·] generates the branches b1 = (Λ ∪ {(ψk, x,¬ϕ1)},Σ) and b2 = (Λ ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)},Σ). Seeing that M |ψk, f(x) |= [ϕ1]ϕ2 iff either M |ψk, f(x) |= ¬ϕ1 or
M |ψk, f(x) |= ϕ1 andM |ψk|ϕ1, f(x) |= ϕ2, thus b1 is satisfiable or b2 is satisfiable.

For rule R〈·〉 suppose that (ψk, x,¬[ϕ1]ϕ2) ∈ Λ. Then the application of rule R〈·〉
generates only one branch b1 = (Λ ∪ {(ψk, x, ϕ1), (ψ

k, ϕ1, x,¬ϕ2)},Σ). Seeing that
M |ψk, f(x) |= ¬[ϕ1]ϕ2 iff M |ψk, f(x) |= ϕ1 and M |ψk|ϕ1, f(x) |= ¬ϕ2, thus b1 is
satisfiable.

For rule � suppose that (ψk, x,�ϕ) ∈ Λ. Then B contains only one branch
b1 = 〈Λ ∪ {(ψk, x, [χ]ϕ)},Σ〉 for some χ ∈ LPAL. Seeing that M |ψk, f(x) |= �ϕ iff
M |ψk, f(x) |= [χ]ϕ for all χ ∈ LPAL, thus b1 is satisfiable.

For rule ♦ suppose that (ψk, x,¬�ϕ) ∈ Λ. Then B contains only one branch b1 =
〈Λ∪{(ψk, x,¬[p]ϕ)},Σ〉 for some p ∈ P that does not occur in Λ. SinceM |ψk, f(n) |=
¬�ϕ, then there exists a formula χ ∈ LPAL such thatM |ψk, f(n) |= ¬[χ]ϕ. LetM ′ =
〈S,R, V ′〉 be the epistemic structure defined as follows.

A.5. Soundness and Completeness of the Tableau Method 109

• V ′(p′) := V (p′) if p′ is different from p; and

• V ′(p) := {s ∈ S : M |ψk, s |= χ}.

Now we have thatM |ψk, f(n) |= ¬[p]ϕ. Therefore, b1 is satisfiable.
It finishes the first part of the proof.

From the right to the left. We do it for S5-PAL only. The other cases are similar
and left to the reader. We first need the following lemma.

LEMMA 105
Let (Λ,Σ) be a branch of a tableau T i. if (ψk, x, ϕ) ∈ Λ, then (ψj−1, x, ψj) ∈ Λ for all
j ≤ k.

We show Lemma 105 by induction on i. The base case is i = 0. This follows imme-
diately by the definition of initial tableau. Now consider the branch b in the tableau
T i+1. If it contains a formula of the form (ψk, x, ϕ). Then either it is in a branch of
T i, and in this case the induction hypothesis applies, or it is added by an application
of one of the tableau rules in T i. If it is added by the application of rules ¬, ∧, ∨
and T, then T i contains a formula of the form (ψk, x′, ϕ′) and the induction hypoth-

esis applies. Now, for rules K, K̂, 4 and 5, note that whenever a new formula of
the form (ψk, x, ϕ) is added to the branch b, then all the formulas (ψj−1, x, ψj) are
also added to the same branch. Finally, for the rules R[·] and R〈·〉, note that when-
ever a new labelled formula of the form (ψk, x, ϕ) is added, then we have one of two
cases: (i) a formula of the form (ψk, x, ϕ) is present in T i or (ii) a formula of the form
(ψk−1, x, ϕ) is present in T i and the formula (ψk−1, x, ψk) is added to T i+1. In both
cases, induction hypothesis applies. It finishes the demonstration of Lemma 105.
The proof continues by induction on the structure of labelled formulas in the

tableau. We first need more three definitions.

DEFINITION 106
The length of labelled formulas is recursively defined as follows:

len(p) = 1
len(¬ϕ) = 1 + len(ϕ)
len(ϕ1 ∧ ϕ2) = 1 + len(ϕ1) + len(ϕ2)
len(Kiϕ) = 1 + len(ϕ)
len([ϕ1]ϕ2) = 1 + len(ϕ1) + len(ϕ2)
len(�ϕ) = 2 + len(ϕ)
len(ψk) = len(ψ1) + · · · + len(ψk)
len(ψk, x, ϕ) = 1 + len(ψk) + len(ϕ)

DEFINITION 107
The size size(λ) of a labelled formula λ = (ψk, x, ϕ) is defined as a pair (wei(λ), len(λ))
where wei(λ) is the weight of λ defined as the number of occurrences of the operator
� in ψk and ϕ. In addition, we define that size(λ1) < size(λ2) if and only if either
wei(λ1) < wei(λ2) or both wei(λ1) = wei(λ2) and len(λ1) < len(λ2).

110 Appendix A. Long Proofs

It is clear that the relation ‘<’ for sizes is a well-founded order.

DEFINITION 108
Let T be a tableau.

1. T is saturated under rule ¬ if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,¬¬ϕ) ∈
Λ, then (ψk, x, ϕ) ∈ Λ.

2. T is saturated under rule ∧ if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x, ϕ1∧ϕ2) ∈
Λ, then (ψk, x, ϕ1) ∈ Λ and (ψk, x, ϕ2) ∈ Λ.

3. T is saturated under rule ∨ if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,¬(ϕ1 ∧
ϕ2)) ∈ Λ, then (ψk, x,¬ϕ1) ∈ Λ or (ψk, x,¬ϕ2) ∈ Λ.

4. T is saturated under ruleK if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,Kiϕ) ∈ Λ
and (i, x, x′) ∈ Σ, then
{(ψ0, x′,¬ψ1)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3} ⊆ Λ or

...
{(ψ0, x′, ψ1), . . . , (ψ

k−2, x′,¬ψk−1), (ψ
k−1, x′, ψk)} ⊆ Λ or

{(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′, ϕ} ⊆ Λ

5. T is saturated under rule K̂ if and only if for all b = (Λ,Σ) ∈ T , if (psik, x,¬Kiϕ ∈
Λ, then {(ψ0, x′, ψ1), . . . , (ψ

k−1, x′, ψk), (ψ
k, x′,¬ϕ)} ⊆ Λ and (i, x, x′) ∈ Σ.

6. T is saturated under rule T if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,Kiϕ) ∈ Λ,
then (ψk, x, ϕ) ∈ Λ.

7. T is saturated under rule 4 if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,Kiϕ) ∈ Λ
and (i, x, x′) ∈ Σ, then
{(ψ0, x′,¬ψ1)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3} ⊆ Λ or

...
{(ψ0, x′, ψ1), . . . , (ψ

k−2, x′,¬ψk−1), (ψ
k−1, x′, ψk)} ⊆ Λ or

{(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′,Kiϕ} ⊆ Λ

8. T is saturated under rule 5 if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,Kiϕ) ∈ Λ
and (i, x′, x) ∈ Σ, then
{(ψ0, x′,¬ψ1)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)} ⊆ Λ or
{(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3} ⊆ Λ or

...
{(ψ0, x′, ψ1), . . . , (ψ

k−2, x′,¬ψk−1), (ψ
k−1, x′, ψk)} ⊆ Λ or

{(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′,Kiϕ} ⊆ Λ

A.5. Soundness and Completeness of the Tableau Method 111

9. T is saturated under rule R[·] if and only if:
for all b = (Λ,Σ) ∈ T , if (ψk, x, [ϕ1]ϕ2) ∈ Λ, then either {(ψk, x,¬ϕ1)} ⊆ Λ or
{(ψk, x, ϕ1), ((ψ

k, ϕ1), x, ϕ2)} ⊆ Λ.

10. T is saturated under rule R〈·〉 if and only if:
for all b = (Λ,Σ) ∈ T , if (ψk, x, 〈ϕ1〉ϕ2) ∈ Λ, then {(ψk, x, ϕ1), ((ψ

k, ϕ1), x, ϕ2)}
⊆ Λ.

11. T is saturated under rule� if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,�ϕ) ∈ Λ,
then (ψk, x, [χ]ϕ) ∈ Λ for all χ ∈ LPAL.

12. T is saturated under rule ♦ if and only if for all b = (Λ,Σ) ∈ T , if (ψk, x,♦ϕ) ∈ Λ,
then (ψk, x, [χ]ϕ) ∈ Λ for some χ ∈ LPAL.

A tableau T is saturated if and only if it is saturated under all tableau rules.

We now prove that if a saturated tableau for a given formula ϕ is open, then ϕ
is satisfiable. Suppose that T∞ is an open saturated tableau for ϕ. Then, it contains
at least one open branch b = 〈Λ,Σ〉. We use this branch to construct an epistemic
structureM = 〈S,R, V 〉 that satisfies ϕ as follows:

• S = {x ∈ N | x occurs in Λ};

• Ri = reflexive, transitive and symmetric closure of {(x, x′) | (i, x, x′) ∈ Σ};

• V (p) = {x | (ψk, x, p) ∈ Λ for some ψk};

And we also define a function f(x) = x for all x occurring in Λ.
Clearly, S is a non-empty set, Ri is an equivalence relation, V (p) assigns a sub-

set of S to each proposition that appears on the tableau and if (i, x, x′) ∈ Σ, then
f(x′)Rif(x). Thus, we now show that for all labelled formulas λ = (ψk, x, ϕ) ∈ Λ,
we have P(λ) defined as follows:

P(λ) =






M |ψ0, f(x) |= ψ1 and
...

M |ψk−1, f(x) |= ψk and
M |ψk, f(x) |= ϕ.

We do this by induction on size(λ). The base case, when size(λ) = (0, 1), as well
as the cases where λ = (ψk, x,¬¬ϕ), λ = (ψk, x, ϕ1 ∧ϕ2) and λ = (ψk, x,¬(ϕ1 ∧ϕ2)),
are straightforward. They are left to the reader.
Now, let λ = (ψk, x,Kiϕ). By Lemma 105 and by the fact that the branch is open

we have that (ψ0, x, ψ1), . . . , (ψk−1, x, ψk) ∈ Λ. The length of each of these labelled
formulas is less than len(λ). By induction hypothesis we have thatM |ψ0, f(x) |= ψ1,
. . . ,M |ψk−1, f(x) |= ψk. Now, by the fact that T∞ is saturated under rulesK, T, 4 and
5, for all x′ such that xRix′, Λ contains at least one of the following sets of labelled
formulas:

112 Appendix A. Long Proofs

{(ψ0, x′,¬ψ1)};
{(ψ0, x′, ψ1), (ψ

1, x′,¬ψ2)};
{(ψ0, x′, ψ1), (ψ

1, x′, ψ2), (ψ
2, x′,¬ψ3)};

...
{(ψ0, x′, ψ1), . . . , (ψ

k−1, x′,¬ψk)};
{(ψ0, x′, ψ1), . . . , (ψ

k−1, x′, ψk), (ψ
k, x′, ϕ)}.

The length of each of these labelled formulas is also less than len(λ). Again by in-
duction hypothesis, for all x′ such that xRix′,
M |ψ0, f(x′) |= ¬ψ1 or
M |ψ0, f(x′) |= ψ1 andM |ψ1, f(x′) |= ¬ψ2 or
M |ψ0, f(x′) |= ψ1,M |ψ1, f(x′) |= ψ2 andM |ψ2, f(x′) |= ¬ψ3 or
...
M |ψ0, f(x′) |= ψ1, . . . ,M |ψk−1, f(x′) |= ¬ψk or
M |ψ0, f(x′) |= ψ1, . . . ,M |ψk−1, f(x′) |= ψk andM |ψk, f(x′) |= ϕ.
ThenM |ψk, f(x) |= Kiϕ. Therefore, P(λ) holds.
Let λ = (ψk, x,¬Kiϕ). By Lemma 105 and by the fact that the branch is open

we have that (ψ0, x, ψ1), . . . , (ψ
k−1, x, ψk) ∈ Λ. The length of each of these labelled

formulas is less than len(λ). By induction hypothesis we haveM |ψ0, f(x) |= ψ1, . . . ,

M |ψk−1, f(x) |= ψk. Now, by the fact that T∞ is saturated under rule K̂, (i, x, x′) ∈ Σ
and that {(ψ0, x′, ψ1), (ψ

1, x′, ψ2), . . . , (ψ
k−1, x′, ψk), (ψ

k, x′,¬ϕ)} ⊆ Λ. The length
of each of these labelled formulas is less than len(λ). By induction hypothesis we
have M |ψ0, f(x′) |= ψ1, . . .M |ψk−1, f(x′) |= ψk and M |ψk, f(x′) |= ¬ϕ. Then
M |ψk, f(x) |= ¬Kiϕ. Therefore, P(λ) holds.
Let λ(ψk, x, [ϕ1]ϕ2). By Lemma 105 and by the fact that the branch is open we

have that (ψ0, x, ψ1), . . . , (ψk−1, x, ψk) ∈ Λ. The length of each of these labelled
formulas is less than len(λ). By induction hypothesis we have M |ψ0, f(x) |= ψ1,
. . . , M |ψk−1, f(x) |= ψk. Now, because T∞ is saturated under rule R[·], either
{(ψk, x,¬ϕ1)} ⊆ Λ or {(ψk, x, ϕ1), ((ψ

k, ϕ1), x, ϕ2)} ⊆ Λ. The length of each of these
labelled formulas is less than len(λ). By induction hypothesis, either M |ψk, f(x) |=
¬ϕ1 or bothM |ψk, f(x) |= ϕ1 andM |ψk|ϕ1, f(x) |= ϕ2. ThenM |ψk, f(x) |= [ϕ1]ϕ2.
Therefore, P(λ) holds.
Let λ(ψk, x,¬[ϕ1]ϕ2): By Lemma 105 and by the fact that the branch is open we

have that (ψ0, x, ψ1), . . . , (ψk−1, x, ψk) ∈ Λ. The length of each of these labelled
formulas is less than len(λ). By induction hypothesis we have M |ψ0, f(x) |= ψ1,
. . . , M |ψk−1, f(x) |= ψk. Now, by the fact that T∞ is saturated under rule R〈·〉,
{(ψk, x, ϕ1), ((ψ

k, ϕ1), x, ϕ2)} ⊆ Λ. The length of each of these labelled formulas is
less than len(λ). By induction hypothesis, M |ψk, f(x) |= ϕ1 and M |ψk|ϕ1, f(x) |=
¬ϕ2. Then,M |ψk, f(x) |= ϕ. Therefore, P(λ) holds.
Let λ = (ψk, x,�ϕ). Then, by the fact that T∞ is saturated under rule �, Λ

contains (ψk, x, [χ]ϕ) for all χ ∈ LPAL. As χ ∈ LPAL, the size of each of these labelled
formulas is less than the size of λ. By Lemma 105 and the induction hypothesis,
M |ψk, f(n) |= [χ]ϕ1 for all χ ∈ LPAL. ThenM |ψk, f(n) |= ϕ. Therefore, P(λ) holds.
Now let Λ = (ψk, x,¬�ϕ) Then, by the fact that T∞ is saturated under rule ♦, Λ

contains (ψk, x,¬[p]ϕ) for some p ∈ P . The size of this labelled formula is less than

A.5. Soundness and Completeness of the Tableau Method 113

the size of λ. By Lemma 105 and the induction hypothesis,M |ψk, f(n) |= ¬[p]ϕ1 for
some p ∈ P . ThenM |ψk, f(n) |= ϕ. Therefore, P(λ) holds.

Abstract

In the 60’s John McCarthy and Patrick Hayes pointed out the impossibility of giving
compact descriptions for dynamical systems in first-order logic. This problem, that
seemed to be intrinsic to every logical formalism for reasoning about actions, became
known as the frame problem. More than twenty years later, Raymond Reiter proposed
his famous (partial) solution to the frame problem. However, the associated infer-
ence method designed by Reiter turned out to be of high computational complexity.
The problem of designing an efficient inference method for a formalism that solves
the frame problem was named the inferential frame problem by Thielscher (1999).
The main contribution of this thesis is a solution to the inferential frame problem.

Here, we first show that one can recast Reiter’s solution in another formalism called
dynamic epistemic logic (DEL). We do so by providing a polynomial reduction from
a fragment of situation calculus to DEL. Then, we propose a novel proof method
for DEL, whose computational complexity is much lower than that of the method
proposed by Reiter. We also show that the computational complexity of our proof
method is optimal. It follows that the whole method can be considered as a solution
to the inferential frame problem.
A second important contribution of this work is the proposition of a novel formal-

ism for reasoning about actions. In spite of its capacity in formalising plan verification,
DEL is not suitable for formalising planification. The reason is that plan verification
is as validity problem in DEL, while planning demands the construction of a plan.
As a first effort towards the proper treatment of planning using this kind of logic,
we propose here a novel formalism wherein one can quantify over actions. This for-
malism, the arbitrary public announcement logic (APAL), allows to formally expressing
that “there exists a sequence of actions that leads to the goal”. The idea is that, with
quantification over actions, planning can become a validity problem. We provide
a Hilbert-style axiomatisation of APAL, some expressivity results and also a proof
method based on semantic tableaux.

115

Resumé

Chapitre 1 : Introduction

Conçu comme une activité humaine complexe, le raisonnement sur actions et plans
est fortement relié à la capacité de raisonner sur les causes et les effets. Le su-
jet est vaste et, en même temps, est un des objets d’étude de plusieurs domaines
de recherche comme la philosophie, l’informatique et la logique. Les résultats de
ces études nous donnent de fondements théoriques essentiels pour la conception
des systèmes automatiques. Comme bons exemples, nous pouvons citer la génie
logicielle, la robotique, la logistique, l’éducation et les jeux. Pour bien illustrer ce
que nous voulons dire ici par le terme ‘raisonnement’, nous utilisons l’exemple ci-
dessous qui a été inspiré d’un puzzle logique de Smullyan (1992).

EXEMPLE 109 (LA DEMOISELLE OU LE TIGRE)
L’environnement est constitué d’un individu, aussi appelé agent, qui habite dans
une salle ayant deux portes. L’agent peut ouvrir une des portes et derrière la porte
ouverte l’agent trouvera ou bien la demoiselle ou bien le tigre. Si l’agent trouvera la
demoiselle, alors il se mariera avec elle, et si l’agent trouvera le tigre, il sera tué par
lui. Les actions disponibles sont :

• listen1 et listen2. En exécutant une de ces actions l’agent écoute ce qui se passe
derrière la porte respective, ceci lui permettra d’entendre le bruit du tigre dans
le cas où il en a un derrière la porte ; et

• open1 et open2. En exécutant une de ces actions, l’agent ouvre la porte respec-
tive, ceci lui permettra de se marier avec la demoiselle, ou de se faire tuer par
le tigre, selon ce qu’il trouvera derrière la porte.

Cet exemple décrit un exemple de ce que nous appelons système dynamique. Un
exemple d’état initial du système pourrait être : l’agent est vivant et non marié, la
demoiselle est derrière la porte 1 et le tigre derrière la porte 2. Et un exemple de
but pourrait être : l’agent est vivant et marié. Quand un système dynamique est
accompagné d’un état initial et d’un but, il est appelé problème de planification. Une
solution du problème de planification est une séquence d’actions, ou plan, tel que
son exécution conduit à un état où le but est satisfait. Quand un système dynamique
est accompagné aussi d’un plan, il est appelé problème de vérification de plan. La

117

118 Resumé

vérification d’un plan réussit quand le plan donné est une solution du problème de
planification.
Nous remarquons que le système de l’Exemple 109 a des actions épistémiques

listenk. Ce type d’action ne change pas nécessairement l’état physique du monde,
mais il est capable de changer l’état épistémique de l’agent. Cela veut dire que nous
permettons des descriptions d’état incomplètes : par exemple, il peut être le cas
que l’agent ne sais pas ce que se trouve derrière chaque porte. Dans ce cas, pour
éviter d’être tué par le tigre, il doit exécuter les actions d’écouter et en suite, basé
sur l’information acquise en temps d’exécution, décider laquelle des portes ouvrir.
Alors, ces scénarios impliquent que les plans soient conditionnels, i.e., ils se divisent
en deux branches selon l’évaluation de l’information acquise en temps d’exécution.

Notre objectif ultime est de proposer un formalisme pour décrire des systèmes
dynamiques. Ce formalisme doit être capable d’incorporer touts les éléments impor-
tants du raisonnement sur actions et plans dans des scénarios comme celui donné
dans l’Exemple 109. Nous voulons aussi que ce formalisme puisse être utilisé dans
la spécification des systèmes automatiques. Donc, nous adressons la question de la
décidabilité de la méthode de démonstration, ainsi que son efficacité. Le terme ‘ef-
ficace’ ici veut dire que la complexité du calcul de telle procédure doit être la moins
élevée possible.
Un des premiers formalismes utilisé pour atteindre ce but est un dialecte de la

logique du second ordre proposé par McCarthy (1968), nommé calcul de situations.
Ce formalisme présente deux problèmes principaux. En premier terme, la méthode
d’inférence est seulement semi-décidable. En deuxième terme, il n’avait pas une
solution pour le problème du décor.
Le problème du décor représentationel a été relevé par McCarthy and Hayes (1969).

Grossièrement, il consiste en l’impossibilité de donner une description compacte à
un système dynamique. Plus de vingt ans plus tard, Reiter (1991) a donné une solu-
tion partielle pour ce problème dans le calcul de situations. Pourtant, la procédure
d’inférence donnée par Reiter n’est pas optimale. Le problème de concevoir une
méthode d’inférence efficace pour un formalisme qui résout le problème du décor a
été nommé le problème du décor inférenciel par Thielscher (1999).

Une des principales contributions de cette thèse est une solution au problème
du décor inférenciel. Premièrement, nous montrons que la solution au problème
du décor représentationel de Reiter peut être traduite dans la logique épistémique dy-
namique proposée par van Ditmarsch et al. (2005). Nous proposons une réduction
polynomiale du calcul de situations vers cette logique. Ensuite, nous donnons une
méthode de démonstration pour la logique épistémique dynamique, tel que la com-
plexité est beaucoup moins élevée que celle de la méthode de Reiter. En plus, nous
démontrons que cette méthode est optimale.
La logique épistémique dynamique est très appropriée pour la formalisation du

problème de vérification de plans, mais pas pour le problème de la planification. La
raison est que dans ce scénario, la vérification de plan se réduit à une vérification de
validité de formules, tandis que pour la planification il est nécessaire de construire

Chapitre 2 : À la recherche d’un formalisme approprié 119

un plan. Pour cette raison, nous proposons une autre logique dans laquelle il est
possible de quantifier sur les actions épistémiques. Cette logique, appelée logique
des annonces publiques arbitraries, permet la formalisation de ‘il existe une action qui
conduit au but’. Nous donnons aussi une méthode de démonstration basée sur les
tableaux. Nous avons l’espoir que de futures extensions de cette méthode nous per-
mettrons la planification en logique épistémique dynamique.

Chapitre 2 : À la recherche d’un formalisme approprié

Le langage du calcul des situations est un dialecte de la logique de second ordre qui
comporte quelques éléments spéciaux :

• une constante s0 pour représenter la situation initiale ;

• un symbole de fonction do pour modéliser les transitions des actions ; et

• un fluent spécial K pour modéliser la connaissance de l’agent. Ce fluent est
défini par l’abréviation suivante :

K(ϕ−1, s)
def
= ∀s′(R(s′, s) → ϕ−1[s′])

où R relie la situation actuelle aux situations que l’agent considère possibles.

Dans ce travail, nous restreindrons notre attention au fragment propositionnel de
cette logique.
Les modèles du calcul de situations sont des modèles standard de Tarski qui re-

spectent un ensemble de propriétés appelé Axiomes Fondationels du Domaine. Gro-
ssièrement, ces axiomes sont essentiels pour garantir que l’ensemble des situations
forment une forêt. La racine d’une des ces arbres est la situation initiale s0 et toutes
les autres racines lui sont reliées par R. Chaque racine représente une situation ini-
tiale que l’agent considère possible, basé sur sa connaissance.
La solution de Reiter pour le problème du décor inférenciel, étendue par Scherl

and Levesque (1993) pour le cas avec connaissance, est basée sur plusieurs hy-
pothèses dont nous citons les suivantes:

1. Toutes les actions sont déterministes.

2. Toutes les occurrences des actions sont publiquement aperçues.

3. Les préconditions d’exécution des actions données sont complètes.

4. L’ensemble des effets des actions donné est complet et beaucoup plus petit que
l’ensemble des fluents du langage.

Plusieurs propriétés sont impliquées par ces hypothèses. En particulier, il est
possible de décrire un système dynamique par une théorie basique d’actions Θ qui
comporte les formules suivantes.

120 Resumé

• L’ensemble des “unique-name axioms” Φuna avec des formules de la forme a1 6=
a2.

• L’ensemble des “action-precondition axioms” Φap avec des formules de la forme
Poss(a, s) ↔ ψa(s).

• L’ensemble des “successor-state axioms” Φss avec des formules de la forme
p(do(a, s)) ↔ ψp(a, s).

• L’ensemble des “sensed fluent axioms” Φsf avec des formules de la forme
sr(a, s = x) ↔ (((x = yes) ∧ p(s)) ∨ ((x = no) ∧ ¬p(s))).

• Et l’ensemble Φs0 avec des formules qui décrivent la situation initiale.

Une théorie basique d’actions permet la définition d’une procédure de décision
pour le problème de satisfiabilité de formules en calcul de situations. Cette
procédure est définie par deux étapes. La première étape est la régression
(l’opérateur regΘ) définie par Reiter. Cet opérateur, appliquée à une formule qui
décrit un but en calcul des situations, retourne une formule équivalente mais qui ne
contient pas d’actions. Ensuite, comme la formule retournée par la régression est
“plus simple”, i.e., elle ne contient que des fluents, opérateurs booléen et des fluents
‘K’, alors il est possible d’utiliser une méthode de preuve standard de vérification de
satisfiabilité pour la logique S5.
Le problème du décor représentationel est donc résolu. Néanmoins, la formule

retournée par la régression peut être exponentiellement plus grande que la formule
de départ. C’est-à-dire, la méthode n’est pas optimale et donc le problème du décor
inférenciel reste sans solution dans cette approche.
L’approche de Demolombe et al. (2003) utilise les mêmes idées pour proposer

une méthode de régression pour une logique modale appelée EDL. Cette logique
présente quelques différences syntaxiques et une sémantique plus attractive. En par-
ticulier, les situations sont implicites car ils ne font pas parti du langage et la fonction
do est remplacée par l’opérateur 〈·〉. Par exemple, la formule 〈a〉ϕ veut dire ‘ϕ est
vraie après l’exécution de a’. La régression pour EDL est très similaire à la régression
pour le calcul de situations. En plus, avec le même desavantage en concernant le
problème du décor inférenciel.

Chapitre 3 : Une logique pour le changement épistémique
et ontique

Les actions purement ontiques sont les actions qui n’impliquent aucune perception
de la part de l’agent. Formellement, dans le cadre de la logique EDL, il s’agı̂t des
actions qui respectent les deux principes suivants :

• Déterminisme épistémique : si t, u ∈ To(s), alors R(t) = R(u).

• “No-learning” : si t ∈ (R ◦ To)(s) et To(s) 6= ∅, alors t ∈ (To ◦R)(s).

Chapitre 4 : Méthodes optimales pour le raisonnement 121

Les actions purement épistémiques sont celles qui n’ont pas des effets sur le
monde physique. Formellement, elles respectent le principe suivant :

• Préservation : si t ∈ Te(s), alors pour tout p ∈ P , (s ∈ Vp ssi t ∈ Vp).

Le premier résultat de ce chapitre est le Théorème de la ‘Séparation’. Nous mon-
trons qu’en EDL, toutes les actions sont décomposables en deux actions que se suiv-
ent. La première est purement épistémique et la seconde purement ontique.
Ensuite, nous faisons une analyse des actions épistémiques. Comme deux-

ième résultat de ce chapitre nous montrons le Théorème de la ‘Généralisation’. Ce
théorème dit que toutes les actions épistémiques peuvent être simulées par des ob-
servations complexes. Les observations sont un type d’action qui ont la curieuse
propriété d’être ontique et épistémique à la fois. En plus, elles peuvent être tenue
comme le type d’actions épistémique le plus simple. En particulier, le théorème de
la généralisation dit que les actions “sensing” peuvent être simulée par des compo-
sitions non déterministes des observations.
Un troisième résultat est achevé dans ce chapitre. Nous montrons formellement

que les observations en EDL sont exactement les mêmes actions que les annonces
publiques de la logique des annonces publiques PAL. Entre autres, cela veut dire
que EDL et DEL ont une forte relation, qui est exploitée dans le chapitre suivant.

Chapitre 4 : Méthodes optimales pour le raisonnement

Dans ce chapitre nous reprenons les hypothèses de la solution du problème du décor
pour le calcul de situations et étendrons la solution de Demolombe et al. (2003).
Notre solution utilise les descriptions d’actions définie comme étant une structure de
la forme :

D = 〈poss , eff +, eff −, γ+, γ−〉

tel que :

• poss : A → LELC attribue une formule à chaque action qui décrit sa
précondition d’exécutabilité ;

• eff + : A → ℘(P) attribue un ensemble fini d’effets positifs possibles à chaque
action ;

• eff − : A → ℘(P) attribue un ensemble fini d’effets négatifs possibles à chaque
action ;

• γ+ est une famille de fonctions γ+(a) : eff +(a) → LELC. Elle attribue une
formule à chaque pair (a, p) qui décrit la précondition pour que l’action a rende
p vrai ; et

• γ− est une famille de fonctions γ−(a) : eff −(a) → LELC. Elle attribue une
formule à chaque pair (a, p) qui décrit la précondition pour que l’action a rende
p faux.

122 Resumé

Notons que Scherl et Levesque (2003) restreint le codomaine de poss , γ+ et
γ− aux formules propositionnelles. Nous avons étendu ce codomaine aux for-
mules dans LELC. Ceci permet la formalisation des actions comme ‘faire un ap-
pel téléphonique’, dont la précondition d’exécution est de connaı̂tre le numéro de
téléphone de l’interlocuteur.
Les modèles pour D sont obtenus en rajoutant des relations de transition aux

modèles de la logique épistémique.
En plus, les D-modèles doivent satisfaire les restrictions suivantes :

1. “No-Forgetting” : (Ta ◦Ri)(s) ⊆ (Ri ◦ Ta)(s).

2. “No-Learning” : si Ta(s) 6= ∅, alors (Ri ◦ Ta)(s) ⊆ (Ta ◦Ri)(s).

3. Déterminisme : si t1, t2 ∈ Ta(s), alors t1 = t2.

4. Exécutabilité : Ta(s) 6= ∅ ssi 〈S,R, V 〉, s |= (a).

5. Préservation (épistémique) : si t ∈ Te(s), alors

t ∈ V (p) ssi s ∈ V (p) pour tout p ∈ P

6. Pos-condition (ontique) : si t ∈ To(s), alors

• p 6∈ eff +(o) et s 6∈ V (p) implique t 6∈ V (p) ;

• p 6∈ eff −(o) et s ∈ V (p) implique t ∈ V (p) ;

• p ∈ eff +(o) et 〈S,R, V 〉, s |= (o, p) implique t ∈ V (p) ;

• p ∈ eff −(o) et 〈S,R, V 〉, s |= (o, p) implique t 6∈ V (p) ;

• p ∈ eff
+(o) et 〈S,R, V 〉, s 6|= (o, p) et s 6∈ V (p) implique t 6∈ V (p) ;

• p ∈ eff −(o) et 〈S,R, V 〉, s 6|= (o, p) et s ∈ V (p) implique t ∈ V (p).

SoitD une description d’actions. Il est possible de définir une procédure regD(ϕ)
tel que :

|=D ϕ ssi |=ELC regD(ϕ)

Notons que regD est sous-optimal, puisqu’il y a des formules tel que regD(ϕ) est
exponentiellement plus long que ϕ, exactement comme dans le calcul des situations.

Une tradition différente dans la modélisation de connaissance et changement a
été suivi par, par exemple, Plaza (1989), Baltag et al. (1998) et van Benthem (2006). La
logique DEL de van Ditmarsch et al. (2005) et Kooi (2007) se situe dans cette tradition.
Elle est basée sur les annonces publiques et les affectations publiques.
Le langage de DEL remplace les opérateurs [a] par les opérateurs [ϕ] et [σ] où σ

est de la forme p :=ϕ. Le premier est dit annonce publique de ϕ et le deuxième est
dit affectation publique de la valeur de vérité de ϕ à l’atome p. Les modèles de DEL

sont des modèles épistémiques et les actions sont définies comme des operations de
mise à jours.

Chapitre 4 : Méthodes optimales pour le raisonnement 123

Les annonces modélisent les actions épistémiques, tandis que les affectations
modélisent les actions ontiques. La traduction δD de LD dans LDELC est donc
évidente. Soit D une description d’actions, nous avons :

δD([a]ϕ) = [poss(a)][σa]ϕ

où σa est l’affectation complexe :

{p :=γ+(a, p) ∨ (¬γ−(a, p) ∧ p) | p ∈ eff +(a) ∪ eff −(a)}

THÉORÈME 110
Soit D une description finie d’actions à la Reiter, et soit ϕ ∈ LD . Alors ϕ est D-
satisfiable si et seulement si δD(ϕ) est DELC-satisfiable, et |δD(ϕ)| ≤ |ϕ| × |D|.

La preuve est par induction sur la structure de ϕ. Donc δD est polynomial, et le
problème de décider si étant donné D et ϕ, ϕ est D-satisfiable peut être transformé
d’une façon polynomiale dans un problème de DELC-satisfiabilité.
Ensuite, nous proposons une extension de la réduction polynomiale de Lutz

(2006). Notre réduction est étendue à toute la logique épistémique dynamique.
L’extension est basée sur le théorème suivant.

THÉORÈME 111 (ÉLIMINATION DES AFFECTATIONS)
Soit
[p1 :=ϕ1, . . . , pn :=ϕn]ψ une sous-formule de la formule χ in LDELC. Soit ψ′

obtenu de ψ par la substitution de chaque occurrence de pk par xpk
, où xpk

est une
nouvelle proposition que n’apparaı̂t pas dans χ. Soit χ′ obtenu à partir de χ en
remplaçant [p1 :=ϕ1, . . . , pn :=ϕn]ψ par ψ′. Soit B l’abréviation de la conjonction
des équivalences (bi-implications)

∧
1≤k≤n(xpk

↔ ϕk).

1. Pour |N | = 1. Si χ ∈ LDEL, alors χ est DEL-satisfiable si et seulement si

χ′ ∧
∧

ℓ≤md(ϕ)

Kℓ
iB

est DEL-satisfiable, où la profondé modale md(ϕ) est le nombre maximal des
opérateurs modaux imbriqués dans ψ.

2. Pour |N | ≥ 2. Si χ ∈ LDEL, alors χ est DEL-satisfiable si et seulement si

χ′ ∧
∧

ℓ≤md(ϕ)

EℓNB

est DEL-satisfiable.

3. Si χ ∈ LDELC, alors χ est DELC-satisfiable si et seulement si

χ′ ∧ CNB

est DELC-satisfiable.

124 Resumé

Ceci implique que dans le cas particulier où chaque Ri est une relation
d’équivalence, le problème de laD-satisfiabilité sans l’opérateur CG est NP-complet
si N = 1, et PSPACE-complet si N ≥ 2. Le problème de la D-satisfiabilité avec
l’opérateur CG est EXPTIME-complet.

Chapitre 5 : Le raisonnement avec tableaux analytiques

Dans ce chapitre nous présentons une méthode de démonstration pour la logique
des annonces publiques qu’utilise les tableaux. Étant donné une formule ϕ, cette
méthode essaie de construire un modèle pour ϕ de manière systématique. Quand la
méthode échoue, cela veut dire que ϕ est inconsistante et donc sa négation est valide.
La méthode présentée est modulaire et peut être utilisée aussi dans les cas où la

logique épistémique de base est K, KT, S4 ou S5.
Dans le tableau, nous utilisons des formules étiquetées. Cela veut dire que les

formules sont préfixées par un nombre qui correspond à un monde possible, d’une
façon similaire à celle utilisée dans la méthode de tableaux de Fitting (1983, Chapitre
8). En plus, les formules de notre méthode de tableaux sont aussi préfixées par
des séquences finies d’annonces qui correspondent aux restrictions successives du
modèle. Par exemple, (p ·Kiq, 1, [p]p∧ Ki¬p) est une formule étiquetée où p ·Kiq est
une séquence d’annonce et 1 est un monde possible.
Les règles de notre méthode étendent les règles utilisées pour la logique

épistémique. Ci-dessous, nous montrons un exemple de règle dans cette méthode.

RK̂ : si (ψk, x,¬Kiϕ) ∈ Λ, alors B = {(Λ ∪ {(ψ0, x′, ψ1), . . . , (ψ
k−1, x′, ψk),

(ψk, x′,¬ϕ)},Σ ∪ {(i, x, x′)})} pour un x′ qui n’apparaı̂t pas dans Λ.

Il s’agı̂t de la règle pour le dual de l’opérateur ‘K’. Comme dans laméthode standard
pour la logique modale, cette règle construit un nouveau monde possible x′. Mais
dans ce contexte, pour que la règle soit correcte, il est nécessaire d’assurer que le
monde x′ fait parti des modèles qui précèdent le modèle ψk dans la suite de mises à
jours.
Nous démontrons l’adéquation et la complètude de la méthode ainsi que la ter-

minaison. Ensuite, nous présentons une stratégie optimale pour la logique des an-
nonces publiques dont la logique épistémique de base est K ou KT. Dans ces deux
cas, la méthode travaille en espace polynomial.

Chapitre 6 : À la recherche des plans

Dans ce chapitre nous développons un formalisme dans lequel nous pouvons ex-
primer ce qui devient vrai après l’exécution d’une action sans avoir besoin de
faire référence à l’action elle-même. Formellement, dans la logique des annonces
publiques, p → [p]Kip est valide. Cela est équivalent à 〈p〉Kip qui peut être lue
‘l’annonce de p est exécutable et après son exécution l’agent i sait p’. Ceci implique
qu’il existe une annonce ψ, (ψ = p), qui fait que l’agent sache p, d’une façon un

Chapitre 7 : Conclusion 125

peu plus formelle : ∃ψ.〈ψ〉Kip. Nous introduisons un opérateur modal qui exprime
exactement cette notion :

♦Kip

Évidament, la valeur de vérité de cette expression dépend du modèle : p doit
être vrai. Dans le cas où p est faux, nous avons plutôt ♦Ki¬p. Donc la formule
♦(Kip ∨ Ki¬p) est valide. La logique qui correspond à ces idées est nommée logique
des annonces publiques arbitraires (APAL).
La sémantique du nouvel opérateur est définie de la façon suivante :

M, s |= �ϕ ssi pour toute ψ ∈ LEL, M, s |= [ψ]ϕ

Quelques résultats intéressants sont achevés. Par exemple en utilisant les va-
lidités suivantes :

1. �p↔ p

2. �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ)

3. �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) où ϕ ∈ LPL

4. |=APAL �(K̂iϕ0 ∨ Kiϕ1 ∨ · · · ∨ Kiϕn) ↔ (ϕ0 ∨ Ki(ϕ0 ∨ ϕ1) ∨ . . . ∨ Ki(ϕ0 ∨ ϕn))

nous avons démontré que dans le cas où |N | = 1, la logique APAL est réductible à
la logique épistémique. Poutant, APAL multi-agents est strictement plus expressive
que la logique épistémique.
Parmis les autres résultats importants, nous avons démontré que APAL n’est pas

compacte et que la vérification de modèle en APAL est décidable. Nous avons aussi
proposé une axiomatisation infinitaire et une méthode de tableaux pour APAL. Mal-
heureusement pourtant, nous avons pas pu démontré la décidabilité d’APAL.

Chapitre 7 : Conclusion

Le travail de recherche de cette thèse a commencé avec l’idée d’améliorer l’approche
de Demolombe et al. (2003) pour s’adresser aux actions épistémiques. Dans cette
approche, la solution de Reiter pour le problème du décor – qui ne s’adresse qu’aux
changement ontiques – est traduite en logique modale. Une des restrictions imposée
est que toutes les actions doivent respecter le principe “no-learning”. Au premier
regard, il semble improbable qu’une vraie action épistémique puisse respecter ce
principe. Pourtant, nous avons trouvé un type d’action épistémique qui le respecte
: les observations (Chapitre 3) respectent “no-learning”, et en plus sont capables de
faire évoluer l’état épistémique des agents.
Les observations sont un type d’action intéressant, mais elles ne semblent pas très

expressives. Par exemple, elles sont différentes des actions appelées “sensing”, for-
malisées par exemple dans l’approche de Scherl and Levesque (2003). C’est pourquoi
nous avons besoins de montrer que toutes les actions épistémiques peuvent être ex-
primées par une observation “complexe”. Ce résultat est établi comme le Théorème
‘Les observations sont généralles’ dans la Section 3.3.

126 Resumé

Ensuite, nous avons montré que les observations n’étaient rien d’autre que des
annonces publiques, et que les changements ontiques en EDL étaient très proches des
affectations publiques. Annonces publiques et affectations publiques sont présentes
dans la logique épistémique dynamique (DEL). DEL est une famille de logiques
étudiée dans la “tradition Néerlandaise” de raisonnement sur les actions et la con-
naissance. En essayant de comprendre les relations entre toutes ces notions, nous
avons fini pour découvrir que les deux approches – EDL et DEL – pourraient réaliser
le même travail.
La méthode de raisonnement déjà existante pour DEL, construite avec des ax-

iomes de réduction, n’est pas optimale. Donc le prochain pas était de trouver une
méthode efficace pour raisonner dans ce scénario. C’est-à-dire, nous avons com-
mencé à chercher une solution pour le problème du décor inférenciel : le problème
de trouver une méthode de raisonnement efficace pour un formalisme qui résout le
problème du décor représentationel. En ce moment, le travail s’est divisé en deux
pistes différentes. Dans une des deux, nous avons étendu une méthode de preuve,
proposée par Lutz (2006), pour un fragment de DEL. Dans l’autre piste, nous avons
développé une méthode de tableaux pour DEL.
La première piste s’est avérée plus productive en terminant avec une méthode

de preuve optimale pour la logique DEL comme nous avons désiré. L’extension de
la méthode de Lutz proposée dans cette thèse s’adresse aussi aux changements on-
tiques, et est la seule méthode optimale pour cette logique en ce moment.
La seconde piste ne nous a pas donné une méthode de preuve pour toute la

logique DEL, mais a abouti à une nouvelle méthode de preuve pour un des ses frag-
ments : la logique des annonces publiques (PAL). Nous avons proposé aussi des
stratégies pour décider la satisfiabilité des formules en deux cas spéciaux : K-PAL et
KT-PAL. En plus, nous avons des raisons pour croire que des stratégies optimales
pour S4-PAL et S5-PAL existent.
Nous remarquons que ces résultats contribuent aussi pour mettre ensemble deux

communautés scientifiques différentes. La “communauté de Toronto”, dont les
adeptes ont développé des extensions pour le calcul de situations de McCarthy, et
la ‘ “communauté d’Amsterdam”, dont les adeptes utilisent des formalisations en
logique épistémique dynamique, essentiellement, des mêmes problèmes. Quelques
idées sur les similarités entre calcul de situations et logique épistémique dynamique
ont été déjà relevées indépendamment par van Benthem (2007). Ici, nous allons au
delà, et démontrons formellement les connexions entre les deux approches.
Le dernier but poursuivi dans ce travail était un traitement approprié pour la

tache de planification. Nous remarquons que la vérification de plan, le problème
que nous adressons en utilisant DEL, peut être vu comme vérification de validité de
formules. Pourtant cela n’est pas le cas pour la planification, parce que pour cette
dernière, nous avons besoin de construire le plan. Donc nous avons développé un
nouveau formalisme appelé logique des annonces publiques arbitraires (APAL). Il
s’agı̂t de notre premier effort vers un traitement approprié de la tâche de planifica-
tion en logique modale. En fait, nous n’adressons pas vraiment la planification avec
APAL, mais encore un autre problème entre la vérification de plans et la planifica-
tion appelée vérification d’existence de plan. Même pour cette tâche pourtant, APAL

Chapitre 7 : Conclusion 127

n’est pas idéal. La première raison : APAL ne traite pas les changements ontiques. La
seconde raison : si nous permettons que l’opérateur diamant d’APAL quantifie sur
les plans, alors ils doivent être des plans significatifs, comme défini dans la Section
2.5.2. La troisième et la plus importante raison : APAL quantifie sur l’ensemble de
toutes les actions épistémiques, et non pas seulement sur les “actions épistémiques
possibles pour l’agent”, ce qui serait plus adéquat. Pour expliquer pourqui cela est
important, supposons la présence d’un agent aveugle dans une salle. Cet agent ne
devrait pas être capable d’observer (parmi ses propres moyens) si la lumière est al-
lumée ou pas. Parce que chaque agent a des capacités limitées et ne peut pas tout
observer. La quantification sur toutes les observations n’est pas réaliste. Plusieurs
résultats sur APAL ont été achevés pourtant. Nous proposons une axiomatisation
hilbertienne et une méthode de tableaux. Et nous avons démontré aussi quelques
résultats d’expressivité.

Une simple extension de la méthode de tableaux définie dans le Chapitre 5 doit
permettre la définition d’une procédure qui décide la satisfiabilité des formules en
DEL avec des affectations publiques (changement ontique). Les règles qui doivent
être ajouter sont simples. Nous remarquons que si [p :=ψ]ϕ est satisfiable, alors ou
bien les deux ψ et p sont faux après l’affectation, ou bien les deux ψ et p sont vrais
après l’affectation. Cela correspond à la règle suivante :

R := if (ψk, x, [p :=ψ]ϕ) ∈ Λ, alors
B = {(Λ ∪ {(ψk, x,¬ψ), (ψk(p :=ψ), x,¬p), (ψk(p :=ψ), x, ϕ)},Σ), (Λ ∪
{(ψk, x, ψ), (ψk, (p :=ψ), x, p), (ψk(p :=ψ), x, ϕ)},Σ)}.

Il n’est pas claire, poutant, si cette extension est optimale.
Une des plus intéressantes questions relevée par ce travail a été déjà mentionnée

dans la Section 4.6. Notre méthode de démonstration n’est pas optimale si les actions
“sensing” !!ϕ sont définies comme des operations primitives en DEL. Il n’est pas
claire comment l’axiome de réduction associé :

Ki[!!ϕ]ψ ↔ ((ϕ→ Ki(ϕ→ [!!ϕ]ψ)) ∧ (¬ϕ→ Ki(¬ϕ→ [!!ϕ]ψ)))

peut être intégré “efficacement” dans la réduction de Lutz. Nous savons que la satis-
fiabilité enDEL avec des actions de “sensing” est PSPACE-dûr. La forme des axiomes
de réduction implique que ce problème est dans EXPSPACE. Nous laissons comme
une question ouverte la classe de complexité du problème de satisfiabilité de DEL

avec actions de “sensing”.
Il est possible d’introduire d’autre types d’actions dans l’approche présentée ici.

Une extension possible est l’addition des actions non publiques. Ça peut être fait en
enrichissant les descriptions d’action de la Section 4.2 avec des relations d’accessi-
bilité R : N → (A × A). Donc les descriptions d’actions ont une forme similaire
aux modèles d’actions proposés par Baltag et al. (1998). Dans l’approche de Bal-
tag et al., les actions dans A sont reliées par des flèches étiquetées avec des agents
dans N . Nous les interprétons de cette manière : si (a, b) ∈ Ri, alors quand l’action
a est exécutée, l’agent i croit que l’action b a été exécutée. En particulier, quand

128 Resumé

b = skip, l’occurrence de a n’est pas aperçue par l’agent i. Donc, cette action n’est
pas publique. En utilisant une version légèrement différente de DEL, Baltag et al.
définissent des transformations de modèles pour ce type d’action. Les axiomes de
réduction sont proposés aussi. À partir de cette dernière observation et les résultats
achevés par cette thèse, nous concluons que les actions non publiques peuvent facile-
ment être introduites aussi dans le calcul de situations.

Resumo

Amo-te assim, desconhecida e obscura,
Tuba de alto clangor, lira singela,
Que tens o tom e o silvo da procela
E o arrolo da saudade e da ternura!

– Olavo Bilac

Nos anos 60, John McCarthy e Patrick Hayes apontaram a impossibilidade de
obter-se representações compactas de sistemas dinâmicos em lógica de primeira or-
dem. Este problema, que parecia intrı́nsico a todo formalismo lógico decidado ao
racioncı́no sobre ações, recebeu o nome de problema do quadro. Mais de vinte anos
mais tarde, Raymond Reiter propos sua famosa solução (parcial) para o problema do
quadro. No entanto, o método de inferência associado concebido por Reiter possui
complexidade computacional elevada. O problema de obter-se um método de in-
ferência eficiente para um formalismo que dispõe de uma solução para o problema
do quadro recebeu de (Thielscher, 1999) o nome de problema do quadro inferencial.

A principal contribuição desta tese é uma solução ao problema do quadro infer-
encial. Nós primeiramente mostramos que é possı́vel modelar-se a solução de Reiter
em outro formalismo chamado lógica epistêmica dinâmica (DEL). Nós o demonstramos
através de uma redução polinomial de um fragmento do cálculo de situações à DEL.
Em seguida, nós propomos um novo método de prova para DEL, o qual possui
complexidade computacional muito inferior à do método proposto por Reiter. Nós
também mostramos que nosso método é optmial. Segue que o método como um
todo pode ser considerado como uma solução do problema do quadro inferencial.

Uma segunda contribuição importante deste trabalho é a proposição de um novo
formalismo para raciocı́nio sobre ações. A despeito da sua capacidade em formalizar
verificação de planos, DEL não é apropriada para formalização de planejamento. A
razão é o fato de que verificação de plano é um problema de validade em DEL, en-
quanto que planejamento exige a construção de um plano. Como uma primeira
tentativa na direção de um tratamento adequado de planejamento neste tipo de
lógica, nós propomos aqui um novo formalismo no qual pode-se quantificar sobre
ações. Este formalismo, a lógica de anúncios públicos arbitrarios (APAL), permite a ex-
pressão formal de que “existe uma seqüência de ações que conduz ao objetivo”. A
idéia é a de que, com quantificação sobre açães, planejamento pode ser visto como
um problema de validade. Nos propomos uma axiomatização ao estilo de Hilbert

129

130 Resumo

para APAL, alguns resultados de expressividade e ummétodo de prova baseado em
tablôs semânticos.

Glossary

:= public assignment operator 43
δ translation fromD to DEL 45
J K extention in the model 23, 26
� arbitrary announcement operator 63
� arbitrary plan operator 19
♦ dual of the arbitrary announcement operator 64
[] dynamic operator 25, 37, 43, 63
〈 〉 dual of the dynamic operator 25, 38
! observation operator 37
!! test (sensing) operator 37, 38, 50

APAL arbitrary public announcement logic 63

C common knowledge operator 21, 43

D action description 40
DEL dynamic epistemic logic 43
DELC dynamic epistemic logic with common knowledge 43
Dep dependence relation 29

EDL epistemic dynamic logic 25
EDLm epistemic dynamic logic with meaningful plans 29
EDLo epistemic dynamic logic with observations 37
EL epistemic logic 21
ELC epistemic logic with common knowledge 21
ES logic ES 19

K̂ dual of the knowledge operator 21
K knowledge operator 9, 19, 21, 25, 29, 37, 43, 63

Lx the language of the logic x 9, 21, 25, 29, 37, 42, 43, 63

PDL propositional dynamic logic 25

131

132 Glossary

PL propositional logic 21

reg regression operator 16, 32

Sit situation calculus 9

Méthodes optimales pour le raisonnement sur actions et plans dans des systèmes
multi-agents

Tiago de Lima

Cet travail présente une solution au problème du décor inférenciel. Nous réalisons
cela en donnant une réduction polynomiale d’un fragment du calcul des situations
vers la logique épistémique dynamique (DEL). En suite, une nouvelle méthode
de preuve pour DEL, dont la complexité algorithmique est inférieure à celle de la
méthode de Reiter pour le calcul de situations, est proposée. Ce travail présente
aussi une nouvelle logique pour raisonner sur les actions. Cette logique permet
d’exprimer formellement qu’‘il existe une suite d’action conduisant au but’. L’idée
étant que, avec la quantification sur les actions, la planification devient un problème
de validité. Une axiomatisation et quelques résultats d’expressivité sont donnés,
ainsi qu’une méthode de preuve basée sur les tableaux sémantiques.

Mots clés : raisonnement sur actions et plans, raisonnement sur la connaissance,
logique épistémique dynamique, calcul des situations, problème du décor.

Cette thèse, présentée et soutenue à Toulouse le 22 octobre 2007, a été réalisée sous la
direction d’Andreas Herzig. L’auteur a obtenu le grade de Docteur en Informatique
de l’Université de Toulouse.

Université de Toulouse – Institut de Recherche en Informatique de Toulouse

118 route de Narbonne, 31062 TOULOUSE CEDEX 9, France

http://www.irit.fr

Optimal Methods for Reasoning about Actions and Plans in Multi-agent Systems

Tiago de Lima

This work presents a solution to the inferential frame problem. We do so by pro-
viding a polynomial reduction from a fragment of situation calculus to espistemic
dynamic logic (DEL). Then, a novel proof method for DEL, such that the compu-
tational complexity is much lower than that of Retier’s proof method for situation
caluculs, is proposed. This work also presents a new logic for reasoning about ac-
tions. This logic allows to formally express that ‘there exists a sequence of actions
that leads to the goal’. The idea is that, with quantification over actions, planning
can become a validity problem. An axiomatisation and some expressivity results are
provided, as well as a proof method based on sematic tableaux.

Keywords: reasoning about actions and plans, reasoning about knowledge, dynamic
epistemic logic, situation calculus, frame problem.

This thesis, presented and defended at Toulouse on the 22nd October 2007, was per-
formed under the supervision of Andreas Herzig. The author obtained the degree of
Docteur en Informatique de l’Université de Toulouse.

Université de Toulouse – Institut de Recherche en Informatique de Toulouse

118 route de Narbonne, 31062 TOULOUSE CEDEX 9, France

http://www.irit.fr

	Chapter 1 Introduction
	Chapter 2 Searching for an Adequate Formalism
	2.1 Introduction
	2.2 Scope of ThisWork
	2.2.1 Reasoning Tasks
	2.2.2 A Taxonomy of Dynamic Systems
	2.2.3 Extensional Versus Intensional Representations
	2.2.4 Parsimony and the Frame Problem

	2.3 Situation Calculus
	2.3.1 Syntax and Semantics
	2.3.2 Conditional Plans
	2.3.3 “Knowledge, Action, and the Frame Problem”
	2.3.4 Situation Calculus Regression
	2.3.5 A Variant of Situation Calculus

	2.4 Epistemic Logic
	2.5 Epistemic Dynamic Logic
	2.5.1 Syntax and Semantics
	2.5.2 Meaningful Plans
	2.5.3 The Dependence Relation
	2.5.4 Modal Logic Regression

	2.6 Discussion and Conclusion

	Chapter 3 A Framework for Epistemic and Ontic Change
	3.1 Introduction
	3.2 The Separation Theorem
	3.3 How Many Kinds of Epistemic Actions Are There?

	Chapter 4 Optimal Methods for Reasoning
	4.1 Introduction
	4.2 Reiter-style Action Theories
	4.2.1 Action Descriptions
	4.2.2 Models for an Action Description
	4.2.3 Validity in D-models
	4.2.4 Modal Logic Regression

	4.3 Dynamic Epistemic Logic
	4.3.1 Syntax
	4.3.2 Semantics

	4.4 From Toronto to Amsterdam
	4.5 Optimal Regression
	4.5.1 Eliminating Assignments
	4.5.2 Eliminating Announcements
	4.5.3 Eliminating Both

	4.6 Discussion and Conclusion

	Chapter 5 Reasoning with AnalyticTableaux
	5.1 Introduction
	5.2 A Tableau Method for Public Announcement Logic
	5.3 Tableau Strategies
	5.4 Related Work and Discussion

	Chapter 6 Searching for Plans
	6.1 Introduction
	6.2 Syntax and Semantics
	6.3 Semantic Results
	6.3.1 Validities
	6.3.2 Expressivity
	6.3.3 Knowability

	6.4 Axiomatisation
	6.5 A Tableau Method for Arbitrary Announcements
	6.6 Discussion, Further Work and Conclusion

	Chapter 7 Conclusion
	Bibliography
	Appendix A Long Proofs
	Resumé de la thèse en français

