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Zusammenfassung

Im letzten Jahrzehnt gilt die mobile Agententechnologie als eines der wichtigsten

Forschungsgebiete der Informatik. Mobile Agenten sind Software, die Aufträge im

Namen ihrer Besitzer erfüllen können (ZK02). Mobile Agenten können selbstbes-

timmend von Server zu Server migrieren, sie können ihren Arbeitsstand speichern

und dann ihre Arbeit am neuen Aufenthaltsort fortsetzen. Ihre wichtigsten Merk-

male sind: autonom, reaktiv, opportunistisch und zielgerichtet. Diese genannten

Merkmale sind für verteilte Anwendungen geeignet, z. B: Ressourcenverteilung

(TYI99), Netzwerkmanagement (MT99), E-Commerce (BGP05), Fernüberwachung

(CMCV02), Gesundheitssysteme (Mor06), um nur einige zu nennen. Es ist die

Mobilität der Agenten, die mobile Agenten zu einer guten Computing Technologie

macht (Pau02).

Kommunikation ist wesentlich in verteilten Systemen, und dies gilt auch für

mobile Agentensysteme (LHL02). Neben den eher technischen Aspekten mobiler

Agententechnologien, wie Migration (Bra03) und Kontrollmechanismen (Bau00),

wurde die Kommunikation zwischen den Agenten als eine der wichtigsten Kompo-

nenten in der mobilen Agententechnologie identifiziert (FLP98). Es ist diskutiert

worden, ob Agentenkommunikation ausschließlich lokal sein sollte, angesichts

der Tatsache, dass mobile Agenten erfunden wurden, weil man die Verarbeitung

zu den Daten tragen möchte, anstatt umgekehrt (SS97). Allerdings hat es sich

gezeigt, dass es in vielen Fällen lohnt, wenn die mobilen Agenten kommunizieren

anstatt migrieren (BHR+97),(FLP98),(ea02). Kommunikation hilft mobilen Agen-

ten, eine bessere Leistung zu erreichen (Erf04). Kommunikation ist daher aus

unserer Sicht die Basis mobiler Agentensysteme.

An der Friedrich-Schiller-Universität Jena ist das interdisziplinäre Projekt Speed-

Up seit April 2009 durchgefürht worden (FSU11). Das Projekt entwickelt ein Un-

terstützungssystem für Rettungs- und Einsatzkräfte bei einem Massenanfall von



Verletzten (MANV). Im Projekt ist das Konzept mobiler Agenten als eine der Basis-

technologien ausgesucht worden. Die hohe Netzwerkdynamik stellt neue Heraus-

forderungen für mobile Agentensysteme dar, die in MANV Rettungsszenarien ar-

beiten. Es wird erwartet, dass die Kommunikation sich an die dynamische Umge-

bung zur Ausführungszeit anpassen kann. Dazu fehlen heute tragfähige Konzepte.

In dieser Arbeit wird daher ein Ansatz zur adaptiven Kommunikation mobiler

Agenten in hochdynamischen Netzwerken des SpeedUp-Typs vorgestellt. Nach un-

serer Beurteilung sollte die Kommunikation zwischen den mobilen Agenten nicht

nur Interoperabilität und Standortunabhängigkeit, sondern auch Anpassungsfähig-

keit aufweisen. Wir schlagen ein Kommunikationsmodell vor, das sich auf den ko-

ordinierenden Aspekt und das Zusammenspiel der Agenten konzentriert, sowie die

Zuverlässigkeit und die Fehlertoleranz unterstützt. Um die Netzwerkdynamik zu

managen, planen wir einen selbstorganisierten Mechanismus zu verwenden, der

sich ”honey bee” inspiriertes Verfahren nennt. Wir werden dazu eine Software für

ein adaptives Kommunikationsmodell mobiler Agenten, basierend auf das mobile

Agentensystem Ellipsis gestalten, implementieren, und evaluieren.



Abstract

In the last decade, mobile agent technology has been considered as one of the

most active research fields in computer science. Mobile agents are software agents

which run on behalf of their owner to fulfil jobs that have been ordered (ZK02).

They have the ability to migrate from location to location in the network, they can

temporarily save their work state at the time of migrating and then restore their

tasks when arriving at the new location. Their outstanding characteristics are to

be autonomous, reactive, opportunistic, and goal-oriented. Those characteristics

are suitable for distributed applications, such as resource allocation (TYI99), net-

work management (MT99), remote supervision (CMCV02), e-commerce (BGP05),

health care systems (Mor06), to name but a few. It is the mobility of mobile agents

that makes them to be a powerful computing technique, especially for pervasive

computing (Pau02).

Communication is an essential component of distributed systems and this is no

exception for multi-agent systems (LHL02). Besides technical aspects of mobile

agent technology, such as migrations (Bra03) and control mechanisms (Bau00),

communication between mobile agents has been identified as an important issue

in mobile agent technology (FLP98). It has been argued whether agent communi-

cation should be remote or restricted to local, considering that the main reason for

the birth of mobile agents was to move computation to the data instead of moving

the data to the computation. Therefore, remote communication could be avoided

completely (SS97). However, it has been shown that in many cases mobile agent

systems can benefit from performing communication instead of sending agents to

remote platforms (BHR+97),(FLP98),(ea02). The communication between agents

helps to increase the chance that an agent attains its objectives (Erf04). Commu-

nication is one of the bases of multi-agent systems; it is difficult, if not impossible

for a group of agents to solve tasks without communication (Hel03).



At Friedrich Schiller University Jena, an interdisciplinary project, named Speed-

Up, for the support of handling mass casualty incidents (MCI) has been in devel-

opment since April 2009 (FSU11). In the project the mobile agent concept has

been selected as one of the main technologies on the communication infrastruc-

ture level. The dynamic nature of MCI networks poses new challenges to mobile

systems working in a rescue scenario. For mobile agent systems working in highly

dynamic networks, communication between mobile agents is expected to adapt

easily to environmental stimuli which occur at execution time. Much research has

been done into the design of an appropriate, highly flexible model for mobile agent

communication in dynamic networks. However, to the best of our knowledge none

of the suggested solutions has been able to achieve the necessary performance and

quality attributes to count as a practical solution. In most cases, these existing ap-

proaches seem to neglect the inherent dynamics of modern networks.

In this dissertation, we present our approach for an adaptive communication

model for mobile agent systems in highly dynamic networks of the SpeedUp type.

In our opinion, communication in mobile agent systems should deal not only with

interoperability and location-transparency, but also with adaptability. To achieve

industrial strength, we propose a model for agent communication that focuses

on the cooperation aspect of agent interaction and supports reliability and fault

tolerance as the key qualities, while keeping up an acceptable overall performance

at the same time. For the management of highly dynamic communication domains

we use a self-organizing mechanism, a so-called honey bee inspired algorithm.

In order to ensure message delivery, we propose a resilient mechanism for the

management of a mobile agent’s location. Based on this thesis, we will design,

implement and evaluate a software prototype for an adaptive model for mobile

agent communication based on the Ellipsis mobile agent system.
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Chapter 1

Introduction

1.1 Preamble

Besides technical aspects of mobile agents, such as agent migrations (Bra03) and

control mechanisms (Bau00), communication between mobile agents has been

identified as an important issue in mobile agent technology. It has been argued

whether agent communication should be remote or restricted to local, consider-

ing that the main reason for the birth of mobile agents is to move computation

to the data instead of moving the data to the computation, and therefore remote

communication could be avoided (SS97). However, it has been shown that in

many cases, mobile agent systems can benefit from performing communication

instead of sending agents to remote platforms (BHR+97). The communication be-

tween agents helps to increase the chance that an agent can achieve its objectives

(Erf04). Communication is one of the bases of multi-agent systems; it is diffi-

cult, if not impossible for a group of agents to solve tasks without communication

(Hel03). Information sharing gives agents the opportunity to learn more about

what other agents have already undergone so that they can fulfil their tasks faster

(CGL07). It can be summarized that, in mobile agent systems, remote commu-

nication cannot be completely replaced by agent mobility and therefore mobile

agents should be equipped with remote communication capabilities (AP95).

It is the mobility of agents that makes the communication between them com-

plicated. Communication in mobile agents consists normally of two phases: agent
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1. INTRODUCTION

tracking and message delivery. Since agents migrate from agency to agency to ful-

fil their tasks, there must be a mechanism that monitors the current location of an

agent in the system, this is called agent tracking. The second phase, message de-

livery, takes place after the location of the targeted agent has been found. The two

phases seem to be contradictory in performance since the more effort we pay for

monitoring the agents, the easier the message delivery phase is, and vice versa.

The mobility of agents may lead to severe message losses when communication

excutes, especially in large scale networks. To achieve system’s reliability, these

losses need to be mitigated.

At the Chair of Software Engineering of Friedrich Schiller University Jena, mo-

bile agent technology is considered as one of the leading research fields. The chair

has been concentrating not only on improving the performance of mobile agent

system (MAS), but also on spreading the applications of the technology. Many

intensive studies have been conducted to pursue this objective. Peter Braun had

dedicated his whole PhD Dissertation to the migration process of mobile agents

in 2003. Soon after, Christian Erfurth successfully developed ProNav - a proactive

autonomous navigation framework for mobile agents (Erf04). With the frame-

work, mobile agents are equipped with the abiltity to percept the network condi-

tions and therefore they can route and plan themselves in a changing environment

(DER04),(ED04). In MAS level 2, agents are able to plan their route through the

network themselves, based on relevant service descriptions and by using dedi-

cated routing services, they have the ability to navigate the network in a highly

autonomous fashion. However, to achieve useful autonomous navigation, a large

number of up-to-date service descriptions must be handled effectively. The PhD

Dissertation of Arndt Döhler deals with this issue (D0̈8). From the fact that cur-

rent infrastructure frameworks are not scaling well with the potential number of

service descriptions, cannot map the dynamics in the network, the thesis focuses

on integrating scalability and flexibility into a unified solution framework - Quick-

LinkNet - that supports mobile agents in their autonomous behaviour (DER05).

Since April 2009, a project for the support of mass casualty incidents (MCI)

rescue has been executed by Friedrich Schiller University Jena and its partners.

The project, named SpeedUp, consists of two main areas: SpeedUp Practice and

SpeedUp Technology. SpeedUp Technology is responsible for the IT support of
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1.2 Prerequisites and Goals

rescue forces in MCI situations so that in disaster events, rescue actions can be

performed in a more effective way. The IT solution supports the usual rescue mea-

sures by providing a framework for improved information handling, additional

preprocessed sensor data, and a basis for a highly flexible communication infras-

tructure (FSU11). In SpeedUp the mobile agent concept has been selected as one

of the main technologies on the communication infrastructure level. It is the in-

spiration for our work; we expect useful practical inputs from it and in return,

our work is expected to contribute to the implementation of the communication

architecture for the project. We are, therefore, going to design, implement, and

evaluate in this project environment a prototype for adaptive mobile agent com-

munication in highly dynamic networks. To achieve industrial strength, we pro-

pose a model for agent communication that focuses on the cooperation aspect of

agent interaction and supports reliability and fault tolerance as the key qualities,

while keeping up an acceptable overall performance at the same time.

For mobile agent systems which work in highly dynamic networks, communi-

cation between mobile agents is expected to adapt easily to environmental stim-

uli which appear only at execution time. Communication should deal not only

with interoperability and location-transparency, but also with adaptability. Sev-

eral studies have been published so far which address the design of an appropri-

ate, highly flexible model for mobile agent communication. However, to the best

of our knowledge none of the suggested solutions has been able to achieve the nec-

essary performance and quality attributes to count as a practical solution. In most

cases, these existing approaches seem to neglect the inherent dynamics of mod-

ern networks. Thus, in our view adaptive mobile agent communication remains

a challenging topic. We are interested in developing an adaptive communication

model for mobile agents which is suitable for tasks in highly dynamic networks.

1.2 Prerequisites and Goals

Our goals and prerequisites can be summarized as follows:

• We will base our mobile agent implementation on the mobile agent system

Ellipsis (Sch12) as the basic agent instantiation and execution environment.
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1. INTRODUCTION

All solutions will be implemented as an extension of this MAS.

• To ensure maximum interoperability, we opt for the FIPA Agent Communica-

tion Language Specification as the messages’ semantics representation. Mes-

sages for the communication between mobile agents will, thus, be formatted

according to this FIPA Standard.

• We will implement as a basic feature a stable location-transparency tech-

nique that supports instantiated mobile agents by keeping their communi-

cation independent from the currently allocated execution platform and the

platform’s type.

• We will improve the collaboration between instantiated mobile agents, based

on location transparency, by making their communication and its structure

adaptive to the topological changes within the network. The targeted quali-

ties of collaboration will focus on fault tolerance and reliability.

1.3 Dissertation Structure

The dissertation is divided into three parts. Part I, which is made of chapters 1, 2,

3, and 4, provides the reader with a view of mobile agent communication. Chapter

1 is the introduction to the work. Chapter 2 provides the fundamentals of agent

communication. Chapter 3 presents state of the art in mobile agent communica-

tion. Chapter 4 introduces the context in which mobile agent technology is going

to be employed and the need for agent communication. Part II begins with Chap-

ter 5, which presents the thesis of the dissertation. Chapter 6 gives a biological

background as well as describes self-organizing mechanisms and their application

for highly dynamic networks. This chapter also presents our approach for an adap-

tive communication model for mobile agents in highly dynamic networks of the

SpeedUp-Type. Chapter 7 clarifies the design of the software prototype and its con-

stituent components. Chapter 8 provides the implementation details. Part III deals

with the evaluation of the software prototype. Chapter 9 focuses on the system’s

functionalities. Chapter 10 evaluates the targeted qualities. Some conclusions and

a look at future work will be given in the last chapter of the dissertation.
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Chapter 2

Fundamentals of Agent

Communication

In recent years agent technology has attracted attention of the research commu-

nity. Agent is a software entity that is created and owned by a user. On behalf of

its owner, an agent acts in a responsive manner to external stimuli to fulfil bespo-

ken tasks. The prominent advantages of agent should be autonomous processing,

flexibility and intelligence. These characteristics are particularly suitable for tasks

in distributed environment (Bra97).

Multi-agent systems facilitate distributed problem solving since agents are able

to work to solve common tasks in a pervasive scale. The ability to communicate

features in multi-agent systems, communication has been identified as one of the

major issues in these types of systems (VMWB07). Agent communication may

present at various forms; it can be the exchange of comprehensible messages, a

request to perform an action, or cooperation negotiation (Cal02). Through com-

munication agents share information and eliminate conflicts in goals.

Communication in multi-agent systems holds main features belonging to com-

munication in conventional distributed systems. What makes it differ from that is

the exchanging of semantic contents to achieve a higher level interactivity (FLP98).

Agent communication, when being confronted with, means not simply sending a

stream of bits from a sender to a receiver, but the ability of both sides to process

messages meaningfully. Thus, there are two independent levels in agent commu-

nication: low level and high level communication. For low level communication,
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2. FUNDAMENTALS OF AGENT COMMUNICATION

it is about to transfer packets of bytes over networks, like in any other distributed

system. By the high level communication, which is specific to intelligent and agent

systems, the meaning of exchanged messges is parsed and processed.

Agent communication has been built based on some main theories. High level

communication in agent systems is inspired by speech act theory, the discipline

that deals with the study of human conversations in real situations. The seman-

tic representation of agent messages is achieved by means of a shared ontology,

which is defined as a conceptualization of objects and relations. The type of com-

municative acts is represented by an agent communication language (FIP02d). In

this chapter, these foundations namely the speech act theory, agent communica-

tion language, and ontology will be highlighted. In addition, the topics related

to low level communication will also be discussed. Afterwards the major issues

regarding mobile agent communication will be examined.

2.1 Introduction

Given that agents are created by different programming language and run on dif-

ferent operating systems as well as hardware platforms, if two software agents

want to communicate, there must exist an infrastructure for communication.

In order to communicate, agents must comply with the following requirements

(Obi07):

• At the physical level, agents are able to send and receive packets that contain

agent messages over existing network infrastructure.

• At the syntactic level, agents are able to parse messages correctly into differ-

ent fields, such as: message header, message content, language, sender.

• To guarantee that the meaning of is preserved, agents must commit to a

shared ontology. An ontology facilitates the process of understanding mes-

sage fields meaningfully.

In Sections 2.2, 2.3 and 2.4, we will present speech act theory, agent com-

munication and ontology in details. These are the most important bases of agent

communication.
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2.2 Speech Acts

2.2 Speech Acts

Speech act theory aims to study how humans use language to attain objectives

in everyday life. The philosopher Austin and his student Searle are the two pi-

oneers, whose contributions are significant in this field. Speech act theory has

been described thoroughly in Austin’s book named ”How to do things with words”

(Aus75).

Speech act theory is based on the premise that ”language is action.” A speaker

utters to put influence on the intention of the hearer. Austin classifies two cate-

gories: utterance-as-description and utterance-as-doing, he also points out differ-

ent facets of speech acts:

• Locutinary act: The act of forming an utterance following grammar rules.

• Illocutionary act: The act of performing an action by uttering meaningfully.

For example, a father tells his son: ”I will buy you a bicycle tomorrow” he

conducts the illocutionary act of making a promise.

• Perlocutionary act: The act of having influence on the hearer. For example,

a teacher reminds his pupils: ”Please remember to do the homework!”, he

performs the perlocutionary act of forcing the pupils to do the homework.

Speech acts are sorted into five groups:

• Representatives: A speaker expresses his belief, e.g., ”The train is coming.”

• Directives: A speaker shows his desire, or tells a hearer to perform some

action, e.g., ”Please get in the train.”

• Commisives: A speaker indicates his intention to do something, e.g., ”I’ll

awake you when the train stops.”

• Expressives: A speaker expresses a mental state, e.g., ”Thank you for awak-

ing me.”

• Declaration: A speaker declares something, e.g., ”On behalf of the jury I

declare the train’s team has won the prize ”Best Service” of the year.”
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2. FUNDAMENTALS OF AGENT COMMUNICATION

A speech act is considered to have two components:

• a performative: accept, inform, request, etc.

• a propositional content: ”It is raining outside!”

Agent communication emulates speech acts from human conversations. Utter-

ances may be considered as a foundation for communication among agents, with

the intention of changing the mental state of the hearer of the utterance. Likewise,

agents send message to other agents to put some influence of the receivers, with

the intention that the receiver will perform some action suggested in the message’s

content and message’s type (VMWB07).

2.3 Agent Communication Language

An agent communication language facilitates communication between agents, it

allows an agent to exchange knowledge with other agents regardless of their plat-

form, architecture, programming language, and reasoning system (LF98). Essen-

tially, an agent communication language can be considered as a set of message

types, called performatives. Each performative has a pre-defined meaning and

represents an intention of a sender towards a receiver. An agent communication

language can be used for communication between following entities (FLP98):

• Static agents.

• Static and mobile agents.

• Mobile agents.

• Mobile agents and information sources.

FIPA-ACL and KQML are two most widely used communication languages for

inter-agent communication. They both emulate speech acts from human and share

a very similar syntax and semantics.
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2.3.1 KQML and KIF

KQML (The Knowledge Query and Manipulation Language) represents performa-

tives. KIF (Knowledge Interchange Format) defines message content, properties of

things and their relationships in a domain.

A KQML message is made of three layers: the content layer, the message layer,

and the communication layer. The message layer specifies the performative, the

content language, and the ontology. Performatives are multiple types of messages,

each performative specifies the intention of a message. Currently, there are over

40 performatives in KQML. A message content does not tell much which actions

need to be executed, in certain circumstances, the message’s content might be

confused because it can be understood in different ways. A performative allows

an agent to narrow the scope of a message it has received. As a result, it is able to

parse the message in the right way as expressed at the sender side.

2.3.2 FIPA ACL

FIPA ACL has been developed mainly based on KQML with some improvements.

FIPA ACL is specified with precisely syntax definitions, semantics and pragmatics.

FIPA ACL does not deal with the physical exchange over the network, but with

the specification of the exchange content. Like in KQML, FIPA ACL distinguishes

between different types of messages also called performative. Currently there are

total of 22 performatives in the FIPA Specification (FIP02d).

An agent of FIPA type must be able to (PC00):

• interpret and send a not-understand message,

• correctly implement ACL messages according to their syntactic definition,

• correctly make use of ACL performatives according to their semantic defini-

tion, and finally

• generate messages in the transport form that corresponds to the messages

they want to send.

11



2. FUNDAMENTALS OF AGENT COMMUNICATION

A FIPA-ACL message is made of a set of one or more message elements. The

mandatory field in this type of messages is performative. A normal FIPA ACL mes-

sage also contains other fields, such as sender, receiver, and content as shown in

Figure 2.1. The content field represents the domain dependent component of the

communication; The language field identifies the content language (CL), ontology

specifies the ontology used for knowledge sharing. In conjunction with ACL; The

ontology field supports the interpretation of the content expression. Agents may

use same or different ontology, but they must have the ability to interpret between

them.

Figure 2.1: A FIPA Message (FIP00a)

2.4 Ontology

Sharing and reusing knowledge across heterogeneous systems were problematic

since each system has its own way of defining and representing concepts. It is a

common that systems refer to the same concepts but use different representation.

In a conversation between agents from different background, agents may have dif-

ferent conceptualizations of objects and relations. In order to facilitate knowledge

sharing between agents, it is necessary for them to have an agreement of a shared

model of the world. That means, the involving agents must agree on a common

specification of objects, entities and relationships.
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2.5 Communication Architecture

Ontology has been invented in need for interoperability of heterogeneous sys-

tems. An ontology for a domain is a conceptualization of the world, i.e., objects,

qualities, distinctions and relationships in that domain (FLP98). An ontology as-

sists computers to process and exchange information automatically and rapidly,

without intervention from humans. Ontology defined by Gruber ”is a particular

conceptualization of a set of objects, concepts and other entities about which knowl-

edge is expressed and of the relationships that hold among them. It provides the basic

structure for building knowledge base” (PB02),(Gru93),(Gru95).

Ontology provides a vocabulary of terms to describe entities in some domain

of interest, as well as a set of assumptions about the meaning of the terms in the

vocabulary. New knowledge can be deduced from the existing terms represented

by ontology.

In agent implementation, ontology can be stored in an ontology service or

coded within the software so that no ontology service is needed (FIP01).

2.5 Communication Architecture

2.5.1 Message Transport Model

FIPA defines a Reference Model for Message Transport. The model comprises of

three levels (FIP00b):

• The Message Transport Protocol (MTP) is used to transfer physically mes-

sages between two Agent Communication Channels (ACC).

• The Message Transport Service (MTS) supports the transportation of FIPA

ACL messages between agents on any given Agent Platform (AP).

• The ACL represents the payload of the messages carried by both the MTS

and MTP.

There are two typical transport models: Message passing, and RPC/RMI (Re-

mote Procedure Calls/Remote Method Invocation):
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Figure 2.2: Message Transport Reference Model (FIP00b)

• Message passing is a form of communication used in parallel computing, and

inter-process communication. In this model, processes or objects can send

and receive messages.

• Remote Procedure Call (RPC): RPC is an inter-process communication tech-

nology that provides a computer program the ability to call a procedure in

another address space, normally a remote server.

• Remote Method Invocation (RMI): RMI provides for remote communication

between programs written in Java. This is the object-oriented version of

RPC. It allows an object running Java Virtual Machine to invoke methods on

an object running in another Java Virtual Machine.

2.5.2 The Layered Architecture

Abstraction methods play an important role in system design as they can be used

to represent the structure of a system in a new space so that reasoning in the new

model is simpler than that in the original (Cal02). For agent communication, an

abstract for agent communication had been introduced in (Hel03) as illustrated in

the upper part of Figure 2.3.
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2. FUNDAMENTALS OF AGENT COMMUNICATION

Figure 2.3 depicts the agent communication architecture. The upper part of

the figure illustrates the layered architecture of agent communication (a). The

lower part (b) of the figure presents the message encapsulation process.

The layered model resembles the OSI model (Sim07). The low-level data trans-

port layers are common in conventional distributed systems. In this level, the two

layers Transport Protocol and Data Transmission route and deliver data packets

consisting of agent messages through networks. The high-level semantic layers

are exclusive to systems with semantics communication. They are comprised of

the four upper layers and parse, interpret semantics messages. The aims of the

layered architecture are to categorize the processing into different levels, thereby

facilitating communication optimization in different levels independently (Hel03).

The encapsulation process depicted on the lower part of the figure gives an

overview of how an agent message is processed at different layers. At the sender

side, down the communication stack each layer adds one ore more fields to the

original message. And at the receiver side, the message is then parsed correspond-

ingly to get to the original format. The circle numbers of the upper part are used

to explain the message format at the corresponding stages. First, an ACL mes-

sage consisting of the message content is created (1). To the next two layers, the

message is encoded using ACL Message Encoding and Message Envelope Encod-

ing (2). The data is then encapsulated using Message Transport Protocol (3). It

is transferred over the network (4) and received at the destination (5). The mes-

sage is then parsed to the transport format (6). The parsed data is converted to

the form managed by Message Transport Protocol (7). Finally, the original ACL

message is obtained (8).

2.5.3 Interaction Protocol

The process of exchanging messages between coordinated parties like agents typ-

ically falls into common patterns. It means, during the communication process,

a sequence of messages is expected. At any point of conversation, a certain type

of messages is awaited. The patterns of message exchange are called interaction

protocol and they represent the highest abstraction component in the agent com-

munication stack (Cal02),(SSB02).
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Figure 2.4: FIPA Request Interaction Protocol (FIP00d)

FIPA has defined a set of protocols which called Interaction Protocols. These

specifications deal with pre-agreed message exchange protocols for ACL messages

(FIP00c). Figure 2.4 gives an example for one of standards of FIPA Interaction

Protocols, the FIPA Request Interaction Protocol. This protocol is invoked when

an agent wants to request another to perform some actions.

2.5.4 Message Transport Protocol

Message transport protocol defines the structure of messages using a transport

protocol. It delivers the messages to the destination agent in the correct order and

informs the sender when communication error occurs.

2.5.5 ACL Message Encoding

The Agent Communication Language Layer in the layered model of agent com-

munity communication specifies the syntax and semantics of agent messages. For

the purpose of optimization based on network environments, ACL messages can

be represented in different formats. FIPA has defined three standard encoding

schemes for ACL messages as listed as follows:
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• Bit-efficient encoding technique encodes message by replacing fields of ACL

messages with a combination of pre-defined hexadecimal byte. This tech-

nique can reduce the size of ACL messages considerably. Consequently, bit-

efficient encoding scheme is suitable for transferring messages in wireless

environment (FIP02a).

• String ACL encoding uses string to represent message fields. This encoding

technique is not optimal as performing operations on strings consumes more

time than other types of data, for example byte (FIP02b).

• XML ACL encoding is based on XML 1 which is used to represent and ex-

change data over the Internet. The ACL message representation in XML has

been specified in (FIP02c).

XML ACL encoding is preferred because of the following reasons (CLC08),

(GL99):

• XML is easy to manipulate; it enables users to format their own document

structure.

• XML can be used to represent different types of information in human-

readable format.

• XML is an open standard and is used by various software systems. Encoding

ACL messages using XML allows MASs to be more open to other systems.

As a result, the interoperability between heterogeneous systems can be im-

proved.

• As XML has been used widely in web services, the deployment of XML in

ACL messages facilitates collaboration between MASs and web services.

1eXtension Markup Language
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2.6 Mobile Agent Communication

Mobile agents are software agents equipped with the ability to migrate. They can

jump from a host to an other host in the network to fulfil tasks ordered by their

owner. Mobile agents can temporarily save their work status before they migrate

and restore tasks once they arrive at a new location. The basic principle of a

mobile agent is to send the code to the data instead of doing inversely. The code

performs processing on data and returns results. Consequently, the benefit of using

mobile agents is to reduce the amount of data transfered through networks. The

most important characteristics of mobile agent technology are to be autonomous,

reactive, opportunistic, and goal-oriented. The mobile agent concept is highly

beneficial to pervasive and ambient computing systems (Pau02).

A mobile agent inherits all characteristics of a conventional software agent.

Communication among mobile agents encompasses all features of inter-agent com-

munication. In addition to these characteristics, communication in mobile agents

must deal with mobility. The Euler diagram (HBF+07) in Figure 2.5 depicts the

relationships between communication in ordinary distributed systems, agent sys-

tems and mobile agent systems.

Figure 2.5: Relationship between mobile agent communication and other

types of communication

On the application level, communication in conventional distributed systems

relates to transferring bytes of data over networks. Agent communication consists

of issues related to communication in distributed systems and issues regarding
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semantics representation. Mobile agent communication, when being confronted

with, means the combination of agent communication and mobility management.

Communication in mobile agent systems consists normally of two phases: agent

tracking and message delivery. In the first phase an agent’s whereabouts are

tracked when it migrates over the network. The second phase, message deliv-

ery, takes place after the location of the targeted agent has been found. The two

phases seem to be contradictory in performance, since the more effort we spend to

monitor a mobile agent, the easier the message delivery phase is, and vice versa.

A so-called location-independent communication protocol facilitates message de-

liverying between mobile agents regardless of their current residence.

A communication protocol for mobile agents is expected to satisfy the following

requirements:

• Location independence: An agent can send messages to other mobile agents

irrespective of their location.

• Reliability: Messages are expected to be delivered reliably to targeted agents.

• Efficiency: The protocol should produce low location updating and message

delivery overheads.

So far, there have been many location tracking techniques for mobile agents

proposed. In the succeeding sections we are going to give an overview of some

popular location management schemes.

2.7 Location Management for Mobile Agents

2.7.1 Central Server

In the whole system, there is a central server that stores location information of

all mobile agents. When an agent wants to communicate with an other agent, it

sends message to the server, which in turn forwards to the destination. The server

may also work as an address lookup, where agent asks server for the address of

the receiver and then sends messages to the destination (Figure 2.6).
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Figure 2.6: Central Server (BR04)

This approach is not suitable for systems with a huge number of mobile agents

working in large scale network. A bottleneck may occur when many mobile agents

send request to the central server at the same time. A single point of failure cannot

be avoided if the server fails.

Bottleneck can be evaded with another approach called Home Server. Each

home server manages location information for all mobile agents that have been

created in it. When an agent migrates, it sends a location update to its Home

Server. The name of an agent contains the Home Server address of the agent,

so when an agent wants to communicate, it sends location lookup request to the

receiver’s home server to get the current location of the receiver, the message then

will be sent directly to the destination address (JYBz07),(SWU10).

2.7.2 Forwarding Pointer

Figure 2.7: Forwarding Pointer (BR04)
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Every agent knows the initial home site of all other agents. When an agent

migrates, it leaves a pointer at the current agency points to the destination. When

an agent wants to communicate with an other agent, it sends the message to the

receiver’s home agency. This agency forwards the message following the anchors

that have been cached (Figure 2.7) (PS),(Woj01).

2.7.3 Broadcast

Figure 2.8: Broadcast

Figure 2.8 illustrates the Broadcast approach. There is no need to store an

agent’s location, thus the cost for agent tracking is null. However the cost for

delivering messages or looking for addresses is considerably high, depending on

the scale of network and the number of agent platforms. There are two types

of broadcast: message broadcast and address lookup broadcast. When an agent

wants to send message to an other agent, it may broadcast the message to all

platforms or ask for the address of the destination by broadcasting a lookup query.

Like the Central Server approach, the Broadcast approach is impractical in large

scale networks (BR04).

2.7.4 Group Communication

A set of agents organizes as a group based on their common activities. The group

maintains a record of location of every agent in the group. Before migrating, an
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agent informs other agents of the group about its future location. It then waits for

ACKs and all the messages due to arrive. The agent then migrates. Once it arrives

at the destination, the agent informs other group members that it has finished

migrating. Because an agent knows addresses of all other members, when it wants

to send message to an other agent, it sends the message to the agency where the

receiver is currently working (BR04),(SWU10),(Woj01).

2.7.5 Hierarchical Location Directory

The location directory of the servers in the system is structured as a tree. Each

node corresponds to a leaf in the tree and each region is like a subtree. Each

server keeps a record of location of some agents. For each agent, there is a unique

path from the root to the actual server where the agent resides. Before an agent

migrates, it informs its upper node. When the agent arrives, it registers itself

with the new node, and informs the previous node and then waits for ACK. The

algorithm is able to update the path when agent finishes migrating. Messages

targeted to an agent are sent along the path from the root to the agency where the

agent stays (Figure 2.9) (BR04),(SWU10).

Figure 2.9: Hierarchical Directory
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2.7.6 Arrow Directory

Each agent connects to a mailbox. If there is a message targeted to an agent, the

message will be sent to the mailbox instead of to the agent itself. Agent checks the

mailbox periodically for incoming messages (Woj01).

Agent platforms are organized as a connected graph, each vertex corresponds

to a node and each edge models a reliable link. Nodes can send message to its

neighbours along established paths. When an agent platform sends message to

another platform, the message will follow the path until it reaches the destination.
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Chapter 3

Some Existing Communication

Models for Mobile Agents

So far quite a number of communication models for mobile agents have been

proposed in many mobile agent systems (CFLD02),(BSP+05),(CKB+06). Each of

these models has its own characteristics. In this chapter, we summarize some

existing communication models for mobile agents. Based on the basic knowledge

presented in Chapter 2, we are going to concentrate on analysing the main features

regarding communication among mobile agents. For each system, the first section

presents the system model. The succeeding section deals with the management

of a mobile agent’s location. Afterwards, the third section clarifies communication

between agents. The last section will look at the pros and cons of each model.

3.1 An Improvement for the Forwarding Pointer Mech-

anism

Compared to the Central Server approach, Forwarding Pointer is considered to be

able to reduce load on the server by distributing the load to all nodes along the

route of an agent, and therefore evading bottleneck. However, this approach has

its own drawback, if agent migrates with a high frequency, it might introduce a

race between the sender and the receiver. When the chain of forwarding pointer

is long, there will be unnecessary routes which need to be removed.
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In (Ahn04),(Ahn10) the author presents a new approach to improve original

forwarding pointer mechanism. Each mobile agent may leave trails of forwarding

pointers only on some of the visiting nodes depending on some parameters such as

location updating and message delivery costs, security, network latency and topol-

ogy, communication patterns, etc. This aims to reduce the length of anchor for

forwarding pointer. This approach is thought to be more efficient in terms of mes-

sage forwarding and location management than the original Forwarding Pointer.

In addition, it reduces considerably dependency on the home node in agent loca-

tion updating and message delivery compared to the Home Server approach.

3.1.1 System Model

The model distinguishes between locator and forwarder. A forwarder of an agent

is a node which has a forwarding pointer of the agent on its storage; the locator

of an agent is the forwarder managing the identifier of the node where the agent

currently resides. It is assumed that there is only one locator for an agent at a time,

but there may be more than one forwarder for an agent (Ahn04). Each platform

in the system holds the following data:

• A table that stores location of every agent currently running on the platform.

Each record of the table consists of the identifier of the agent, the identifer of

the agent’s locator, and the timestamp when the agent located at the node.

• A table that has the location of every agent which has visited the node, but

is not currently operating on it.

3.1.2 Location Management

After an agent has finished migrating, the current agency sends a location update

message to the previous agency. All messages buffered for the agent will be sent

directly to the current agency. In the case that the agent migrates to a new agency

but this agency could not be its locator, no location update is sent to the home

agency.

For message delivery, each node keeps a location cache, which stores all loca-

tion information of agents which have communicated with agents on the node.
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3.1.3 Communication

When an agent in a platform wants to communicate with an other agent, the

platform will check its cache for the address of the receiver. If there is a record for

the receiver, the message will be sent to the requesting platform regardless of the

actual address. If there is no record found then the sender sends the message to

the home agency of the receiving agent. Because the home agency is frequently

updated about the current address of its agents, the length of forwarding pointer

is partially cut.

3.1.4 Discussion

This technique has been designed to reduce the amount of agent location infor-

mation maintained by each node. It also reduces the length of forwarding pointer

chain. However, the cost for location update is considerably high. It introduces

high location update per agent migration than that of the Forwarding Pointer ap-

proach.

3.2 IMAGO Prolog Agent Development Kit

IMAGO (Intelligent Mobile Agents Gliding On-line) is a mobile agent project de-

veloped by University of Guelph, Canada. It consists of two major parts: MLVMA

(multithreading logic virtual machine) which presents a logic-based framework in

the design of mobile agent server, and the IMAGO Prolog - an agent development

kit based on Prolog which uses messengers as a means of agent communication

facility (Li01),(LA05).

3.2.1 System Model

The model distinguishes between workers and messengers. Workers are normal

mobile agents while messengers are a special type of agents which transfer mes-

sages between workers. When a worker is born either by creating or cloning, its

identifier will be sent to and saved at the Home Server. It is called distributed

registration. In each home server, there is a worker record for agents which have
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been created on this server. Each worker is associated with a messenger queue

which holds messages destined to it.

3.2.2 Location Management

For agent tracking, IMAGO uses a combination of forwarding pointer and home

server. When a worker leaves agency A1 for agency A2, its worker record at A1

will be updated with a pointer to A2. If the worker continues to migrate and then

arrives at A3, A3 will send update message to A1, thus the path is compacted.

Each remote server also stores worker records in its cache. Whenever an agent is

created or cloned at the server, its information will be saved at the local server. In

addition, the location of the sender is also cached.

Figure 3.1: IMAGO location management

3.2.3 Communication

If an agent wants to send message to an other agent, it contacts the local agency

to ask for the address of the destination. The local agency then looks up its cache

to see whether the address is already cached or not. When the receiver has been

created or already visited this agency then its address would be in the cache, in

this case the local agency returns the address to the agent; otherwise it returns

the address of the home server of the receiver. After the agent has the receiver’s

address, its message will be attached to a messenger. The messenger then tries to

catch the receiver by calling move method until its message is accepted.
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3.2.4 Discussion

With the caching strategy, this technique can help to reduce location management

cost in the manner that one agent first contacts its local agency to ask if the agency

has the desired address or not. When there is a cache hit, the sender has the

address with a low cost, when there is a cache miss, the technique works exactly

as the Forwarding Pointer approach does.

3.3 ARP: Mailbox Model for Agent Communication

A communication protocol called ARP (Adaptive and Reliable Protocol) is de-

scribed in (CFLD02). This protocol associates each mobile agent with a mailbox.

Mobile agent can migrate to a new agent platform but its mailbox may remain

stationary. The decoupling allows to seperate the concerns of locating the mail-

box and delivering a message to an agent. The mechanism is said to be able to

guarantee reliable delivery of messages to mobile agents.

Figure 3.2: Adaptive and Reliable Protocol

3.3.1 System Model

Each agent has a mailbox associated with it; a mailbox is a message buffer that

stores all messages destined for its owner agent. The mailbox and its owner are

not necessary to be on the same agency. An agent can migrate while its mailbox

remains stationary; this aims to reduce the cost of location tracking. For frequently

migrating agent, mailbox can migrate but with a lower frequency.
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3.3.2 Location Management

An agent decides itself whether it takes the mailbox with it or not. When an agent

decides to take its mailbox with, it detaches the mailbox from the current agency.

Once the agent and its mailbox have arrived at the new agency, the agent sends

location update to all agencies in the migration path.

3.3.3 Communication

The communication process consists of two phases: the transmission of messages

from the sender to the receiver’s mailbox and the delivery of messages from the

mailbox to its owner. For message-forwarding phase, the sender will forward the

message along the addresses that have been cached. Messages can be fetched by

the destined agents periodically or they can be pushed independently to agents.

3.3.4 Discussion

Although this technique may reduce the cost of agent tracking, it increases the

cost of delivering message when the distance between mailbox and agent is far.

When the chain of pointers grows, the cost of the search process is also increased.

3.4 ODDUGI: Ubiquitous Mobile Agent System

ODDUGI project was developed by a group of Korean universities. It was desig-

nated for multi-region mobile agent computing environment.

The ODDUGI architecture deals with multiple regions of agent platforms. In

each region, there is a Mobile Agent Region Server (MARS) which provides the

naming service for all agents of the region. The MARS maintains a region naming

table for mobile agents which have been created or migrated in its region. A server

called Multi-Region Mobile Agent Registration/Management Server (MRMARMS)

provides the lookup service for mobile agents. The communication protocol in

ODDUGI is RCP (Reliable Communication Protocol) (CBK+10),(CCB+09).
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3.4.1 System Model

Figure 3.3 depicts an ODDUGI mobile agent system (CBK+10),(CKB+06):

Figure 3.3: ODDUGI: Multi-region mobile agent system

• Mobile agent: A software entity that consists of code, data, state, and mobil-

ity metadata. A mobile agent can migrate when it is told to do.

• Node: A node provides execution environment for mobile agents. The Home

Node of an agent is the node where the agent has been created.

• Region: A region consists of a set of nodes that have the same authority.

Each region has one Region Server. The Region Server is responsible for

naming mobile agents created within the region; it also manages location

information and delivers message for all agents residing in the region.

• Lookup Server: The server that handles location information for every agent

in the system. A node contacts the Lookup Server if it wants to send a mes-

sage.
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3.4.2 Location Management

After an agent has been created at a home node, it registers itself with the home

Region Server. The Region Server sends a creation message to the Lookup Server.

There are two types of migration: Intra-region and inter-region migration. With

intra-region migration, the agent only informs its Region Server about its loca-

tion. In inter-region migration, an agent sends location update information to its

previous Region Server, the current Region Server, and the Home Node.

3.4.3 Communication

If an agent wants to send a message to an other agent, it contacts the Lookup

Server to get the address of destination’s Home Node and then the address of the

current Region Server. The message will be sent to the Region Server. Each Region

Server has a blackboard associated with it, whenever the Region Server receives

a message from agent, it saves the message to the blackboard. The message will

be delivered to the targeted agent when the agent updates its location by sending

message to the Region Server. RCP also supports proactive message sending, in

which message will be sent to the destination as soon as it arrives at the Region

Server.

In ODDUGI some performance metrics have been introduced for evaluating

system efficiency:

• Location management overhead: The overhead that incurred when tracking

agents’ location.

• Message delivery overhead: The overhead for sending message from sender

to destination’s Region Server and from Region Server to destination.

• Availability: Probability that a system will be correctly operational and able

to deliver the requested services at any time.

• Storage Usage: This parameter indicates how much storage is needed to

store the location information.
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RPC has lower communication overhead than SPC (Search-by-Path-Chase) and

ARP but higher than that of Home Server, Forwarding Pointer, and Broadcast ap-

proaches. RCP also has lower message delivery overhead than the Forwarding

Pointer, Shadow, and ARP protocols. It has higher availability than Forwarding

Pointer, Shadow, SPC, and ARP protocols.

3.4.4 Discussion

ODDUGI uses Central Server for location management, in which a server manages

location information for all agents of the system. As shown in last sections, this

approach may lead to bottleneck when there are too many connections to the

Central Server. In addition, single point of failure cannot be evaded if the Lookup

Server breaks down.

In inter-region migration at least three location updates must be sent, which is

considered to be an expensive cost in communication. The technique introduces

more overhead, and it is slower and less scalable than the other approach. With

RPC, some metrics have been used to measure the efficiency of the system. Such

metrics could also be useful for evaluating other communication models for mobile

agent systems.

3.5 UbiMAS: Mobile Agent System for Wireless Sen-

sor Networks

In (BSP+05),(Bag05), the authors at the University of Augsburg, Germany, intro-

duce a mobile agent system called UbiMAS (later version called UbiMASS).

Thanks to its lightweight, UbiMAS can work on wireless sensor networks. Ubi-

MAS has embedded in an IT support system for offices. In this system, so-called

smart office building, walls, doors, and office equipments are integrated with mi-

crocontrollers and sensors, and users are also equipped with portable devices as

well as microchips integrated in badges. Each node in UbiMAS has its own pro-

cessor, memory and application specific sensors (BWSU10). Mobile agents in a

node can receive information from the surrounding environment via appropriate
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interfaces, e.g. RFID. The wireless sensor IT system has been used to assist users in

finding ways within the building or to help them perform activities, such as email

checking or file uploading/downloading (BSP+05),(BWUB09).

3.5.1 System Model

UbiMAS is a service that runs on top of a JxTA based peer-to-peer middleware. It

provides basic functions for agent communication and migration. Each agent node

may reside in one ore more peers. A peer can manage one or more agent nodes.

Every agent and node has a unique ID. UbiMAS distinguishes between user-agents

and service-agents. User-agents accompany users on their way. Service-agents

offer services which user-agents can call on behalf of the user. Each user-agent

has a home node, normally it is the office node of the user (BSP+05),(BPTU03).

Figure 3.4 illustrates UbiMAS’s architecture. A UbiMAS node is comprised of

five components: Agent, Message Delivery Engine, Migration Engine, PoBox, and

PoBoxAdder.

Figure 3.4: UbiMAS Architecture (BSP+05)
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• Agent: A software unit with certain autonomy. It executes tasks that have

been ordered by users or other agents. It can autonomously migrate, trans-

fer program code, data and continuation pointer to a remote computer and

resume with the program execution. Agent can also communicate with each

other in order to exchange information.

• Message Delivery Engine (MDE): MDE sends request to the home node of an

agent or to other peers to get location information of the receiving agent. It

performs security functions on raw message data to secure messages, builds

message header, encapsulates messages into right format, and sends mes-

sages to receivers. At receiver side, it performs reverse functions to get the

orignial data.

• Migration Engine (ME): ME serializes agent code into byte stream and sends

to the other nodes. It also receives byte stream and deserializes byte stream

at receiver.

• PoBox: PoBox transfers messages between agents and nodes or between

agents and agents. PoBox keeps a message queue which stores incoming

messages for an agent.

• PoBoxAdder: PoBoxAdder is used to write messages into PoBox’s queue.

3.5.2 Location Management

User-agents frequently inform home node about their current location. Other

nodes can query home node for location information. If an agent wants to mi-

grate to a new node, it sends a request to the node. MDE relays this request to

the ME, which in turn serializes agent code into byte stream and sends to the

destination node. The new node will store agent’s ID and agent home node’s ID.

3.5.3 Communication

Each agent is associated with a PoBox. The PoBox stores incoming messages for

the agent. If the agent wants to send a mesage to another, it writes the message
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into PoBox’s queue using PoBoxAdder. The message is then processed by MDE.

MDE sends a request to the home node of the agent or to other peers to get the

address of the receiving agent. Once the MDE has the address, it secures message

by performing security functions on raw message data, building message header.

Afterwards, the message will be encapsulated into the right format. Eventually,

the MDE sends the message to the receiver.

Once the receiver gets the message, it sends an acknowledgment to the sender.

The receiver’s MDE then checks to see whether the message is targeted at the node

or at its agents. If the message is for an agent which still resides on the current

node, the message will be fed to the PoBox. Otherwise, if the agent has migrated

to another node, MDE will forward the message to this node.

Nodes can organize themselves as a group. Each group has a unique ID and is

known by all members of the group. Inside a group, a node communicates with

the others using a secure communication channel. Only members in the same

group have the right to receive messages sent by other members.

3.5.4 Discussion

UbiMAS seems to be suitable for working in wireless sensor network environ-

ment. The size of a mobile agent is shrinked thus mobile agents can work on

sensor nodes. UbiMAS provides software developers with a way to reprogram

tiny devices with wireless connections. The communication model uses the Home

Server technique for managing location information which is suitable for small

and medium scale systems. It is unlikely to be an appropriate solution for large

scale network.

3.6 JADE: Java Agent DEvelopment Framework

3.6.1 System Model

JADE (Java Agent Development Framework) is a framework for developing multi-

agent systems (BCPR03). It has been designed in compliance with FIPA97 spec-

ification, which consists of three components: Agent Communication Channel
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(ACC), Agent Management System (AMS), and Directory Facilitator (DF). Agent

communication is performed through message passing, and messages are format-

ted following FIPA Agent Communication Language (BPR01).

A JADE system is made of Agent Containers, which reside in separate Java

Virtual Machine and communicate using Java RMI. A special Front-End container

is also an IIOP server, listening at the official platform ACC address for incoming

messages from other platforms. JADE’s architecture is shown in Figure 3.5.

Figure 3.5: JADE Software Architecture (BPR01)

3.6.2 Location Management

Each agent has a globally unique identifier (GUID), this identifier works as the

global address for the agent. Each container has a table called Local Agent De-

scriptor Table (LADT) for storing list of agents which currently reside on it. For the

special container Front-End, besides its own LADT, it also maintains a Global Agent

Descriptor Table (GADT) mapping every agent into the RMI object reference of its

container. GADT works as the Global Location Database for the whole system. In

JADE caching technique is used to avoid invoking Front-End frequently.

3.6.3 Communication

Each agent has a mailbox, a receiver agent will be notified whenever a message

is posted in the message queue. However, software developers have to manually

program if and when the agent fetches the message from its mailbox.
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When a message needs to be sent, the GUIDs of the sender and the receiver

will be inserted into the sender field and receiver field, respectively. JADE supports

three types of communication (BPR01):

• Communication between agents in the same agent container: the ACL mes-

sage is simply cloned using Java events.

• Communication between agents in different containers in the same platform:

Java RMI is used, message is serialized at sender side, a remote method is

called and the message in unserialized at the receiver side.

• Communication between agents in different platforms: IIOP is used, at the

sender side, ACLMessage is converted into a string and marshalled. At the

receiver, a remote CORBA call is executed, the message is unmarshalled and

finally parsed into the original form.

3.6.4 Discussion

JADE complies with FIPA specification. In addition, JADE also supports large

MAS. Both the number of threads per host and the network load among hosts can

be considerably reduced by deploying clusters of related agents on separate agent

containers. JADE uses Front-End for location management. It is vulnerable to a

single point of failure since it relies totally in this component. Furthermore, the

selection of transport protocols in JADE is not optimum as RMI is not suitable for

transferring messages in wireless environments (Hel03). This framework is not

able to deal with dynamic changes of environment and activities of mobile agents.

The authors in (BP01) propose a solution for a communication protocol for

agents on handheld devices. A so-called JICP protocol has been developed to

replace RMI in JADE and designed to support an efficient, peer-to-peer com-

mand/response based communication in both wired and wireless environment.

In this approach, agent messages and other platform management communica-

tions between agent platforms are converted into proper commands and passed

to the local JICP peer. Each JICP consists of both client and server parts, thus

facilitates the open connection and accept connection processes.
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Chapter 4

Communication in MCI Rescue

Scenarios

4.1 Overview

Since April 2009 the Chair of Software Engineering of Friedrich Schiller University

Jena has been taking part in a collaborative research project between academe and

industry. The project, named SpeedUp, aims to provide support for rescue forces in

mass casualty incidents. The project consists of two main areas: SpeedUp Practice

and SpeedUp Technology. SpeedUp Technology is responsible for the IT support

of rescue forces in mass casualty situations. The Chair of Software Engineering

and its partners have been participating actively in designing and implementing a

communication infrastructure for SpeedUp Technology. The IT solution supports

the usual rescue measures by providing a framework for improved information

handling, additional preprocessed sensor data, and a basis for a highly flexible

communication infrastructure (FSU11). Essentially, the final aim of SpeedUp Tech-

nology is to convey necessary information to the right personnel so that in disaster

events, rescue actions can be performed in a more effective way.

The communication network of the SpeedUp-Type is characterized by multiple

working domains, distributed over a wide area. It exhibits the characteristic of

dynamics. Because of its appropriateness, the mobile agent concept has been

selected as one of the main technologies on the communication infrastructure
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level for SpeedUp Technology. This fact is the inspiration for our work. We expect

useful practical inputs from the project and in return, our work is expected to

contribute to the implementation of the communication architecture in SpeedUp.

In Chapter 3, some existing communication models for mobile agents have

been investigated. Although each model has some advantages in certain circum-

stances, in our view they are unlikely to be suitable to work in networks of the

SpeedUp-Type. Most of them do not pay adequate attention to the dynamic prop-

erties of network environment. In this chapter, we will look into the context of

rescue scenarios and identify challenges in rescue operations. We regard identify-

ing the information flow among rescue teams as the sine-qua-non for pursuing the

aim of the framework. Based on the behaviour of rescue workgroups, we figure

out the information needs as well as information exchange flow among them.

4.2 Mass Casualty Incidents

On Wednesday at 16:15 in Weimar (Thuringia, Germany) an accident occurred

when a school bus full of pupils after class lost its way and slipped on the highway.

The bus then crashed into other cars and the central barrier, overturned, and

finally stopped on the highway’s right side. The cause of the accident remained

unknown. It was a wonder that the highway’s central barrier prevented the bus

from hitting into the opposing traffic.

The succeeding vehicles tried to avoid the bus or to brake, but 11 of them did

not manage it. More collisions occurred at all four traffic lanes. A VW bus with

a family of seven people crashed into the school bus. Fortunately, the family only

got lightly injured. The emergency center was alarmed via the number 112 about

an accident with multiple cars and an overturned bus. Rescue forces estimated the

accident with over 50 casualties; some of them were seriously injured. Because

of the mass of casualties, the emergency rescue center in Weimar had to ask for

reinforcements from other centers in neighbouring cities like Jena, Erfurt, and

Apolda.

For such an incident scenario, forces like fire brigade, rescue service, and med-

ical service are summoned and have to cooperate closely. The mission of the
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teams, with the help of technical devices under instructions from rescue service, is

to rescue casualties from collapsed cars and bring them to the nearest treatment

station. Communication among involving parties takes place through different

types of networks (SKEE10).

Figure 4.1 illustrates an example of a rescue scenario.

Figure 4.1: An abstract view of rescue scenarios

In typical casualty incident scenarios, rescue forces handle rescue missions

based on exercise and experience. Police appeal for witnesses and evidence to

the incident; fire brigades extinguish the fire; and medics give urgent medical

treatment to injured civilians. Police and medical staff work together to evacu-

ate casualties from the incident. Rescue forces decide quickly and correctly those

casualties who are seriously injured will get medical treatment first. The quicker

the seriously casualties get medical treatment, the bigger the probability that they

survive.

In general, rescue tasks are (BJL06):

• Deployment of personnel and relief.

• Allocation of resources: ambulances, equipments, medical supplies.
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• On-site classification and transferring of casualties to treatment stations.

• Medical treatment of casualties.

• Communication and coordination among rescue staff to improve rescue effi-

ciency and to eliminate potential conflicts in goals.

In large scale casualty scenarios, a so-called mass casualty incident (MCI, here-

after), handling tasks based on experience without any additional technical sup-

ports seems to be an impractical mission. Due to the dynamic context and the

growing chaos in the working environment, rescue staff might be overwhelmed

by a torrent of events. As new tasks appear, different groups join and leave the

area, work conditions change dramatically, rescue staff are unlikely to process in-

coming information in an effective way. In addition, as each team performs tasks

with its own criteria and under control of its own authority, conflicts in their goals

might arise at anytime.

Rescue tasks in MCI are problematic as many difficulties exist:

• Rescue scenarios spread over a wide area.

• Rescue tasks are executed by a large number of involved parties.

• Unknown number of casualties.

• Unknown location of casualties.

• Limited capacity of rescue forces.

• A huge number of critical requirements needs to be satisfied.

4.3 Information Needs in MCI Rescue Scenarios

As rescue tasks are challenging in an MCI, an inaccurate decision may pose many

new risks. In constrast, with a reasonable strategy, supplies can be delivered to

the right place at the right time, the number of casualties who have adequate

medical treatment can be maximized, devastation is mitigated. From the existing
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challenges, one question arises: Which technical infrastructure can be deployed to

support rescue forces?

A technological system is expected to help rescue forces to cooperate, to share

information, to identify the number and the severity of casualties, and to allocate

resources efficiently. The system facilitates the process of collecting and processing

information related to the incident. Information collected and processed is used

to build a global view of the working scene (ea08). Rescue efficiency can be

improved with cooperation of different rescue teams in nearby locations. As a

result, emergency staff are able to handle casualty rescue scenarios in a more

effective way by having questions answered, such as: ”What measures should be

enforced where?” ”Which kind of ambulances need to be deployed to zone Y?” ”How

big are the reinforcements needed for the site Z?”.

In our type of MCI rescue scenarios, each rescue force has its own organiza-

tional structure and own way of processing information. Therefore, the informa-

tion flow varies from team to team. In the command centre, desktop comput-

ers with stable network connection are used to collect rescue data from rescue

teams and to distribute commands back to them. In the field, rescue personnel

are equipped with portable devices such as laptops, PDAs to collect and exchange

on-site data. Since tasks are partitioned between nodes, all nodes are equally priv-

illedged, they form a peer-to-peer network. Communication takes place among

members of the same rescue team or among multiple teams through heteroge-

neous networks like WLAN, UMTS/GPRS, SAT (SKEE10).

To face the difficulties in MCI rescue tasks, the key issue is to provide the right

personnel with the right information. This means to identify information needs

and flow of information exchange. In the first place, it is of crucial importance to

know which information is transferred to whom (CLM+08).

The crisis management group (CMG) works as the control unit for police units;

it is responsible for getting information from on-site working police. Policemen

collect information regarding the incident, like the cause of incident, people in-

volved and send back to the CMG. The subordinate groups of the CMG receive

and distribute information among them. The CMG has information from other

sources, so it can provide information back to the police who are working on-site.

The information flows in both directions (GKRM+11).
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For the fire brigades, the local operation manager plays the central role of

the group. He has a tremendous amount of information regarding the incident

to deal with. He receives, analyses information and demands to know the avail-

ability of the subgroups. The information exchanged within the fire brigades is

considered to be heterogeneous, context specific, redundant or even contradictory

(GKRM+11).

The organizational structure of the medics has another form, with the presence

of two leaders. The leading medical doctor is responsible for triaging - which

means deciding who will get medical treament first based on the severity of the

casulaties - and transferring casualties. The organizational medical leader is in

charge of allocating resources. On-site doctors and other medical staff work as

information sources for the two leaders. The leaders also ask other force leaders

for additional information (GKRM+11).

In the SpeedUp approach, a service oriented architecture (SOA) has been

chosen. All available personnel, resources, functionalities are modelled as ser-

vices and information needs, resource queries are defined as service requests

(GKRM+11). The aim of the MCI technological framework, which is to provide

the right personnel with the right information, turns out to be matching requests

with the available resources. Consequently, the communication infrastructure for

MCI rescue scenarios is expected to fulfil the following requirements: Profile-based

personalization, discovery of relevant resources, and automatic matching of indi-

vidual profiles.

4.4 Network Dynamics

The network in SpeedUp’s MCI rescue scenario, by its very nature, exhibits high

dynamics. In order to find a suitable communication architeture for the MCI res-

cue scenario, it is necessary to identify environmental stimuli present in the con-

text of the SpeedUp network. In our view, these factors play a dominant role in

determining a feasible solution to deal with network dynamics.

In an MCI rescue scenario, different emergency staff performing rescue oper-

ations in a geographical area form a working region. There are multiple regions
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Infrastructure

scattered over a wide area and they are either isolated or connected to the global

network. In a region, the movement and relocation of emergency staff make the

availability of devices unstable. Network nodes join and quit rescue operations in

an unforeseeable manner. Under particular circumstances, when communication

of a region is obscured by the surrounding terrain, local rescue personnel can only

communicate within the region. Upheaval in network topology is an imminent

occurrence. The topology change is the most important stimulus that affects com-

munication behaviour among nodes. It will be followed by other stimuli, such as

changes in connection quality, in routing strategy, and in communication pattern.

In summary, environmental stimuli in the SpeedUp context are identified as

follows:

• The change in network topology.

• The appearance and disappearance of network nodes.

• The connectivity between network nodes.

The characteristics will be the base for our approach in the next chapters.

4.5 A Coherent Application Architecture for MCI Com-

munication Infrastructure

The network dynamics described in Section 4.4 have a significant impact on effi-

ciency and reliablity of the communication system for MCI rescue scenario. The

proposed system is able to adapt to network dynamics only, if there exists a decent

application architecture. In this section, we are going to perform some analysis in

order to find an application architecture that is suitable for MCI rescue scenario of

the SpeedUp-Type.

We consider the client-server communication model as shown in Figure 4.2.

In this type of computing architecture, a server possesses a powerful computing

capability and it takes the central role of a system. Clients send requests to the

server, the server receives requests as well as data from clients, processes and

returns results to them. If the model could be applied in the SpeedUp context, then

45



4. COMMUNICATION IN MCI RESCUE SCENARIOS

all working network devices of the rescue staff would be clients, they send request

to a remote central server. The central server will accept processing demands from

on-site working forces and send the results back to them once it has finished.

Figure 4.2: The client-server model

Despite some advantages, such that the model does not require maintenance

at the client side and it is suitable for some specific applications, e.g., banking,

e-mail services; the client-server architecture is not suitable to work in pervasive

applications like the one in the SpeedUp context. The model does not bring bene-

fit since the server and the nodes are widely distributed. A single point of failure

occurs when the connection between the server and the remaining nodes is cut off,

which is a regular occurrence in networks of the SpeedUp-Type. The communica-

tion cost would be expensive and it adds up to the overall complexity. In addition,

it is the nature of the region architecture, network nodes do not always need to

communicate to the central server; in some cases, it pays off if relating nodes

group and perform tasks to achieve common objectives. Another disadvantage of

the client-server model is that it produces growing network traffic when the num-

ber of clients increases (Hur95). A centralized IT structure like the client-server,

therefore, is unlikely to be a good solution for the communication infrastructure

in MCI support systems. As a consequence, a decentralized system is necessary.

46



4.5 A Coherent Application Architecture for MCI Communication

Infrastructure

In recent years, the peer-to-peer computing architecture, depicted in Figure 4.3,

has appeared to be a prominent technology. The technology has been used widely

in applications of sharing resources on a large scale. Resources in peer-to-peer

(P2P) networks encompass a wide range of applications, such as: processing ser-

vice, disk storage and file sharing. In this type of network, a network node plays

the role of a client as well as of a server. Nodes are resource feeder and resource

consumer at the same time. A pair of nodes can share and exchange informa-

tion via a communication channel. The constituent nodes of a P2P network work

without a central administration.

Compared to the client-server model, the P2P model has some more advan-

tages; it guarantees fault tolerance and reduces cost of maintenance. A P2P net-

work infrastructure provides scalablity, autonomy and flexibility (FSS05). As net-

work tasks are distributed over all nodes, each node contributes an equal role

to the processing of the whole system. No individual is to have superiority and,

therefore, a single point of failure can be avoided (GWZ02). The features make

P2P robust in distributed environment with highly dynamics.

Figure 4.3: The peer-to-peer model

The P2P computing model meets the SpeedUp context’s requirements, it ap-

pears to be a sensible solution to deal with the network dynamics and to pro-

vide a flexible communication infrastructure for the MCI network of the SpeedUp-
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Type. With the employment of P2P architecture, each node works as information

provider and information requester; the role of a node is dependent upon the

type of tasks it is performing. The P2P architecture provides the system with a

convenient way to manage information flow; it facilitates communication and co-

ordination among rescue forces in nearby workplaces without needing a central

admission.

4.6 SpeedUp Scenario Solution: Flexible Regions of

Communication and Employment of Mobile Agent

Technology

The SpeedUp solution is a communication and data platform for coordination

and integration of all rescue teams in catastrophic situations. The aim is to pro-

vide rescue forces through the deployment of a technological framework. The

entire solution is based on a hardware and software system which works as a

self-organizing communication architecture. With self-organization, the system is

able to operate autonomously in a changing environment, handling information

and processing sensor data. It provides methods for describing incidents, suitable

interaction models and supports information exchange between multiple rescue

forces. SpeedUp solution is expected to help rescue forces to have a swift view of

the incident and to localize and determine the severity of casualties.

With the adoption of P2P model, it is important to deploy an adequate software

architecture for the network infrastructure. Because of its noteworthy character-

istics, such as autonomous, reactive, opportunistic, and goal-oriented, the mobile

agent technology is considered the right approach for the MCI communication in-

frastructure (BJL06). Mobile agents can percept their surrounding environment

and find an appropriate route on the network (Erf04). They can migrate to dif-

ferent devices, collect data, access a database to keep them updated with their

private store of the environment data. Mobile agents provide users necessary data

and send results back in the form of reply messages. They can also undertake

their tasks while being disconnected from the network, and exchange or submit
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Employment of Mobile Agent Technology

Figure 4.4: SpeedUp communication infrastructure

processed results to pre-defined destinations as soon as the user gets back to the

coverage zone.

In most cases, mobile agents can be used to coordinate activities between mul-

tiple teams and to transfer required data from one system to others (BJL06). As

migration is not always cheaper than communication, mobile agents can use com-

munication technology to exchange or transfer data between involving parties.

Data collected by mobile agents can be delivered to various parties with different

roles based on their profiles (SKEE10).

Some applications of mobile agent communication in MCI rescue scenarios are

illustrated in Figure 4.5 and explained as follows:

• Case 1: mobile agents work as a bridge between unconnected agent plat-

forms.

• Case 2: mobile agents are used to coordinate rescue operations among per-

sonnel of the same force but located in different working domains.

• Case 3: mobile agents are used to impose collaboration on members of vari-

ous teams working in the same domain: police, fire brigades, and medics.
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Figure 4.5: Applications of mobile agents in MCI rescue scenarios

• Case 4: mobile agents in a platform exchange data they have collected.

4.7 MCI-Scenario Summary

In this chapter, we have introduced the SpeedUp rescue scenario as well as the

need for a technical support framework for rescue personnel. We address the is-

sue first by describing information needs in SpeedUp rescue scenarios. In large

scale rescue operations of the SpeedUp-Type, each rescue force has its own infor-

mation needs and flow of information exchange. The identification of information

needs is a contributing factor to find a suitable communication architecture. En-

vironmental stimuli, e.g. the change in network topology and connection quality

among network nodes, have been identified as the main factors that constitute

network dynamics.

Network nodes in MCI rescue scenarios are scattered over a wide area, each of

them plays the role of either information requester or information provider at the

same time. The peer-to-peer application architecture fits well into such applica-

tions since each node of a P2P network has an equal role in processing information.

The architecture provides applications with scalability, autonomy, and flexibility.

Along with the adoption of the P2P architecture, the mobile agent technology has
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been chosen as the middleware working on the surface of the architecture. Mobile

agents are used as medium to convey information among rescue forces. By the

SpeedUp context, we found out that mobile agent communication contributes to

the performance of the whole system.

In networks with presence of dynamics, a change in network topology may

adversely affect communication performance. There is a question left: How to

organize the logical connection among agent platforms in a feasible way in order

to deal with environmental stimuli? Given that communication between mobile

agents is important, it is expected that agent platforms are able to self-organize in

order to be adaptive to perturbations. As a consequence, fault tolerance and relia-

bility in transferring of agent messages can be attained. The issues are considered

as our research problems.

It is our firm belief that a communication framework that is autonomous, con-

siderating the dynamics of working regions would be the most constructive ap-

proach. We are going to introduce our main thesis in the second part of the disser-

tation, a solution for the communication infrastructure in the SpeedUp’s context.
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Part II

Suggested Solution: Concept, Design

and Implementation
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Chapter 5

Thesis

Based on the preliminary introduction and the application scenario introduced in

Part I, we are going to tackle challenges regarding the communication between

mobile agents working in highly dynamic networks. Our suggested solution is

going to bear on the following issues:

• The distributed nature of mobile agents.

• The parameters related to fault tolerance and reliability of communication

between mobile agents.

• The scalability of the system with regards to the availability of heterogeneous

end devices.

• The dynamics of the network.

In the SpeedUp architecture, regions of working devices are the prime elements

which make up the global system. In our view, these facets should be handled in

an effective way. Environmental stimuli affect the overall performance, therefore

they need to be monitored so that the system can self-adjust accordingly. Since mo-

bile agent communication is communication between individual agents, issues re-

lated to direct agent communication must be managed adequately from the start.

Communication for mobile agents should reuse existing results from agent com-

munication research. The main objective is, therefore, a model for agent commu-

nication that focuses on the cooperation aspect of agent interaction and supports

fault tolerance and reliability as the key qualities.
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5. THESIS

5.1 Contributions

• Introduction of a self-organizing mechanism for the management of working

regions in highly dynamic networks based on a honey bee algorithm.

• Development of a communication model that is able to adapt in a mostly

autonomous fashion to topological changes of the underlying network.

• The proposed model is, in general, suitable for mobile agents working in

highly dynamic networks of the SpeedUp-Type.

5.2 Outcomes

• Implementation of a software prototype for the proposed communication

model that is adaptive to environmental stimuli.

• Improvement of overall qualities of mobile agent collaboration concerning

fault tolerance and reliability.

5.3 Targeted Qualities

The aims and objectives of the dissertation are to gain overall better qualities

regarding fault tolerance and reliability in mobile agent communication.

• Fault Tolerance: The system is able to operate even when some of its agent

platforms disconnect. It avoids a single point of failure and prevents defects

from spreading out. In the worst case, when the disconnection escalates, the

system is able to degrade gracefully.

• Reliability: The proposed mechanisms assist system in delivery agent mes-

sages reliably in accordance with the changing environment.

The targeted qualities will be used as the evaluation criteria in Part III.

56



Chapter 6

An Adaptive Communication Model

for Mobile Agents in Highly Dynamic

Networks

In a highly dynamic network environment, communication between mobile agents

is expected to adapt accordingly to environmental stimuli that happen at execution

time. So far, several studies have been conducted to design an appropriate, highly

flexible model for mobile agent communication. However, comparatively little of

them has addressed the issue of the inherent dynamics of modern networks. To

the best of our knowledge none of the suggested solutions has been able to achieve

the necessary performance and quality attributes to count as a practical solution.

Thus, in our view adaptive mobile agent communication remains a challenging

issue.

In this key chapter, we present our approach for an adaptive communication

model of mobile agents in highly dynamic networks. From our perspective, envi-

ronmental stimuli and mobile agents’ tasks shall have considerable influence on

the performance of agent communication. As a result, they need to come under

intense scrutiny in agent communication. To achieve industrial strength, we pro-

pose a model for agent communication that focuses on the cooperation aspect of

agent interaction and supports reliability and fault tolerance as the key qualities,

while keeping up an acceptable overall performance at the same time.
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HIGHLY DYNAMIC NETWORKS

Based on our analyses, we concentrate on dealing with the following issues:

The network dynamics and the requirements for a reliable communication be-

tween mobile agents. We attach significance to the self-organizing ability of a

communication model for mobile agents. To manage the dynamics of the net-

work, we employ self-organizing mechanisms, with which the appearance and

disappearance of agent platforms as well as their connectivity will be monitored

adequately. As being inspired by the exotic behaviour of honey bees, we propose

an approach for the management of working regions based on honey bees activ-

ities. The inspired model is expected to be able to be aware of the changes in

network topology as well as the connectivity between network nodes. For reliabil-

ity, we propose a resilient mechanism for tracking of a mobile agent’s location and

deliverying messages to targeted agent platform (NSR11b).

6.1 Proposed Basic Architecture

The main components of the MAS, as we use in a SpeedUp-Type of scenario, are

described as follows (see Chapter 4 and Figure 6.1):

• Agent: A software program that contains code, data, state; it acts on behalf

of its owner to fulfil a designated task. An agent has a unique ID to distin-

guish it from all other mobile agents. An agent can migrate to another agent

platform and communicate with other agents locally or remotely.

• Agent Platform: The software platform that provides the executing environ-

ment for agents. An agent platform has a unique ID.

• Lightweight Agent Platform: A special kind of agent platform which is desig-

nated to energy limited devices such as PDAs and smart phones. Only basic

functionalities are available on this platform. A lightweight agent platform

differentiates itself from other platforms also with a unique ID.

• Region: A region is made up of multiple agent platforms, which have the

same authority. Agent platforms in a region are preferably in the same geo-

graphical location.
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Figure 6.1: Network Representation

• RegionMaster: An agent platform in a region which has enough computing

power to be the node that performs self-organizing tasks, manages location

information, accepts and replies location inquiries.

• Global System: The highest logical view of the system; it consists of all re-

gions of the system.

6.2 Self-Organization for Highly Dynamic Networks

6.2.1 Self-Organization

In MCI rescue scenarios, rescue forces may be distributed widely. Each geograph-

ical location forms most likely a technological region in which different forces

work together to do rescue tasks. The key point is how to manage the dynamics
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of mobile agent platforms in these regions efficiently, as they join and quit spon-

taneously, or they swarm onto a new location. In this section, we concentrate on

analysing and finding an appropriate technique.

The technique is expected to help the system to fulfil the following require-

ments:

• The control of the whole system does not rely on any central component, it

is distributed to all constituent members.

• The system is able to adapt automatically to the surrounding environment.

• The system is resilient to errors, it can get to a stable status after changes or

damages through autonomous interaction of its members.

By bearing on these points, our analysis converges on the concept of self-

organization (HG03). Self-organization is the way a system adjusts its behaviour

to adapt to the surrounding environment. Through interaction among the con-

stituent members on a local scale, the system reaches a globally sensible pattern.

The control of a self-organizing system does not rely on any specific member, it is

distributed to all of them (Hey99).

6.2.2 Swarm Intelligence

In recent years, the concept of swarm intelligence has become popular in computer

science. Swarm intelligence can be considered as a branch of biomimicry which

covers a wide range of applications, including architecture, mechanical engineer-

ing, nano technology, and computer science. The main idea of swarm intelligence

in computer systems is to emulate activities in nature so that they can have alike

features. As a consequence, they can react to environmental changes and therefore

be resilient to perturbations.

Self-organization is a common phenomenon in nature. Throughout thousands

of years of evolution, biological systems have adjusted themselves to adapt to a

changing environment. Plants’ leaves always lean to the direction where they

can get sunlight, roots grow towards water sources and nutrients. In the animal

world, flocks of bird and fireflies, schools of fishes, swarms of honey bees are

60



6.3 Self-Organization in the Honey Bee Colony

typical examples of self-organization (Hey99). The common property for these

examples is that there is no central control or external intervention to the control

of the community, the final decision is made based on the communication among

individuals. The whole system fits itself ”bottom-up” to the environmental stimuli.

Robustness, flexibility and adaptability are the outstanding characteristics of

natural systems (Yeo10). As a system can gain stability through interaction among

its members, it is able to recover when error occurs. The system becomes more ro-

bust since the control of the whole system does not rely on any individual compo-

nent. Self-organization has been proven to help a system to solve ”The complexity

problem” (HG03).

A system that applies self-organizing mechanisms can exploit the following

advantages:

• The system is able to adapt easily to environmental catalysts.

• New members can be integrated seamlessly into the system.

• The disappearance of members does not cause the whole system to stop

working.

• The system can scale flexibly to the number of members.

• The system has the ability to recover itself from errors or perturbations.

In the following sections, we introduce the inspiration from the honey bee

community to a self-organizing mechanism for the management of highly dynamic

working regions of the SpeedUp-Type.

6.3 Self-Organization in the Honey Bee Colony

6.3.1 Overview

Honey bees can be considered as one of the most sophisticated colonies in the

insect world. The bee colony is a typical example of self-organization in nature. A

bee population consists of a queen bee who is reproductive, some male drones, and

thousands of female workers. These are the worker bees who undertake the most
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important tasks of the whole colony. They build the hive, keep it clean, regulate

the temperature, search for food sources, and find a new resident location when

the bee colony needs to split up (Kim10).

Teamwork is the distinctive character of the colony, honey bees are a well-

organized team and they work in strict disciplines. Surprisingly, the queen bee has

only an indirect role in organizing the colony, she gives birth to bees. When and

how many bees the queen bee must create is actually controlled by the workers.

The control of the whole colony is not dependent on any individual, it is done

through the interaction among thousands of worker bees. The self-organizing

model of honey bees has inspired much work in computer science and shown

to improve considerably computational performance in particular circumstances

(NT04),(KA09),(PAK07).

Regarding the network model in MCI rescue scenarios, we found that the honey

bee community and the community of agent platforms have a substantial coinci-

dence of behaviour. If we call honey bees and agent platforms simply members,

then the following clauses hold for both communities:

• Members work in a distributed environment.

• Members cooperate to perform common tasks.

• Members work to maximize the global work performance.

• Congestion occurs when the population grows.

In addition, a honey bee colony has already mechanisms to deal efficiently with

their daily routine:

• Control of the colony takes place without any external intervention.

• The colony can respond dynamically to the surrounding environment.

• The colony is still able to work, if some of the workers are missing.

• The colony can adjust its population to avoid conflict and maintain repro-

duction.
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That the two phenomena have a lot in common and honey bees possess a good

mechanism to deal with their daily routines encourages us to apply honey bee

behaviour to manage the dynamics of a networked environment that reflects a

SpeedUp-Type of system. We decided to employ swarm intelligence in the context

of distributed systems. In the next sections, we are going to provide the reader

with an overview of the honey bee colony, and then introduce our approach.

6.3.2 Bee Communication

Foraging is the most essential activity of the bee colony, without nectar and pollen

bees cannot produce honey. Searching for food is a vital skill of honey bees since

food sources are normally distributed far away from their hive. Foraging takes

place in the summer when flora is blooming, worker bees collect and accumulate

food for the whole year. Forager bees spread out to search for food sources. Each

individual bee may find different food sources, but as time goes by, the colony

tends to head for rich food source in which they can get more nectar and pollen.

It is exciting to know that a honey bee has a mechanism to notify other bees. A

worker bee can communicate with her colleagues to inform about the food sources

she has found. A scout bee, after finding a new food source, returns to the hive

and performs a waggle dance to notify other honey bees about the food source

(CTE07). It has been shown that, with the waggle dance, a forager provides the

following information to her colleagues (Kim10),(Hay07):

• Direction to the food source compared to the sun.

• Distance to the food source.

• The amount of food: the more exciting and the longer she dances, the richer

the food source is (SB01),(SV04).

With this information, other honey bees are able to know where and how far

they must fly in order to get to the food source. Rich food sources attract more

honey bees to come and get pollen than other sources that contain lower amounts

of food. Thanks to this information sharing, the honey bee colony can maximize

the amount and quality of food. The discovery of bee communication brought
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the biologist Karl von Frisch the Nobel Prize for Physiology or Medicine in 1973

(Gad96).

6.3.3 Swarming

Swarming in bee colony occurs when the bee population increases and causes

congestion and difficulties in maintaining good hygiene in the beehive. Swarming

is also one of the honey bees’ instincts, they maintain reproduction by splitting.

Before swarming, worker bees build a cup in which the old queen lays eggs, in

order to raise a new queen bee. When the new queen bee arrives, the old queen

bee takes a number of workers with her and they fly to a new temporary location,

e.g. a tree branch, that is near to their hive. The swarm remains on the temporary

residence for a short time while waiting for a new residence. Scout bees, which

are the most experienced foragers in the swarm, are then deployed to find new

suitable locations. When the exploration is finished, every scout bee returns to the

bee cluster to inform the whole colony about the place she has found. This is done

by the same waggle dance the scout bee does when she informs the community

about food sources.

The scouts fly back and forth until the number of honey bees that gather at a

site constitutes a quorum, then the scout bees return to the swarm and the swarm

decides to leave for the new location (SV03). The relocation may prolong, if the

colony finds the new location does not satisfy expected requirements regarding

available space, light intensity and hygiene conditions. The swarm will continue

to depart for the next location. Eventually, it is summoned to the new residence.

6.3.4 Consensus

Although many sites may have been nominated during swarming, eventually all

scouts make a unanimous decision, they reach a final agreement for a site, nor-

mally the best one (See03). The honey bee colony has a mechanism to build

consensus among all scout bees. The exact mechanism of searching for consensus

in honey bee colony remains a mystery. However, there have been many coherent

explanations for the mechanism, one of them is the work from Thomas D. Seeley
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and his colleagues (See03),(SKV04). This section provides a summary of these

explanations.

Scout bees dance for good sites vigorously than for sites with inferior quality.

In addition the dance for these sites also lasts longer (SV03). It has been shown

that the strength of a dance is decreased linearly over the time, each time a scout

flies to a site and then back to the swarm, it dances less stronger (SV04). When the

dance expires, which means the strength is equal or lower than 0, the scout bee

stops dancing for the site and chooses ramdomly a new site to follow and dance

for. The rate of recruitment for a site is proportionate to the number of waggle

dances by bees. Since dances for good sites prolong, a good site will attract more

bees. As a result, a good site gains a quorum much easier than sites with inferior

quality (SB01),(PSV07).

6.4 A Honey Bee inspired Algorithm for the Manage-

ment of Highly Dynamic Working Regions

6.4.1 Preliminary Considerations

For small rescue scenarios with a handful of devices and consistent availability, net-

work connection is stable. In this case, self-organization would not be necessary,

nodes can communicate seamlessly, no collision or congestion occurs. However,

as we have shown in the preceding sections, this is not the case in the SpeedUp

scenario where environmental instability is a given.

For the SpeedUp-Type of system, in each region, the RegionMaster is responsi-

ble for handling location information of all mobile agents working in the region.

When the number of nodes increases, a bottleneck may occur at the RegionMaster,

if too many requests are sent simultaneously. The load of a RegionMaster changes

dramatically. It becomes apparent that mechanisms which monitor the changes of

a region and help the whole system to adapt to these changes are essential.

The phenomenon resembles the necessity for swarming in the honey bee com-

munity. The node population exceeds the region’s capacity and needs to be ad-

justed, it requires some kind of ”swarming.” Like in the bee colony, when the
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number of nodes in a region exceeds a predefined value, or when the platforms

solving a common task move to a new location, the region will split into two re-

gions. One of the nodes in the region will be promoted to be a new RegionMaster.

The new RegionMaster manages to form a new region from the nodes it inherits.

The two regions are then independent from each other, but logically connected.

In the first place, we need to take the following issues into account:

• When does the node colony need to split into two regions?

• Which node will be selected as the new RegionMaster?

• Which nodes belong to the new region, which nodes belong to the old re-

gion?

We are going to tackle the questions in the next sections. In the proposed algo-

rithm, two mappings from the honey bee colony to the SpeedUp’s network model

will be employed. In the first mapping, the RegionMaster is considered as the

beehive and mobile agents are scout bees. All other platforms of the region are

viewed as potential beehives. In the second mapping, we consider all agent plat-

forms as honey bees, and the RegionMaster as the queen bee. Each mapping has

its own function. The first mapping is used to measure the connectivity between

platforms; the second mapping is used to impose self-organization on the node

community.

6.4.2 Mapping 1: Getting the Blueprint of a Region

The first mapping is used for measuring the connectivity between an agent plat-

form and all the remaining platforms of a region. Once a calculating process has

been performed for all nodes of a region, then the connectivity map of the region

can be constructed.

In this view, the RegionMaster plays the role of the beehive. At regular inter-

vals, the RegionMaster deploys scout agents to all platforms of the region and gets

information about them (Figure 6.2). The information related to connectivity to

platform’s neighbours, and platform’s performance will be collected by the scout

agents.
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Figure 6.2: Honey Bee inspired algorithm; View of all scouts

When a scout agent arrives at a platform, it sends ping messages to all nodes

of the region, including the RegionMaster to measure the transfer time between

the current platform and every other platform (Figure 6.3). After collecting the

node’s information, the agent migrates to the next platform. At the new platform,

the scout agent performs the same routine. The process repeats until all nodes of

the itinerary have been visited.

A platform holds a boolean value split to indicate whether it expects its region

to split or not. At each platform once a scout agent has obtained transfer time to

all neighbours by sending ping messages, it calculates the average transfer time

τavg. Since every node in a region has the same number of neighbours, this value

is the measure of the closeness between a node and other remaining nodes in the

region, it will be specified later on in this chapter.

When the value is calculated, a platform compares the τavg with the transfer

time to the RegionMaster τRM . If τRM >> τavg then the node expects the region
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Figure 6.3: Scout agent measures connectivity; View of a single scout

will be splitted; it sets the value split to true. At a platform, a scout agent collects

the two values τavg and split.

A platform has the potential to become a RegionMaster, if it satisfies at least

two out of the following requirements:

• It has a good computing performance.

• It is a fixed network computer.

• It has a low average transfer time τavg.

On its itinerary a scout agent nominates the first node to be a RegionMaster.

At the next node, the scout compares the information it has about the last node,

if the node is more powerful than the last node, it replaces the current candidate

to become a candidate for a RegionMaster. The process continues until all nodes

have been visited and the scout returns to the RegionMaster. Finally, each scout

agent can nominate one node as a candidate for a new RegionMaster, like a worker

bee promotes a potential beehive.
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When all scout agents finish their tasks and return to the RegionMaster, they

unload information they have collected. The RegionMaster has node’s information

and a list of candidates for the new RegionMaster. From the list, it votes a reserve

RegionMaster.

At this stage we should anticipate the effects of connection lost, that means

while the process is still going on, one or more nodes lose their connection and

as a consequence the process cannot execute smoothly as described above. In the

worst case, if the RegionMaster fails during execution then a substitution for it

needs to be made. Given the circumstances, fault tolerance mechanisms are about

to be invoked. These mechanisms will be discussed in detail in the next sections

of this chapter.

6.4.3 Mapping 2: Re-Organizing a Region

In Section 6.3.1, we already showed that there are considerable analogies between

the honey bee colony and the agent platform colony. In the second mapping, the

RegionMaster plays the role of the queen bee, and all other platforms of the region

are worker bees. We use this mapping to impose self-orgarnizing mechanism on

the node community.

The decision of splitting the region is made based on the thought of the major-

ity of platforms in the region. In mapping 1, at every platform, the scout agents

collect the boolean value split. The RegionMaster counts the number of platforms

that want the region to be segregated. When the number constitutes a quorum,

then the region is about to be splitted. The RegionMaster promotes a new Re-

gionMaster from the two candidates it has already nominated, like the queen bee

chooses her successor. Afterwards, the RegionMaster broadcasts the name of the

new RegionMaster to all platforms. Each platform decides itself, which region

it belongs to by sending a joining message to the new RegionMaster. The two

RegionMasters organize their own region (Figure 6.4).
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Figure 6.4: Splitting of a Region

6.4.4 The Honey Bee inspired Algorithm

The algorithm is summarized in four steps as follows:

Step 1: In the beginning, we assume that there is already a region of the SpeedUp-

Type, in which devices belonging to different forces work in an area to perform

rescue tasks. An agent platform is already specified as the RegionMaster of the

region.

Step 2: At regular intervals, scout agents are deployed to visit all nodes of the

region. The number of scout agents is dependent on the scale of the local region.

At a platform, the values τavg and split are calculated as follows:

τavg =
1

n

n
∑

i=1

t(i) (6.1)

and
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split =

{

0 if τRM ≤ τavg

1, otherwise
(6.2)

In which n is the number of nodes in the region, t(i) is the transfer time between

the current platform and the ith neighbour platform.

The values τavg and split will be collected by the scout agent.

Step 3: En route each agent nominates two candidate nodes as possible new Re-

gionMaster, based on their performance and their connection quality. After visiting

all dedicated nodes, the scout agents go back to the RegionMaster and submit the

information they have collected.

Step 4: Based on the boolean values split of all nodes, if a quorum is reached, the

RegionMaster splits its population into two separate colonies. The RegionMaster

promotes a new RegionMaster from the candidates. The new RegionMaster man-

ages to form a new region from the nodes it inherits. The two regions are then

independent from each other but logically connected via the two RegionMasters.

Once the logical network has been re-organized, the RegionMaster notifies other

RegionMasters in the global network about the restructuring.

If failure occurs while any of the steps is executing then fault tolerance mech-

anisms must be activated. The mechanisms will be described later in the next

sections.

The honey bee inspired algorithm is used to employ self-organization to the

community of agent platforms. As mentioned in Chapter 1, we have been aiming

for fault tolerance and reliability in mobile agent communication. However, these

issues have not been yet addressed. With respect to the honey bee inspired algo-

rithm, in the next sections, we present our approach for these targeted qualities.

For dealing with fault tolerance, we introduce redundancy and self-recovery. In

order to guarantee reliability, we propose location management mechanism and

message exchanging technique between mobile agents.
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6.5 Fault Tolerance: Self-Recovery by Employing Re-

dundancy

The honey bee algorithm described in Section 6.4 seems to rely much on the Re-

gionMaster, which may generate a single point of failure. According to the first

mapping, in a region, the RegionMaster acts as the beehive, where the scout agents

unload information they have collected. By the second mapping, the RegionMas-

ter plays the role of the queen bee, it nominates a new RegionMaster and informs

other platforms in the region about the change. At this point an issue arises: What

would happen if the RegionMaster breaks down or disconnects suddenly? The

node community has no information about the network and, therefore, cannot

re-organize wherever necessary. The occurrence is obviously to be in conflict with

one of the goals we have been pursuing, fault tolerance. In addition, in the given

case the proposed self-organizing mechanism does not work.

In both views, the RegionMaster plays a decisive role in the whole region, the

issue that we have been attempting to evade. As a result, we need a constructive

approach to fulfil the fault tolerance requirement and to assure self-organization.

We propose the solution of using redundancy. A reserve for the RegionMaster

is voted based on information fetched by the scout agents. On the way of the

exploration, each scout agent compares information it has collected from the vis-

ited platforms, and the connection quality as well as the density of each platform,

it nominates two substitutions. When arriving at the RegionMaster, scout agents

submit the list of candidates. Apart from the RegionMaster, every region has a

reserve RegionMaster. The reserve RegionMaster maintains a close contact with

the RegionMaster, it keeps a list of all nodes that are present in the region. The re-

serve RegionMaster communicates periodically with the acting RegionMaster and

updates the status of this node.

We examine two scenarios, on which fault tolerance will be imposed, as fol-

lows:
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Figure 6.5: Self-Recovery from Redundancy: The acting RegionMaster goes

haywire (left). The reserve RegionMaster takes over as the acting RegionMas-

ter (right).

6.5.1 Scenario 1: The acting RegionMaster breaks down

The acting RegionMaster may go haywire during execution. We utilize the heart-

beat failure detection strategy (ACK+97) to detect crashes when they occur. The

incumbent RegionMaster sends a heartbeat message at every τheartbeat to the re-

serve RegionMaster. If after τheartbeat the reserve RegionMaster gets no message

then it assumes that the RegionMaster has crashed, it promotes itself to be the

new RegionMaster. The new RegionMaster builds its list of mobile agents from the

beginning by broadcasting a message to all nodes it inherits. If the nodes receive

the message, they change the information about the RegionMaster and send a list

of agents that are being active. Once the new region has been established, the

new RegionMaster appoints a new reserve RegionMaster.
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6.5.2 Scenario 2: The acting RegionMaster and the reserve Re-

gionMaster break down concurrently

In scenario 1, the system can recover if the RegionMaster is out of service because

a reserve RegionMaster already exists. But we may wonder what would occur if

the substitution also does not work?

The first platform is aware of the disappearance of the RegionMaster once

it sends location update or location query to the RegionMaster, but receives no

answer. This platform must activate the scouting procedure. That means, it tem-

porarily takes the role of the RegionMaster. Since every node has a list of platforms

in the region, the node can create and deploy scout agents to other nodes. The

scout agent performs its surveillance and comes back to the node as described in

Section 6.3.4. Eventually, a new region is established under the chairmanship of

the new RegionMaster.

6.6 Reliability: Management of Mobile Agent’s Lo-

cation

The mobility of agents may cause severe message losses when communication ex-

ecutes, especially in large scale and dynamic networks. Such, these losses must

be minimized in order to achieve systems reliability. The management of mobile

agents location should also be adaptive to network changes. With respect to the

dynamic region architecture established by the self-organizing algorithm in Sec-

tions 6.4 and 6.5, we introduce a technique for the management of mobile agent’s

location.

6.6.1 Location Update

Each agent platform maintains a cache for storing a list of IDs of mobile agents

that are currently working on the platform. To avoid flooding, the cache works as

a FIFO list with limited size. In the RegionMaster of a region, there is also a cache

that holds location information for all mobile agents which currently reside in

the region. RegionMasters are organized as a peer-to-peer network, each of them
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has pointers to all other RegionMasters of the global system. A RegionMaster can

query its counterparts for information of mobile agents’ IDs.

If an agent migrates to another platform, the current platform deletes the cor-

responding ID in its cache. The platform then tells the RegionMaster to remove the

ID from RegionMaster’s cache. When the agent arrives at the new agent platform,

its ID will be added to this platform’s cache. The platform notifies the RegionMas-

ter to insert a new entry for the mobile agent’s ID. Eventually, the address of the

mobile agent becomes known with the new location.

6.6.2 Location Query

The process of searching for the location of a mobile agent is illustrated in Figure

6.6. The circled numbers depict the steps that are to be executed. These numbers

will be used to explain the diagram.

Figure 6.6: Location Query

In the example, we assume that agent α wants to communicate with agent β,

whose location is unknown. Agent α asks the current agent platform for the ID of
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agent β. This platform checks its cache to see if there is any information regarding

the location of the requested agent (1). When the address is already in the cache,

the platform returns the address to the agent. Otherwise, the platform queries

its RegionMaster (2). The RegionMaster then looks into its cache for the address

(3). When the address is found, the RegionMaster returns it to the requesting

party (7); if not, the RegionMaster broadcasts a query to all RegionMasters of the

global system (4). Each RegionMaster of the global network checks its cache for

the address (5). Whenever the address is found by one of the RegionMasters, it

will be sent back to the requesting RegionMaster (6). This RegionMaster in turn

forwards the address to the requesting agent platform (7).

After the location of the agent β has been determined, the agent sends message

to the targeted platform (8).

In case the destination agent resides in a lightweight platform that has dis-

connected from the network, its address is still cached in the last RegionMaster.

Because the agent cannot be reached at that moment, the RegionMaster sends the

address back but with the status offline so that the requesting party knows.

If a region is splitted the RegionMaster advertises the change to all other Re-

gionMasters to make other RegionMasters aware of the new region’s appearance.

6.7 Reliability: Message Exchange among Mobile Agents

To ensure reliability, along with tracking of mobile agent’s location, it is necessary

to guarantee message storing and delivery. Messages can be delivered to destina-

tion reliably only when they are stored and delivered credibly.

6.7.1 Message Format

We choose the existing FIPA Agent Communication Language Specification as the

messages’ semantics representation. Messages for the communication between

mobile agents are formatted according to this FIPA Standard.
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6.7.2 Message Cache

Each node has a message queue for agents which are currently working on it. Each

agent is associated with a message cache, all incoming messages for an agent will

be saved to its cache. When an agent leaves a platform, its cache will be removed.

The message cache for an agent stores every message targeted to the appropriate

agent. A cache for an agent is identified by an ID associated with the agent’s ID.

6.7.3 Message Delivery

After the location of the receiver agent has been determined, the sender agent

sends messages directly to the platform where the receiver resides. We adopt the

layered architecture for agent communication introduced in Section 2.5 and in

Figure 2.3.

6.8 Summary

In this chapter, we have presented our approach for an adaptive communication

model for mobile agents in highly dynamic networks of the SpeedUp-Type. By

identifying the need for a self-organizing mechanism, we suggested applying a

honey bee inpsired algorithm for the management of dynamic working domains.

Along with the algorithm, we also proposed supplementary mechanisms to pursue

our goals, that means achieving fault tolerance and reliability in message trans-

ferring. It is expected that the proposed mechanisms will bring benefit in the

SpeedUp context.

In a honey bee community, worker bees search for food sources and promote

new beehives. Likewise mobile agents survey network nodes and collect infor-

mation, as well as evaluate and nominate candidates, whom they think can be

potential RegionMaster. A logical network is organized by consensus based on

interaction of network nodes. Although the RegionMaster seems to play a crucial

role in a region, it is replaceable. As a result, no individual of the colony is allowed

to have superiority. With the introduction of self-recovery from redundancy, we

aim to provide fault tolerance and preserve self-organization.
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An interesting aspect of the approach is that mobile agents are used as tools for

monitoring network dynamics and, at the same time, they are also a beneficiary

of the algorithm. A reasonable restructuring of logical regions is of benefit to

mobile agent communication. Mobile agents can cooperate and share information

flawlessly thanks to a flexible communication infrastructure.

We believe that the honey bee inspired algorithm can be applied not only for

managing regions of agent platforms, but also for imposing self-organizing mecha-

nism on other types of systems with multiple network nodes working in a dynamic

environment. The mechanism is beneficial to those systems, in which there is a

need to segregate nodes according to their relations and to organize them in a

flexible manner. Under the circumstances, the mobile agent concept is considered

to be highly suitable for this purpose. The characteristics, e.g. reactive, oppor-

tunistic, and goal-oriented are intrinsic to successful management of a distributed

region architecture of the SpeedUp-Type. One of mobile agents’ advantages has

been shown off.

In the proposed algorithm, the scout agents are sent to all nodes of a region

to get information. What not yet specified there is how often they need to be

deployed as well as how many of them need to be created. In our view, these

issues can only be tackled in practical experiments. In the succeeding chapters of

the dissertation, we are going to present our design and implementation for the

software prototype based on the proposed algorithm.
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Chapter 7

Design

This chapter deals with the design of the software prototype for an adaptive

communication framework for mobile agents in highly dynamic networks of the

SpeedUp-Type. The design aims to develop a plan for the implementation of the

software prototype. It will bear on the honey bee inspired alogrithm with the aims

and objectives of the targeted qualites: fault tolerance and reliability in transfer-

ring agent messages.

The chapter starts with some consideration. Afterwards, it gives an introduc-

tion to the mobile agent system Ellipsis. The next part of the chapter clarifies the

functionalities of the software prototype. This part serves as a base for the suc-

ceeding part, which describes in detail the constituent software components. We

address each software component by specifying their functions, sub-components

and the relationships among the sub-components; afterwards, the format for the

data exchanged, stored by each component will also be characterized. The final

section summarizes the main points presented in the chapter.

7.1 Preliminary Considerations

• We base our implementation on the mobile agent system Ellipsis (Sch12) as

the basic agent instantiation and execution environment. All solutions will

be implemented as an extension of the system.
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• To ensure maximum interoperability, we utilize the FIPA Agent Communica-

tion Language Specification as the message’s semantics representation. Mes-

sages exchanged among mobile agents will be formatted following this FIPA

Standard.

7.2 Introduction to Ellipsis

Ellipsis is an open source mobile agent system developed by the Chair of Soft-

ware Engineering of Friedrich Schiller University Jena (Jen11). Ellipsis system

provides a framework for hosting and executing mobile agents. Ellipsis has been

written in the programming language Java, it runs on any operating system that

supports Java, thereby adhering to the slogan ”write once, run anywhere.” As a

consequence, it can be deployed on any device as long as the device is equipped

with Java Virtual Machine (JVM).

Since we are going to base our design and implementation on the mobile agent

system Ellipsis, it is necessary to have a look at its features as well as its architec-

ture.

7.2.1 Architecture

Figure 7.1 illustrates Ellipsis and its relationship with other external components.

• Java Virtual Machine (JVM) provides an executing environment for Java

bytecode. It can be combined with different application programming inter-

faces to form Java Runtime Environment (JRE). Every operating system that

supports JVM can be a platform for Ellipsis.

• JBoss Application Server works on JRE and provides a server framework in

which applications can execute.

• Java Management Extension (JMX) is a tool for managing server compo-

nents and applications written in Java. It works as a component bus, an in-

terface to JBoss so that programmers can seamlessly integrate their software

components into JBoss as well as manage both JBoss server components
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Figure 7.1: Ellipsis Infrastructure

and applications executed on it. JMX also supports remote administration

through Remote Method Invocation (RMI).

• An object called MBean or Managed Bean accompanies the existence of JMX.

An MBean is a Java object that works as a representation for the resources

that need to be managed. To be called by other components an MBean must

be registered to an MBean server. An MBean server hosts MBean objects and

provides them with an interface to external objects.

• Ellipsis has been implemented to work in conjunction with Java Manage-

ment Extension (JMX). Ellipsis’s components are defined as MBean services,

therefore they can easily be integrated into JBoss through the use of JMX.

• Applications run above Ellipsis can utilize the functionalities supported by

Ellipsis.
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7.2.2 System Model

The internal architecture of Ellipsis is shown in Figure 7.2 (Sch12).

Figure 7.2: Ellipsis’s internal architecture

• Agency is an MBean and is the core component of the entire system. It

hosts and deploys mobile agents and performs tasks related to agent services.

Agency holds different service directories for the management of agents:

agent directory, service directory, node directory and protocol directory.

• AgentModule works as the container for an agent. It manages agent con-

texts, messages and events. AgentModule is also present in the form of an

MBean.

• AgentEngine is integrated into AgentModule and provides an agent with an

executing environment. This component manages the life cycle of an agent.

With the use of this component, a foreign agent from other multi-agent sys-

tems can be imported to and executed in Ellipsis.

• Context (CX) creates a communication channel between two agents. Con-

text provides other components with a repository of information related to

current working context of the system.
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7.2.3 Agents

Agent is a software entity, it can migrate and work proactively to fulfill tasks or-

dered by its owner. Ellipsis distinguishes between standard agents, service agents,

and system agents.

• To be identified in different executing environments, an agent has an identity

associated with it, the AgentCard. AgentCard helps to characterize an agent

within a global context. Given an agent, AgentCard provides the following

information about the agent:

– The identifier of an agent within the system.

– The owner of the agent.

– The type of the MAS where the agent can work.

– The name of the class that constitutes the agent.

– A group of URIs for identifying agent resources.

• If an agent finishes its work but has no open contexts and no services then it

switches to the status FINISHED. The agent and its corresponding AgentCard

are then transferred into the holding area, which is managed by Holdin-

gAreaAgent. The agent works as a root agent for the system. Other services

that want to use an agent need to inform the HoldingAreaAgent.

• AgencyAgent is a root agent and it is started directly after the Agency. This

agent provides search and register services to agents.

• LoaderAgent provides functionalities for starting agents. It works in conjun-

tion with Agency to create new mobile agents.

• MigrationServiceAgent provides an engine for migrating agents from a plat-

form to another platform.

• EllipsisAgentEngine re-builds and assembles mobile agents from the trans-

ferred code when they migrate to a new platform.
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7.2.4 Migration

In Ellipsis, scout agent’s class data is supposed to be available at every platform

thus an agent does not have to bring its class data with it while it is migrating.

The only data that needs to be transferred over the network during migration is

the data used for representing agent platforms.

In the honey bee inspired approach, agent migration will be employed in mon-

itoring network. The issues concerning the migration process of mobile agents are

beyond the scope of this dissertation. For interested readers we recommend the

work of Peter Braun (Bra03).

7.2.5 Naming Convention

In the context of an MAS, the name of an agent or an agent platform must be

unique within the entire context. In Ellipsis, naming convention is described in

detail below:

• Agent platform is named as follows: Platform’s Private Name + IP Ad-

dress. For example, a platform with private name BeeHive and IP Address

10.35.12.85 has a unique name: BeeHive.10.35.12.85.

• An agent has a name in the form: Agent’s Private Name + ”@” + Platform

Name. For example, an agent with the private name Scout and has been

created in the platform with name BeeHive.10.35.12.85 has a unique name

Scout@BeeHive.10.35.12.85.

• The name of an agent remains intact during its lifespan, no matter what its

whereabouts is.

7.3 Functionalities

Before going into further details regarding the design, it is of necessity analysing

the functionalites of the software prototype. These functionalities are the realiza-

tion of the proposals in Chapter 6. To achieve fault tolerance and reliability in

transferring messages between mobile agents in a highly dynamic network, the
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software prototype is expected to be able to perform the tasks as specified as fol-

lows. For our convenience, from now on the notations agent platform, agency, and

node will be used interchangeably.

7.3.1 Network Monitoring

A network can be organized in harmony with the current environment only if

there exists necessary information related to the network’s condition. In the first

place, the software prototype needs to chart environmental stimuli, which are the

external changes occuring during execution.

The following parameters will be monitored (refer to Section 4.4 for more

details):

• Changes in network topology.

• The accession and disjunction of network nodes.

• The connection quality between network nodes.

The monitoring process takes place at every platform of a region at regular

intervals. It is comprised of the following sub-routines:

• Collecting network node’s information and connectivity information.

• Nominating potential candidates for a new RegionMaster.

7.3.2 Self-Organizing

After all network nodes of a region have been surveyed, the collected informa-

tion needs to be processed and served as a base for the decision making process.

Self-organizing activities are conducted to maintain an equilibrium between the

internal organization of the platforms and the external perturbations. These ac-

tivites allow the colony of agent platforms to recover to a stable state if change or

failure occurred.

The self-organizing activities are summarized as follows:
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• Re-organizing a region when connectivity between members degrades.

• Voting new RegionMaster.

• Bringing up a reserve RegionMaster.

• Self-recovering whenever failure occurs.

The state diagram in Figure 7.3 shows the cooperative behaviour of the net-

work monitoring and the self-organizing functionalities.

Figure 7.3: State diagram for network monitoring and self-organizing

7.3.3 Mobile Agent Positioning

Network monitoring and self-organizing tasks assist the system to maintain a res-

onable connection between agent platforms and to react to changes. Location
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tracking mechanisms are to be adaptive to this organizational architecture after

the adaption process took place.

The positioning tasks are divided into the following sub-tasks:

• Maintaining a location information cache.

• Receiving look up request from agents and agent platforms.

• Updating location cache once the logical network has been re-organized.

• Looking for location of mobile agents.

7.3.4 Agent Message Encoding, Delivering, and Storing

The layered model for agent communication provides us with a way to perform

optimization in different levels (Hel03). A FIPA ACL message is comprised of mul-

tiple fields and each of them can be encoded, presented using suitable encoding

techniques (NSR11a). Afterwards, messages can be transferred using appropriate

message transport protocols (refer to Section 2.5.2 for more details).

For transferring agent messages across the network, agent platforms establish

a network connection between communicating parties like in other conventional

distributed systems. After the location of a targeted agent has been determined,

messages will be delivered to the recipients. An incoming message will be decoded

to the original form and saved into cache. The corresponding agent receives its

messages by checking the cache.

The task is divided into different routines:

• Establishing a transmission channel between two agent platforms.

• Encoding and decoding messages.

• Tranferring messages.

• Saving messages into cache.

• Unloading messages from cache.
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7.4 Software Components

To carry into effect the functionalities, we build a prototype software framework

consisting of four functional components listed as follows:

• NetworkMonitor.

• NetworkOrganizer.

• LocationManager.

• Communicator.

Figure 7.4: Relation to Ellipsis
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The software prototype works in conjunction with Ellipsis. Figure 7.4 depicts

the interface and relation of the software prototype to the MAS. The gray jig-

saw puzzle represents the software prototype in relation with Ellipsis’s existing

software components. Essentially, the software prototype is a complement to the

current Ellipsis architecture, it assists the system to work in dynamic networks. It

does not interface directly to applications; all function calls are handled by Ellipsis.

The Euler diagram (HBF+07) in Figure 7.5 shows the software components and

their corresponding functionalities. The self-organizing tasks are performed by

NetworkMonitor, NetworkOrganizer and LocationManager. LocationManager and

Communicator work together to ensure reliability in transferring agent messages.

Fault tolerance is guaranteed by NetworkMonitor and NetworkOrganizer.

Figure 7.5: System’s features and corresponding software components

The internal structure of the components and their mutual relationships are

illustrated in Figure 7.6. NetworkMonitor gets input data from the surrounding

environment. It manages a list of nodes working in its region. NetworkOrganizer

makes decision based on the data processed by NetworkMonitor. It has interface to

other NetworkOrganizers of the neighbouring platforms. Communicator encodes,

sends and receives agent messages. It maintains a cache to store messages. Loca-

tionManager receives, answers and looks up mobile agent’s location information.

We are going to introduce the design of the components in more detail in the

next sections.
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Figure 7.6: Functional structure of the constituent software components

7.5 NetworkMonitor

7.5.1 Functions

The software entity NetworkMonitor observes the agent platforms of a region.

It collects connectivity information between a platform and its neighbours and

information of the platforms. NetworkMonitor undertakes the following tasks:

• Managing a dynamic list of agent platforms.

• Deploying scout agents periodically to get update on the network situation.

• Receiving and replying ping messages.

• Calculating the values τavg and split.

• Making a decision of splitting region by counting the boolean values split.
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7.5.2 Sub-Components and Relationships

NetworkMonitor consists of four sub-components. The sub-components and their

mutual relationships are displayed in Figure 7.7.

Figure 7.7: NetworkMonitor: Sub-components and mutual relationships

• Inventory handles the cache for storing the list of nodes in a region.

• Monitor deploys scout agents and waits for ping messages. It sends ping

messages back to the senders.

• Trigger works as a port for exchanging information with NetworkOrganizer

and Communicator.

7.5.3 Processing

The state diagram in Figure 7.8 illustrates the behaviour of Monitor. The sub-

component runs on every platform, but only the one that exists on the RegionMas-

ter is responsible for deploying scout agents. Monitor remains dormant until the

corresponding platform becomes a RegionMaster. A platform starts to work as a

RegionMaster either by being configured from the beginning or being voted and

promoted by other platforms once Inventory receives a list of agent platforms.

The process of monitoring a region begins at the RegionMaster. Based on the

scale of the region, Monitor of the RegionMaster creates an appropriate nummber
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of scout agents. Monitor assigns each scout agent a list of nodes that are going to

be visited by that agent.

Figure 7.8: State diagram for Monitor

At a platform, when a scout agent arrives, the platform sends ping messages to

all nodes of the region. Monitor listens on a TCP port for incoming ping messages.

When Monitor receives a ping message, it sends the message back to the sender.

Monitor waits for a specific time until all ping messages come back.

The scout agent uploads performance information of the previous node to Mon-

itor. Once all ping messages from the neighbours arrive, Monitor calculates the

average time τavg and split as specified in Section 6.3.4. Monitor compares the

performance of the previous platform of the itinerary with the performance of the

current platform and nominates the platform with the higher performance as a

candidate for a new RegionMaster.

Monitor hands over the following information to the scout:

• The values τavg and split.

• Performance information of the platform.
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• The candidate for a new RegionMaster.

Afterwards, Monitor sends the scout to the next node on its itinerary. At the

new node, the same routines repeat. After the final node on its itinerary has been

investigated, the scout migrates back to the RegionMaster.

Once all scout agents have completed their tasks and come back to the Re-

gionMaster, they submit information collected to Monitor of the RegionMaster.

Monitor counts the number of platforms that expect the region to be bisected,

based on the values split. If the poll constitutes a quorum, Trigger sends the list

of platforms to NetworkOrganizer. Otherwise, Monitor continues to deploy scout

agents to perform a new round of surveillance.

7.5.4 Data

A scout agent brings data with it when it migrates. The data consists of records,

each stores information of an agent platform in the region. The structure of a

record is shown in Figure 7.9.

Figure 7.9: The data structure represents a platform’s information

where

• IPAddress is a 4-byte field and stores the agent platform’s address.

• Type is a 1-byte field, it defines the type of agent platform, specified as

follows:

– 0: Normal platform.

– 1: RegionMaster.

– 2: Reserve RegionMaster.

– 3: Lightweight platform.
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• avgLatency is 8-byte field and holds the average latency from the current

platform to the remaining platforms.

• Split is a 1-byte boolean value and indicates if the node wants the region to

be splitted or not (0: No; 1: Yes).

• Performance is 1-byte field; it represents the computing performance of the

platform.

The structure of the list of nodes in a region is depicted in Figure 7.10.

Figure 7.10: The list of nodes in a region

• cardinality stores the number of records in the list.

• The fields that have the same name have the same meaning as defined

aboved.

7.6 NetworkOrganizer

7.6.1 Functions

NetworkOrganizer re-organizes the logical network based on the conditions per-

cepted by NetworkMonitor. This component is present at every platform of a

region. However its role is dependent on the type of the platform. In a Region-

Master, NetworkOrganizer has the following functions:

• NetworkOrganizer receives the list of platforms from NetworkMonitor.
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• NetworkOrganizer selects a new RegionMaster from the candidates nomi-

nated by NetworkMonitor. It broadcasts the ID of the new RegionMaster to

all platforms of the region to conduct a poll.

• NetworkOrganizer activates a platform when the platform has been pro-

moted to the post of a RegionMaster.

• NetworkOrganizer notifies other NetworkOrganizers of the changes by send-

ing broadcast messages.

In a normal platform, NetworkOrganizer performs the succeeding tasks:

• It receives a proposal for a node to be the new RegionMaster from the Re-

gionMaster.

• It chooses which region the corresponding platform should belong to by mea-

suring the latencies to the proposed platform and to the RegionMaster.

• It sends the ID representing the chosen platform back to the RegionMaster.

7.6.2 Sub-Components and Relationships

• Organizer communicates with NetworkMonitor to obtain the list of plat-

forms. It returns the new list to the NetworkMonitor and sends the list to the

new NetworkMonitor and activates this platform. Organizer votes for node

to be the new RegionMaster. It informs all nodes of the changes and waits

for replies from the platforms.

• Observer is present at a reserve RegionMaster. It regularly senses the pres-

ence of the RegionMaster.

• Broker provides Communicator with necessary information for transferring

agent messages.
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Figure 7.11: NetworkOrganizer: Sub-components and mutual relationships

7.6.3 Processing

Figure 7.12 illustrates the functions of NetworkOrganizer in different roles. The

upper part depicts NetworkOrganizer in a RegionMaster and the lower part depicts

NetworkOrganizer in a normal platform.

At a RegionMaster, NetworkOrganizer takes up its job once Organizer receives

the list of agent platforms from NetworkMonitor. From the platforms nominated

by the scout agents, QueenBee selects the candidate that meets the criteria de-

scribed in Section 6.4.2 in Page 68 to be the new RegionMaster. Organizer sends

the ID of the proposed platform to all nodes of its region and waits for replies.

This aims to poll every platform of the region which region it prefers to belong to.

At a normal platform, when receiving the ID representing the proposed plat-

form, Organizer sends one ping message to the proposed platform and one ping

message to the current RegionMaster to measure the corresponding latencies. Or-

ganizer selects the platform with the lower latency to be its new RegionMaster.

That means a platform can select only one of the two proposed platforms as the

RegionMaster. The ID of the chosen platform will be sent back to the RegionMas-

ter.

After Organizer of the RegionMaster gets the decisions from the platforms, it

has two lists of platforms. The first list contains the platforms that choose to stay

in the old region, the second list stores the platforms that join the new region.

Organizer sends the first list back to Monitor of the RegionMaster, causing this
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Figure 7.12: State diagram for the behaviours of different types of Organizer

platform to continue scouting but with a new set of platforms. It sends the second

list to the new RegionMaster. By sending the list, it triggers the new RegionMaster

to commence its operations as a RegionMaster.

The flowchart in Figure 7.13 represents the processing of a reserve Region-

Master. Its Observer checks the availability of the RegionMaster by sending an

inquiry periodically to this platform. If it receives the message, Observer of the

RegionMaster sends a heartbeat message back to acknowledge its presence. In
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Figure 7.13: The nature of a reserve RegionMaster

this process, timeout is handled in order to ensure reliability. If the acting Re-

gionMaster stalls, the reserve RegionMaster receives no heartbeat message. Given

the circumstances Organizer of the reserve RegionMaster tries to send a message

again. After a specific number of attempts, if the platform is still unreachable

then Observer nominates the reserve RegionMaster to be the RegionMaster of the

region. This platform begins the tasks of a RegionMaster.

7.6.4 Data

The format of the list sent by NetworkMonitor to NetworkOrganizer is depicted in

Figure 7.14.

98



7.7 LocationManager

Figure 7.14: The list sent by NetworkMonitor to NetworkOrganizer

7.7 LocationManager

7.7.1 Functions

LocationManager manages location information of mobile agents, it updates lo-

cation of mobile agents when they migrate, answers location query and queries

agent’s location information. LocationManager holds a cache for storing location

information. Essentially, the component performs its function to answer the ques-

tion: Which agent locates where?

The following tasks are undertaken by LocationManager:

• Interfacing to Ellipsis to manage a dynamic list of location information for

mobile agents.

• Receiving and answering location query from other nodes as well as from

agents.

• Sending location information query to other LocationManagers.

7.7.2 Sub-Components and Relationships

• Inventory handles the cache that stores location information of mobile agents.

• QueryManager receives and answers location information query.
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Figure 7.15: LocationManager: Sub-components and mutual relationships

7.7.3 Processing

Manager listens on a TCP port for location queries. Manager in a normal platform

can query Manager of the RegionMaster for location of mobile agents. Manager

in a RegionMaster can accept and answer location queries from its platforms or

other RegionMasters. When a mobile agent arrives at a platform, Manager inserts

the agent’s ID into its cache. It sends an update messages to Manager of the

RegionMaster to reveal the presence of the agent.

When a mobile agent leaves a platform, Manager of the platform removes the

corresponding entry in its cache. If Manager receives a look up query, it checks

the cache to see if the agent’s address is in there. If the address is found, Manager

sends it back to the sending agent. Otherwise it sends a query to its RegionMaster

and waits for reply.

7.7.4 Data

The location cache of a normal platform has the format depicted in Figure 7.16.

The field cardinality stores the number of entries in the cache. Each AgentID

represents the identity of an agent currently working on the platform.

Figure 7.17 depicts a location cache in a RegionMaster. The cache saves lo-

cation information of all agents working in the platforms of its region. A mobile

agent can be located by a tuple of two fields, AgentID and the IP address of the

platform where the agent is working in.
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Figure 7.16: Format of the location cache in a normal platform

Figure 7.17: Format of the location cache in a RegionMaster

7.8 Communicator

7.8.1 Functions

The software entity Communicator is responsible for initializing connection be-

tween platforms and transferring messages between agents. It encodes, decodes,

and transfers agent messages over the network. This component maintains two

caches of agent messages at every platform, one for incoming messages and one

for outgoing messages.

Communicator has the following functions:

• Establishing connection between two agent platforms.

• Encoding the envelope and the payload of an ACL message at the sender

side.

• Sending byte streams containing ACL messages over the network.

• Decoding the envelope and the payload of ACL messages at the receiver side.
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7.8.2 Sub-Components and Relationships

Figure 7.18: Communicator: Sub-components and mutual relationships

• Encoder encodes agent messages in two levels: envelope and payload.

• Sender delivers messages to the recipient.

• Receiver listens on a port and waits for incoming messages.

• Decoder decodes agent messages in two levels: envelope and payload.

7.8.3 Processing

Figure 7.19 illustrates the process of delivering an ACL message from a sender

to a receiver. At the sender side, Sender checks the cache periodically to get

outgoing messages. If there is any message that needs to be sent, Encoder converts

the message into payload using the Bit-efficient ACL message encoding algorithm

(FIP02a). Encoder also encodes the message’s envelope using XML Codec. Sender

establishes a TCP communication channel to the destination. The message then is

encapsulated in an Ethernet packet and transferred over the network.
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Figure 7.19: ACL Communication

At the receiver side, Receiver waits for incoming connection on a TCP port. It

receives incoming messages using the Message Transport Protocol interface. The

received data is then decoded using the Bit-efficient ACL encoding. Decoder de-

codes the envelope of the message. The message will be saved into the incoming

message cache. Agent checks new messages by accessing the cache. This is done

by application programmers.

7.9 Scout Agents

Scout agents both form an important part of the software prototype as a whole

and have much to contribute to achieving fault tolerance and reliability in mes-

sage transferring. The above mentioned software components are able to work

efficiently only when scout agents supply them with comprehensive information

of the surrounding environment.

Ellipsis supports three types of agents: standard agent, service agent and sys-

tem agent. To meet the requirements of a scout agent, however, a standard agent
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Figure 7.20: The behaviour of a scout agent

needs to be customized. A scout agent has common features of a conventional

mobile agent, in addition it has other distinctive features. The flowchart in Figure

7.20 depicts the nature of a scout agent. At the creation time, a scout agent is

assigned an itinerary - the list of agent platforms that the agent is going to visit.

On each platform of its itinerary, the scout agent performs its routines to collect

necessary information. Based on timeout handling, it can report a broken link

and the existence of an agent platform. Once it finishes a round of surveillance

and returns to the RegionMaster, the scout agent interfaces to NetworkMonitor to
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submit information it has fetched. It continues to travel around the region until

the region is splitted. Under the circumstances, the scout agent will be assigned a

new route and it starts its work from the start.

7.10 Design Summary

This chapter provided the design of the software prototype. The design helps to

turn concept into realization and develop a plan for the implementation. With the

aims of attaining fault tolerance and reliability in transferring agent messages, the

design has been based on the honey bee inspired approach described in Chapter

6.

Being interfaced to the multi-agent system Ellipsis, the software prototype con-

sists of four software components: NetworkMonitor, NetworkOrganizer, Location-

Manager, and Communicator. Each of the components has its own features and

functions. NetworkMonitor employs mobile agents to chart the changes of the

network environment. NetworkOrganizer re-organizes a region of agent plat-

forms based on the information acquired by NetworkMonitor. Communicator is

responsible for storing, encoding, and transferring agent messages over networks.

LocationManager receives, answers and looks up mobile agent’s location informa-

tion. The components interface to the existing components of Ellipsis and coop-

erate with each other in obtaining the targeted qualities. NetworkMonitor and

NetworkOrganizer provide fault tolerance. The two components also work in con-

juntion with LocationManager to bring in self-organization. LocationManager and

Communicator work together to ensure reliability in transferring agent messages.

A scout agent is built based on a standard agent supported by Ellipsis with

some customization. Scout agents work as information feeder for the software

components. They contribute to the overall performance of the approach, thereby

being deemed to be of importance to the prototype.
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Chapter 8

Implementation

8.1 Connection Management in Java

For distributed applications working in dynamic networks, it is essential to manage

network connection and data transmission adequately. A sudden broken network

connection causes a data transfer to be interrupted and forces the corresponding

thread to wait endlessly. Hanging threads both waste resources and reduce sys-

tem’s performance. In the worst case, a server becomes inoperative and cannot

respond to legitimate traffic if it is saturated with unreleased resources.

Efficient network connection establishment and management contribute to achiev-

ing fault tolerance and reliability. Timeout handling is essential, especially in dy-

namic networks. Good timeout handling helps detect broken links as well as trans-

fer failures, thereby facilitating the removal of wild threads. Timeout handling can

be considered as an integral part of the programming logic for distributed appli-

cations.

Java supports TCP and UDP sockets. UDP is faster than TCP but not reliable

since it transfers data packets but does not guarantee that they arrive at the des-

tination. TCP sockets provide us with a convenient way to reliably transfer data

over the network. In return, TCP has a slower speed compared to that by UDP. For

a TCP socket, there are two communication channels, an input channel for getting

the incoming data stream and an output channel for delivering the outgoing data

stream. Timeouts can be handled by working with the two channels using excep-
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tion in socket programming. Specifically, timeout needs to be controlled in three

phases:

• Connection establishing.

• Data sending.

• Data receiving.

A timeout handling at the connection establishment phase is depicted in List-

ing 8.1. At the first attempt, if there is no connection then the client retries to con-

nect after the duration of MAX DELAY (ms). After a number of tries, defined

by MAX RETRY , either a connection is established or the connecting attempt is

aborted.

Listing 8.1: Timeout handling at connection establishment

public void handleTimeoutAtConnection() {

connection = new TCPConnection(destIPAddress, destPort);

int retryCount = 0;

int retVal = -1;

try {

retVal = connection.connect();

while((retVal==NO_CONNECTION) && (retryCount<MAX_RETRY)){

retVal = connection.connect();

retryCount += 1;

Thread.sleep(MAX_DELAY);

}

} catch (UnknownHostException uhe) {

uhe.printStackTrace();

} catch (IOException ioe) {

ioe.printStackTrace();

}

}

The code excerpt in Listing 8.2 illustrates the delivering of a data buffer over a

TCP socket’s output channel and the corresponding failure handle. If the connec-

tion is broken while sending is taking place, the sender can catch errors, thereby

helping to avoid producing a hanging thread.

108



8.1 Connection Management in Java

Listing 8.2: Timeout handling at sending

public void handleTimeoutAtSending() {

connection = new TCPConnection(destIPAddress, destPort);

try {

outstream = new DataOutputStream(connection.getOutputStream());

outstream.write(buffer);

outstream.flush();

} catch (InterruptedIOException iioe) {

iioe.printStackTrace();

} catch (IOException ioe) {

logger.info("The connection is lost");

}

}

Listing 8.3 shows the management of data transfer at the recipient side. By

using this code, the receiver is able to detect tranmission errors once they occured

and try to resume the receiving process. In extreme cases, after a number of failed

attemps, the receiver aborts the transmision gracefully.

Listing 8.3: Timeout handling at receiving

public void handleTimeoutAtReceiving() {

connection = new TCPConnection(destIPAddress, destPort);

InputStream inputStream = connection.getInputStream();

int retryCount = 0;

try {

while (retryCount<MAX_RETRY) {

read = inputStream.read(buffer, bytesRead, length-bytesRead);

bytesRead += (read > 0) ? read : 0;

if (bytesRead >= buffer.length) break;

retryCount += 1;

}

} catch (IOException ioe) {

ioe.printStackTrace();

}

}

Throughout the implementation of the software prototype, timeout handling

is going to be employed in the following activities:
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• Migrating scout agents.

• Measuring network latency.

• Detecting the availability of a RegionMaster.

8.2 NetworkMonitor

8.2.1 Classes

NetworkMonitor is implemented as a Java package and encapsulated in an exe-

cutable *.jar file, named agent.networkmonitor.jar. Figure 8.1 depicts a simpli-

fied class diagram for the NetworkMonitor package. The classes and their main

functions are explained as follows:

• MigrationEngine interfaces to the MigrationServiceAgent of Ellipsis. It is

an enhanced version of the migration service of Ellipsis as it facilitates the

management of scout agents as well as supports connection handling. It can

provide scout agents with their own way of migrating.

• MigrationIn and MigrationOut are responsible for the management of in-

coming migration and outgoing migration, respectively.

• AgentHandler is the interface for reconstructing an agent from an incoming

data stream.

• TCPConnection is the pipeline for transferring native byte stream over the

network. It supports timeout handling.

• Trigger is used to activate the component Monitor of a platform when the

platform is configured as a RegionMaster.

• Receiver is an abstract class, it provides interface for receiving incoming byte

streams. Monitor, AgentReceiver and MessageReceiver are instances of this

class.

• Monitor is normally on standby. When it is activated by Trigger, it deploys

and manages scout agents.

110



8
.2

N
e
tw

o
rk

M
o
n

ito
r

Figure 8.1: A simplified class diagram for NetworkMonitor

1
1

1



8. IMPLEMENTATION

8.2.2 Realization

Monitor manages scout agents. Initially, it is idle and will be activated only when

the corresponding platform receives a list of platforms. Pseudo code 1 illustrates

the behaviour of Monitor on its activation. Scout agents are created and each of

them is assigned a list of platforms. The number of agents is dependent of the scale

of a region. The behaviour of a scout agent when it arrives at an agent platform is

going to be specified later in Section 8.6.

Pseudo code 1 Activating Monitor

1: procedure ONACTIVATION(platformList)

2: scoutAgent← createScoutAgent(platformlist)

3: scoutAgent.initialize()

4: end procedure

In Pseudo code 2, an agent platform measures the average latency by send-

ing ping messages to all other platform of the same region. The values are then

averaged out to get the final result as in Line 5.

Pseudo code 2 Measuring the average latency

1: function MEASUREAVERAGELATENCY(thisP latform,allOtherP latforms)

2: for every platform do

3: latency ← sendPingMessage(message,platform)

4: end for

5: return average(latency)

6: end function

Pseudo code 3 shows how Monitor reacts when it receives a ping message

from an other platform. Whenever a ping message arrives, Monitor sends the

message back to the sender. Timeout is handled in this phase to prevent a hanging

connection from happening. The platform that sent the message when receiving

the message back will calculate the time that the message needs to circumnavigate,

resulting in the corresponding latency.

In the beginning, a platform is configured as the RegionMaster of a region.

Pseudo code 4 describes how Trigger is used to activate a platform to undertake
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Pseudo code 3 Receiving a ping message

1: procedure ONMESSAGEARRIVAL(message)

2: sendMessageBackToSender(message)

3: end procedure

the tasks of a RegionMaster. A list of platforms in a region is sent to Monitor in

Line 2, causing the platform to work as RegionMaster.

Pseudo code 4 Triggering a platform

1: procedure TRIGGERING

2: sendPlatformList(platformList)

3: end procedure

As soon as a RegionMaster starts to work, it uses Trigger to assign the tasks of

a reserve RegionMaster to a second platform. The second platform will test the

availability of the RegionMaster by periodically sending inquiry messages. The

behaviour of a reserve RegionMaster is going to be described in the next section.

8.3 NetworkOrganizer

8.3.1 Classes

NetworkOrganizer is built in agent.networkorganizer.jar. This package is auto-

matically launched every time JBoss AS is invoked. Figure 8.2 represents a simpli-

fied class diagram of NetworkOrganizer.

• Organizer is responsible for performing organizing tasks for a region.

• Observer acknowledges the presence of RegionMaster by sending ping mes-

sages.

• Trigger has the same functionality with the component with the same name

of NetworkMonitor.

• Listener listens for incoming messags for Observer and Organizer. It is auto-

matically invoked when JBoss AS starts.
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8.3.2 Realization

NetworkMonitor assigns an observer whenever it starts to work as the RegionMas-

ter by sending an activation message to NetworkOrganizer. When NetworOrga-

nizer receives the message, it deploys Observer to look after the RegionMaster so

that when the platform fails a substitution can be made. Pseudo code 5 illustrates

how Observer works.

Pseudo code 5 Testing the availability of the RegionMaster

1: procedure AVAILABILITYTESTING(RegionMaster)

2: testing ← true

3: while testing do

4: connection← establishConnection(RegionMaster)

5: handleTimeoutAtConnection()

6: sendInquiryToTheRegionMaster(connection)

7: handleTimeoutAtSending()

8: waitForReply()

9: handleTimeoutAtReceiving()

10: end while

11: selfPromoteToRegionMaster()

12: end procedure

In this function, timeout is handled in three phases: at connection establish-

ment, during sending and during receiving. The codes for handling timeout in

these phases have been already specified in listings 8.1, 8.2 and 8.3 in Section

8.1. Line 5 handles timeout at connection establishment. Line 7 manages timeout

during data sending. Line 9 detects errors while data receiving is taking place.

Whenever error occurs in one of the three phases, the variable testing is set to

false and the program exists the while loop and executes the code in Line 11,

thereby promoting the reserve RegionMaster to the RegionMaster.

Another component which is also important by NetworkOrganizer is Organizer.

There may be multiple scout agents and each of them nominates its own candidate

for a new RegionMaster. When the region needs to be splitted, the RegionMaster

selects one from the candidates to be the new RegionMaster. Organizer broadcasts
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the identity of the RegionMaster and the proposed platform to all other platforms

to conduct a poll. The behaviour is illustrated in Pseudo code 6.

Pseudo code 6 Broadcasting a poll for new RegionMaster

1: procedure BROADCASTPOLL(RegionMaster,proposedP latform)

2: for every platform do

3: proposeRegionMaster(RegionMaster,proposedP latform)

4: end for

5: end procedure

Each platform should choose which region it belongs to by measuring the la-

tencies to the RegionMaster and the selected platform. Pseudo code 7 demon-

strates what a platform does when it receives a proposal for the RegionMaster. It

measures the latency to the RegionMaster (Line 2) and to the proposed platform

(Line 3). The platform with a lower latency will be selected as the new Region-

Master (Line 5 and Line 7). In our implementation, we employ a simplified model

for selecting a RegionMaster that uses latencies as the only criterion. However, we

recommend that the parameters related to the computing power of a candidate

should be considered. Interested readers are referred to the work of Arndt Döhler

(D0̈8).

Pseudo code 7 Voting a new RegionMaster

1: function VOTEREGIONMASTER(RegionMaster,proposedP latform)

2: latency1← measureLatency(RegionMaster)

3: latency2← measureLatency(proposedPlatform)

4: if latency1 ≤ latency2 then

5: return(RegionMaster)

6: else

7: return(proposedP latform)

8: end if

9: end function
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8.4 LocationManager

8.4.1 Classes

LocationManager is encapsulated in the Java package agent.locationmanager.jar.

The package should be called by JBoss AS right from the start.

• QueryManager listens on a TCP port for incoming location information queries.

It can look for mobile agent address by communicating with other platforms.

• Whenever a mobile agent arrives at a platform, Monitor inserts the ID of the

agent into its location cache.

8.4.2 Realization

Pseudo code 8 describes how the location of a mobile agent is updated. When

a mobile agent migrates to an agent platform, the platform inserts the ID of the

agent in its location cache in Line 2. The RegionMaster also updates the new

location of the mobile agent in Line 3. Finally, the plaform where the agent came

from deletes the entry that stores the location of the mobile agent.

Pseudo code 8 Updating location information

1: procedure LOCATIONUPDATE(agent)

2: updateCurrentPlatform(agent.address)

3: updateRegionMaster(agent.address)

4: acknowledgeLastPlatform(agent.address)

5: end procedure

The process of searching for the location of an agent is illustrated in Pseudo

code 9. A mobile agent looks up the address of an other agent by first querying

the current platform in Line 2. If the platform has no information about the agent

then the query will be sent to the RegionMaster in Line 6. This platform can look

for address of any mobile agent.
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Pseudo code 9 Querying location information

1: function LOCATIONQUERY(agent)

2: address← queryCurrentPlatform(agent)

3: if found then

4: return(address)

5: else

6: return queryRegionMaster(agent)

7: end if

8: end function

8.5 Communicator

8.5.1 Classes

Communicator is encapsulated in the Java package agent.communicator.jar. Fig-

ure 8.3 represents a simplified class diagram for Communicator.

• ACLMessageCoder is responsible for encoding and decoding ACL message

content.

• MessageReceiver listens on a TCP port for incoming byte stream.

• Envelope is used for managing ACL message envelope.

• EnvelopeCoder encodes and decodes ACL message envelope.

• ACLMessage is the class for manipulating ACL messages.

• TransportMessage serializes agent messages into byte stream to be trans-

ferred over networks.

• TCPConnection handles a connection between a sender platform and a re-

ceiver platform.

• MessageTransportProtocol is a simplified transfer protocol that utilizes a

TCPConnection for delivering byte stream representing agent messages over

networks.
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8.5.2 Realization

There are already fully implemented libraries for representing, encoding and de-

coding ACL message content as well as for encoding and decoding ACL message

envelope. We adopt libraries XMLCodec, String ACL Message Coding and Bit-

efficent ACL Message Coding to our implementation. The libraries are utilized

under the GNU Lesser General Public License (GNU99), they can be found at

(TIL12). In addition, we implement a simplified message transport protocol (MTP)

for transferring agent messages.

The process of delivering an ACL message is illustrated in Pseudo code 10. The

ACL message consisting of an envelope and a payload, they are encoded (Line 4

and Line 5) and then serialized into a byte stream (Line 6). A TCP socket connec-

tion is established between the sending and the receiving platforms. Finally, MTP

delivers the byte stream to the destination as in Line 7.

Pseudo code 10 ACL message coding and transferring

1: procedure ACLMESSAGETRANSFERRING(destination,ACLMessage)

2: envelope← ACLMessage.getEnvelope()

3: payload← ACLMessage.getPayload()

4: encodedEnvelope← EnvelopeCoder.encode(envelope)

5: encodedPayload← ACLMessageCoder.encode(payload,BitEffACLCodec)

6: byteStream← serializeByteStream(encodedEnvelope,encodedPayload)

7: mtp.deliverACLMessage(destination,byteStream)

8: end procedure

Pseudo code 11 illustrates the reverse process of message delivering. It shows

the process of receiving and decoding an ACL message from a byte stream received

by MTP. In Line 2 and Line 3, the encoded enveloped and the encoded payload are

extracted from the byte stream. Each of them is then decoded to the original for-

mat as in Line 4 and Line 5. Finally, an ACL message is created from the envelope

and the payload in Line 6.
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Pseudo code 11 ACL message receiving and decoding

1: function ACLMESSAGERECEIVING(byteStream)

2: encodedEnvelope← getEncodedEnvelope(byteStream)

3: encodedPayload← getEncodedPayload(byteStream)

4: envelope← EnvelopeCoder.decode(encodedEnvelope)

5: payload← ACLMessageCoder.decode(encodedPayload,BitEffACLCodec)

6: return new ACLMessage(envelope,payload)

7: end function

8.6 Scout Agents

A scout agent is built based on a standard agent supported by Ellipsis. It works as

an information provider for NetworkMonitor by collecting necessary information

about network status and platforms. The core function of a scout agent deals

with the event happening when the scout agent arrives at an agent platform on its

itinerary. This function is explained in Pseudo code 12.

Pseudo code 12 The behaviours of a scout agent on its arrival

1: procedure ONSCOUTARRIVAL

2: measureAverageLatency(thisP latform,allOtherP latforms)

3: updatePlatformInformation()

4: if arrive at the RegionMaster then

5: Count(split)

6: if a quorum is reached then

7: sendPlatformListToOrganizer()

8: else

9: nextnode← getNextNodeOnItinerary()

10: migrate(nextnode)

11: end if

12: else

13: nextnode← getNextNodeOnItinerary()

14: migrate(nextnode)

15: end if

16: end procedure
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On its arrival, a scout agent measures the average latency and updates the

platform’s information as in Line 2 and Line 3. The agent checks the type of

the platform in Line 4. If it is a normal platform then the scout migrates to the

next platform on its itinerary in Line 10. Otherwise, if it finishes one round of

exploration and comes back to the RegionMaster, it reads the information collected

in the list and counts the number of platforms that set split = true in Line 5. If

a quorum is reached, it sends the list of platforms to Organizer which in turn re-

organizes the region in Line 7. If not, the scout agent continues with a new round

of surveillance as in Line 14.
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Chapter 9

Evaluation of Functionality

The software prototype presented in Chapter 8 is the realization of the proposals

in Chapter 6. The implementation of the prototype is built based on the design

in Chapter 7. To validate the proposed thesis, it is necessary to evaluate the soft-

ware prototype in accordance with the criteria mentioned in Chapter 5. For this

purpose, different evaluation tests are going to be conducted to examine the prac-

ticality and efficiency of the approach as well as to assess system qualities.

Testing strategies have a significant impact on the efficiency of the evaluation

process. To evaluate such type of software, the most common sense approach

should be conducting evaluation in a real network scenario where network dy-

namics are naturally present. However, due to limitations of resources, building

a testbed resembling a real scenario is an arduous task. In addition, maintaining

and operating this type of system require a lot of personnel. Therefore, the eval-

uation will be conducted as simulation in a laboratory scale where conditions of

a real network will be imitated, without a real scenario being present. To con-

struct such a test environment, characteristics of a dynamic network are going to

be simulated with assisstance of other softwares. The laboratory scale tests are

expected to simulate probable occurrences and encompass a wide range of possi-

bilities of execution in real dynamic networks. The test’s outcomes will then be

used to evaluate functionality as well as system qualities.

In this chapter we are going to evaluate the software functionality. The aim is

to examine whether the software framework is able to fulfil the essential require-

ments regarding feasibility, being self-adaptive, and self-organizing as expected.
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9.1 System Overview

We deploy a laboratory scale test network with the presence of eight computers

connected through a local Gigabit Ethernet LAN 1000 Mbps network. Each com-

puter corresponds to an agent platform and is equipped with the software frame-

work as well as other essential softwares. The system configuration is specified

in Table 9.1. The agent platforms representing by their alias are going to be used

throughout the succeeding test scenarios.

Computer Alias OS Kernel RAM Processor

Desktop D1 Fedora 12 2.6.31 2.0 GB AMD Athlon 2.2 GHz

Desktop D2 Debian 6.0.4 2.6.32 4.0 GB Intel Xeon 2*2.0 GHz

Desktop D3 Debian 6.0.4 2.6.32 4.0 GB Intel Xeon 2*2.0 GHz

Desktop D4 Debian 6.0.4 2.6.32 4.0 GB Intel Xeon 2*2.0 GHz

Fujitsu FJ Fedora 12 2.6.31 3.0 GB Intel 2*2.8 GHz

Portégé PT Windows 7 N/A 4.0 GB Intel 2*2.4 GHz

IBM Thinkpad T1 Fedora 12 2.6.31 2.4 GB Intel 2*2.4 GHz

IBM Thinkpad T2 Windows XP N/A 1.0 GB Intel 1.7 GHz

Table 9.1: Hardware configuration of the experiments

9.2 Test Scenario 1: The Feasibility of Network Mon-

itoring

9.2.1 Preamble

Network monitoring supplies the software components with up-to-date informa-

tion about network connectivity as well as agent platform’s status. It accounts for

an integral part of the software prototype. Factors pertaining to the efficiency of

network monitoring contribute to the benefits of the software framework.

In a dynamic network environment the cost for monitoring network might be

considerably high. Monitoring activities may place a burden on the network traf-

fic, thereby reducing overall system’s performance. The implementation is beni-
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ficial only if network monitoring gains a good performance whilst maintaining a

reasonable running cost. The issues need to be examined throughtfully.

This test scenario aims to evaluate the practicality as well as the efficiency

of the network monitoring functionality. In the first place, it is necessary to in-

vestigate whether the approach is applicable to fulfil expected requirements, i.e.

monitoring network and supplying information. Afterwards, metrics related to

cost of the monitoring activities are going to be measured to verify the feasibility

of the approach.

9.2.2 Experiment Setup

Figure 9.1: Network layout for the practicality test

Figure 9.1 shows the logical connection for the first experiment. The scenario

simulates a region with n = 8 agent platforms. One scout agent is created by the

RegionMaster PT . The RegionMaster feeds the scout agent with the list of agent

platforms {D1, D2, D3, D4, FJ, PT, T1, T2}. The scout agent is deployed around

the region to gather information. One round of exploration happens when the

agent starts at the RegionMaster, travels through all nodes of the region, performs

its routine and migrates back to the RegionMaster. A round consists of h = 8 hops.

127



9. EVALUATION OF FUNCTIONALITY

9.2.3 Metrics

The following parameters are going to be measured:

• The time needed for the scout agent to accomplish its tasks at a platform:

tprocessing.

• The time needed for the agent to perform one round of exploration: texploration.

The processing time at an agent platform is the duration from when the agent

arrives until it completes its tasks and leaves for the next node. We presume that

the time delay for creating and processing a message is small and can be ignored.

As a result, the value is calculated as follows:

tprocessing = tl − ta = tRTT + td + ts (9.1)

in which

• ta is the time when the scout arrives at a platform.

• tl is the time when it leaves for the next node of its itinerary.

• tRTT is the period of time from the first ping message sent until the last

response received.

• td is the time to deserialize a scout agent from an incoming stream of byte.

• ts is the time to serialize a scout agent into a byte stream to be sent over the

network.

By measuring the processing time, we examine how fast the scout agent per-

forms its tasks at every platform.

The exploration time is given by:

texploration = tend − tbegin =
n

∑

i=1

tprocessing +
h

∑

j=1

tmigration (9.2)

where tbegin and tend are the time when a scout starts and completes one round

of exploration, respectively;
∑

tmigration is the total time that the agent migrates

through all the platforms.
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9.2.4 Experimental Results

The scout agent is deployed to visit the platforms one by one. At each agent

platform the duration from the agent arrives until it finishes its work and leaves

for the next platform is measured. This aims to analyse the processing speed of

the scout agent at a platform. By every platform, the measurement is done for 80

times. Figure 9.2 displays the experimental results for tprocessing of the platforms.

The measurement results are shown in more detail in Appendix B.

Figure 9.2: Processing time

The processing time represents the time that the agent needs to perform its

tasks at a platform following Equation 9.1. It is dependent on the processing

power of agent platforms as well as the latencies to the other platforms, which are

in turn dependent on the network connection speed. It can be seen that, except

platform T2 that has a higher processing time because of its limited processing

power (as specified in Table 9.1), the processing time for the other platforms is

considerably low. It guarantees that the processing activities place comparatively

little burden on the system performance.

To measure the average exploration time texploration, the scout agent is sent

around the network for a specific number of rounds r. Figure 9.3 presents the

measurement results for r = {100, 200, 300, 500, 1000, 2000, 3000, 5000} rounds. Ac-

cording to Equation 9.2 the exploration time is the sum of the processing time at
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all agent platforms and the migration time. This parameter demonstrates how fast

the scout agent can supply the RegionMaster with up-to-date information about

the network. If the agent needs a long time to perform its tasks at the platforms or

to hop from platform to platform, the information submitted to the RegionMaster

might be out-of-date. As a consequence, the reactions produced by RegionMaster

would not be adequate.

Figure 9.3: Exploration time

However, the measurement results show that this is not the case. In the dia-

gram in Figure 9.3, the curve represents the accumulated exploration time. The

straight line which depicts the average time for finishing one round of surveil-

lance (second/round) provides evidence that the parameter is stable, no matter

how many rounds the agent has migrated. This indicates that the scout agent

produces no overhead when it works in the long run.

The experimental results imply that the scout agent requires a reasonable pro-

cessing time. In addition, it has an acceptable migration speed so that it can finish

one round of exploration in considerable short time, thereby supplying the Re-

gionMaster with informative network’s status. This test scenario confirms that the

monitoring activities are operationally feasible in the given context. The frame-

work provides a practicable means for monitoring network. From our viewpoint,

the software framework meets the feasibility requirement.
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9.3 Test Scenario 2: Being Self-Adaptive

9.3.1 Preamble

One of the main objectives of the software prototype is to help a system working

in dynamic networks react adequately to environmental stimuli. In a region the

RegionMaster plays a central role and any deterioration in its quality may have a

negative impact on the overall system’s performance. Given that the RegionMaster

suffers a degradation that makes it no longer suitable to accomplish the tasks of

a central node, it is necessary to find a substitution for it. Being self-adaptive is

an important feature of the software framework, the platform colony should be

able to take appropriate measures to counteract adverse effects happening to the

RegionMaster.

9.3.2 Experiment Setup

The logical network layout for this experiment is depicted in Figure 9.4. A scout

agent is deployed to survey the region.

Figure 9.4: Network layout for the self-adaptive test

In this test scenario, the connectivity between the RegionMaster and the re-

maining platforms is going to be degraded using software. This aims to investi-
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gate the countermeasures of the system given that the quality of the connection

to the RegionMaster has declined. Since the RegionMaster is responsible the man-

agement of the whole region, the deterioration adversely affects system perfor-

mance, processing speed may considerably slow down. Given the circumstances,

it is expected that the platform colony is able to re-organize and recover from the

degradation.

In this experiment, simulation of the occurrence of connectivity degradation

is required. A certain network traffic between the RegionMaster and the other

platforms will be created, resulting in a smaller bandwidth left to the remaining

platforms. For the purpose of creating network traffic, we utilize the open source

software Iperf (NLA12). This tool is used for measuring throughtput and per-

formance of a network. It can also be used to produce both TCP and UDP data

streams over networks; data sent by the client will be received and eventually

discarded by the server.

Figure 9.5: The employment of the traffic generator Iperf

Figure 9.5 is an expansion of the gray ellipse depicted in Figure 9.4. The Re-

gionMaster plays the role of an Iperf client and agent platform D1 is the Iperf

server. This figure illustrates how Iperf is employed to generate network traffic be-

tween the RegionMaster FJ and D1. The bandwidth created by Iperf will occupy

a certain amount of the whole bandwidth. As a result, the bandwidth available to

other applications will be decreased proportionally.

The command in Listing 9.1 is executed at the Iperf server to instruct it to listen

for incoming traffic on TCP port 5001.
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Listing 9.1: Iperf command at the server side

$ iperf -s

where

• iperf is the command name.

• −s stands for ”server”.

Listing 9.2 shows the command at the client side and its corresponding ef-

fect. This command causes the client to connect to the Iperf server IP address

10.35.12.117 on port 5001 and send data to the server for a duration of 5 seconds.

Listing 9.2: Iperf command at the client side

$ iperf -c 10.35.12.117 -i 1 -t 5

------------------------------------------------------------

Client connecting to 10.35.12.117, TCP port 5001

TCP window size: 16.0 KByte (default)

------------------------------------------------------------

[ 3] local 10.35.12.96 port 44162 connected with 10.35.12.117 port

5001

[ ID] Interval Transfer Bandwidth

[ 3] 0.0- 1.0 sec 108 MBytes 902 Mbits/sec

[ 3] 1.0- 2.0 sec 109 MBytes 914 Mbits/sec

[ 3] 2.0- 3.0 sec 109 MBytes 915 Mbits/sec

[ 3] 3.0- 4.0 sec 108 MBytes 908 Mbits/sec

[ 3] 4.0- 5.0 sec 109 MBytes 918 Mbits/sec

[ 3] 0.0- 5.0 sec 543 MBytes 911 Mbits/sec

where:

• iperf is the command name.

• −c indicates client, 10.35.12.117 is the IP address of the Iperf server.

• −i is the interval that Iperf prints out the metrics.

• −t defines the time in seconds that the test executes.

Figure 9.6 shows the traffic and bandwidth produced by Iperf for different time

durations d = {10, 20, 30, 40, 50, 60} seconds.
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Figure 9.6: Network traffic and bandwidth produced by Iperf

9.3.3 Experimental Results

Since Iperf consumes a certain bandwidth on the connection between the Region-

Master and the rest of the region, there is smaller bandwidth left for other applica-

tions. As a result, each agent platform will experience effects from the traffic gen-

erator. The latencies between the platforms and the RegionMaster grow sharply.

These changes are sensed by the scout agent every time it visits the platforms.

Every platform sets the value split based on the ratio τavg/τRM ; where τavg is

the average latency and τRM is the latency to the RegionMaster, respectively. In

this experiment the splitting threshold is set to τavg/τRM < 50%. That means:

split =

{

true, if τavg/τRM < 50%

false, otherwise
(9.3)

In a real network scenario this parameter, however, needs to be fitted with

environmental characteristics. Table 9.2 shows the ratio and the corresponding

value split for every platform. At the end of a round of exploration, the scout agent

goes back to the RegionMaster and submits information it collected. Based on this

information, the RegionMaster makes a decision. Since most of the platforms set

the value split to true the region is splitted.
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Platform D1 D2 D3 D4 FJ PT T1 T2

τavg/τRM (%) 47,8 47,6 37,5 27,5 — 37,5 44,4 29,7

Split true true true true false true true true

Table 9.2: Metrics measured at the time of self-organizing

The new region structure is depicted in the central part of Figure 9.7. There is

only one platform staying at the old region, this is the RegionMaster. The remain-

ing nodes join the new region with D2 promoted to be the new RegionMaster. In

this case, an adaptation has been made, the old RegionMaster relinquishes its lead-

ership in the only-one platform region and becomes an inferior node of the new

region. Eventually, a new region emerges from the original region. The layout of

the new region is depicted at the right-most part of Figure 9.7.

Figure 9.7: Exchange in role of the command node

Figure 9.8 displays the latency to the RegionMaster τRM of every platform in

three stages. For a platform, the left column is the latency before Iperf is activated;

the middle column represents the time while Iperf is operating and the right col-

umn is the latency of the platform after the self-adapting process has occurred.

In the beginning and while Iperf was working FJ was the RegionMaster so
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Figure 9.8: Latencies to the RegionMaster in different points in time

τRM(FJ) = 0. Similarly, after D2 has taken its job as the RegionMaster τRM(D2) =

0. As usual expected, while Iperf is being executed, the latencies to the Region-

Master measured for every platform increase significantly. However, once D2 takes

over as the RegionMaster, the latencies decrease proportionally.

Figure 9.9: Average latencies in different points in time
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Figure 9.9 shows the average latencies τavg of every platform in three stages:

Before Iperf is executed, while Iperf is being executed and after the adaptation

has been made. These latencies also shift in the same pattern as by τRM . Before

additional bandwidth was produced, the average latencies had been at a normal

level. While Iperf was operating the latencies rose markedly. After the region has

been restructured, these values resume to a normal level. It can be seen that the

network monitoring activities supply the framework with up-to-date information

about network situation, thereby facilitating the decision making process.

The metrics measured after the splitting took place are shown in Table 9.3.

The ratio τavg/τRM of every platform has increased and is well above the threshold

50%; all the platforms set split = false. The metrics suggest that the swap in

role of the RegionMaster from FJ to D2 brings a more stable connectivity to

every platform compared to that of the old arrangement, right after Iperf started

producing bandwidth.

Platform D1 D2 D3 D4 FJ PT T1 T2

τavg/τRM (%) 150 — 133 83,3 83,3 100 88,9 83,3

Split false false false false false false false false

Table 9.3: Metrics measured after the adaptation has been made

This test scenario demonstrates that the framework is able to detect degra-

dations in connectivity of the RegionMaster once they occurred. Based on the

information gathered by the scout agent, the framework provides the system with

a measure to adequately overcome the problem that adversely affects the Region-

Master. As shown in the experimental results, the countermeasures appear to be

effective since they help the platform colony to promote a new equilibrium in con-

nectivity between the platforms. The connection qualities from a platform to the

RegionMaster as well as from a platform to the others have been improved. From

our perspective, this test validates that the software framework principally fulfils

the self-apdative requirement.
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9.4 Test Scenario 3: Self-Organizing

9.4.1 Preamble

In dynamic networks of the SpeedUp-Type, it is a common occurrence that a group

of agent platforms leaves other platforms of the same region and swarms onto

a new location, causing the connectivity to change correspondingly. Under the

circumstances, maintaining a fixed logical connection between the abandoning

platforms and the stationary platforms would not be an optimal solution. We

are convinced that it is more sensible to re-organize the colony to adapt to the

new structure. The abandoning platforms should form a new region while the

stationary platforms group into a second region. The ability of a platform colony

to re-organize given that the correlation between the members has changed, is

essential. A reasonable re-organizing manoeuvre helps facilitate a harmonious

correlation between the platforms, thereby balancing network load and saving

processing time.

9.4.2 Bandwidth Shaping

In Test Scenario 2, Iperf has been used to generate traffic over networks. The

created traffic occupies a portion of the whole bandwidth. It is not possible to

use Iperf to limit bandwidth for a specific service in a server whilst leaving other

services unaffected. Such a task, however, can be performed by traffic shaping.

In network applications, a service is identified by the combination of an IP ad-

dress and a network port. A traffic shaper controls network bandwidth by delaying

traffic to meet pre-defined requirements. A traffic can be precisely allotted to a ser-

vice by referring to the service’s identification. By traffic shaping, two important

factors for a service are determined: a minimum usable bandwidth (MiUB) and

a maximum usable bandwidth (MxUB). The MiUB is the guaranteed bandwidth

that the service can consume. The MxUB is the bandwith that the service can

reach as long as there is free bandwidth available (BHea05).
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9.4.3 Experiment Setup

The logical network layout for this test scenario is depicted in Figure 9.10. In

the beginning, platform D2 with the IP address 10.35.14.185 is configured as the

RegionMaster. A scout agent is deployed to survey the region.

Figure 9.10: The network layout and bandwidth shaping imposed on ping

services

The traffic shaper which is comprised of the software packages tc (traffic con-

trol), iptables and iproute in Linux distributions provides us with a convenient way

to throttle bandwidth. In this test scenario, this traffic shaper is used to regulate

the traffic of the ping messages exchanging service between the RegionMaster and

the platforms {D1, FJ, PT, T1, T2} on TCP port 3242. This aims to simulate the

occurrence when the platforms, together, move far away from the RegionMaster

and swarm onto a new location, resulting in a decrease in the corresponding band-

widths. It is expected that the platforms with a large latency to the RegionMaster

will group to form a new region.

Listing 9.3: Parameters for bandwidth shaping

Destination IP Address: 10.35.14.185

Destination Port: 3242

Rate: MiUB

Ceil: MxUB

Listing 9.3 presents the parameters and values assigned in an executable script

at every platform of the set {D1, FJ, PT, T1, T2} to shape the outgoing traffic to
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the RegionMaster. A full script for bandwidth shaping is given in Appendix A.

Table 9.4 lists the corresponding values MiUB and MxUB for every connec-

tion representing by the circled numbers depicted in Figure 9.10. Only the con-

nections from {PT, T2} to the RegionMaster D2 are allocated the maximum band-

width, i.e. 1000 Mbps.

Connection (1) (2) (3) (4) (5) (6) (7)

MiUB (Mbps) 0,512 1 2 20 54 1000 1000

MxUB (Mbps) 1 2 3 30 60 1000 1000

Table 9.4: Bandwidth allotted to the ping service of the platforms to the Re-

gionMaster

It should be noted that the change in bandwidth defined in Table 9.4 is exclu-

sive to the connections on TCP port 3242 from the platforms to the RegionMaster,

IP address 10.35.14.185. Other services whose bandwidth is not throttled can use

the normal bandwidth, i.e. 1000 Mbps.

9.4.4 Experimental Results

While bandwidth shaping is being activated, there are changes in network connec-

tivity within the region. Table 9.5 displays the metrics recorded by the scout agent

before the splitting occurs.

Platform D1 D2 D3 D4 FJ PT T1 T2

τavg/τRM (%) 14,8 — 16,8 15,7 38,9 75,0 29,4 120,0

Split true false true true true false true false

Table 9.5: Metrics measured before the self-organizing takes place

The platform colony re-organizes to react to the changes in network band-

width. Since more than a half of the agent plaforms set split = true, the re-

gion is bisected. Two regions emerge from the original region. Figure 9.11 de-

picts the splitting process, those platforms with a ratio τavg/τRM ≥ 50% namely

{D2, PT, T2} group into Region 1; Region 2 is made of the platforms with τavg/τRM <

50% i.e. {D1, D3, D4, FJ, T1} and D1 is appointed to the RegionMaster.
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Figure 9.11: The self-organizing process of the platform colony

Table 9.6 and Table 9.7 display the metrics measured for Region 1 and Re-

gion 2 after splitting, respectively. According to the metrics shown in the tables,

both Region 1 and Region 2 benefit from the splitting, the ratio τavg/τRM grows

markedly and exceeds the threshold 50%. As a result, all the platforms reset split

to false.

Platform D2 PT T2

τavg/τRM (%) — 75,0 83,3

Split false false false

Table 9.6: Metrics measured after splitting in Region 1

Platform D1 D3 D4 FJ T1

τavg/τRM (%) — 75,0 100 87,5 83,3

Split false false false false false

Table 9.7: Metrics measured after splitting in Region 2

The average latencies measured for every platform are shown in Figure 9.12.
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For each agent platform, the first column represents the average latency before

the bandwidth for ping service is throttled as specified in Table 9.4. The sec-

ond column is the average latency measured while bandwidth shaping is work-

ing. The third column is the average latency for the corresponding platform af-

ter the self-organization has been conducted. Since the connection between D1

and the RegionMaster D2 has a small bandwidth i.e. MiUB = 512Kbps and

MxUB = 1Mpbs, the average latency during bandwidth shaping increases con-

siderably compared to that when bandwith was not yet throttled. However, after

the self-organizing has taken place, the corresponding latency resumes to a normal

state. The latencies of the remaining platforms change likewise.

Figure 9.12: Average latencies

The measured metrics show that after the network connectivities degrade, the

self-organizing process helps the platform colony improve connection quality sig-

nificantly. This test scenario along with the test presented in Section 9.3 supports

the hypothesis that the software framework is able to assist the system to react ap-

propriately to changes happen in the surrounding environment; the deployment

of the honey bee inspired mechanism in the network brings benefit to the platform

colony. In our judgement, the features demonstrate that the software framework

complies with one of the essential requirements that we have been aiming for: the

ability to self-organize in a changing environment.
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Chapter 10

Evaluation of System Quality

This chapter presents the experimental results for the evaluation of system quali-

ties regarding fault tolerance and reliability. Fault tolerance and reliability are the

key facets of the software prototype. Fault tolerance means the whole system is

able to operate even some of the member agent platforms disconnect. It avoids

a single point of failure and prevents defects from spreading out. In the worst

case, when the disconnection escalates, the system is able to degrade gracefully.

Reliability means the location of a mobile agent is always found, the sender agent

knows where the receiver agent stays, even when the RegionMaster has failed.

However, reliability does not mean that an ACL message is always able to reach

its target. An ACL message can be delivered to its recipient only if there exists a

connection between the sender and the receiver.

10.1 Test Scenario 4: Fault Tolerance in Network

Management

10.1.1 Preamble

Fault tolerance accounts for a crucial part of the overall reliability of systems work-

ing in dynamic networks. In a dynamic environment, every agent platform is sus-

ceptible to network failure and a master node is no exception. A region of agent

platforms relies much on its RegionMaster to operate. A failure of the Region-
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Master may lead to a breakdown of the whole region. The ability of the software

framework to provide up-to-date information about the status of the incumbent

master node is intrinsic to a good performance. To avoid a single point of failure,

redundancy has been employed; a second platform is used to test the availabil-

ity of the RegionMaster. Whenever the RegionMaster goes haywire, the observing

platform can detect the failure and takes over as the RegionMaster, so that system’s

operation is not interrupted.

In this test scenario, we are going to investigate how efficient is the measure

in achieving system tolerance.

10.1.2 Experiment Setup

Figure 10.1 depicts the logical network layout for this test scenario. There are

eight agent platforms, i.e. {D1, D2, D3, D4, FJ, PT, T1, T2}. Initially platform D2

works as the RegionMaster and platform D3 is configured as the reserve Region-

Master. The reserve RegionMaster detects the presence of the RegionMaster by

regularly sending inquiry messages. A scout agent is used to survey the region.

Figure 10.1: Network layout for the fault tolerance test

A failure of the RegionMaster is simulated by removing it from the network.

This can be done either by turning off its JBoss AS or by blocking TCP port 2205

for exchanging inquiry messages with the reserve RegionMaster.
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It is expected that the reserve RegionMaster will take over as the RegionMaster

once it discovers that the platform is no longer available. The duration from when

the RegionMaster is out of service until the reserve RegionMaster becomes the

RegionMaster and deploys scout agents, thereby resuming the whole region to a

normal state, will be measured.

10.1.3 Experimental Results

We investigate the reaction of the system by gradually shutting down the incum-

bent master node. There are four occurrences as follows:

Occurrence 1: The RegionMaster D2 is manually disconnected from the net-

work by blocking TCP port 2205 as depicted on the left part of Figure 10.2. The

reserve RegionMaster D3 takes over as the RegionMaster. Once D3 starts to work

as a RegionMaster, it deploys a scout agent to survey the region and appoints D4

as the new reserve RegionMaster. Platform D4 starts to send inquiry messages to

D3 to detect its presence. The new network layout is shown on the right part of

Figure 10.2.

Occurrence 2: D3 is removed from the network, resulting in the promotion

of D4 to the post of the master node as illustrated in Figure 10.3. D4 sends a scout

agent to survey the region which now has six platforms, i.e. {D1, D4, FJ, PT, T1, T2}.

It also assigns the task of a reserve RegionMaster to D1. The new network layout

is depicted on the right part of Figure 10.3.

Occurrence 3: D4 is deactivated and D1 takes over as the RegionMaster. There

are five platforms in the region {D1, FJ, PT, T1, T2} as shown on the right part of

Figure 10.4. T1 is selected as the new reserve RegionMaster.

Occurrence 4: Figure 10.5 depicts the last occurrence in this experiment.

The RegionMaster D1 is removed from the network and T1 promotes itself to

the new RegionMaster. Four platforms are now present in the region, they are

{FJ, PT, T1, T2}.

The occurrences signify that the framework is able to help the whole system

recover once failure has happened. Right after the incumbent master node fails,

the reserve node undertakes its tasks, deploys a new scout agent, votes a reserve

RegionMaster, thereby resuming region’s normal routines.
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Figure 10.2: Occurrence 1: D2 stalls, D3 becomes the RM

Figure 10.3: Occurrence 2: D3 stalls, D4 becomes the RM

Figure 10.4: Occurrence 3: D4 stalls, D1 becomes the RM

Figure 10.5: Occurrence 4: D1 stalls, T1 becomes the RM
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To examine the efficiency of the measure, it is necessary to explore the correla-

tion between the platforms once a change comes into effect. For an occurrence, the

average latencies and the latencies to the RegionMaster after the takeover occurs

are measured. To get a more reliable result, a time measurement test is executed

15 times for every platform.

In the beginning, there are eight agent platforms working and the region is

in a normal state. The metrics measured for Occurrence 0 which corresponds to

this initial state of the region can be considered as a basis for comparison for the

succeeding occurrences.

Table 10.1 and Table 10.2 present the metrics for the platforms in all occur-

rences. Table 10.1 shows the latencies to the RegionMaster. In this table, the first

column represents the mean value of the latencies to the RegionMaster tRM , the

second column is the standard deviation σ of the sampled data. A cell with the

content ”*” indicates that the corresponding platform is the RegionMaster and a

cell with the content ”—” means the platform is no longer available.

Occurrence

(0) (1) (2) (3) (4)

Platform tRM σ tRM σ tRM σ tRM σ tRM σ

D1 7,71 2,37 4,85 2,03 6,57 3,15 * * — —

D2 * * — — — — — — — —

D3 8,21 2,22 * * — — — — — —

D4 3,64 0,84 5,71 3,17 * * — — — —

FJ 4,21 0,89 3,92 0,91 4,50 0,65 4,85 0,77 5,07 0,73

PT 3,57 1,08 4,00 0,78 6,57 3,25 2,64 0,74 4,14 0,53

T1 4,50 0,94 5,21 1,31 6,00 2,50 2,64 0,49 * *

T2 4,71 0,91 5,92 1,54 7,00 3,18 4,07 1,63 4,64 0,49

Table 10.1: Latencies to the RegionMaster

The measurement results presented in Table 10.1 imply that by each occur-

rence, after a new master node takes up its job, every platform can gain a normal

connectivity to the RegionMaster.

147



10. EVALUATION OF SYSTEM QUALITY

Table 10.2 displays the average latencies for the agent platforms. At a platform,

the measurement is done likewise in 15 times. Like in Table 10.1, for an occur-

rence the first column is the mean value of the average latencies of a platform to

the other platforms tavg; the second column σ represents the standard deviation of

the measured values. The content ”—” signifies that the corresponding platform

already failed.

Occurrence

(0) (1) (2) (3) (4)

Platform tavg σ tavg σ tavg σ tavg σ tavg σ

D1 3,71 0,61 4,64 1,44 3,71 0,61 4,42 0,64 — —

D2 9,50 2,95 — — — — — — — —

D3 8,42 1,34 6,85 1,40 — — — — — —

D4 2,64 0,63 5,00 1,61 8,92 1,63 — — — —

FJ 3,57 0,75 4,64 0,84 3,42 0,64 4,64 0,49 3,50 0,75

PT 3,50 0,65 5,57 1,34 3,28 0,46 3,21 0,42 4,21 0,80

T1 4,21 0,70 4,07 0,61 3,78 0,42 3,42 0,51 3,57 0,51

T2 5,14 0,77 4,50 0,94 4,57 0,85 5,42 0,85 5,85 0,86

Table 10.2: Average latencies

The results shown in this table support the argument that after a new mas-

ter node takes up its job, the region can reach a new equilibrium, the member

platforms have a stable mutual connectivity.

The duration from the master node fails until the reserve node resumes re-

gion’s operation is called the recovery time. Table 10.3 presents the recovery time

measured for the occurrences.

Occurrence (1) (2) (3) (4)

RegionMaster D2 D3 D4 D1

reserve RM D3 D4 D1 T1

Recovery time (ms) 4 7 8 5

Table 10.3: Recovery time by the occurrences
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For every occurrence the reserve RegionMaster can detect the disappearance of

the incumbent RegionMaster and swiftly take up its job. This guarantees that the

system’s operation is not interrupted once failure has occurred. There is always a

node that undertakes the network management tasks for the whole region. This

attribute is particularly useful for agent platforms working in dynamic networks.

This test scenario shows that the software framework can assist the platform

colony to maintain normal operation in an unstable network environment. Based

on the occurrences as well as their corresponding metrics regarding connection

quality, it is our view that the software framework generally conforms to the fault

tolerance requirement.

10.2 Test Scenario 5: Reliability and Efficiency in

Message Transferring

10.2.1 Preamble

It has been shown that the delivery of an ACL message from a mobile agent to

another mobile agent consists of two phases: looking for the agent’s location and

sending the byte stream containing the message over networks. To find the tar-

geted mobile agent, the platform hosting the sender agent queries the Region-

Master. In our approach, with the employment of redundancy a substitution for

a RegionMaster can be made whenever it becomes inoperative as already demon-

strated in Test Scenario 4. This guarantees that the location of a mobile agent is

always found no matter whether the RegionMaster fails or not. Nevertheless, an

ACL message can be delivered to its destination only if there exists a connection

between the sender and the receiver platforms. That means, if either of the two

platforms loses connection to the network then the transmission cannot be done.

As illustrated in Figure 7.19, before being transmissed, an ACL message is

encoded in two levels: envelope encoding and ACL content encoding. The two

parts are then serialized into a byte stream and the byte stream is transmissed

over the network. At the recipient side, the two parts are then extracted from

the received byte stream. They are then decoded to the original format. Finally,
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the message is saved into the message cache of the recipient platform. Message

coding and transferring are expected to have a reasonable running cost, thereby

facilitating reliability in message transferring. To validate the suitability of the

transmission model for working in dynamic networks, it is necessary to evaluate

the performance of message coding and transferring.

10.2.2 Experiment Setup

The network layout for this experiment is illustrated in Figure 10.6. ACL messages

are sent to random mobile agents. The message envelope of an ACL message is en-

coded and decoded using XMLCodec. The content of an ACL message is encoded

and decoded using two ACL message coding techniques: String ACL Message En-

coding (FIP02b) and Bit-efficient ACL Message Encoding (FIP02a). Since the same

coding method is used for encoding message envelopes, we can use the measure-

ment results to evaluate the performance of the two ACL message content coding

techniques. Two independent tests are conducted to measure the performance of

the two ACL message encoding techniques.

Figure 10.6: Network layout for transferring messages

To use as a basis for comparison, an additional test is conducted. A byte ar-

ray stream (BAS) of the same size with the ACL message used in the two tests

for evaluating message encoding techniques is sent from the same sender to the
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same destination platform. We perform evaluation for different message sizes

s = {10000, 20000, 50000, 100000, 200000} bytes. For each message size category,

the content of the message and that of the byte stream are identical. The time

from when an ACL message is encapsulated at the sender, transmissed and until it

is received at the recipient is measured. Similarly, the time for transferring BASs

is also measured for comparison.

The time for transferring an ACL message is calculated as follows:

tACLtransfer = tlocation query + tencode + ttransfer + tdecode (10.1)

The time for transferring a BAS is solely the time the byte stream needs to

reach the destination.

tBAStransfer = ttransfer (10.2)

10.2.3 Experimental Results

Figure 10.7: Time measurement for transferring messages

Figure 10.7 shows the measurement results for the three performance tests.

As usual expected the transmission of a native byte stream BAS takes the shortest
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time to finish. The transmission of ACL messages using String ACL Message En-

coding takes the longest time. By this transmission, the transferring time grows

exponentially when message size increases. By contrast, the transmission of ACL

messages that uses Bit-efficient ACL Coding takes a much shorter amount of time.

In addition, the transferring time is less affected by message size. Compared with

the transmission of a BAS, the gap between the two lines which is the total time for

searching location, encoding and decoding is small. The measurement results sug-

gest that Bit-efficient ACL Message Encoding gains a good computing performance

as it needs a low cost for encoding and decoding ACL message content.

Along with Test Scenario 4, in this test scenario, we prove that the software

framework provides a means to search mobile agent’s location as well as to de-

liver ACL messages at an acceptable cost. The feature is intrinsic to successful

transmission of agent messages in dynamic networks. We come to the conclu-

sion that the software satisfies the basic requirements concerning reliability and

efficiency in message transferring.
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Chapter 11

Conclusions and Outlook

Communication has been identified as an essential element in mobile agent sys-

tems. Our research was motivated by a mobile agent system working in networks

for rescue forces in a mass casualty incident. In this type of networks, connection

instability militates against successful transmission of agent messages. To facili-

tate message transmission, it is necessary to organize the logical connection among

agent platforms in an operationally feasible manner. Our work aims to develop a

communication model for mobile agent systems that is able to deal with the in-

herent dynamics of modern networks. We suggested applying self-organization to

the community of agent platforms.

A look at nature provided us with a way to solve the problem. We found inspi-

ration from the honey bee colony where honey bees have a special mechanism to

reach self-organization. The organization of the whole colony is done through the

interaction among thousands of bees. The behaviours of honey bees inspire us to

employ the self-organizing model on the colony of agent platforms. We proposed

a solution to a network management mechanism where network organizing tasks

are performed in an autonomous manner.

Like in the honey bee colony where honey bees fly and search for food sources,

mobile agents are sent over the network to gather network and platform infor-

mation. Information collected by mobile agents gives a base for managing the

network. Each agent platform plays a contributory role in organizing the region.

A final decision to re-organize the network is made based on a consensus of the

platforms. In a platform colony, though the master node plays an important role,
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it is replaceable. Thanks to a failure detector, whenever it fails a second platform

can substitute for it and system’s operation is not interrupted. Based on the exist-

ing mobile agent system Ellipsis, the software prototype for an adaptive model for

mobile agent communication has been designed and implemented.

To validate the proposed thesis, the software prototype was deployed to run

in a system of a laboratory scale where conditions of a real dynamic network had

been simulated using various software tools. The first three tests demonstrated

that the software prototype provides the system with the ability of being self-

adaptive. It helps the system to react adequately to environmental stimuli as well

as to take suitable measures to counteract unexpected network degradation. By

the last two test scenarios, given that network failure happened, the system can

achieve fault tolerance and maintain a reasonable processing cost for message

coding and transferring. From our perspective, the software framework meets the

basic goals.

In the test scenarios, some parameters have been defined and they may be valid

only for a laboratory scale system, e.g. τavg/τRM < 50% for the splitting threshold.

Nevertheless, in a real network environment, these parameters might no longer be

applicable and need to be adapted to suit the characteristics of the environment.

We recommend performing a learning phase in which all environmental factors

are thoughtfully analysed to produce appropriate thresholds. In addition, though

the software framework basically complies with the principal objectives, obviously

there is a room for improvement. The failure detecting model used in the imple-

mentation works well in the given test scenarios. However in a real scenario it

needs to be enhanced. There is also another aspect that is important, given that

the platforms fail en masse, the whole platform colony needs to find a consensus

and eventually votes a new master node. Finally, security shall also be taken into

account, since in our implementation this issue has been left open.

It is our firm belief that the honey bee inspired model cannot only be utilized

for mobile agent systems. It can also be applied in other types of P2P network,

where it is necessary to network member nodes in a flexible manner. The model

can be used to solve other types of problems in network management, such as for

discovering resources in P2P networks.
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Appendix A

Bandwidth Shaping Script

The script in Listing A.1 is executed in platform D3 to shape bandwidth on TCP

3242 to the RegionMaster D2 (IP 10.35.14.185) as illustrated in Figure 9.10.

Listing A.1: Bandwidth shaping script

#!/bin/bash

# Name of the traffic control command.

TC=/sbin/tc

IPTABLES=/sbin/iptables

SERVICE=/sbin/service

MiUB=1mbit # Minimum Usable Bandwidth

MxUB=2mbit # Maximum Usable Bandwidth

PORT=3242 # TCP Port 3242

# The network interface on which we are going to control bandwidth

IF=eth0 # Interface

# IP address of the machine we are controlling

IP=10.35.14.185 # The IP address of the targeted host

start() {

# Hierarchical Token Bucket (HTB) is used to shape bandwidth.

$TC qdisc add dev $IF root handle 1: htb

$TC class add dev $IF parent 1: classid 1:1 htb rate $MiUB ceil

$MxUB prio 0

$TC filter add dev $IF parent 1: protocol ip u32 match ip dport

$PORT 0xffff match ip dst $IP classid 1:1
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A. BANDWIDTH SHAPING SCRIPT

$IPTABLES -t mangle -A POSTROUTING -o $IF -p tcp --dport $PORT -j

MARK --set-mark 6

}

# Stop bandwidth shaping.

stop() {

$TC qdisc del dev $IF root

$IPTABLES -t mangle -D POSTROUTING -o $IF -p tcp --dport $PORT -j

MARK --set-mark 6

}

exit 0

In Appendix B, tables B.1, B.2, B.3, B.4, and B.5 show the processing time

measured for the platforms displayed in Figure 9.2. The measurement test has

been executed in 80 times for every agent platform. For each table, the first row -

printed in bold - represents the sequence test number. The next rows represent the

corresponding measurement for each of the platforms {D1, D2, D3, D4, FJ, PT, T1, T2}.
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Appendix B

Processing Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D1 181 143 102 54 66 72 67 52 54 79 56 52 81 52 77 53

D2 144 86 94 87 73 62 77 78 60 51 63 91 80 66 66 60

D3 115 87 120 101 91 68 111 96 58 77 70 125 69 59 118 58

D4 111 136 124 77 121 56 49 80 56 112 53 50 63 57 51 74

FJ 91 76 69 188 60 80 69 83 69 82 71 66 65 98 90 68

PT 62 47 47 47 94 47 219 62 78 47 47 78 63 62 63 47

T1 119 98 84 92 82 85 161 118 71 81 110 192 70 88 120 80

T2 141 133 134 152 138 99 252 102 110 165 103 159 157 146 137 110

Table B.1: Measurement results sequences from 1 to 16
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

D1 56 57 60 53 52 74 56 58 54 55 48 80 87 52 53 55

D2 69 76 68 73 55 60 59 52 57 83 85 101 63 74 175 52

D3 67 92 73 53 66 70 74 72 75 86 95 68 69 55 52 82

D4 47 105 48 53 50 56 46 63 60 59 57 94 53 58 59 65

FJ 59 70 64 63 74 68 291 68 59 69 93 97 104 63 61 62

PT 78 62 47 47 47 63 47 47 62 63 47 47 47 47 47 93

T1 83 71 82 120 76 71 69 84 93 78 98 84 179 91 75 67

T2 133 120 128 118 170 144 141 107 100 107 125 128 158 181 115 194

Table B.2: Measurement results sequences from 17 to 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

D1 48 51 51 53 89 60 57 59 64 59 64 81 78 91 49 54

D2 93 57 79 55 83 70 87 65 69 65 56 71 75 71 79 69

D3 71 50 71 137 103 73 73 51 210 69 51 51 87 72 56 75

D4 54 73 47 96 55 69 54 54 88 60 54 57 59 93 54 50

FJ 62 66 99 61 65 71 70 61 91 63 64 60 100 56 73 80

PT 93 94 78 94 62 47 47 62 93 46 47 110 47 94 47 47

T1 62 76 73 173 166 72 76 66 78 176 78 87 115 108 198 80

T2 146 99 116 224 129 110 104 121 123 109 155 98 96 105 141 239

Table B.3: Measurement results sequences from 33 to 48

1
7

0



49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

D1 96 54 56 52 54 67 170 55 97 73 86 56 93 52 50 86

D2 62 66 62 69 77 153 69 61 60 67 64 73 61 73 69 84

D3 68 63 55 71 53 57 71 92 58 50 83 54 54 82 61 93

D4 48 51 63 74 52 64 51 57 48 51 83 51 62 48 64 53

FJ 63 72 69 64 63 73 73 66 89 72 72 63 86 101 75 101

PT 47 47 63 62 47 47 109 47 62 63 63 94 187 78 47 124

T1 76 76 103 80 72 78 79 70 77 116 106 88 79 96 67 86

T2 152 159 137 121 159 153 122 106 130 86 128 96 219 145 94 111

Table B.4: Measurement results sequences from 49 to 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

D1 59 64 54 47 59 180 52 55 56 50 52 89 48 86 55 74

D2 55 175 81 69 67 66 98 63 53 66 64 82 60 65 68 65

D3 75 60 59 49 75 102 103 57 73 80 61 74 65 74 55 62

D4 48 57 50 59 61 48 77 49 50 55 73 46 66 51 64 57

FJ 222 69 69 79 72 100 98 65 63 60 82 71 62 70 62 66

PT 156 47 47 93 62 62 94 47 47 46 78 187 63 47 47 187

T1 102 89 81 87 81 72 80 120 79 71 109 74 98 90 75 68

T2 118 147 111 116 109 150 109 110 109 119 113 108 105 95 107 249

Table B.5: Measurement results sequences from 65 to 80

1
7

1
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