771 research outputs found

    Early-stage gas identification using convolutional long short-term neural network with sensor array time series data

    Get PDF
    Gas identification/classification through pattern recognition techniques based on gas sensor arrays often requires the equilibrium responses or the full traces of time-series data of the sensor array. Leveraging upon the diverse gas sensing kinetics behaviors measured via the sensor array, a computational intelligence-based meta-model is proposed to automatically conduct the feature extraction and subsequent gas identification using time-series data during the transitional phase before reaching equilibrium. The time-series data contains implicit temporal dependency/correlation that is worth being characterized to enhance the gas identification performance and reliability. In this context, a tailored approach so-called convolutional long short-term memory (CLSTM) neural network is developed to perform the identification task incorporating temporal characteristics within time-series data. This novel approach shows the enhanced accuracy and robustness as compared to the baseline models, i.e., multilayer perceptron (MLP) and support vector machine (SVM) through the comprehensive statistical examination. Specifically, the classification accuracy of CLSTM reaches as high as 96%, regardless of the operating condition specified. More importantly, the excellent gas identification performance of CLSTM at early stages of gas exposure indicates its practical significance in future real-time applications. The promise of the proposed method has been clearly illustrated through both the internal and external validations in the systematic case investigation

    Vision-based Monitoring System for High Quality TIG Welding

    Get PDF
    The current study evaluates an automatic system for real-time arc welding quality assessment and defect detection. The system research focuses on the identification of defects that may arise during the welding process by analysing the occurrence of any changes in the visible spectrum of the weld pool and the surrounding area. Currently, the state-of-the-art is very simplistic, involving an operator observing the process continuously. The operator assessment is subjective, and the criteria of acceptance based solely on operator observations can change over time due to the fatigue leading to incorrect classification. Variations in the weld pool are the initial result of the chosen welding parameters and torch position and at the same time the very first indication of the resulting weld quality. The system investigated in this research study consists of a camera used to record the welding process and a processing unit which analyse the frames giving an indication of the quality expected. The categorisation is achieved by employing artificial neural networks and correlating the weld pool appearance with the resulting quality. Six categories denote the resulting quality of a weld for stainless steel and aluminium. The models use images to learn the correlation between the aspect of the weld pool and the surrounding area and the state of the weld as denoted by the six categories, similar to a welder categorisation. Therefore the models learn the probability distribution of images’ aspect over the categories considered

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Deep Learning with Limited Labels for Medical Imaging

    Get PDF
    Recent advancements in deep learning-based AI technologies provide an automatic tool to revolutionise medical image computing. Training a deep learning model requires a large amount of labelled data. Acquiring labels for medical images is extremely challenging due to the high cost in terms of both money and time, especially for the pixel-wise segmentation task of volumetric medical scans. However, obtaining unlabelled medical scans is relatively easier compared to acquiring labels for those images. This work addresses the pervasive issue of limited labels in training deep learning models for medical imaging. It begins by exploring different strategies of entropy regularisation in the joint training of labelled and unlabelled data to reduce the time and cost associated with manual labelling for medical image segmentation. Of particular interest are consistency regularisation and pseudo labelling. Specifically, this work proposes a well-calibrated semi-supervised segmentation framework that utilises consistency regularisation on different morphological feature perturbations, representing a significant step towards safer AI in medical imaging. Furthermore, it reformulates pseudo labelling in semi-supervised learning as an Expectation-Maximisation framework. Building upon this new formulation, the work explains the empirical successes of pseudo labelling and introduces a generalisation of the technique, accompanied by variational inference to learn its true posterior distribution. The applications of pseudo labelling in segmentation tasks are also presented. Lastly, this work explores unsupervised deep learning for parameter estimation of diffusion MRI signals, employing a hierarchical variational clustering framework and representation learning

    Combustion Feature Characterization using Computer Vision Diagnostics within Rotating Detonation Combustors

    Get PDF
    In recent years, the possibilities of higher thermodynamic efficiency and power output have led to increasing interest in the field of pressure gain combustion (PGC). Currently, a majority of PGC research is concerned with rotating detonation engines (RDEs), devices which may theoretically achieve pressure gain across the combustor. Within the RDE, detonation waves propagate continuously around a cylindrical annulus, consuming fresh fuel mixtures supplied from the base of the RDE annulus. Through constant-volume heat addition, pressure gain combustion devices theoretically achieve lower entropy generation compared to Brayton cycle combustors. RDEs are being studied for future implementation in gas turbines, where they would offer efficiency gains in both propulsion and power generation turbines. Much diagnostic work has been done to investigate the detonative behaviors within RDEs, including point measurements, optical diagnostics, thrust stands and other methods. However, to date, these analysis methods have been limited in either diagnostic sophistication or to post-processing due to the computationally expensive treatment of large data volumes. This is a result of the substantial data acquisition rates needed to study behavior on the incredibly short time scale of detonation interactions and propagation. As laboratory RDE operations become more reliable, industrial applications become more plausible. Real-time monitoring of combustion behavior within the RDE is a crucial step towards actively controlled RDE operation in the laboratory environment and eventual turbine integration. For these reasons, this study seeks to advance the efficiency of RDE diagnostic techniques from conventional post-processing efforts to lab-deployed real-time methods, achieving highly efficient detonation characterization through the application of convolutional neural networks (CNNs) to experimental RDE data. This goal is accomplished through the training of various CNNs, being image classification, object detection, and time series classification. Specifically, image classification aims to classify the number and direction of waves using a single image; object detection detects and classifies each detonation wave according to location and direction within individual images; and time series classification determines wave number and direction using a short window of sensor data. Each of these network outputs are used to develop unique RDE diagnostics, which are evaluated alongside conventional techniques with respect to real-time capabilities. Those real-time capable diagnostics are deployed and evaluated in the laboratory environment using an altered experimental setup via a live data acquisition environment. Completion of the research tasks results in overarching diagnostic capability developments of conventional methods, image classification, object detection, and timeseries classification applied to experimental RDE data. Each diagnostic is employed with varying strengths with respect to feasibility, long-term application, and performance, all of which are surveyed and compared extensively. Conventional methods, specifically detonation surface matrices, and object detection are found to offer diagnostic feedback rates of 0.017 and 9.50 Hz limited to post-processing, respectively. Image classification using high-speed chemiluminescence images, and timeseries classification using high-speed flame ionization and pressure measurements, achieve classification speeds enabling real-time diagnostic capabilities, averaging diagnostic feedback rates of 4 and 5 Hz when deployed in the laboratory environment, respectively. Among the CNN-based methods, object detection, while limited to post-processing usage, achieves the most refined diagnostic time-step resolution of 20 µsec compared to real-time-capable image and timeseries classification, which require the additional correlation of a sensor data window, extending their time-step resolutions to 80 msec. Through the application of machine learning to RDE data, methods and results presented offer beneficial advancement of diagnostic techniques from post-processing to real-time speeds. These methods are uniquely developed for various RDE data types commonly used in the PGC community and are successfully deployed in an altered laboratory environment. Feedback rates reported are expected to be satisfactory to the future development of an RDE active-control framework. This portfolio of diagnostics will bring valuable insight and direction throughout RDE technological maturation as a collective early application of machine learning to PGC technology

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    OCM 2023 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    IDENTIFICATION OF HEAT RELEASE SHAPES AND COMBUSTION CONTROL OF AN LTC ENGINE

    Get PDF
    Low Temperature Combustion (LTC) regimes have gained attention in internal combustion engines since they deliver low nitrogen oxides (NOx) and soot emissions with higher thermal efficiency and better combustion efficiency, compared to conventional combustion regimes. However, the operating region of these high-efficiency combustion regimes is limited as it is prone to knocking and high in-cylinder pressure rise rate outside the engine safe zone. By allowing multi-regime operation, high-efficiency region of the engine is extended. To control these complex engines, understanding and identification of heat release rate shapes is essential. Experimental data collected from a 2 liter 4 cylinder LTC engine with in-cylinder pressure measurements, is used in this study to calculate Heat Release Rate (HRR). Fractions of early and late heat release are calculated from HRR as a ratio of cumulative heat release in the early or late window to the total energy of the fuel injected into the cylinder. Three specific HRR patterns and two transition zones are identified. A rule based algorithm is developed to classify these patterns as a function of fraction of early and late heat release percentages. Combustion parameters evaluated also showed evidence on characteristics of classification. Supervised and unsupervised machine learning approaches are also evaluated to classify the HRR shapes. Supervised learning method ( Decision Tree)is studied to develop an automatic classifier based on the control inputs to the engine. In addition, supervised learning method (Convolutional Neural Network (CNN)) and unsupervised learning method (k-means clustering) are studied to develop an automatic classifier based on HRR trace obtained from the engine. The unsupervised learning approach wasn\u27t successful in classification as the arrived k-means centroids didn\u27t clearly represent a particular combustion regime. Supervised learning techniques, CNN method is found with a classifier accuracy of 70% for identifying heat release shapes and Decision Tree with the accuracy of 74.5% as a function of control inputs. On rule based classified traces with the use of principle component analysis (PCA) and linear regression, heat release rate classifiers are built as a function of engine input parameters including, Engine speed, Start of injection (SOI), Fuel quantity (FQ) and Premixed ratio (PR). The results are then used to build a linear parameter varying (LPV) model as a function of the modelled combustion classifiers by using the least square support vector machine (LS-SVM) approach. LPV model could predict CA50(Combustion phasing), IMEP (indicated mean effective pressure) and MPRR (maximum pressure rise rate) with a RMSE of 0.4 CAD, 16.6 kPa and 0.4 bar/CAD respectively. The designed LPV model is then incorporated in a model predictive control (MPC) platform to adjust CA50, IMEP and MPRR. The results show the designed LTC engine controller could track CA50 and IMEP with average error of 1.2 CAD and 6.2 kPa while limiting MPRR to 6 bar/CAD. The controller uses three engine inputs including, SOI, PR and FQ as manipulated variables, that are optimally changed to control the LTC engine
    • …
    corecore