There are indications that the current generation of simulation models in practical,
operational uses has reached the limits of its usefulness under existing specifications.
The relative stasis in operational urban modeling contrasts with simulation efforts in
other disciplines, where techniques, theories, and ideas drawn from computation and
complexity studies are revitalizing the ways in which we conceptualize, understand,
and model real-world phenomena. Many of these concepts and methodologies are
applicable to operational urban systems simulation. Indeed, in many cases, ideas from
computation and complexity studies—often clustered under the collective term of
geocomputation, as they apply to geography—are ideally suited to the simulation of
urban dynamics. However, there exist several obstructions to their successful use in
operational urban geographic simulation, particularly as regards the capacity of these
methodologies to handle top-down dynamics in urban systems.
This paper presents a framework for developing a hybrid model for urban geographic
simulation and discusses some of the imposing barriers against innovation in this
field. The framework infuses approaches derived from geocomputation and
complexity with standard techniques that have been tried and tested in operational
land-use and transport simulation. Macro-scale dynamics that operate from the topdown
are handled by traditional land-use and transport models, while micro-scale
dynamics that work from the bottom-up are delegated to agent-based models and
cellular automata. The two methodologies are fused in a modular fashion using a
system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of
residential location has been developed with a view to hybridization. The model
mixes cellular automata and multi-agent approaches and is formulated so as to
interface with meso-models at a higher scale