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ABSTRACT 

There are indications that the current generation of simulation models in practical, 
operational uses has reached the limits of its usefulness under existing specifications. 
The relative stasis in operational urban modeling contrasts with simulation efforts in 
other disciplines, where techniques, theories, and ideas drawn from computation and 
complexity studies are revitalizing the ways in which we conceptualize, understand, 
and model real-world phenomena. Many of these concepts and methodologies are 
applicable to operational urban systems simulation. Indeed, in many cases, ideas from 
computation and complexity studies—often clustered under the collective term of 
geocomputation, as they apply to geography—are ideally suited to the simulation of 
urban dynamics. However, there exist several obstructions to their successful use in 
operational urban geographic simulation, particularly as regards the capacity of these 
methodologies to handle top-down dynamics in urban systems.  

This paper presents a framework for developing a hybrid model for urban geographic 
simulation and discusses some of the imposing barriers against innovation in this 
field. The framework infuses approaches derived from geocomputation and 
complexity with standard techniques that have been tried and tested in operational 
land-use and transport simulation. Macro-scale dynamics that operate from the top-
down are handled by traditional land-use and transport models, while micro-scale 
dynamics that work from the bottom-up are delegated to agent-based models and 
cellular automata. The two methodologies are fused in a modular fashion using a 
system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of 
residential location has been developed with a view to hybridization. The model 
mixes cellular automata and multi-agent approaches and is formulated so as to 
interface with meso-models at a higher scale. 
 

Keywords: geocomputation, urban geography, urban simulation, urban planning, 

multi-agent systems, residential location. 
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1. Introduction 

As the field of urban simulation moves into a state of maturity, it is noteworthy that 

the pace of change in model development appears relatively sluggish. Models in 

practical use today do not seem much changed from those in use ten or even twenty 

years ago (with the exception, of course, of models developed in academic circles; 

but, even there, there is much room for improvement). There are signs that the current 

generation of urban models in operational uses has reached the limits of its usefulness 

under existing specifications. This proposition is unremarkable when we draw 

comparisons with other fields that have been established for a number of decades; 

new avenues of exploration dwindle, leaving little room for innovation. It is 

surprising, however, in the field of operational urban simulation, where cities are 

evolving and adapting at a pace that outstrips our capacity to study them in theoretical 

terms, let alone to model them. In short, the time is ripe in urban systems simulation 

for the infusion of new ideas. 

The relative stasis in operational urban modeling stands in marked contrast to 

simulation efforts in other disciplines (ecology, environmental science, biology, 

physics, economics) where techniques, theories, and ideas drawn from computation 

and the burgeoning field of complexity studies are revitalizing the ways in which we 

conceptualize, and model real-world (and hypothetical) phenomena. Many of these 

concepts and methodologies are appropriate for application to operational urban 

systems simulation. Indeed, in many cases, ideas from computation and complexity 

studies—often clustered under the collective term of geocomputation within 

geography—are ideally suited to the simulation of urban processes and the patterns 

that those processes drive. The conditions to support the operationalization of 

geocomputation models in urban planning are, to a certain extent, already there. New 

generations of spatial data have been available for developing and validating urban 

simulation models at high resolutions. New data sources now exist, as do geographic 

information systems for managing and manipulating that data. There are new 

theoretical understandings of how dynamic adaptive urban systems function as 

complex adaptive and self-organizing systems. Computing power continues to grow 

in potency and fall in price. And, critically, new simulation techniques—particularly 
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geocomputation—offer the potential for a ‘revolution’ in the way we model urban 

systems. 

However, there exist several significant barriers to the successful use of these new 

tools in operational urban simulation. If ignored, these obstacles could doom these 

new ideas to a fate reminiscent of earlier waves of large-scale urban modeling 

(Torrens & O'Sullivan, 2001). And importantly, ‘traditional’ urban simulation models 

still have a great deal to offer operational planning applications. 

This paper describes a relatively new approach to operational urban simulation; it 

describes a hybrid geocomputation model designed to support the exploration of 

‘what-if’ scenarios for urban planning, urban management, and public policy 

formation. The hybrid approach fuses ‘traditional’ simulation methodologies that 

operate at macro- and meso-levels with a ‘new wave’ of geocomputation 

methodologies at a micro-scale. To demonstrate some of the practicalities of building 

hybrid models, a prototype residential location simulation is developed, fusing 

cellular automata and multi-agent systems at the micro-scale and designed to interface 

with meso-models at higher scales. 

 

2. ‘Traditional’ urban models 

‘Traditional’ urban models, developed in the style of the spatial interaction (and, to a 

lesser extent, the spatial choice) model, were pioneered in a time in which the field of 

urban simulation—and our ideas about how cities worked—was radically different 

from current manifestations. Computing power was relatively less ubiquitous and 

sophisticated than it is today and detailed data sets were not widely available to ‘feed’ 

these models. The ‘traditional’ generation of urban simulation models has come under 

heavy criticism (Lee, 1973; Sayer, 1979; Lee, 1994). Many of these criticisms 

overlook some of the successes achieved by those models (Batty, 1979; Harris, 1994). 

However, we can identify several key weaknesses of ‘traditional’ models that still 

remain, particularly when contrasted with newer models currently being developed in 

academic contexts: their centralized approach, a poor treatment of dynamics, weak 

attention to detail, shortcomings in usability, reduced flexibility, and a lack of realism. 
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2.1. Centralized approaches 

The core components of ‘traditional’ land-use and transport models leaned heavily—

in a theoretical sense—on ideas about the city that stemmed from the Chicago School 

of urban studies (Carter, 1981). These theories were formulated, for the most part, in a 

time in which cities were quite different than their current manifestations. In terms of 

activity, the conceptualization of cities was that they were largely dominated by 

centralized modes of production. Structurally, cities were considered to be 

monocentric, organized with a dominant and often singular center that was 

surrounded by satellites of nucleated activity that orbited on the periphery, dispersing 

monotonically with distance from the urban core. 

Several techniques in ‘traditional’ urban simulation mirror this centralized 

conceptualization of urban systems. The spatial interaction (or gravity) framework, in 

particular, is heavily dependent on the idea of a centralized city. In a spatial 

interaction model, activity in an urban system is formulated as a series of flows or 

exchanges (usually trips) between origin and destination zones in a city based 

proportionally on the ‘mass’ or attractiveness of a given zone (e.g., population or 

employment) (Fotheringham & O'Kelly, 1989). 

Of course, the centralized approach is not really appropriate for many cities, 

particularly large cities. Urban areas are becoming increasingly decentralized in terms 

of activity and structure. As cities have grown progressively reliant on service 

economies, the importance of the central city as the core of activity has waned 

considerably. Largely with the exception of activities that really rely on face-to-face 

contact, activities are increasingly locating in and relocating to suburban and fringe 

locations, paralleling residential location trends. 

In a symbiotic fashion, urban structure has also been decentralizing. Urban 

infrastructure, particularly highways and utilities networks, have been developed with 

strong bias to peripheral locations compared to investment in downtown areas. Urban 

structure has unraveled, becoming more polycentric and dispersed over time (Hall, 

1983). Consequently, we have arrived at a situation where the theoretical ideas 

supporting ‘traditional’ urban models are at odds with the reality of our urban 

systems. Clearly, there is a need for models that can represent cities in a decentralized 
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and distributed manner; some techniques in geocomputation can offer this 

functionality. 

2.2. Dynamics 

In order to be truly useful—whether for operational uses or just for exploring ideas—

an urban simulation should really incorporate dynamic functionality. Models should 

be capable of capturing cities’ abilities to evolve over time. Generally, dynamics are 

poorly represented in operational urban simulations. Dynamics usually enter models 

in an indirect and implied sense. Cross-sectional data are commonly used as a proxy 

for dynamics. These data are collected for a single period in time: a snapshot. Clearly, 

this is a poor substitute, but is often the only available option. Other models are 

developed with longitudinal data, offering a series of snapshots, often separated by 

long periods of time with little information about the intervening period, e.g., data 

from the Census, which is reported on a ten-year basis. While longitudinal data are 

much richer in the information they convey, they still constitute a weak proxy for 

dynamics—a lot can happen in a city in ten years!  

Ideally, dynamics would feature more explicitly in a simulation, with system 

dynamics evolving in real or near-real time (see Gleick, 2000, for an interesting 

debate about what constitutes real time!). Some of the geocomputation techniques 

that we will discuss later incorporate dynamics in a more realistic manner and offer 

significant advantages over ‘traditional’ techniques. 

2.3. Detail 

‘Traditional’ land-use and transport models are weak in handling detail. For the most 

part, this is due to a lack of data available at fine-scale resolutions. There are two 

important attributes of detail to be considered when developing an urban simulation: 

spatial resolution and socioeconomic aggregation. 

‘Traditional’ models generally adopt the Traffic Analysis Zone (TAZ) as a minimum 

level of spatial resolution. TAZs are quite aggregate levels of geography: a medium-

size city would be divided into just a few hundred TAZs, for example (figure 1). From 

this level of geography, one can only infer information at the level of individuals or 

entity-level geographies of urban space and to do so invokes issues of ecological 
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fallacy and modifiable areal unit problems (Openshaw, 1983). Because many of the 

processes that ‘make cities work’ operate at finer resolutions, this lack of detail may, 

in some cases, be regarded as a serious limitation of ‘traditional’ models. 

The second important point when considering detail is socioeconomic aggregation. 

‘Traditional’ models commonly represent discrete socioeconomic groupings in a city 

in a relatively aggregated manner. In many cases, model developers would do well to 

disaggregate the representation of various components such as households, land-use 

categories, and employment types. Households could be nested into several 

socioeconomic groupings, land-use into a more diverse range of activities, and 

employment into a wider collection of sectors. Essentially, this involves a 

microsimulation of urban systems. 

Of course, this is difficult when there are not adequate data to support the required 

level of detail. Nevertheless, more detailed data sets are becoming available for use 

and over time they will be accessible for historical periods, enabling the calibration of 

fine-scale microsimulations. Importantly, panel data (data for individuals or 

individual households, tracked over a given time period) for activity-based travel 

models are becoming increasingly common and there is a strong need for a parallel 

level of detail on the land-use side of simulations. ‘Traditional’ techniques lose 

efficiency as the level of detail increases, specifically as the matrix of relational 

entities in the model grows. In later sections we will explore a series of 

geocomputation techniques that embrace detail in a more integrated fashion than 

‘traditional’ techniques and offer the potential for a more resourceful handling of 

detailed data. 
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Figure 1. Spatial resolution in ‘traditional’ urban simulation models: Megalopolis 

and the New York Metropolitan Statistical Area. 

 

2.4. Usability 

It is vitally important that operational land-use and transport models are developed 

with the end-user in mind. In particular, models should be developed in such a way 

that makes them easier for decision-makers and the public to digest. Usability has 

long been a concern in other areas of applied science (e.g., human-computer 

interaction in computing; see Preece, 1994), but has often been weakly addressed in 

operational urban simulation. In many cases, users perceive simulations as ‘black 

boxes’: inputs are fed into the model and the results of calculations and operations are 

output, but the inner workings of the model may remain a mystery. This acts as a 

barrier to the efficient and appropriate use of models as decision support systems and 

impairs the ability of models to serve as exploratory tools. 

The strengthening of linkages between models and Geographic Information Systems 

(GIS) has helped somewhat in the area of usability, particularly with the 

communication and interpretation of results, but the need for an interactive 

environment for directly manipulating models still remains largely unrealized in 

operational contexts (Yeh, 1998 is a notable exception). Geocomputation techniques 

can offer vast improvements in usability over ‘traditional’ models, as we will see in 

subsequent sections. 
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2.5. Flexibility 

There are two important aspects of flexibility of relevance to urban simulation: 

scaling and modularity. It is important that land-use and transport models cater to a 

wide variety of scales, ideally in an integrated and seamless manner that is capable of 

representing the phenomena that shape urban areas at all levels from global through to 

local scales. As we have seen, ‘traditional’ models are weak in their handling of 

micro-scale phenomena. In terms of software engineering, land-use and transport 

models are generally rendered more flexible when they are modularized into a set of 

sub-models (each of which could deal with a particular subset of an urban system) and 

constituent components that can be tested independently (the compartmentalization of 

land-use and transport activity is a prime example; figure 2). There are techniques in 

geocomputation that can better facilitate modularization and lend models greater 

flexibility. The expression of models in object-oriented terms, in particular, offers the 

potential for an improved level of flexibilty (Noth, Borning, Waddell, 2000).  

2.6. Realism 

Bluntly stated, cities don’t really work the way that ‘traditional’ models would have 

us believe they do. We have already explored this in terms of ‘traditional’ tendencies 

toward centralized representations. However, there is a disparity between models and 

reality on a behavioral level also. In particular, ‘traditional’ models adopt a 

reductionist view of urban systems. For the most part, assumptions are made that 

portray cities as operating from the top down. Even the conceptual structure of 

‘traditional’ models betrays a bias in their formulation: models are often illustrated as 

flow diagrams that begin with a regional scale model and filter down to TAZ-level 

components. With the exception of a few feedback mechanisms, all of the arrows 

point downward (figure 2). The reductionist approach implies that to understand 

urban systems, it is necessary to dissect them into constituent local components from 

aggregate conditions. In many cases, this is perfectly right! However, in other 

instances it is inappropriate. Many components of urban systems (planning and public 

policy, for example) do not work in a top-down manner; on the contrary, aggregate 

conditions emerge, from the bottom-up, from the interaction of large numbers of 

elements at a local scale (Holland, 1998). In the cases of bottom-up system dynamics, 
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‘traditional’ models run in the wrong direction! Once again, there are some techniques 

in geocomputation that can help to remedy these deficiencies. 

 

3. A ‘new wave’ of urban models 

The discussion of ‘traditional’ models and their weaknesses sets the stage for the 

introduction of a ‘new wave’ of urban models, which we might denote as ‘complexity 

models’, ‘geosimulation models’, or more generally as ‘geocomputation models’. 

These models are in their relative infancy as applied to urban simulation and 

constitute a new class of simulation tools that borrow heavily from developments in 

geographic information science, artificial intelligence and artificial life, complexity 

studies, and simulation in natural sciences and social science outside of geography. 

While the use of computers and computation in urban simulation is by no means new, 

the geocomputation approach—modeling systems at the scale of individuals and 

entity level units of the built environment—is particularly innovative from an urban 

simulation standpoint.  

 

3.1. Advances in geographical information science 

Within the geographical sciences, geocomputation models have been supported by a 

flood of detailed geographic information that has become easily attainable in recent 

years. This data has been made available in a variety of media and covering 

phenomena that would not have been possible a relatively short time ago, e.g., multi-

spectral and fine-scale resolution remotely sensed data on land-use and land cover 

change in urban areas.  The provision of these data has been directly responsible for 

addressing some of the weaknesses we have just explored: a lack of detail in 

‘traditional’ models, for example. Also, it has had indirect impacts on urban 

simulation by supplying new insights into how urban systems operate, thereby 

allowing us to develop better-informed simulations. Furthermore, geographic 

information systems (GIS) have been developed to store, manipulate, and display 

spatial data. There is now a rich tradition of use of these systems in operational 

contexts. 
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Figure 2. Specification of a ‘traditional’ land-use and transport model. 

 

 

 

3.2. Object-oriented programming 

The treatment of discrete entities of urban systems, e.g., land parcels, buildings, 

administrative zones, households, and individuals, as objects has several advantages 

from a simulation standpoint. There are benefits associated with object-oriented 

programming (OOP) that remedy some of the deficiencies of ‘traditional’ models that 

we have already discussed, particularly flexibility, usability, and realism. Object-

oriented software has the advantage of being more realistic in terms of representing 

cities. The basic unit in OOP is the object (as opposed to the statement or the 

expression in procedural software). The conceptualization of pieces of inanimate code 

as objects mimics the way that we think of real world objects ourselves: as discrete 

units with associated attributes and behaviors. Indeed, in OOP data and behavior are 

integrated (unlike the case in procedural software, where they are separate). This has 
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the advantage of allowing model developers to focus on the program as a simulation 

rather than as a piece of software. Indeed, several object-oriented modules have been 

developed specifically for geographic software (Centre for Computational Geography; 

Box, 2001), and object-oriented code for entire land-use and transport models has 

been published in the public domain (Waddell, 2000a). 

3.3. Complexity studies 

Complexity studies are closely related to chaos theory (Gleick, 1987). The main idea 

in complexity is that of emergence. In emergent systems, a small number of rules or 

laws, applied at a local level and among many entities are capable of generating 

surprising complexity and often ordered patterns in aggregate form. Additionally, 

these systems are dynamic and change over time without the direction of a centralized 

executive. Complex patterns manifest themselves in such a way that the actions of the 

parts do not simply sum to the activity of the whole (Holland, 1998). Essentially, this 

means that there is more going on in the dynamics of the system than simply 

aggregating little pieces into larger units. 

Examples of emergent systems abound. For example, the liquidity of water is more 

than a simple extrapolation of characteristics that can be attributed to individual water 

molecules, which have no liquid quality in isolation (Krugman, 1996). Many urban 

systems are also complex in this sense. From the local-scale interactive behavior 

(commuting, moving) of many individual objects (vehicles, people), structured and 

ordered patterns emerge in the aggregate, such as peak-hour traffic congestion (Nagel, 

Rasmussen, Barrett, 1996) and the large-scale spatial clustering of socioeconomic 

groups by residence (Benenson, 1998). In urban economics, large-scale economies of 

agglomeration and disagglomeration have long been understood to operate from local-

scale interactive dynamics (Krugman, 1996). Also, cities exhibit several of the 

signature characteristics of complexity, including fractal dimensionality and self-

similarity across scales, self-organization, and emergence (Batty & Longley, 1994; 

Allen, 1997; Portugali, 2000). 

Complexity studies have shed new light on our thoughts regarding the inner workings 

of cities and have had profound impacts on our approach to urban simulation. 

Complexity studies point to a need for detailed, decentralized, and dynamic views of 
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urban systems. The ideas also suggest that the answer to questions of the form, ‘How 

do cities work?’ might find new answers among the myriad and evolving interactions 

of individuals and the urban spaces that they inhabit. This is a much more generative 

approach than the reductionist view that is traditionally adopted in urban studies. 

Simply dissecting cities may not provide all the answers; on the contrary, there may 

be a need to build them up from the bottom and in doing so we may learn a lot about 

how they work. This may have some direct analogies in urban simulation also; indeed 

there are modeling techniques in geocomputation that work exactly on these 

principles, chiefly cellular automata (CA) and multi-agent systems (MAS). 

3.4. Cellular automata and multi-agent systems 

In terms of urban simulation, CA are perhaps best used to represent the dispersal of 

activity and characteristics between discrete spatial units of urban infrastructure. MAS 

may be more suited to simulating urban population as collectives of individuals with 

associated behaviors and traits and the capacity for spatial mobility and 

communication. 

Cellular automata were originally pioneered in computing (Sipper, 1997) but have 

since seen uses in a wide variety of fields, including urban studies (Batty, Couclelis, 

Eichen, 1997; Torrens, 2000a). A cellular automaton is a finite state machine (an 

engine of sorts) that exists in some form of tessellated cell-space. The term automaton 

refers to a self-operating machine, but one of a very distinct nature: “An automaton is 

a machine that processes information, proceeding logically, inexorably performing its 

next action after applying data received from outside itself in light of instructions 

programmed within itself.” (Levy, 1992, p.15) Additionally, CA are parallel 

automata: more than one automaton is active at any given instance. CA are comprised 

of five components. The lattice of CA is the space in which they exist. This might be 

considered equivalent in an urban context to an environment, a landscape, or a 

territory. The lattice can also be generalized to represent urban spatial structures, 

networks of accessibility, the physical structure of the city, etc. CA cells represent the 

discrete confines of individual automata. They are the elemental building blocks of a 

CA, just like individual land parcels or buildings in a city. CA cells are, at any time, 

in a particular state. The cell state offers a flexible framework for encoding attributes 

of a city into an urban simulation model, e.g., land-use, density, land cover, etc. 
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Neighborhoods are the localized regions of a CA lattice (collections of cells), from 

which automata draw input. Neighborhoods in an urban CA might represent spheres 

of influence or activity, e.g., market catchment areas, commuting watersheds, etc. The 

real driving force behind CA are transition rules. These are simply a set of 

conditional statements that specify the behavior of cells as CA evolve over time. The 

future conditions of cells are decided based on a set of fixed rules that are evaluated 

on input from neighborhoods. CA rules can be devised to mirror how phenomena in 

real cities operate. Additionally, we might discern a sixth component to CA—time—

that is generally discrete and proceeds in iterative steps. 

CA offer a range of advantages for urban simulation and in several ways they remedy 

particular deficiencies of ‘traditional’ models. CA can be designed with attention to 

detail. They are inherently spatial and decentralized. They are dynamic, as well as 

being intuitively useful and behaviorally realistic. Additionally, they have a “natural 

affinity” with raster data and GIS (Couclelis, 1997), as well as OOP. CA also provide 

a mechanism for linking micro- and macro-approaches and for connecting patterns 

with the processes that produce them. 

While CA are most suitable, in urban simulation contexts, for representing 

infrastructure, MAS are better used to model population dynamics. MAS also have 

origins in computer science, although their development post-dates that of CA by 

some years. Most commonly, MAS are used in computing as artificial intelligence 

systems or artificial life forms (Kurzweil, 1999). Additionally, there are ‘species’ of 

agents that serve as network bots, webcrawlers, and spiders (Leonard, 1997). Network 

agents are used to navigate computer information networks, to ‘mine’ data, retrieve it, 

and return it to human users. There is also a tradition of using software agents to 

explore entomological behavior (Bonabeau, Dorigo, Theraulaz, 1999) and the actions 

of agents in economic systems and markets (Luna & Stefansson, 2000). 

Agents are quite similar to automata in their formulation but have less well-defined 

characteristics. They constitute pieces of software code with certain attributes (states) 

and behaviors (rules) (see Ferber, 1999 for a general introduction to intelligent 

software agents). They differ from CA in their spatial mobility: agents can be 

designed to navigate (virtual) spaces with movement patterns that mimic those of 

humans, while CA are only capable of exchanging data spatially with their 
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neighborhoods. Additionally, agents can be given functionality that allows them to 

evolve over time, altering their attributes and behavior with the help of genetic 

algorithms (Mitchell, 1998). 

MAS are excellent tools for representing mobile entities in urban environments, e.g., 

people, households, vehicles, etc. They have been used in urban contexts to simulate 

pedestrian movement in dense urban environments (Schelhorn, O'Sullivan, Haklay et 

al., 1999; Dijkstra, Timmermans, Jessurun, 2000) and relocating householders 

(Benenson, 1998). However, their application to urban studies has not been as 

widespread as that of CA, despite offering the advantages for urban simulation. Like 

CA, MAS are easily programmed in OOP environments, as well as offering 

advantages in terms of detail, flexibility, dynamics, usability, and behavioral realism. 

 

4. The need for hybrid models 

Even though CA and MAS are very suitable to the simulation of urban systems and 

despite the fact that they offer significant advantages over ‘traditional’ models, there 

are simply some things that they cannot represent well, most notably systems that 

operate from the top-down. In urban contexts there are several systems and 

mechanisms that operate in this manner, including constraints such as planning 

restrictions and global level phenomena such as socioeconomic shocks. In light of 

these and other considerations, there is a convincing argument for developing hybrid 

models for real-world urban planning and management and the formation of public 

policy, as well as for academic inquiry. 

An approach that is based purely on CA or MAS is weaker than a more combined 

effort would be. Urban ‘cells’ do not simply mutate like bacteria in a lab experiment 

(O'Sullivan & Torrens, 2000); the characteristics of the urban infrastructure change 

over time because of human intervention within and around them. Similarly, cities are 

more than the people that inhabit them; there is a built environment that they 

influence and are, in turn, shaped by. Also, there are phenomena that operate above 

the scale of individuals and the urban fabric, such as regional economics, national 

geopolitical systems, weather, etc. CA and MAS are not well equipped to model these 

macro-level systems. 
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To focus purely on a ‘new wave’ of urban models would ignore a rich history and 

methodology of ‘traditional’ models that have been developed and applied to cities 

over many years. CA and MAS are new ideas and have not been fully tested in real-

world contexts. Additionally, there is the problem of ‘legacy’ systems: very many 

planning agencies have elaborate and expensive systems in operational use already, 

formulated under the influence of ‘traditional’ methodologies. A ‘new wave’ of 

models could not hope to simply sweep the existing simulation infrastructure aside, 

nor would that be prudent. It would be much better to work within existing simulation 

infrastructures, to interface with ‘traditional’ models and supplement them rather than 

supplanting them. 

 

5. A conceptual design for a hybrid geocomputation model 

With the foregoing considerations in mind, we now present a conceptual framework 

for a model designed as a hybrid geocomputation environment for real-world land-use 

and transport planning. The framework merges approaches from geocomputation (CA 

and MAS) with ‘traditional’ simulation techniques, offering a suite of tools for 

modeling urban systems. Macro-scale dynamics that operate from the top-down are 

handled by ‘traditional’ land-use and transport models, while micro-scale dynamics 

that work from the bottom-up are delegated to geocomputation models. The two 

methodologies are fused in a modular fashion using a system of constraining feedback 

mechanisms. In section 6 a prototype model for simulating residential location 

dynamics is presented, demonstrating how geocomputation models can be designed 

with this sort of framework as a consideration. 

Hybrid models are not new to urban simulation. Most ‘traditional’ operational urban 

models are hybrids consisting of separate modules for handling land-use (location 

decisions, development and redevelopment, market-clearing) and transport (potential 

demand and trip generation, trip distribution, modal split, trip assignment; figure 2). 

Moreover, hybrid geocomputation models are not new! White, Engelen, and 

colleagues have developed a comprehensive hybrid simulation environment using CA 

and more ‘traditional’ simulation techniques for operational uses in the Netherlands 

and elsewhere (White & Engelen, 1997; White & Engelen, 2000). 



 18 

So, how does our conceptual design differ from that of related work? Essentially, our 

model is designed to do mostly the same things, and goes about it in a roughly similar 

fashion (figure 3). There are some important differences however. Our model is 

formulated so as to interface with systems that are already used in planning agencies. 

The micro-scale models we are developing can be viewed as a logical extension of the 

‘traditional’ model design. This interface could, conceptually, constitute a simple 

exchange of data between models, a set of constraints operating from the top-down or 

from the bottom-up, or the connection could be more tightly coupled through 

integrated modeling or feedback mechanisms. Our design uses MAS at the micro-

scale, closely merged with a CA environment. Individuals in this design are 

represented explicitly as agents, while sites are modeled as CA. The algorithms that 

drive dynamics at the micro-scale are also designed so as to be as compatible as 

possible with existing systems commonly in real-world use in many planning 

agencies. Wherever feasible we use methodologies already tried and tested in 

operational simulation, particularly ideas from urban economics and decision theory; 

the goal is to make the connection with ‘traditional’ models as seamless as possible. 

The model is designed in a highly modular fashion and as such has the potential to be 

highly flexible. Modeling of land-use and transport is separated (although the two 

approaches are linked via feedback mechanisms) because the two systems require 

quite different treatment, both in a theoretical sense and in terms of designing 

simulations. For the purposes of this discussion, we will focus on the land-use 

component of the model. The ‘traditional’ tool for transport modeling is the four-stage 

model (figure 2), but there are quite a rich range of methodologies for 

microsimulation of transport (Ben-Akiva & Bowman, 1998) and there are several 

innovative geocomputation approaches to traffic simulation (Nagel, Beckman, 

Barrett, 1999). 

The land-use component of the simulation environment is divided into three sets of 

models: those dealing with macro-level, meso-level, and micro-level subsystems 

(figure 3). We are not necessarily concerned with building models at the macro- and 

meso-scales as there are several such models currently in existence and in operational 

uses in urban planning and management (Torrens, 2000b). However, it is important to 

consider such systems when developing interface tools that operate at the micro-scale. 
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Standard regional science models are used to establish ‘seed’ conditions for the model 

at the macro-scale. Generally, such models are split between simulating economic and 

demographic transition (Isard, 1975). This section of the model operates at very 

coarse levels of spatial and socioeconomic resolution. Geographically, it deals with 

large metropolitan regions, or perhaps with collections of such regions. On a 

socioeconomic level, employment and economic activity is divided into only a few 

key sectors, while demographics are handled at the level of a few household types. At 

the meso-level, the simulation is divided by activity. Land and real estate 

development is modeled on the demand and supply sides, with market-clearing 

mechanisms to reconcile the two. A land-use transition model simulates the dispersal 

of activity in the urban infrastructure. The location decisions of households, office 

employment activities (finance, real estate, and insurance), and (non-service) industry 

are handled by meso-scale location models. The meso-scale models simulate at an 

intermediate level of spatial and socioeconomic resolution. Geographically, the lowest 

level of detail is that of the TAZ or local economic submarket (a neighborhood or 

district within a city, for example). The micro-level models pick up where the meso-

scale models have left off (figure 4). Conceptually speaking, they take constraint 

values from higher-level models and ‘distribute’ them to entity level units of the built 

infrastructure or individuals. Equally, they could be formulated to operate in the 

opposite direction, supplying constraints for higher-level models, or perhaps work in a 

bi-directional fashion. The micro-scale infrastructure is represented as a CA 

‘landscape’, which we populate with life-like agents. Various components affecting 

land-use dynamics are modeled: the supply of and demand for real estate (mediated 

by development agents); land-use transition; and relocating households, offices, and 

industries. We have developed one of the micro-scale components: a model for 

residential location. In section 6 we will report a prototype model that demonstrates 

how the micro-level modules are constructed and how they work. 
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Figure 3. Conceptual design of a hybrid model. 
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Figure 4. From macro- to micro-scales: Megalopolis to New York Metropolitan 

Statistical Area to Lower Manhattan to Times Square. 

 

 

6.  A prototype residential location model 

As a proof-of-concept exercise, we have built one component of the micro-scale scale 

simulation environment: a residential location module. The model is designed to 

simulate the residential location process from the standpoint of individual homebuyers 

and sellers, as well as the sites that they are exchanging. The model is formulated as a 

MAS-CA hybrid. The micro-scale model interfaces with its ‘big brother’—a meso-

scale residential location model (figure 3). The meso-scale model provides a set of 

‘seed’ conditions for the micro-model. Total attribute values for a single 

neighborhood (which you might think of as a local residential submarket) are thus 

‘known’ at the start of the model. At various stages in the evolution of the micro-

model, we can ‘feed’ it more of this data, which in turn may be used to constrain the 

behavior of the micro-model (somewhat like checking its progress over time). (The 
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process could potentially operate the other way around, with the micro-model serving 

as a constraint on the higher-level meso-model.) Essentially then, the micro-model 

takes output from the meso-model and assigns it to individuals and individual 

residences within a given local submarket. For the purposes of this discussion, we 

have developed a working prototype, without a meso-level interface. We have also 

built the model with abstract data for a single and hypothetical submarket, although 

we hope to test the simulation with real data. 

There are three main components to the micro-model: sites (the urban infrastructure), 

agents (the population inhabiting or visiting those sites), and globals (various storage 

bins for capturing conditions in the inner workings of the model). 

Sites are formulated as a cellular automata ‘landscape’, however there are only a few 

transition rules applied to the sites and this is done simply to manipulate their state 

variables over time; there are no dispersal mechanisms in the model (although this 

may be added at a later stage, allowing the infrastructure to evolve over time, e.g., to 

gentrify). Each site represents a particular piece of real estate with attributes as listed 

in Table 1. Currently a value is assigned to a property in an abstract manner, although 

this could be reformulated in such a way that the price of a given piece of real estate is 

formulated as a bundle of attributes (bathrooms, bedrooms, aspect, etc.) associated 

with the property: a so-called hedonic price. Additionally, for the purposes of 

interfacing with meso-level models, sites could have neighborhood characteristics 

added to their list of attributes, e.g., distance from a nearby center, accessibility to 

highway networks, etc. 

Two types of agents are represented in the model: homebuyers (‘mobile’ agents) and 

home sellers (‘residential’ agents). (There is also a third, ‘god’ agent that is used to 

automate tasks within the model.) The agents are designed with various attributes as 

listed in Table 1. (For the sake of parsimoniousness, residential and mobile agents are 

designed with the same attributes, although certain values may be set to null.) 

Additionally, agents are entrusted with various behaviors: a set of preferences for 

housing as well as the capacity to move over the real estate landscape and sense their 

surroundings. 
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Table 1. The attributes of objects encoded within the model. 

Sites 

Value 

Housing type 

Lot size 

Housing tenure 

Density 

Land-use 

Number of bedrooms 

Rental value 

Discounting function 

 

 

 

 

 

 

Agents 

Income 

Age 

Children 

Household size 

Ethnicity 

Inertia 

Residency 

Segregation preference 

Lifecycle stage 

Tenure preference 

Housing preference 

Housing budget 

Willingness to leave submarket 

Socioeconomic preference 

Agent type 

 

 

6.1. Calculating lifecycle stage and value platforms 

The matching of mobile agents with sites and the decisions by residential agents 

regarding when to sell their properties are driven by a set of preference functions that 

are calculated within the model. This lends agents a set of ‘likes’ and ‘dislikes’, both 

for particular types of neighborhoods, other agents, and certain types of housing. 

Based on their preference functions, mobile agents are matched with suitable homes. 

One of the key variables that determine agents’ preferences for housing is their stage 

in the lifecycle. A rich literature exists for determining the role that lifecycle 

characteristics play in the residential location process (Waddell, 2000b), as well as a 

burgeoning science of geodemographics (Longley & Harris, 1999). Depending on 

whether individuals or households are young and/or without families or in retirement, 
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their preferences for various types of housing or characteristics of individual 

properties—number of bedrooms, tenure, housing type—will change. 

Currently, our model discerns three lifecycle stages: ‘young’, ‘middle’, and ‘senior’. 

An attribute that denotes the presence of an agent in one of these lifecycle stages is 

added to their attribute profile. ‘Young’ agents are designed to represent individuals 

that have recently left the family home and are striking out on their own for the first 

time. They may be studying or working in their first full-time jobs. In the context of 

urban location, individuals at this stage in their lifecycle may well demonstrate a 

preference for central locations close to entertainment facilities. Also, we can identify 

certain housing-specific preferences; individuals at this stage in the lifecycle are more 

likely to favor apartment living than a house. 

‘Middle’ agents represent individuals that are at a stage in their lives where they may 

be beginning to start a family, or may already have started a family. Such individuals 

are bound to have different residential location requirements when compared to other 

lifecycle groups. One factor that they may find desirable, but which would be unlikely 

to feature highly in the preferences of other groups, is the presence of good schools in 

a suburban location, for example. 

‘Senior’ agents correspond to those individuals entering into retirement age, either 

without children or with children that have left home. We might consider these agents 

as representing ‘empty-nesters’. This is a tricky demographic group to model. Income 

variations may well influence the residential location behavior of ‘senior’ groups 

more than in other groups. Some may own multiple homes with quite different 

characteristics, e.g., a house in one location and a condominium in another. 

Currently, the calculation of lifecycle stage is performed quite simply in the model as 

a set of conditional statements based on age (although the potential to expand that 

calculation to incorporate other factors, along with the potential of diasaggregating the 

groupings further, is there). If agents are between the ages of 22 and 35 they are 

assigned a ‘young’ tag; between 35 and 65 they are assigned a ‘middle’ tag; and over 

65 they are regarded as ‘senior’ (agents under the age of 22 are not represented in the 

model). 
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Another important variable that needs to be calculated and assigned as an agent 

attribute is a ‘value platform’: the amount of money that an agent can spend per 

month on rent or mortgage payments. Currently, value platforms are calculated by 

simply dividing an agent’s income by 12. However, this could potentially be 

reworked as a more complicated calculation relying on other agent attributes such as 

number of children, employment, and age. 

Variables for lifecycle stage and value platform are used in conjunction with other 

agent attributes (income, age, presence of children, size of household to which the 

agent belongs, ethnicity, inertia, and period of residency) as ingredients for the 

derivation of a set of preference functions. These preference functions—coupled with 

a set of transition rules, the capacity for spatial mobility, and the ability to ‘sense’ 

their surroundings—govern the behavior of agents as the model evolves. 

6.2. Establishing preference functions 

6.2.1. Site specific preferences 

Agents are assigned a set of preferences in the model, both for specific attributes of 

sites and for the neighborhoods in which individual properties are situated. A 

preference for housing types (apartments or houses) is assigned to each agent. 

Housing preference is one of the methods that rely heavily on an agent’s lifecycle 

attribute. Depending on an individual’s stage in the lifecycle, she is likely to have a 

strong preference for a house or an apartment (regardless of whether she can afford 

it). Preference for housing is assigned to agents in the model, principally based on 

lifecycle stage. If an agent is ‘young’ its preference is for apartments. Individuals with 

families are likely to prefer houses, all other things being equal. ‘Middle’ agents with 

children are given a preference for houses, while those without are assigned 

preferences for apartments. ‘Senior’ agents are also assigned a preference for houses. 

Currently, housing preferences are deterministic, although they could be reformulated 

in a stochastic manner. 

Preferences for housing tenure (rent or own) are also assigned to agents in the model. 

‘Young’ agents are assumed to give preference to rental accommodation, while 

‘middle’ and ‘senior’ agents have a preference for owner-occupation. 
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6.2.2. Neighborhood preferences 

In addition to preferences for site-specific attributes of housing, agents are also 

assigned neighborhood-level preference functions. The implication here is that 

homebuyers and home sellers factor certain conditions of the local residential 

submarket into their location decisions, principally ethnicity and socioeconomic 

factors. (We could also add some other indicators representing the quality of the built 

environment or the availability of neighborhood-scale amenities such as recreation, 

retail, and entertainment.) 

Socioeconomic preferences are currently calculated only for mobile agents. Upon 

entering the local submarket, an agent assesses whether the neighborhood is too cheap 

or too expensive for its budget. If so, the agent moves on to another submarket; if not, 

the agent begins to evaluate individual properties in the submarket. This preference is 

calculated as follows: 

),( ecfSn = ; where }1,0{∈c  and }1,0{∈e  (i) 

1=c  if 
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Where nS  is the socioeconomic preference for neighborhood n ; c  is an evaluation of 

whether a submarket is too cheap and e  is an evaluation of whether a submarket is 

too expensive. minV  is the minimum value of housing in the neighborhood and mI  is 

the income of mobile agent m . 

Socioeconomic preferences are also calculated for residential agents, although they 

are not used as part of their decision to stay in the submarket, nor are they factored 

into the sale price of an agent’s property. This functionality could be added, however, 

allowing agents to ‘sense’ the socioeconomic decline or gentrification of their 

neighborhood. Additionally, residential agents could ‘sense’ the socioeconomic 

profile of other households in the neighborhood by examining changes in the income 

of their neighbors. 

In addition to a set of neighborhood-level socioeconomic preferences, agents are also 

designed with a level of bias towards the ethnic make-up of the neighborhoods that 
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they inhabit or evaluate as a potential home. A lot of work has been done looking at 

the geography of segregation in the housing market. Perhaps the most famous is that 

of Thomas Schelling (Schelling, 1969, 1978), which looked at how large-scale 

residential segregation could emerge from individual biases. Also, Benenson and 

colleagues have developed several influential MAS for exploring the spatial dynamics 

of residential segregation in Israel (Portugali, Benenson, Omer, 1997; Benenson, 

1998, 1999). In our model, agents are arbitrarily assigned colors (blue, red, and 

yellow) that we use to denote ethnicity. Agents of any given color have a certain 

preference for living with agents of the same or different colors. Specifically, agents 

are designed with a tolerance for living in neighborhoods with certain ethnic profiles. 

Red agents do not like to live in a neighborhood where blue agents form a majority, 

but are reasonably tolerant of living with yellow agents. Similarly, blue agents have a 

preference for living in neighborhoods where blue agents form the majority of 

householders. They do not like to be outnumbered by red agents and are ambivalent 

about the numbers of yellow agents in the submarket. Yellow agents have no bias for 

color. Cut-off values (‘tipping balances’) for these preferences are assigned as 

follows. Red agents do not like to live in neighborhoods where the proportion of the 

population that is blue exceeds 50%. Blue agents, on the other hand, will only tolerate 

living in neighborhoods up until the point where red agents constitute 33% of the 

population. 
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Figure 5. Schematic diagram illustrating the key events in the model. 
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6.3. Operationalizing the model 

An actual run of the model is organized as a series of events. Many sub-events within 

the model (such as calculations and the derivation of preference functions) occur on a 

parallel basis, but the main events in the model—setup and the initiation of model 

parameters, simulating the location process, and the updating of model parameters—

occur iteratively (figure 5). 

The first event in the model is the creation of a realistic urban infrastructure. The 

‘god’ agent is called upon to determine the location of individual sites in the model 

and to assign various infrastructure attributes to those sites. Following this, the model 

is ‘populated’ with residential agents. In this stage, ‘residential’ software agents are 

assigned to simulated property sites, to serve as in situ owner-occupiers. Once again, 

the ‘god’ agent is used to automate much of this. A given number of residential agents 

are created with blank profiles. Life-like attributes are then assigned to those agents 

and the calculations necessary to establish their preference functions are performed. 

Agents are then placed in individual homes. At this stage in the model run, the ‘seed’ 

conditions for an iteration of the model have been established; the setup phase of the 

model has been completed, and the model moves into simulating the residential 

location process. 

Before we introduce mobile agents into the simulation environment we must 

determine whether any of the residential agents would like to put their properties on 

the market. Some computations are performed and residential agents make a decision 

whether to move, based on their own conditions and their knowledge of the 

neighborhood in which they reside. If an agent decides to put its home on the market, 

the characteristics of the site variable for that particular location are updated to reflect 

that. 

Now we introduce mobile agents into the simulation. Currently only a single agent 

visits a given residential submarket at any stage in the model, but that could be 

reformulated to create an environment of competitive buying, or perhaps some more 

complicated bidding games. A mobile agent is created, assigned attribute data, and the 

calculations necessary to establish its preference functions are performed. The mobile 

agent then goes through the process of deciding whether or not the neighborhood that 
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it has entered is suitable, before evaluating individual sites. The mobile agent checks 

whether the market is too expensive for its budget, or alternatively whether it is too 

far below (50% of) its value platform. Then the agent scans the socioeconomic and 

ethnic profiles of the residential agents already residing in the submarket, and based 

on its biases will decide whether to stay in the submarket and evaluate sites, or move 

on to another submarket elsewhere. 

If the agent decides to stay, it begins to search for a home. The agent moves within 

the model space and visits the first location for sale. Once there, it ‘negotiates’ a sale 

with the residential agent. If the price of the property is amenable to both agents (and 

the characteristics of the property match the preferences of the mobile agent), the 

mobile agent will ‘move-in’, otherwise it will visit the next available property. If after 

visiting all available properties in the model, the agent has not found a home, it leaves 

the particular submarket and begins its search elsewhere. However, if the agent 

decides to buy or rent a particular property, the property is put ‘under offer’. The 

mobile agent and the residential agent trade ‘species’ tags (the mobile agent becomes 

residential and vice-versa); the residential agent is moved out of the submarket and 

the mobile agent moves into the property; and a ‘sold’ tag is assigned to that 

particular site. 

The final stage in an iteration of the model is a round of ‘spring-cleaning’. 

Dissatisfied mobile agents are sent to alternative submarkets and if a residential agent 

has not managed to sell its property it decides whether to discount the price of the real 

estate in subsequent iterations of the model. Currently, prices are discounted by 5% 

after four iterations of the model. The model then returns recursively to decide 

whether residential agents are going to move. 

6.4. Graphic user interface 

The model can be manipulated in an interactive fashion by the user through the use of 

a graphic user interface (GUI). Figure 6 shows the GUI for one particular stage in the 

run of a model. Windows for particular agents or particular sites can be called up to 

display the attributes of those objects at any given moment in the model. In figure 6 

we have displayed windows for mobile and residential agents as well as the ‘god’ 

agent. Additionally, a window for a particular site is displayed. Also, a series of 
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buttons and sliders are available to run particular events in the model and to vary the 

value of parameters that are used in model calculations, ‘on-the-fly’. A main graphics 

window is also shown, providing information on the position of sites and agents 

within the model space at any given moment. Additionally, symbols in the graphics 

window can be programmed to alter shape and color depending on the conditions of 

the attributes that they represent (in figure 6 they are colored to represent the 

‘ethnicity’ of the agents residing in those sites). The graphics window, and the 

artificial submarket that it represents, are designed to mimic how a residential 

submarket would appear in the real world (figure 7). Residential agents are situated 

within particular sites. Upon visiting the submarket, a mobile agent will travel to these 

sites and evaluate their suitability for its purposes. Additionally, we have a ‘god’ 

agent (denoted in the diagram with the letter ‘G’) that is active in automating tasks 

within the simulation, but does not partake in the residential location process. 

 

7. Future developments 

The model presented in this paper is a prototype, designed to function as a proof-of-

concept tool. Several developments and additions to the model are planned. 

Specifically, we hope to add more attributes and behaviors into the model to make the 

simulation more realistic. Some of these plans call on tried and tested methodologies 

from ‘traditional’ models, such as the reformulation of preference functions as logit 

and spatial choice models (De la Barra, 1989). The model is currently setup in a 

nested fashion with the processing of events at specific cycles in the model, but the 

specification of functions in a probabilistic fashion at each stage in the nesting would 

lend the model an added degree of realism. Also, the model is quite ‘old fashioned’ in 

its characterization of residential location behavior and we would like to explore other 

methodologies (marketing, spatial cognition, microeconomics, etc.) to find more 

suitable premises upon which we can design more life-like algorithms. 
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Figure 7.  The graphic user interface to the residential location model. 

 

 

Figure 7. Organization of the residential location model. 
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The current application of the model to a handful of sites in one particular submarket 

is, of course, quite simplistic. Linking several independent submarkets and facilitating 

the exchange of agents between them will take some further work. However, this 

should allow certain hypotheses about the residential location process (the dynamics 

of gentrification and neighborhood decline, the factors driving residential segregation, 

etc.) to be explored in an abstract fashion. Connecting the residential micro-model 

with other related micro-components such as industrial location and development 

modules is another task that we need to accomplish. Additionally, there is much work 

to be done in designing interfaces (data exchanges, constraints) with meso- and 

macro-scale models, as well as the design of feedback mechanisms between 

independent model components.  

 

8. Conclusions 

The discussion thus far has been quite optimistic about the potential of 

geocomputation techniques to revitalize operational simulation. The techniques 

themselves do certainly represent the possibility for a ‘revolution’ in the way we 

simulate urban systems. However, there are some imposing barriers to putting those 

techniques into practical use in the real world (Torrens & O’Sullivan, 2001). 

Ironically, computing power poses one of the most pressing limitations. The prototype 

that we have developed here works quite well and is efficient computationally. 

However, scaling that model up to represent an entire metropolitan area would require 

daunting levels of computing power. The only operational equivalent is the 

TRANSIMS model at Los Alamos National Laboratories, which relies on distributed 

computing clusters (Nagel, Beckman, Barrett, 1999).  

Also, there are data limitations on the development of these models for practical uses. 

Conceptually, the idea of simulating individuals and the buildings that they inhabit is 

quite appealing. However, as we discussed in section 2.3, data is not widely available 

at the scale of the individual householder or building. Also, there are several moral 

issues that arise from the use of individual-level—and often private—data in 

operational simulations. 
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Working at the micro-scale, in some cases, reveals inadequacies in the theory of how 

cities work. The micro-approach betrays some theoretical gaps in our understanding 

of the dynamics interactions that shape our urban systems. Indeed, there is some 

justification for a ‘new urban geography’ of the micro-scale. 

Furthermore, micro-scale models, particularly dynamic and process-driven 

simulations, are quite difficult to calibrate, even if data are available. In CA research, 

there are some techniques for validating the patterns that those models generate and 

or matching them with real world conditions. However, process-based calibration 

techniques are not widely available (Torrens & O'Sullivan, 2001). Organizing the 

model as a hybrid allows the possibility of scaling up the simulation to meso-scales 

for validation purposes. This is a reasonable solution, but ideally micro-models would 

be calibrated at the scale of the entity or the individual. The likely effort required to 

do this is, however, a daunting prospect. 

The point that we would like to convey in this paper, however, is that—at least 

methodologically—the techniques discussed here represent a move towards more 

theoretically sound, behaviorally realistic, and ultimately more useful simulation 

environments. As computer hardware develops and becomes cheaper and as detailed 

data become more widely available, the possibilities for applying geocomputation 

simulations in real world contexts grow. Certainly, these simulations can be 

developed as proof-of-concept tools and the methodologies can be refined in 

academic contexts in preparation for a day in which these tools can be used to plan 

and manage better cities. In the meantime, even as abstract tools, these simulations 

can do a lot for our understanding of how cities work and perhaps provide new 

insights into how we might construct a more sustainable urban future. 



 35 

References 

Allen, P M, 1997, Cities and Regions as Self-Organizing Systems: Models of 
Complexity, (Gordon and Breach Science Publishers, Amsterdam). 

Batty, M, 1979, "Progress, success, and failure in urban modeling", Environment and 
Planning A 11 863-878.  

Batty, M, Couclelis, H, Eichen, M, 1997, "Special issue: urban systems as cellular 
automata", Environment and Planning B 24.  

Batty, M & Longley, P, 1994, Fractal Cities, (Academic Press, London). 

Ben-Akiva, M & Bowman, J L, 1998, "Integration of an activity-based model system 
and a residential location model", Urban Studies 35 1131.  

Benenson, I, 1998, "Multi-agent simulations of residential dynamics in the city", 
Computers, Environment and Urban Systems 22 25-42.  

Benenson, I, 1999, "Modelling population dynamics in the city: from a regional to a 
multi-agent approach", Discrete Dynamics in Nature and Society 3 149-170.  

Bonabeau, E, Dorigo, M, Theraulaz, G, 1999, Swarm Intelligence: From Natural to 
Artificial Systems, (Oxford University Press, New York). 

Box, P, 2001, "Spatial Units as Agents: Making the Landscape an Equal Player in 
Agent-Based Simulations", in Integrating Geographic Information Systems and 
Agent-Based Modeling Techniques for Simulating Social and Ecological 
Processes, Ed. H R Gimblett (Oxford University Press, Oxford). 
http://www.nr.usu.edu/swarm/. 

Carter, H, 1981, The Study of Urban Geography, (Edward Arnold, Victoria, 
Australia). 

Centre for Computational Geography GeoTools,  Leeds. University of Leeds, School 
of Geography. http://www.ccg.leeds.ac.uk/geotools/ 

Couclelis, H, 1997, "From cellular automata to urban models: New principles for 
model development and implementation", Environment and Planning B 24 165-
174.  

De la Barra, T, 1989, Integrated Land Use and Transport Modelling: Decision Chains 
and Hierarchies, (Cambridge University Press, Cambridge). 

Dijkstra, J, Timmermans, H J P, Jessurun, A J, 2000, "A multi-agent cellular automata 
system for visualising simulated pedestrian activity", in Theoretical and Practical 
Issues on Cellular Automata, Ed. S Bandini, T Worsch (Springer-Verlag, 
London), 29-36.  

Ferber, J, 1999, Multi-Agent Systems: An Introduction to Distributed Artificial 
Intelligence, (Addison-Wesley, Harlow (UK)). 

Fotheringham, A S & O'Kelly, M E, 1989, Spatial Interaction Models: Formulations 
and Applications, (Kluwer Academic Publishers, Dordrecht). 

Gleick, J, 1987, Chaos: Making a New Science, (Penguin Books, New York). 

Gleick, J, 2000, Faster, (Abacus, New York). 



 36 

Hall, P, 1983, "Decentralization without end?", in The Expanding City: Essays in 
Honor of Professor Jean Gottmann (Academic Press, London).  

Harris, B, 1994, "The real issues concerning Lee's "Requiem"", Journal of the 
American Planning Association 60 31-34.  

Holland, J H, 1998, Emergence: From Chaos to Order, (Perseus Books, Reading, 
MA). 

Isard, W, 1975, Introduction to Regional Science, (Prentice-Hall, Englewood Cliffs, 
New Jersey). 

Krugman, P, 1996, The Self-Organizing Economy, (Blackwell, Malden, MA). 

Kurzweil, R, 1999, The Age of Spiritual Machines: How We Will Live, Work and 
Think in the New Age of Intelligent Machines, (Phoenix, London). 

Lee, D B, 1973, "Requiem for large-scale models", Journal of the American Institute 
of Planners 39 163-178.  

Lee, D B, 1994, "Retrospective on large-scale urban models", Journal of the 
American Planning Association 60 35-40.  

Leonard, A, 1997, Bots: The Origin of a New Species, (Hardwired, San Francisco). 

Levy, S, 1992, Artificial Life: The Quest for a New Creation, (Penguin Books, 
London). 

Longley, P A & Harris, R J, 1999, "Towards a new digital data infrastructure for 
urban analysis and modelling", Environment and Planning B 26 855-878.  

Luna, F & Stefansson, B, Eds, 2000, Economic Simulation in Swarm: Agent-based 
Modelling and Object Oriented Programming (Kluwer, Dordrecht). 

Mitchell, M, 1998, An Introduction to Genetic Algorithms, (MIT Press, Cambridge, 
MA). 

Nagel, K, Beckman, R J, Barrett, C L, 1999, "TRANSIMS for urban planning", LA-
UR 98-4389, Los Alamos National Laboratory, Los Alamos, NM.  

http://transims.tsasa.lanl.gov/.  

Nagel, K, Rasmussen, S, Barrett, C L, 1996, "Network traffic as self-organized 
critical phenomena", TSA-DO/SA MS-M997 and CNLS MS-B258, Los Alamos 
National Laboratory, Los Alamos, NM. http://transims.tsasa.lanl.gov/.  

Noth, M, Borning, A, Waddell, P, 2000, "An extensible, modular architecture for 
simulating urban development, transportation, and environmental impacts", UW 
CSE Technical Report 2000-12-01, University of Washington, Department of 
Computer Science and Engineering, Seattle. http://www.urbansim.org.  

Openshaw, S, 1983, The Modifiable Areal Unit Problem, (GeoBooks, Norwich). 

O'Sullivan, D & Torrens, P M, 2000, "Cellular models of urban systems", in 
Theoretical and Practical Issues on Cellular Automata, Ed. S Bandini, T Worsch 
(Springer-Verlag, London). http://www.casa.ucl.ac.uk/working_papers.htm. 

Portugali, J, 2000, Self-Organization and the City, (Springer-Verlag, Berlin). 



 37 

Portugali, J, Benenson, I, Omer, I, 1997, "Spatial cognitive dissonance and 
sociospatial emergence in a self-organizing city", Environment and Planning B 24 
263-285.  

Preece, J, 1994, Human-Computer Interaction, (Addison-Wesley Publishing, Harlow, 
England). 

Sayer, R A, 1979, "Understanding urban models versus understanding cities", 
Environment and Planning A 11 853-862.  

Schelhorn, T, O'Sullivan, D, Haklay, M, et al., 1999, "STREETS: an agent-based 
pedestrian model", CASA Working Paper 9, University College London, Centre 
for Advanced Spatial Analysis, London.  

Schelling, T C, 1969, "Models of segregation", American Economic Review 59 488-
493.  

Schelling, T C, 1978, Micromotives and Macrobehavior, (WW Norton and Company, 
New York). 

Sipper, M, 1997, Evolution of Parallel Cellular Machines: The Cellular 
Programming Approach, (Springer, Berlin). 

Torrens, P M, 2000a, "How cellular models of urban systems work", CASA Working 
Paper 28, University College London, Centre for Advanced Spatial Analysis. 
http://www.casa.ucl.ac.uk/working_papers.htm.  

Torrens, P M, 2000b, "How Land-Use and Transportation Models Work", CASA 
Working Paper 20, University College London, Centre for Advanced Spatial 
Analysis (CASA). http://www.casa.ucl.ac.uk/working_papers.htm.  

Torrens, P M & O'Sullivan, D, 2001, "Cellular automata and urban simulation: where 
do we go from here?", Environment and Planning B 28 163-168.  

Waddell, P A, 2000a, "A behavioural simulation model for metropolitan policy 
analysis and planning: residential location and housing market components of 
UrbanSim", Environment and Planning B 27 167-324.  

Waddell, P A, 2000b, "Towards a Behavioral Integration of Land Use and 
Transportation Modeling", in The 9th International Association for Travel 
Behavior Research Conference, Queensland, Australia. 
http://www.urbansim.org/Papers/. 

White, R & Engelen, G, 1997, "Cellular automata as the basis of integrated dynamic 
regional modelling", Environment and Planning B 24 235-246.  

White, R & Engelen, G, 2000, "High-resolution integrated modelling of the spatial 
dynamics of urban and regional systems", Computers, Environment and Urban 
Systems 24 383-400.  

Yeh, A G-O, 1998, "Sustainable land development model for rapid growth areas using 
GIS", International Journal of Geographical Information Systems 12 169.  

 


