157,920 research outputs found

    An adaptive communication model for mobile agents in highly dynamic networks based on forming flexible regions via swarming behabiour

    Get PDF
    Im letzten Jahrzehnt gilt die mobile Agententechnologie als eines der wichtigsten Forschungsgebiete der Informatik. Mobile Agenten sind Software, die AuftrĂ€ge im Namen ihrer Besitzer erfĂŒllen können (ZK02). Mobile Agenten können selbstbestimmend von Server zu Server migrieren, sie können ihren Arbeitsstand speichern und dann ihre Arbeit am neuen Aufenthaltsort fortsetzen. Ihre wichtigsten Merkmale sind: autonom, reaktiv, opportunistisch und zielgerichtet. Diese genannten Merkmale sind fĂŒr verteilte Anwendungen geeignet, z. B: Ressourcenverteilung (TYI99), Netzwerkmanagement (MT99), E-Commerce (BGP05), FernĂŒberwachung CMCV02), Gesundheitssysteme (Mor06), um nur einige zu nennen. Es ist die MobilitĂ€t der Agenten, die mobile Agenten zu einer guten Computing Technologie macht (Pau02). Kommunikation ist wesentlich in verteilten Systemen, und dies gilt auch fĂŒr mobile Agentensysteme (LHL02). Neben den eher technischen Aspekten mobiler Agententechnologien, wie Migration (Bra03) und Kontrollmechanismen (Bau00), wurde die Kommunikation zwischen den Agenten als eine der wichtigsten Komponenten in der mobilen Agententechnologie identifiziert (FLP98). Es ist diskutiert worden, ob Agentenkommunikation ausschließlich lokal sein sollte, angesichts der Tatsache, dass mobile Agenten erfunden wurden, weil man die Verarbeitung zu den Daten tragen möchte, anstatt umgekehrt (SS97). Allerdings hat es sich gezeigt, dass es in vielen FĂ€llen lohnt, wenn die mobilen Agenten kommunizieren anstatt migrieren (BHR+97),(FLP98),(ea02). Kommunikation hilft mobilen Agenten, eine bessere Leistung zu erreichen (Erf04). Kommunikation ist daher aus unserer Sicht die Basis mobiler Agentensysteme. An der Friedrich-Schiller-UniversitĂ€t Jena ist das interdisziplinĂ€re Projekt SpeedUp seit April 2009 durchgefĂŒhrt worden (FSU11). Das Projekt entwickelt ein UnterstĂŒtzungssystem fĂŒr Rettungs- und EinsatzkrĂ€fte bei einem Massenanfall von Verletzten (MANV). Im Projekt ist das Konzept mobiler Agenten als eine der Basistechnologien ausgesucht worden. Die hohe Netzwerkdynamik stellt neue Herausforderungen fĂŒr mobile Agentensysteme dar, die in MANV Rettungsszenarien arbeiten. Es wird erwartet, dass die Kommunikation sich an die dynamische Umgebung zur AusfĂŒhrungszeit anpassen kann. Dazu fehlen heute tragfĂ€hige Konzepte. In dieser Arbeit wird daher ein Ansatz zur adaptiven Kommunikation mobiler Agenten in hochdynamischen Netzwerken des SpeedUp-Typs vorgestellt. Nach unserer Beurteilung sollte die Kommunikation zwischen den mobilen Agenten nicht nur InteroperabilitĂ€t und StandortunabhĂ€ngigkeit, sondern auch AnpassungsfĂ€higkeit aufweisen. Wir schlagen ein Kommunikationsmodell vor, das sich auf den koordinierenden Aspekt und das Zusammenspiel der Agenten konzentriert, sowie die ZuverlĂ€ssigkeit und die Fehlertoleranz unterstĂŒtzt. Um die Netzwerkdynamik zu managen, planen wir einen selbstorganisierten Mechanismus zu verwenden, der sich ”honey bee” inspiriertes Verfahren nennt. Wir werden dazu eine Software fĂŒr ein adaptives Kommunikationsmodell mobiler Agenten, basierend auf das mobile Agentensystem Ellipsis gestalten, implementieren, und evaluieren.In the last decade, mobile agent technology has been considered as one of the most active research fields in computer science. Mobile agents are software agents which run on behalf of their owner to fulfil jobs that have been ordered (ZK02). They have the ability to migrate from location to location in the network, they can temporarily save their work state at the time of migrating and then restore their tasks when arriving at the new location. Their outstanding characteristics are to be autonomous, reactive, opportunistic, and goal-oriented. Those characteristics are suitable for distributed applications, such as resource allocation (TYI99), network management (MT99), remote supervision (CMCV02), e-commerce (BGP05), health care systems (Mor06), to name but a few. It is the mobility of mobile agents that makes them to be a powerful computing technique, especially for pervasive computing (Pau02). Communication is an essential component of distributed systems and this is no exception for multiagent systems (LHL02). Besides technical aspects of mobile agent technology, such as migrations (Bra03) and control mechanisms (Bau00), communication between mobile agents has been identified as an important issue in mobile agent technology (FLP98). It has been argued whether agent communication should be remote or restricted to local, considering that the main reason for the birth of mobile agents was to move computation to the data instead of moving the data to the computation. Therefore, remote communication could be avoided completely (SS97). However, it has been shown that in many cases mobile agent systems can benefit from performing communication instead of sending agents to remote platforms (BHR+97),(FLP98),(ea02). The communication between agents helps to increase the chance that an agent attains its objectives (Erf04). Communication is one of the bases of multi-agent systems; it is difficult, if not impossible for a group of agents to solve tasks without communication (Hel03). At Friedrich Schiller University Jena, an interdisciplinary project, named SpeedUp, for the support of handling mass casualty incidents (MCI) has been in development since April 2009 (FSU11). In the project the mobile agent concept has been selected as one of the main technologies on the communication infrastructure level. The dynamic nature of MCI networks poses new challenges to mobile systems working in a rescue scenario. For mobile agent systems working in highly dynamic networks, communication between mobile agents is expected to adapt easily to environmental stimuli which occur at execution time. Much research has been done into the design of an appropriate, highly flexible model for mobile agent communication in dynamic networks. However, to the best of our knowledge none of the suggested solutions has been able to achieve the necessary performance and quality attributes to count as a practical solution. In most cases, these existing approaches seem to neglect the inherent dynamics of modern networks. In this dissertation, we present our approach for an adaptive communication model for mobile agent systems in highly dynamic networks of the SpeedUp type. In our opinion, communication in mobile agent systems should deal not only with interoperability and location-transparency, but also with adaptability. To achieve industrial strength, we propose a model for agent communication that focuses on the cooperation aspect of agent interaction and supports reliability and fault tolerance as the key qualities, while keeping up an acceptable overall performance at the same time. For the management of highly dynamic communication domains we use a self-organizing mechanism, a so-called honey bee inspired algorithm. In order to ensure message delivery, we propose a resilient mechanism for the management of a mobile agent’s location. Based on this thesis, we will design, implement and evaluate a software prototype for an adaptive model for mobile agent communication based on the Ellipsis mobile agent system

    An Approach to Agent-Based Service Composition and Its Application to Mobile

    Get PDF
    This paper describes an architecture model for multiagent systems that was developed in the European project LEAP (Lightweight Extensible Agent Platform). Its main feature is a set of generic services that are implemented independently of the agents and can be installed into the agents by the application developer in a flexible way. Moreover, two applications using this architecture model are described that were also developed within the LEAP project. The application domain is the support of mobile, virtual teams for the German automobile club ADAC and for British Telecommunications

    Can geocomputation save urban simulation? Throw some agents into the mixture, simmer and wait ...

    Get PDF
    There are indications that the current generation of simulation models in practical, operational uses has reached the limits of its usefulness under existing specifications. The relative stasis in operational urban modeling contrasts with simulation efforts in other disciplines, where techniques, theories, and ideas drawn from computation and complexity studies are revitalizing the ways in which we conceptualize, understand, and model real-world phenomena. Many of these concepts and methodologies are applicable to operational urban systems simulation. Indeed, in many cases, ideas from computation and complexity studies—often clustered under the collective term of geocomputation, as they apply to geography—are ideally suited to the simulation of urban dynamics. However, there exist several obstructions to their successful use in operational urban geographic simulation, particularly as regards the capacity of these methodologies to handle top-down dynamics in urban systems. This paper presents a framework for developing a hybrid model for urban geographic simulation and discusses some of the imposing barriers against innovation in this field. The framework infuses approaches derived from geocomputation and complexity with standard techniques that have been tried and tested in operational land-use and transport simulation. Macro-scale dynamics that operate from the topdown are handled by traditional land-use and transport models, while micro-scale dynamics that work from the bottom-up are delegated to agent-based models and cellular automata. The two methodologies are fused in a modular fashion using a system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of residential location has been developed with a view to hybridization. The model mixes cellular automata and multi-agent approaches and is formulated so as to interface with meso-models at a higher scale

    Customer-engineer relationship management for converged ICT service companies

    Get PDF
    Thanks to the advent of converged communications services (often referred to as ‘triple play’), the next generation Service Engineer will need radically different skills, processes and tools from today’s counterpart. Why? in order to meet the challenges of installing and maintaining services based on multi-vendor software and hardware components in an IP-based network environment. The converged services environment is likely to be ‘smart’ and support flexible and dynamic interoperability between appliances and computing devices. These radical changes in the working environment will inevitably force managers to rethink the role of Service Engineers in relation to customer relationship management. This paper aims to identify requirements for an information system to support converged communications service engineers with regard to customer-engineer relationship management. Furthermore, an architecture for such a system is proposed and how it meets these requirements is discussed

    Locating Agents in RFID Architectures

    Get PDF
    The use of software agents can create an “intelligent” interface between users’ preferences and the back‐end systems. Agents are now able to interact and communicate with each other, forming a virtual community and feeding back the user with suggestions. Innovative systems related to Asset Tracking, Inventory and Shelving architectures are more often involving advanced communication techniques (e.g., RFID); these systems are responsible for user authentication and objects verification. RFID systems could have jamming situations where many objects are moving at the same time and in the same direction. Moreover, other disadvantages have also been observed, such as hindering further implementations, privacy and security issues problems, in addition to the system’s disruptive behavior in case of crowd checkouts (e.g., Supermarket and Airports). Addressing these disadvantages, this paper proposes a possible integration between a Multi‐Agent framework and an RFID‐based application (back‐end). This integration would allow objects (such as passports or goods) with RFID tags to better check‐out through airports or supermarket gates that contain RFID‐readers

    Management system requirements for wireless systems beyond 3G

    Get PDF
    This paper presents a comprehensive description of various management system requirements for systems beyond 3G, which have been identified as a result of the Software Based Systems activities within the Mobile VCE Core 2 program. Specific requirements for systems beyond 3G are discussed and potential technologies to address them proposed. The analysis has been carried out from network, service and security viewpoints
    • 

    corecore