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Abstract

Recent advancements in deep learning-based AI technologies provide an automatic

tool to revolutionise medical image computing. Training a deep learning model

requires a large amount of labelled data. Acquiring labels for medical images is

extremely challenging due to the high cost in terms of both money and time, espe-

cially for the pixel-wise segmentation task of volumetric medical scans. However,

obtaining unlabelled medical scans is relatively easier compared to acquiring labels

for those images.

This work addresses the pervasive issue of limited labels in training deep learn-

ing models for medical imaging. It begins by exploring different strategies of en-

tropy regularisation in the joint training of labelled and unlabelled data to reduce the

time and cost associated with manual labelling for medical image segmentation. Of

particular interest are consistency regularisation and pseudo labelling. Specifically,

this work proposes a well-calibrated semi-supervised segmentation framework that

utilises consistency regularisation on different morphological feature perturbations,

representing a significant step towards safer AI in medical imaging. Furthermore,

it reformulates pseudo labelling in semi-supervised learning as an Expectation-

Maximisation framework. Building upon this new formulation, the work explains

the empirical successes of pseudo labelling and introduces a generalisation of the

technique, accompanied by variational inference to learn its true posterior distribu-

tion. The applications of pseudo labelling in segmentation tasks are also presented.

Lastly, this work explores unsupervised deep learning for parameter estimation of

diffusion MRI signals, employing a hierarchical variational clustering framework

and representation learning.



Impact Statement

The semi-supervised segmentation methods proposed in this thesis can help to re-

duce the time required to obtain imaging biomarkers for downstream tasks. For ex-

ample, in pharmaceutical companies, imaging biomarkers acquired with our meth-

ods can enable clinical scientists to more quickly identify the endpoints of drug tri-

als. Similarly, the proposed methods can be used in industries such as self-driving

cars and other computer vision-based tasks.

In addition to the direct use of the proposed methods, it is also possible to

utilise their components. For instance, the proposed consistency regularisation

could be employed to improve the calibration of models for future, safer medi-

cal AI systems or other critical real-life applications. The proposed hierarchical

variational clustering framework could also be utilised for reconstruction in hyper-

spectral imaging.



Acknowledgements

First and foremost, I would like to thank my primary supervisor Dr Joseph Jacob. I am for-

ever in his debt for many things, from offering me this PhD, to unconditionally supporting

and guiding me in difficult times. I am also extremely appreciative of his open-mindness

in letting me explore my own research interests. Thank you Joe, your wisdoms will be my

life lessons. I would like to thank my second supervisor, Prof. Daniel Alexander. I need to

thank Danny for being such an inspirational leader in the field and for letting me join the

CNS group meeting. Thank you Danny for creating this environment. I would also like to

thank my third supervisor, Dr Neil Oxtoby. Thank you Neil for being a very good co-author

that never bails out at a 2 am deadline. I would never make those conference submissions

without your help. I also need to thank my GSK supervisors, Mr. Fred Wilson and Dr.

Marius de Groot, for their diligent supports. I apologize to both of you for always bothering

you with GSK laptop issues. This PhD wouldn’t be fiscally possible without you.

I was as well very fortunate to have two legends in our field as my VIVA examiners,

Prof. Julia Schnabel and Prof. Matthew Clarkson. Thank you Julia and Matt, for your

meticulous scrutiny of my thesis.

My special thanks goes to my amazing collaborators. I learnt so much from every

single one of you, in no particular order: Mr. Yukun Zhou, Dr. Paddy Slator, Dr. Yipeng

Hu, Dr. Chen Jin, Dr. Ryutaro Tanno, Dr. Ashkan Pakzad and Miss. An Zhao. Thank

you for helping me to complete my half baked ideas and thank you for letting me join your

interesting projects. I will never forget about the days of inspiring fruitful discussions and

hardcore working before the deadlines. I would also like to thank everyone at CMIC for

making the office a fun working environment, and my other friends from old times.

Lastly, I thank my parents in China for raising me and supporting me for my education.



Contents

1 Introduction 18

1.1 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Publications Covered in this Thesis . . . . . . . . . . . . . . . . . . 19

1.4 Publications Not Covered in this Thesis . . . . . . . . . . . . . . . 20

2 Clinical Background 22

2.1 Imaging Biomarkers in Drug Discovery . . . . . . . . . . . . . . . 22

2.2 Lung and Idiopathic Pulmonary Fibrosis (IPF) . . . . . . . . . . . . 23

2.3 Idiopathic Pulmonary Fibrosis . . . . . . . . . . . . . . . . . . . . 24

2.4 Treatment and Diagnosis of IPF . . . . . . . . . . . . . . . . . . . 26

2.5 Clinical markers for IPF disease progression . . . . . . . . . . . . . 26

2.6 Imaging markers for IPF disease progression . . . . . . . . . . . . 27

2.6.1 Emphysema . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Lung volume . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Pulmonary vascular structures . . . . . . . . . . . . . . . . 30

2.6.4 Traction bronchiecasis . . . . . . . . . . . . . . . . . . . . 30

2.7 Limitations of the existing quantification tool . . . . . . . . . . . . 30

2.8 Change of the research focus of this PhD . . . . . . . . . . . . . . . 31

3 Machine Learning Background Information 33

3.1 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Definitions of probability and events . . . . . . . . . . . . . 33



Contents 7

3.1.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Derivations of Mean and Variance . . . . . . . . . . . . . . 35

3.1.4 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.5 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . 38

3.1.6 Expectation Maximization . . . . . . . . . . . . . . . . . . 39

3.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 XOR problem . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Brief introduction of deep learning . . . . . . . . . . . . . . 42

3.2.3 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.6 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.7 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . 50

3.2.8 Training tricks . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Deep Learning for Medical Image Segmentation . . . . . . . . . . . 52

3.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . 54

3.3.2.1 SSL in Classification . . . . . . . . . . . . . . . 55

3.3.2.2 SSL in Segmentation . . . . . . . . . . . . . . . 55

3.3.2.3 Mutual Information and entropy minimisation . . 56

4 MisMatch: Calibrated Segmentation via Consistency on Differential

Morphological Feature Perturbations with Limited Labels 58

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Background: ERF and the foreground . . . . . . . . . . . . 65

4.4.2 Architecture of Mismatch . . . . . . . . . . . . . . . . . . 67

4.4.3 Positive Attention Shifting Block . . . . . . . . . . . . . . 67

4.4.3.1 ERF size in Positive Attention Shifting Block . . 68



Contents 8

4.4.4 Negative Attention Shifting Block . . . . . . . . . . . . . . 68

4.4.4.1 ERF size in Negative Attention Shifting Block . . 68

4.4.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Data sets & Pre-processing . . . . . . . . . . . . . . . . . . 70

4.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Visualisation of the effectiveness of Learnt Attention Masks . . . . 77

4.8 Confidence and Calibration of Mismatch . . . . . . . . . . . . . . . 80

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Expectation-Maximization Pseudo Labelling for Segmentation with

Limited Annotations 83

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Label scarcity: one major bottleneck of deep learning in

medical imaging . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Brief review of semi-supervised learning . . . . . . . . . . 85

5.2.3 Motivations and contributions . . . . . . . . . . . . . . . . 87

5.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Pseudo Labelling . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Semi-supervised learning in medical image segmentation . . 89

5.4 Pseudo Labelling As Expectation-Maximization . . . . . . . . . . . 90

5.4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Pseudo labels as latent variables . . . . . . . . . . . . . . . 90

5.4.3 E-M Pseudo Labelling . . . . . . . . . . . . . . . . . . . . 91

5.4.4 On the convergence of Pseudo Labelling from the perspec-

tive of EM . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents 9

5.5 Generalisation of Pseudo Labels via Variational Inference for Seg-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 Confidence threshold as latent variable . . . . . . . . . . . 95

5.5.2 Variational E-step . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 The connection between Bayesian Pseudo Label and Variational

Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7.4 Pre processing Of the Labels For Multi-Class Segmentation 101

5.7.5 Segmentation performances . . . . . . . . . . . . . . . . . 101

5.7.6 Ablation studies on hyper-parameters . . . . . . . . . . . . 104

5.7.7 Ablation studies on the prior of Bayesian Pseudo Labels . . 107

5.7.8 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7.9 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Deep Variational Parameter Mapping: Applications of Unsupervised

Representation Learning to MRI parameter estimation 110

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Probabilistic model on jointly estimating across all voxels . 113

6.3.2.1 Univariate Gaussian prior . . . . . . . . . . . . . 114

6.3.2.2 Gaussian Mixture Prior . . . . . . . . . . . . . . 115

6.3.3 MRI models . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Contents 10

6.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Discussion on learnt distributions of latent variables . . . . . . . . . 120

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions and Future Work 122

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.3 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.4 Comparison between MisMatch and Bayesian Pseudo Labels 123

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.3 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.3 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Research Paper Declaration Form (Chapter 4) 127

B Research Paper Declaration Form (Chapter 4) 130

C Research Paper Declaration Form (Chapter 5) 133

D Research Paper Declaration Form (Chapter 5) 136

E Research Paper Declaration Form (Chapter 6) 139

Bibliography 142



List of Figures

3.1 Figure of AND, OR and XOR gate . . . . . . . . . . . . . . . . . . 40

3.2 One of the solutions for XOR with 2-layer perceptron, as shown in

forward pass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Different strategies for consistency regularisation. (a) Previous

methods [1, 2, 3] use hand-crafted augmentation at input level to

create predictions with different confidences. (b) Previous method

[4] uses hand-crafted augmentation at feature level to create predic-

tions with different confidences. (c) Our method end-to-end learns

to create predictions with different confidences. . . . . . . . . . . . 60

4.2 Cluster assumptions in semi supervised classification and semi su-

pervised segmentation. (a) In classification, limited labels will

cause wrong decision boundary (red straight line), where each dot

is an image. (b) In classification, cluster assumption with consis-

tency regularisation on input level perturbations at images helps

to find a better decision boundary, because low density regions of

images align well with the correct decision boundary. (c) In seg-

mentation, limited labels will cause wrong decision boundary (red

straight line), where each dot is a pixel. (d) In segmentation, cluster

assumption with consistency regularisation on input level pertur-

bations at pixels will not help to find a better decision boundary,

because low density regions of pixels do not align with the correct

decision boundary (tight boundaries between objects). . . . . . . . . 62



List of Figures 12

4.3 Strong data augmentations (e.g. shearing) change pixel-wise labels

therefore they might make pixel-wise consistency regularisation not

feasible for segmentation. . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 MisMatch (U-net based): decoder fd1 leads to dilated high confi-

dence detection of foreground and decoder fd2 leads to eroded high

confidence detection of foreground. The final prediction is the av-

erage between outputs of fd1 and fd2. Any other encoder-decoder

segmentation network could be used. . . . . . . . . . . . . . . . . . 66

4.5 Expected calibration error [5] against accuracy in 10-fold cross-

validation experiments on 50 labelled slices with CARVE. Y-axis:

IoU. X-axis: ECE. Each calibration error is calculated from the gap

between the confidence and accuracy for each testing image. Each

data point in this figure is one testing image. The fitted 2nd order

trends of our MisMatch are flatter than U-net, meaning MisMatch

is more robust against the calibration error. . . . . . . . . . . . . . . 72

4.6 Full results of 10 fold cross-validation on CARVE. X-axis: number

of labelled slices. Y-axis: IoU . . . . . . . . . . . . . . . . . . . . 73

4.7 Ablation studies on decoder architectures, cross-validation on 5 la-

belled slices with CARVE. MM is ours. . . . . . . . . . . . . . . . 75

4.8 Visual results. Yellow: ground truth. Red: False Positive. Green:

True Positives. Blue: False Negatives. Row 1-4: CARVE. Row 5-6:

BRATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Results on LA 2018 between UA-MT and MisMatch with 2 labelled

cases, lr 0.01, batch 4, consistency 1 and network width 8. This

further confirms that consistency regularisation on feature perturba-

tions is more effective than consistency on input perturbations. . . . 77

4.10 Visulisation of predicted certainty of the foreground in the last posi-

tive attention shifting decoder and the last negative attention shifting

decoder. We focus on the zoomed-in regions on the foreground area

containing one vessel. . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Figures 13

4.11 Reliability diagrams [5] from experiments on 50 labelled slices with

CARVE. Blue: Confidence. Red: Accuracy. Each row is on one

testing image. X-axis: bins of prediction confidences. Y-axis: ac-

curacy. Column 1: U-net. Column 2: outputs of positive attention

decoders. Column 3: outputs of negative attention decoders. Col-

umn 4: average outputs of the two decoders. The smaller the gap

between the accuracy and the confidence, the better the network is

calibrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Comparison between pseudo labelling approach (SegPL) and the

other approaches. Pseudo labelling approaches enjoy simplicity in

implementation including corresponding benefits such as scalibility

and robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Pseudo-labelling process for binary segmentation. Pseudo-label y′n

is generated using unlabelled data xu and model with parameters

from last iteration θ . Therefore, pseudo-labelling can be seen as the

E-step in Expecation-Maximization. The M-step updates θ using

y′n, y and data X . In our 1st implementation, namely SegPL, the

threshold T is fixed for selecting the pseudo labels, which is the

original pseudo labelling, as an empirical approximation of its true

generalisation. In our 2nd implementation, namely SegPL-VI, the

threshold T is dynamic and learnt via variational inference, which

is an learnt approximation of its true generalisation. . . . . . . . . . 87

5.3 Comparison between BPL and VAE in details. For BPL, only the

unsupervised learning part is illustrated. . . . . . . . . . . . . . . . 98

5.4 An example of the pre-processing of one label of BRATS. 3: en-

hancing tumour core. 2: tumour core containing enhancing tumour

core. 1: whole tumour containing class 2 and 3. 0: healthy tissues.

Different colours represent different classes. . . . . . . . . . . . . . 102



List of Figures 14

5.5 Label fusion and binarized labels. Red: whole tumour including

tumour core. Blue: tumour core including enhancing tumour core.

Green: enhancing tumour core. Segmentation of each tumour class

is a binary segmentation. . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 SegPL statistically outperforms the best performing baseline CPS

when trained on 2 labelled volumes from the CARVE dataset. Each

data point represents a single testing image. . . . . . . . . . . . . . 103

5.7 Visual results. CARVE trained with 5 labelled volumes. Red: false

positive. Green: true positive. Blue: false negative. Yellow: ground

truth. GT: Ground truth. CPS: cross pseudo labels (CVPR 2021).

CCT: cross consistency training (CVPR 2020). Sup: supervised

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Visual results. BRATS 2018 trained with 300 labelled slices. Red:

whole tumour. Green: tumour core. Blue: enhancing tumour core.

GT: Ground truth. CPS: cross pseudo labels (CVPR 2021). CCT:

cross consistency training (CVPR 2020). Sup: supervised training. . 106

5.9 Ablation studies on BRATS with 150 labelled slices. . . . . . . . . 106

5.10 Robustness against out-of-distribution noise. Gamma is the strength

of the out-of-distribution noises. Using 2 labelled volumes from

CARVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.11 Robustness against adversarial attack. Epsilon is the strength of the

FGSM[6] attack. Using 2 labelled volumes from CARVE. . . . . . 107

5.12 Ablation studies on priors of 0.4, 0.5 and 0.7. Y-axis: segmentation

losses. X-axis: training iterations. Red: prior = 0.5. Blue: prior =

0.4. Pink: prior = 0.7. All trained on Task 01 Brain Tumour. . . . . 107

5.13 Ablation studies on priors of 0.4, 0.5 and 0.7. Y-axis: segmentation

IoUs. X-axis: training iterations. Red: prior = 0.5. Blue: prior =

0.7. Dark blue: prior = 0.5. All trained on Task 01 Brain Tumour. . 107

5.14 Learnt threshold with prior at 0.5 trained on Task 01 Brain Tumour. 109



List of Figures 15

6.1 A schematic of one of our methods with univariate Gaussian Prior.

The quantitative mappings of interest are indicated by the red box.

The total loss is MSE loss plus KL loss. . . . . . . . . . . . . . . . 113

6.2 Comparisons between self-supervised voxel-wise baseline and ours

(Gaussian prior) on simulated model using MSDKI. X axis: ground

truth of simulated kurtosis. Y axis: prediction of kurtosis. Ours

vastly outperforms the baseline in recovery of the ground truth. . . . 117

6.3 Ablation studies. We observe that both latent dimension and kl loss

strength have optimal values. . . . . . . . . . . . . . . . . . . . . . 118

6.4 LSQ, self-supervised, and VAE ball-stick fits to HCP dMRI sub-

ject. Our methods drastically reduces noise and better highlights

anatomical features. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Comparisons on MS-DKI fits on HCP dMRI subject. Our approach

has less obvious improvements when the MRI model is relatively

simple, but doesn’t hallucinate spurious anatomical features. . . . . 119

6.6 Visualisation of the posterior distribution of the latent variable in

our VAE models after training on HCP data. . . . . . . . . . . . . 120



List of Tables

3.1 Truth table of XOR . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 A summary of very recent semi-supervised learning methods in

medical image segmentation from MIDL, MICCAI, TMI, MedIA,

CVPR and BMVC (2022-2023) . . . . . . . . . . . . . . . . . . . 56

4.1 MisMatch (MM) vs Baselines on CARVE. Metric is Intersection

over Union (IoU). . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 MisMatch (MM) vs Baselines on BRATS. Metric is Intersection

over Union (IoU). . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 P-value between MM and baselines. Non-parametric Mann-

Whitney U-Test. 100 labelled slices of CARVE. . . . . . . . . . . . 74

4.4 Ablation studies on alpha value using CARVE with 5 labelled slices. 75

4.5 Ablation studies on dilation rate in 3D V-net based MisMatch us-

ing LA 2018 with 2 labelled cases, α as 1 and cutting gradients,

network width 8. Metric is Dice score. . . . . . . . . . . . . . . . . 76

4.6 Ablation studies on stopping gradients in 3D V-net based MisMatch

using LA 2018 with 2 labelled cases, α as 1, network width 8. Met-

ric is Dice score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Testing Results on 3D segmenting the whole tumour from Task

01 Brain Tumour from Medical Segmentation Decathlon. Training

with learning rate 0.001 and 3500 epochs. Testing on 96×96×96

cubes. Jac: Jaccard. HD: Hausdorff Distance. ASD: Average Sur-

face Distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables 17

4.8 Testing Results on 3D segmenting the whole tumour from Task

01 Brain Tumour from Medical Segmentation Decathlon. Training

with learning rate 0.001 and 3500 epochs. Testing on 48×48×96

cubes. Jac: Jaccard. HD: Hausdorff Distance. ASD: Average Sur-

face Distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Testing Results on 3D segmenting the whole tumour from Task

01 Brain Tumour from Medical Segmentation Decathlon. Training

with learning rate 0.001 and 3500 epochs. Testing on 128×128×

96 cubes. Jac: Jaccard. HD: Hausdorff Distance. ASD: Average

Surface Distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Hyper-parameters used across experiments. Different data might

need different α . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Our model vs Baselines on a binary vessel segmentation task on

3D CT images of the CARVE dataset. Metric is Intersection over

Union (IoU (↑) in %). Avg performance of 5 training. blue: 2nd

best. red: best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Our model vs Baselines on multi-class tumour segmentation on 2D

MRI images of BRATS 2018. Metric is Intersection over Union

(IoU (↑) in %). Avg performance of 5 runs. blue: 2nd best. red: best 104

5.4 Our model vs Supervised baseline on 3D binary tumour segmenta-

tion of Task 01 Brain Tumour (BRATS 2017). Metric is Intersection

over Union (IoU (↑) in %). Avg performance of models between it-

eration 20000 and 25000 with 1000 as the interval. red: best . . . . 104



Chapter 1

Introduction

1.1 Research problem
Deep learning has now become the de facto data-driven approach for medical im-

age analysis in the digital era. A well-executed deep learning model requires a

massive amount of data and their corresponding labels. However, acquiring labels

in medicine is extremely challenging due to the high costs in both time and money.

This thesis seeks the answer to the following question: How can we train a deep

learning model without sufficient labels for medical image analysis?

1.2 Structure of the thesis
This thesis begins with Chapter 1, which outlines the structure and the contributions

of the thesis. Chapter 2 presents the clinical background of this PhD, providing a

high-level motivation for the necessary technical innovations. Chapter 3 reviews the

machine learning foundations which are used in the subsequent technical chapters.

Chapter 4 presents a new perspective on the visual attention mechanism as

learnable morphological operations at the feature level. It also introduces a new con-

sistency regularisation on dilated feature perturbations and eroded feature perturba-

tions for semi-supervised segmentation of medical images. Furthermore, Chapter 4

links the consistency regularisation to AI safety through a calibration analysis.

Chapter 5 revisits pseudo labelling in semi-supervised learning and provides

a new formulation of pseudo labelling as the expectation maximisation algorithm.

Based on this newly proposed formulation, Chapter 5 extends the original pseudo
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labelling towards its generalisation and presents an approximation of its generalisa-

tion using a variational inference.

Chapter 6 builds on the latest advancements in variational unsupervised clus-

tering techniques and demonstrates its first application on model parameter estima-

tion of MRI signals. This pioneering approach challenges the traditional assumption

that all of the voxels are treated independently in MRI parameter estimations.

Chapter 7 discusses the conclusions, limitations and future work.

1.3 Publications Covered in this Thesis
The content of this thesis is based on the following publications:

• Chapter 4: M.C. Xu, Y.K. Zhou, C. Jin, F.J.Wilson, S.B.Blumberg, M. de Groot,
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• Chapter 4: M.C. Xu, Y.K. Zhou, C. Jin, M. de Groot, D.C. Alexander, N.P.
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IEEE Transactions on Medical Imaging (TMI).

• Chapter 5: M.C. Xu, Y.K. Zhou, C. Jin, M. de Groot, D.C. Alexander,

N.P. Oxtoby*, Y.P. Hu*, J. Jacob*, “Bayesian Pseudo Labels: Expecta-
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Chapter 2

Clinical Background

In this chapter, we review the clinical background of this PhD. By understanding

the clinical context, we can better appreciate the motivations for addressing the

technical challenges.

2.1 Imaging Biomarkers in Drug Discovery
Pharmaceutical Research and Development is an extremely costly long-term invest-

ment with a high probability of failure. Before a new drug reaches the market, it

typically goes through development at a cost of roughly 1 billion US dollars, entails

more than 15 years of research work, and involves a 96% failure rate for projects

[7].

A drug development journey begins at the drug discovery stage. All candi-

date drugs are initially validated against disease models to identify the best can-

didates for clinical testing. The selected potential drug candidates then progress

to the experimental medicine stage, undergoing small studies to identify potential

clinical endpoints. These established clinical trial endpoints will be tested under

multi-centre regulatory standardisation. During the experimental medicine stage,

imaging techniques can aid developers in making informed decisions amidst com-

plex early clinical trial data. More precisely, imaging techniques can assist in sev-

eral aspects, including: demonstration of target engagement; a better understand-

ing of Pharmacokinetics—Pharmacodynamics to inform dose selection; provision

of proof of pharmacology mechanism, which can also aid in assessing drug effi-
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cacy; efficient decision-making in the context of numerous trials; and examination

of bioavailability and tissue exposure [8]. Alongside imaging techniques, machine

learning methods can be deployed in most of the aforementioned aspects to enhance

the productivity of the entire Research and Development process. In particular, the

techniques being developed during this PhD could potentially assist in establishing

the pharmacological mechanism during the experimental medicine stage.

2.2 Lung and Idiopathic Pulmonary Fibrosis (IPF)

Anatomical Overview The lung serves as the primary organ of the respiratory sys-

tem, providing oxygen to the blood. More specifically, the respiratory system can

be divided into: 1) airways, comprising the bronchi branching from the trachea and

further dividing into bronchioles; and 2) lung parenchyma, consisting of bronchi-

oles, alveoli (tiny air sacs at the end of the bronchioles), and alveolar ducts, where

gas exchange takes place. Anatomically, the left lung is divided into: 1) the superior

lobe; 2) the middle lobe, separated from the superior lobe by the horizontal fissure;

and 3) the inferior lobe, demarcated from the middle lobe by the oblique fissure.

Meanwhile, the right lung is divided into: 1) the superior lobe; and 2) the inferior

lobe, which is also separated from the superior lobe by an oblique fissure.

Gas Exchange Gas exchange occurs within the alveoli and involves both the

respiratory and circulatory systems. Gas exchange comprises two processes: 1)

Ventilation: During inspiration, each alveolus expands its volume to intake fresh gas

(high in oxygen and low in carbon dioxide) which is drawn in from the mouth via

the bronchial tree. During expiration, each alveolus contracts its volume, expelling

gas (low in oxygen and high in carbon dioxide) through the bronchial tree and out

of the mouth; 2) Perfusion: Deoxygenated blood (low in oxygen and high in carbon

dioxide), coming from the body tissues, flows into the pulmonary arteries and on

to the alveolar capillaries, following the bronchi and bronchioles. After the blood

passes through the alveoli and reaches the pulmonary veins, gases diffuse between

the alveolar gas and blood compartments. The blood then becomes oxygen-rich and

carbon dioxide-poor before it circulates back to the body tissues [9]. An impaired
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respiratory system can lead to many serious health problems. However, the clinical

focus of this PhD is narrowed down to one specific condition, Idiopathic Pulmonary

Fibrosis.

2.3 Idiopathic Pulmonary Fibrosis

History William Osler first identified the interstitial pathological patterns caused

by lung diseases in the 1890s [10], with further discoveries by researchers such

as Hamman and Rich who identified acute diffuse interstitial fibrosis in 1944 [10].

Alongside these anatomical discoveries, significant strides were made in physio-

logical measures of the lungs, beginning with Borrelli’s breakthrough in 1681 when

he estimated the volume of air inspired in a single breath. Since then, these mea-

sures have been instrumental in diagnosing interstitial lung disease (ILD) and study-

ing aetiology related to environment, occupation, and so on. In 1998, Katzenstein

and Myers modified the pathological classification method originally proposed by

Liebow and Carrington, to subtype ILDs based on histological patterns and the

reparative response of the interstitium. However, the definitive universal standard

for the classification and subtyping of ILDs remains an open question today. Re-

cently, the use of high-resolution computed tomography (HRCT) has provided valu-

able insights into our understanding of ILDs, thanks to its ability to visualise the

detailed morphological characteristics of diseased lungs.

Definition Idiopathic Pulmonary Fibrosis (IPF), historically known as Usual

Interstitial Pneumonia (UIP), describes a heterogeneous series of chronic interstitial

lung diseases. IPF has a higher mortality rate compared to other forms of idiopathic

interstitial pneumonia (IIP). The aetiology of IPF remains unknown, hence the name

’idiopathic’. Historically, the classification of IPF was based on aetiology, a method

that proved to be inaccurate because: 1) cases with different aetiologies can have

similar clinical sequelae; 2) cases with similar aetiologies can have different clin-

ical outcomes. Pathologically, IPF is characterised by thickening and stiffening of

the lung tissues due to unknown causes [11]. The accumulation of such thickening

eventually leads to irreversible lung scarring or fibrosis, resulting in breathing diffi-
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culties and inadequate oxygen delivery to the rest of the body. Although diagnosing

and distinguishing subtypes of IPF can be challenging, it is feasible to identify dis-

ease progression in patients with fibrotic lungs based on quantification of the extent

of fibrosis. Diagnosis and subtyping of IPF are challenging because: 1) UIP and

non-UIP can overlap, and even experienced experts may struggle to differentiate

between them; 2) the histological appearance of each IPF-affected lung varies; 3)

many co-existing disorders, including desquamative interstitial pneumonia and res-

piratory bronchiolitis-interstitial pneumonia, are often reported in the descriptions

for the same patient. Moreover, the recognition of ILD can be a suggestive sign for

the future development of connective tissue diseases.

Clinical outcomes Fibroblastic foci, an avascular histologic pattern found

within the interstitium, are more frequently observed in cases of Usual Intersti-

tial Pneumonia (UIP) than in non-UIP cases [12]. In [13], it was found that the

profusion of fibroblastic foci is strongly correlated with IPF. Additionally, it was

concluded that patients with concurrent collagen vascular diseases have better prog-

noses (improved survival rates) than those without these diseases. The clinical out-

comes of IPF vary between cases; however, the median survival is generally consid-

ered to be three years, while some cases might survive between five and ten years.

IPF patients with differing percent-predicted baseline Forced Vital Capacity (FVC)

values can have varied prognoses: 1) patients with a baseline predicted FVC less

than 60% are likely to have a higher mortality rate, up to 21%; 2) patients with a

baseline predicted FVC greater than 80% are likely to have a lower mortality rate,

up to 6.1% [14].

Nevertheless, patients who develop acute exacerbation are unfortunately likely

to progress rapidly to death. Acute exacerbation is considered a significant cause

of mortality, with an in-hospital mortality rate of 56.9%, and an annual incidence

between 5% to 19%. Acute exacerbation is more likely to occur among patients

with increased baseline fibrosis.

Moreover, the mortality of IPF patients is also associated with systemic vas-

cular disease. In particular, one study suggests that the risk of acute coronary syn-
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drome, angina, and deep vein thrombosis increases before the progression of IPF.

Incidence of IPFs in UK The incidence of IPF patients in primary care in

the UK grew by 35% from 2000 to 2008, with a notably higher increase in the

male population in Northwest England. There are more than 5000 new cases di-

agnosed nationally each year, and the death rate due to IPF continues to increase

[15]. Therefore, there is a pressing demand for more accurate diagnoses of IPF to

enhance treatment efficacy, especially for patients at the early stages of the disease.

2.4 Treatment and Diagnosis of IPF
According to the NHS website [16], common diagnostic methods for IPF include

pulmonary function tests, medical imaging methods (e.g., CT and chest X-ray),

bronchoscopy, and lung biopsy. However, the prognostic signals of lung scarring

in IPF are individualised and the condition can exacerbate at a rapid rate for some

patients. Overall, the median survival time for IPF patients is approximately two to

three years [17].

In terms of treatments, the two existing anti-fibrotic drugs, Pirfenidone/Esbriet

and Nintedanib/Ofev, have been shown to be effective only in slowing down the

progression of the disease, rather than halting or reversing it [18]. The outcome of

this PhD might contribute to the identification of useful drug trial endpoints during

Phase II/III clinical studies. This could help drug developers to more effectively

develop new drugs aimed at stopping the progression of fibrosis.

Given the limitations of available medicinal treatments and the risk of acute

exacerbations, the key to increasing the survival rate of IPF patients lies in early

diagnosis and accurate classification of disease severity. Consequently, the mea-

surement of IPF severity plays a central role in the severity assessment, which will

be discussed in the following sections.

2.5 Clinical markers for IPF disease progression
Traditionally, the popular assessment of IPF severity is based on physiological tests

(e.g., pulmonary function tests [19]) and/or radiological tests (e.g., visual classi-

fication of lung abnormalities [20]). Clinical lung function tests include spirome-
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try, plethysmographic lung volumes, and diffusing capacity for carbon monoxide,

which are performed within 24 hours of the physiological test. Using these mea-

sures, IPF severity can arguably be classified into precise stages such as ”mild”,

”moderate”, ”severe”, ”early” or ”advanced” [20]. Recently, an improved physio-

logical measure called the 6-minute walk test has been proposed [19]. The forced vi-

tal capacity (FVC) is often used in pulmonary function tests, measuring the amount

of air that can be expired from the lungs after a maximal inspiration. To assess the

functionality of the alveoli, which are responsible for gas exchange, two metrics are

used: 1) the transfer factor of the lung for carbon monoxide (DLco); 2) the transfer

coefficient (Kco), which measures the ability of the alveoli to transport gas into the

blood.

Challenges with the wide normal range of lung function tests can make it hard

to distinguish the real early stages of IPF [21]. In fact, there is no standardised

staging system [22] broadly accepted yet. Another limitation of lung function-based

severity scoring systems has been pointed out by [23], in that lung function test

results can remain stable even with disease progression. For example, as reported

in [24], nearly half of the patients remained within a 10% change in forced vital

capacity, while the conditions of the patients progressed.

2.6 Imaging markers for IPF disease progression

The definitive diagnosis of IPF is a combination of high-resolution computed to-

mography (HRCT) and surgical biopsy [22]. Since the majority of IPF patients

are elderly and/or have co-morbidities, diagnosis using the non-invasive HRCT

is naturally preferred by clinicians. Consequently, there has been growing inter-

est in the community in using HRCT for studying the disease progression of IPF

[20, 25, 26, 27, 28, 29].

The most typical imaging appearances of IPF are: peripheral reticular opacity

at the lung bases, which may be associated with traction bronchiectasis; (almost

always subpleural) honeycombing; lower lobe-predominant volume loss; and occa-

sional irreversible ground-glass attenuation representing fine fibrosis [25]. Visual
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evidence has been found [27] that the extents of the abnormalities in HRCT are cor-

related with IPF progression. For example, reticular abnormality and some areas

of ground-glass opacity can progress into honeycombing at later stages. Therefore,

recent imaging-derived tools have all focused on the quantification of the afore-

mentioned abnormalities to measure the severity of IPF. For instance, a regional

texture-based quantification method was used in [28] and they found that reticular

opacity is a predictor for forced vital capacity decline. Another study [30] con-

firmed that a quantification software called CALIPER can measure severity better

than visual scoring. Later, more advanced tools such as deep learning were in-

troduced, as seen in the study [29]. The authors used a trained binary pixel-wise

classification deep learning network to segment normal and abnormal areas of IPF

(e.g. reticulation, honeycombing and traction bronchiectasis). The reported score

(ratio of the abnormal area against the whole lung area) has been found to correlate

with the physiological evaluation results.

Through studying CT at baseline or other single time points, the community

has established the fact that the pathological extent of IPF can be used as a strong

indicator of poor outcome. However, literature on using CT at different time points

to understand severity progression is still sparse. The potential use of serial CT to

measure severity was highlighted in the study [31], where poorer outcome was vi-

sually associated with the increase of extent, which is significant as no FVC decline

was identified in the same patients.

Quantification analysis derived from texture-sensitive analytic software has a

primary advantage that its assessment is not affected by co-existing conditions such

as emphysema or pulmonary hypertension [32] (e.g., emphysema appears in up

to 50% of patients with chronic bird fancier’s lung, see more details in section

2.6.1). However, issues such as inter-rater variability persist, leading to a lack of

universal standards for precisely staging the disease. This issue hinders diagnosis

and treatments. Other limitations and advantages are individually discussed in the

following.
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2.6.1 Emphysema

Emphysema coexists in about 30% of IPF patients, a condition termed as CPFE.

Previous studies have led to controversial opinions on whether the co-existing dam-

age seen in IPF, such as emphysema, has an impact on the survival rate [33]. A

recent study in [34] uses HRCT to study the predictive and prognostic values of em-

physema, where a calibration technique was used to eliminate the impact of disease

severity at the baseline. In [34], it is found that the overall extent of total emphy-

sema (isolated plus admixed emphysema and fibrosis) has no correlation with the

ILD score. However, isolated emphysema is associated with lower disproportion-

ately reducing gas transfer and the gas transfer coefficient; admixed emphysema

preserves lung volumes (FVC) and alveolar volume. Additionally, [34] reports that

admixed emphysema shows a negative correlation with traction bronchiectasis. In

conclusion, [34] suggests: 1) the presence or the extent of emphysema has no ad-

ditional negative impact on survival; 2) the progression of CPFE is more likely to

be associated with baseline disease severity; 3) emphysema preserves lung volumes,

limiting the use of FVC to study progression of CPFE. The aforementioned findings

might suggest that the experimental design of some studies [35] where emphysema

was included along with other low-density regions (e.g. honeycombing cysts) as the

extent of the whole pathological area is not optimal.

2.6.2 Lung volume

Total lung volume is a reproducible marker for measuring lung volume loss in IPF

[36]. Lung volume loss has local characteristics. The lower lobes are disproportion-

ately reduced in volume. Although FVC has been a popular marker for measuring

disease progression, changes in lung volume could be static due to the compensatory

effect from emphysema, which limits the reduction of FVC decline [36]. This can

lead to imprecise staging results. Additionally, the use of antifibrotic therapy could

also reduce the sensitivity of using FVC decline as a measure of disease progression

[36].
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2.6.3 Pulmonary vascular structures

The pulmonary vessel volume (PVV) was identified as an independent predictor

for mortality analysis for the first time in [37]. PVV is independent because it is

not affected by the pulmonary volumetric loss from IPF progression, whereas other

pathological extent-based methods might underestimate disease severity [37]. A

subsequent study confirmed that PVV is better than the conventional visual score at

predicting mortality [38]. Later, studies [39] [40] [41] on serial CT found that PVV

increases annually by about 0.9%, suggesting that PVV can indeed be a marker to

study severity progression, especially the vessels in the upper and middle zones. It

has also been reported [34] that emphysema is lightly associated with a reduction

in PVV.

Another promising use of vascular structures is to predict drug trial endpoints

[42] [40]. In particular, the study in [42] found that by selecting patients who have

a higher vessel-related structures volume than a defined threshold, the drug trial

recruiters can target patients who have a more rapid FVC decline into their trial,

which can in turn lead to a 26% reduction in drug trial sample size.

Due to the predictive power of pulmonary vascular structure on IPF progres-

sion and its potential use to substantially cut the cost of new drug developments,

the pulmonary vascular structures are considered as the main anatomical research

interest of this PhD.

2.6.4 Traction bronchiecasis

Traction bronchiectasis (fibrotic tissue pulling on the bronchi) has recently been

identified as another predictive imaging marker for mortality [38]. The severity of

traction bronchiectasis has been found to increase with disease progression [39].

However, the rate at which traction bronchiectasis progresses at different stages of

IPF remains unknown.

2.7 Limitations of the existing quantification tool
There are three fundamental limitations to popular texture-sensitive tools such as the

CALIPER software [32]: 1) limited representational power of its local histogram
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algorithms; 2) the domain bias in its training set; 3) inevitable domain shift issues

(such as acquisition noise, machine parameters, slice thickness, and reconstruction

parameters).

Firstly, CALIPER was trained on the example histogram patterns of local

regions (sliding window) to recognise different pathological tissues. However,

histogram-based pattern recognition techniques are not adept at distinguishing be-

tween honeycombing and emphysema, or ground glass and reticular abnormalities

[32]. As for vessel recognition, CALIPER relies on the Frangi filter, and as found in

preliminary experiments, a Frangi filter is likely to yield an excessive ”vesselness”.

Additionally, sliding window detection has already been proven to be inferior due

to its limited field of view in computer vision [43].

Secondly, CALIPER was trained on patient data from LTRC [44]. This sug-

gests that CALIPER is severely biased towards the patient population and the train-

ing data of ”normal” lung patterns are not essentially ”healthy”. This naturally leads

to a deterioration in specificity.

Thirdly, the testing data to be analysed comes from a domain which is different

from the training data. This is caused by differences in acquisition and reconstruc-

tion techniques used by different centres, where data is collected on different CT

machines and reconstructed with different CT algorithms. Domain shift further im-

pairs the pattern recognition ability of a trained system on new, unseen data.

2.8 Change of the research focus of this PhD

As this work was funded by GSK, the original motivation of this PhD was to study

how the increases in negative intrathoracic pressure during inspiration enlarge pul-

monary arterial and venous volumes relative to expiration in idiopathic pulmonary

fibrosis. GSK provided 11 cases of high contrast CT scans of patients with idio-

pathic pulmonary fibrosis. The original research plan of the PhD was to train a

machine learning model to extract the pulmonary vascular structures for the clinical

study. However, after manually reviewing the scans from GSK, we realised that

the limited amount of data would hamper the significance of the clinical conclu-
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sions of the study. More importantly, we also noticed that the scans lacked paired

pixel-wise labels for training machine learning models. Therefore, motivated by the

practical necessity of dealing with the lack of labels in the early stage of this PhD,

we decided to change the focus of this PhD from the original clinical perspective

of studying idiopathic pulmonary fibrosis to a technical perspective of developing

machine learning models with limited labels.
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Machine Learning Background

Information

This chapter briefly reviews the basics of machine learning, laying the technical

foundations for the following chapters. The materials used in this chapter are de-

rived from the textbook ”Probabilistic Machine Learning: An Introduction” [45] by

Kevin P. Murphy, and another textbook ”Pattern Recognition and Machine Learn-

ing” [46] by Christopher M. Bishop.

3.1 Probability theory

3.1.1 Definitions of probability and events

If one flips a coin many times, it is observed that in fair situations, the coin lands

heads approximately 50% of the time. This 50% is known as the probability, which

is a measure of uncertainty. Returning to the coin-flipping example, we can define

an event as ”the next coin will land heads”, denoted as a binary variable A. We say

Pr(A) is the probability that event A is true. This Pr(A) must be between 0 and 1,

where 0 indicates the event definitely will not happen and 1 means that the event

will definitely happen.

Probability of event A and event B both happening We can write down a

joint probability of two events A and B both happening, as Pr(A,B).

Probability of event A or event B happening We can also define the proba-

bility of A or B happening as Pr(A)+Pr(B)−Pr(A,B). In situations where A and
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B are mutually exclusive, the union distribution of A and B is Pr(A)+Pr(B).

Probability of event A happening if event B happened The conditional prob-

ability of the event A happening, given another event B happened is:

Pr(A|B) = Pr(A,B)
Pr(B)

(3.1)

Independence of events In the scenario where both A and B happened, if event

A and event B are conditionally independent of each other, then:

Pr(A,B) = Pr(A)Pr(B) (3.2)

The above equation can be extended to include another event C if A and B are

both conditional dependent on C:

Pr(A,B|C) = Pr(A|C)Pr(B|C) (3.3)

3.1.2 Random variables

If X represents an unknown quantity, such as the outcome of the next coin toss,

and X can take on possible values within a sample space X , we refer to X as a

random variable. For example, in the coin-flipping scenario, X = {0,1}, where

0 corresponds to heads and 1 to tails. The event of the coin landing on heads is

denoted as X = 0.

Discrete random variable If the sample space X contains only distinct val-

ues, we refer to X as a discrete random variable. The probability mass function

represents the probability of the random variable equalling each possible value x

within X .

p(x) := Pr(X = x) (3.4)
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With restrictions:

0 ≤ p(x)≤ 1

∑
x∈X

p(x) = 1
(3.5)

Continuous variable If the sample space X contains real-valued values, we

call X a continuous random variable. For continuous variable, we can partition

the range of the continuous values into intervals which makes it similar to discrete

random variable. When the interval goes to zero, we get the probability of X as a

real value.

We can define the cumulative distribution function (CDF) of X coming from

a certain range of real values, saying less than x as:

P(x) := Pr(X ≤ x)

Pr(a ≤ x ≤ b) = P(b)−P(a)
(3.6)

The derivative of the cumulative distribution function is called probability den-

sity function (PDF). Therefore we can compute the probability of a continous vari-

able X equal to a specific real value x, as the probability density at x multiplied with

the interval dx:

p(x) :=
dP(x)

dx

Pr(a < X ≤ b) =
∫ b

a
p(x)dx = P(b)−P(a)

Pr(x ≤ X ≤ x+dx)≈ p(x)dx

Pr(X = x) = lim
dx→0

p(x)dx

(3.7)

3.1.3 Derivations of Mean and Variance

Before we introduce common distributions which are used in the chapters, we need

to cover two important concepts which are brought up many times in the later chap-

ters, mean (µ) and variance (σ ), of a distribution.

Mean or Expectation (µ) Expectation of the sample space of a discrete ran-
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dom variable is defined as:

E[X ] := µ = ∑
X

xp(x) (3.8)

For continuous random variable, the Expectation is defined slightly different:

E[X ] := µ =
∫

X
xp(x)dx (3.9)

The property Expectation has a few intuitive properties which come very handy

in applications. For example, the sum rule of the expectations of a set of random

variables:

E[
n

∑
1

Xi] =
n

∑
i
E[Xi] (3.10)

Similarly, the product rule of expectation applies to independent random vari-

ables as:

E[
n

∏
1

Xi] =
n

∏
i
E[Xi] (3.11)

The expectation also has linearity as:

E[aX +b] = aE[X ]+b (3.12)

Variance (σ ) The variance measures the divergence of the distribution and it

is defined based on the expectation (E[X ] = µ) using the above Eq.3.7. Given a
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continuous random variable X , we can derive the variance as:

V[X ] := σ
2

= E[(X −E[X ])2]

= E[(X −µ)2]

=
∫

x∈X
(x−µ)2 p(x)dx︸ ︷︷ ︸

de f inition o f expectation

=
∫

x
x2 p(x)dx+µ

2
∫

x
p(x)dx︸ ︷︷ ︸
=1

−2µ

∫
x
xp(x)dx︸ ︷︷ ︸
E[X ]

= E[X2]+µ
2 −2µµ

= E[X2]−µ
2

= E[X2]−E[X ]2

(3.13)

From Eq.3.13, the expectation of the square of X is the sum of the squre of

mean and the square of the variance:

E[X2] = µ
2 +σ

2 (3.14)

People also use the standard deviation a lot which is:

std[X ] :=
√

V[X ] = σ (3.15)

Variance has more complicated product and sum rules. For example, the sum

rule of variance involves its covariance:

V[X +Y ] = V[X ]+V[Y ]+2Cov[X ,Y ] (3.16)

The variance of the affine transformed X does not have linearity as its expecta-

tion but scaled:

V[aX +b] = a2V[X ] (3.17)

The product rule of variance is not discussed here.
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3.1.4 Distributions

The section reviews the definitions of a few distributions that are used in the later

chapters.

Categorical distribution The Bernoulli distribution is used when the discrete

random variable is binary in a single trial. When the discrete random variable has

more than two possible values, denoted as C, the distribution is referred to as a

categorical distribution. An example would be predicting the outcome of throwing a

six-sided die. This distribution is used in subsequent chapters as a prior distribution

in variational inference. The categorical distribution is defined as follows:

Cat(x|θ) :=
c=C

∑
c=1

θ
I(x=c)
c

c=C

∑
c=1

θc = 1

(3.18)

Gaussian distribution The Gaussian distribution is defined for a continuous

random variable and is widely used in this thesis. It is parameterised by two (µ and

σ ):

p(x|µ,σ) :=
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.19)

In later chapter of expectation maximization pseudo labelling, we use a special

case of an univariate Gaussian called standard normal distribution, where µ = 0 and

σ = 1.

3.1.5 Bayesian statistics

Bayesian statistics is a common approach for modelling uncertainty using a proba-

bility distribution. Bayesian statistics play a central role in the subsequent chapter

on expectation maximisation pseudo-labelling. In Bayesian statistics, we are inter-
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ested in the posterior of model parameters θ , given data D :

p(θ |D) =
p(θ)p(D |θ)

p(D)

=
p(θ)p(D |θ)∫
p(θ)p(D |θ)dθ

(3.20)

In the above Eq.3.20, p(D |θ) is known as the likelihood function, indicating

that the data could have been generated from the model θ . The term p(θ) is re-

ferred to as the prior of the model parameters. The denominator p(D) is a constant,

representing the marginal likelihood of the data, or the average probability of the

data. The advantage of Bayesian statistics is that, unlike frequentists who rely on

running a large number of event trials, Bayesian statistics is designed to function

even with just a single trial in the ideal scenario. However, it is also challenging to

apply Bayesian statistics in real life because computing the marginal likelihood is a

complex task, known as the intractable issue. In practice, the maximum likelihood

approach is usually deployed to estimate the best model parameters, as measured

by an error metric or a loss function.

3.1.6 Expectation Maximization

The Expectation Maximization (EM) algorithm is referred to extensively in Chapter

5; here, we provide a high-level introduction to the EM algorithm. The EM algo-

rithm is an iterative method used to identify the parameters of a probabilistic model.

It initially introduces a latent variable into the model, then iteratively optimises both

the latent variable and the model parameters. To start with, the parameters are ran-

domly initialised. In the E-step, we estimate the latent variable, given the existing

model parameters. In the M-step, we use maximum likelihood estimation to refine

the model parameters, given the latent variable from the E-step. We then repeat the

E-step and M-step until convergence. More details can be found in Chapter 5.
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3.2 Deep Learning

3.2.1 XOR problem

The predecessor of deep learning models is the single-layer perceptron. The per-

ceptron model was severely criticised by Minsky and Papert as it couldn’t solve

non-linear decision-making problems [47]. However, the pioneers of deep learn-

ing models, often referred to as “connectionists” back in the day, discovered that

by stacking two perceptrons together to make the model deeper, it was possible to

solve non-linear decision-making problems such as XOR. As shown in Fig.3.1, OR

and AND logic gates can be easily solved with a linear decision boundary using a

perceptron, whereas XOR requires a non-linear decision boundary, which is beyond

the ability of a perceptron model.

Figure 3.1: Figure of AND, OR and XOR gate

The example of how the earliest deep learning model, a two-layer perceptron,

solves the XOR problem is displayed in Fig.3.1 above. The goal is to find a good set

of parameters for the two-layer perceptron that aligns with the truth table in Tab.3.1.

Table 3.1: Truth table of XOR

Input 1 (x1) Input 2 (x2) output (y)
0 0 0
1 0 1
0 1 1
1 1 0

To recap, for the multilayer perceptron, the output of each neuron is

φ(wTxinput + b). Here, let’s assume we use a ReLU function as φ , which is de-

fined as max(x,0). We denote the hidden neuron as h. One possible set of weights

and biases parameters could be:
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Figure 3.2: One of the solutions for XOR with 2-layer perceptron, as shown in forward
pass.

For input 1 as 0 and input 2 as 0, the forward computational graph is:

x1 −→ h1 −→ h3 : max(1∗0+1∗0+0,0) = 0

x2 −→ h2 −→ h4 : max(1∗0+1∗0−1,0) = 0

h3,h4 −→ y : max(1∗0+0+(−2)∗0+0,0) = 0

(3.21)

For input 1 as 1 and input 2 as 1, the forward computational graph is:

x1 −→ h1 −→ h3 : max(1∗1+1∗1+0,0) = 2

x2 −→ h2 −→ h4 : max(1∗1+1∗1−1,0) = 1

h3,h4 −→ y : max(1∗2+0+(−2)∗1+0,0) = 0

(3.22)

For input 1 as 1 and input 2 as 0, the forward computational graph is:

x1 −→ h1 −→ h3 : max(1∗1+1∗0+0,0) = 1

x2 −→ h2 −→ h4 : max(1∗1+1∗0−1,0) = 0

h3,h4 −→ y : max(1∗1+0+(−2)∗0+0,0) = 1

(3.23)

For input 1 as 0 and input 2 as 1, the forward computational graph is:

x1 −→ h1 −→ h3 : max(1∗0+1∗1+0,0) = 1

x2 −→ h2 −→ h4 : max(1∗0+1∗1−1,0) = 0

h3,h4 −→ y : max(1∗1+0+(−2)∗0+0,0) = 1

(3.24)
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Up to this point, we have demonstrated how a 2-layer perceptron can make

decisions for XOR gating. Although this example might seem trivial, it illustrates

that by stacking multiple layers of perceptrons together, we can create a deep model

with the potential to model complex logic.

3.2.2 Brief introduction of deep learning

Deep learning is a type of machine learning model based on multilayer perceptrons,

also known as neural networks. The training of a neural network requires three

essential elements: 1) noise-based, gradient-based optimisation and backpropaga-

tion; 2) a cost (loss) function; 3) a model architecture composed of various layers

such as normalisation layers, convolutional layers, and activation layers. An ex-

ample of a three-layer deep learning model is y = f (3)( f (2)( f (1)(x))); the depth of

this model is 3, and f (2) is the hidden layer. The term ’width’ refers to the dimen-

sionality of each layer, denoted by the total number of neurons in that layer. Each

neuron models an affine mapping with one parameter called weight (w) and another

called bias (b): φ(wTxinput +b), where φ is an activation function for non-linearity.

Each layer comprises a large number of neurons. According to the universal ap-

proximation theorem, such a neural network model can approximate any arbitrary

functions, with appropriate weights and biases. The approximation power of a neu-

ral network is a mapping that transforms data from the input space to the output

space. There are three benefits of learning this mapping using deep learning: 1) the

representation captured by a neural network is generic, which, while also achiev-

able using kernel methods such as a Gaussian kernel or radial basis function kernel

K (x,centroids) := exp(− 1
2σ2 (centroids− x)2), deep learning approaches gener-

ally yield superior generalisation power, especially when applied to complex prob-

lems; 2) the automatic search for task-specific features, given ambiguously precise

human prior knowledge, in contrast, the computer vision community has focused

on designing precise feature descriptors (e.g., SIFT) for each specific issue (e.g.,

edge detection) over decades. However, these methods lack transferability between

tasks and require high precision of prior knowledge; 3) a significant reduction in the

requirement for convexity. Traditional approaches rely on translating non-convex
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problems into convex problems, such as primal-dual linear programming.

3.2.3 Layers

The architecture of a neural network model depends on both the component selec-

tion and the topological design of the model. This section focuses on the compo-

nents of deep learning models, also known as layers. For example, in Fig.3.2, both

hidden layers belong to the same layer type, known as a fully connected layer. We

focus on layers specifically for computer vision tasks and medical image analysis

in 2D for illustrative simplicity, although all operations can be generalised to 3D.

Convolutional layer The convolutional layer applies a kernel with learnable

weights (w) to the input (x) through a dot product operation. Here is an example of

1D convolutional layer:

[w⊛ x](i) =
L−1

∑
u=0

wuxi+u (3.25)

This can be generalised to 2d:

[w⊛ x](i, j) =
H−1

∑
u=0

W−1

∑
v=0

wu,vxi+u, j+v (3.26)

Where i, j is the location of the pixel of the input and the kernel size is H,W .

One detailed example of Eq.3.26 is 1:

Out put =

w1 w2

w3 w4

⊛


x1 x2 x3

x4 x5 x6

x7 x8 x9


=

(w1x1 +w2x2 +w3x4 +w4x5) (w1x2 +w2x3 +w3x5 +w4x6)

(w1x4 +w2x5 +w3x7 +w4x8) (w1x5 +w2x6 +w3x8 +w4x9)


(3.27)

For corner pixels, zero-padding is normally applied around the edges for the

convolutional operations to keep the size of the output the same as the size of the

input image. The kernel (W ) in Eq. 3.27 applies a sliding window with a step size

1The original equation 14.7 on page 466 in Probabilistic Machine Learning: An Introduction
contains a typo that w4 was missing
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of 1. The step size is usually referred to as the stride in the literature. However,

it is also possible to skip some pixels when using a sliding window, further reduc-

ing the output size. This type of convolution is called strided convolution. There

are a couple of hyperparameters of the convolutional layer, such as the size of the

kernel. The size of the kernel is a trade-off between computational efficiency and

performance because a larger kernel size means a larger receptive field at the cost

of a larger computational burden. The term ”receptive field” refers to the size of the

view of what each neuron can see in the input. In practice, researchers tend to prefer

multiple small kernels rather than a single large kernel. For example, to achieve the

same receptive field, two consecutive kernels of size 3 can see as much as a kernel

of size 5 in a convolutional layer. Convolutional layers also have a strong relation-

ship with linear algebra. 2D convolution is very similar to multiplication with a

doubly block circulant matrix, which also explains why convolutional layers make

the neural network translation equivariant.

Normalization layer: One important technique to stabilize the training of

deep learning models is to use a normalization layer between convolutional layers,

leading to a smoother loss function. Normalization layers calculate the mean and

standard deviations from the multidimensional features and normalize the features

in real-time. Depending on how the mean and standard deviations of the multidi-

mensional features are calculated, there are different normalization layers depend-

ing on which dimension gathers statistical information.

The default normalization layer is the Batch Normalization [48] layer, which

was also the first normalization layer proposed. The batch normalization layer first

normalizes the feature vector (zi) of the mini-batch with m samples, then applies an

affine transformation with learnable parameters (γ and β ) to the normalized features
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to obtain the final scaled features (z′i):

µ =
1
m

i=m

∑
i=1

zi

σ
2 =

1
m

i=m

∑
i=1

(zi −µ)2

ẑi =
zi −µ√
σ2 + ε

z′i = γ ẑi +β

(3.28)

ReLU layer Non-linear activation is typically applied after convolutional lay-

ers to provide the model with more expressiveness. The most common activation

function is the rectified linear unit (ReLU):

ReLU(x) = max(x,0) (3.29)

The ReLU function acts as a high-pass filter, setting all negative inputs to zero.

The biggest advantage of ReLU is its computational simplicity in both the forward

and backward passes (gradients). The gradient of the ReLU function is:

dmax(x,0)
dx

=

0, x < 0

1, x > 0
(3.30)

Later improvements have been proposed to smooth the step-wise function of

the ReLU’s gradient, particularly for the non-positive parts. For example, the leaky

ReLU max(αx,x) introduces a hyperparameter α for negative values of x, ensuring

that the negative parts also have gradients. Another example is the Gaussian Error

Linear Unit (GELU) [49], which has become the state-of-the-art activation function

in many recent Transformer [50] models, including GPTs [51].

GELU(x) = xΦ(x)

Φ(x) = P(N (0,1)≤ x)

GELU(x)≈ xσ(1.702x)

(3.31)
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Pooling layer Pooling layers are typically used after convolutional layers to

downsample the output size. The most common pooling operation is max-pooling

with a kernel size of 2 and stride of 2. The other popular class of pooling layer is the

average pooling layer which uses an average operation instead of a max operation.

Fully connected layer The fully connected layer is one of the earliest layers

proposed, which connects all the inputs to the neurons. In contrast to convolutional

layers, which perform a local dot product through a sliding window, the fully con-

nected layer performs a dot product operation between the entire weight matrix and

the entire input matrix to generate its output.

3.2.4 Architectures

To build a neural network model, we need to assemble the layers together and cre-

ate a topological architecture. Fukushima pioneered the first neural network model

called neocognitron, which consisted of two types of layers: early versions of con-

volutional layers and pooling layers. However, the model was not trained with

backpropagation. The first modern neural network, a five-layer convolutional neu-

ral network containing convolutional layers, pooling layers, and fully connected lay-

ers, was proposed by Yan LeCun in 1998 [52]. This network successfully learned

to recognize written digits. In 2012, a deeper version of LeNet called AlexNet

[53], proposed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, surpassed

all other machine learning methods by a significant margin in the ImageNet [54]

visual object recognition competition. Since 2012, deeper convolutional neural net-

works have been dominating the ImageNet competition with numerous advance-

ments every year, including normalization layers and regularization techniques such

as Dropout [55].

In 2017, a major breakthrough was made by Kaiming He, who introduced

residual connections [56] in deep learning. The residual connections brilliantly

solved the problem of vanishing gradients without incurring extra computational

costs. These connections made it possible to train extremely deep neural networks,

eventually leading to models that surpass human-level performance in visual object

recognition. The residual connection bypasses its input to the end of the specific
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layer flayer:

ˆflayer(x) = flayer(x)+ x (3.32)

In Eq.3.32, x is also called identity mapping. Following [57], we first rewrite

Eq.3.32 as:

xl+1 = xl +F (xl,Wl) (3.33)

Where F is the residual function, such as two convolutional layers, and Wl

is the weight of the convolutional layers in the l-th residual unit. This function is

recursive. For example, the next residual connection is:

xl+2 = xl+1 +F (xl+1,Wl+1)

= xl +F (xl,Wl)+F (xl+1,Wl+1)

= xl−1 +F (xl−1,Wl−1)+F (xl,Wl)+F (xl+1,Wl+1)

= ...

(3.34)

The above equation says any deep layer at L can be expressed as an ensemble

of the previous layers:

xL = xl +
i=L−1

∑
i=l

F (xi,Wi) (3.35)

The gradient of the loss value (L) with respect to the i-th layer’s weights pa-

rameters (Wl) is [57]:

dL
dWl

=
dxl

dWl

dL
dxl

=
dxl

dWl

dL
dxL

dxL

dxl

=
dxl

dWl

dL
dxL

d(xl +∑
i=L−1
i=l F (xi,Wi))

dxl

=
dxl

dWl

dL
dxL

(1+
i=L−1

∑
i=l

dF (xi,Wi)

dxl
)

=
dxl

dWl

dL
dxL

+
dxl

dWl

dL
dxL

i=L−1

∑
i=l

dF (xi,Wi)

dxl
)

(3.36)
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The gradient decomposition in Eq. 3.36 shows that the gradient at any previous

layer l directly depends on the gradient at the deeper layer dL
dxL

. In other words, the

gradient at the deeper layer L flows back to any previous shallow layer at l through

the ”tunnels” of skip connections. Equation 3.36 also suggests that there is a lesser

chance of vanishing gradients at the previous layer l if the network is deep with at

least L layers, unless ∑
i=L−1
i=l

dF (xi,Wi)
dxl

equals −1.

3.2.5 Loss functions

The cost or loss function of deep learning typically estimates maximum likelihood

from the frequentist perspective. The loss function is defined as a score to measure

the degree of alignment between the model predictions and the ground truth labels.

Cross entropy One of the most common options for a cost function is cross-

entropy, especially when the labels are categorical. Given the raw logits of the

model output as z, the Softmax function output of z as p, and the target ground truth

label y with a total of C classes, for each training data point:

L=−ylogp (3.37)

Where the Softmax is:

pc =
ex

c

∑
c=C
c=1 ex

c
(3.38)

MSE loss The mean squared error loss or l2 loss is another very common

loss function that is used in later chapters for consistency loss in semi-supervised

learning.

L=
1
N

i=N

∑
i=1

(pi − yi)
2 (3.39)

3.2.6 Backpropagation

Backpropagation is the algorithm used to train a deep learning-based machine learn-

ing model. As mentioned before, a 2-layer perceptron can solve a trivial non-linear

XOR problem. It was natural for the early connectionists to seek the use of more

complicated perceptrons for solving more complicated non-linear pattern recogni-

tion problems. However, the problem was that there was no suitable and efficient
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algorithm to train such a multilayer perceptron model and find its parameters until

the emergence of backpropagation. The standard method to train the parameters

of the neural network is gradient-based optimization regarding the loss function,

which measures how close the predictions are to the ground truth.

Mathematically, the backpropagation algorithm is the direct application of the

chain rule in calculus. We show an example of the backpropagation algorithm for

a two hidden-layer multilayer perceptron (MLP) model in Figure 3.2 above, from

the XOR problem. If the loss function is defined as the mean squared error (MSE)

loss between the prediction and the ground truth y, let’s define this 2-layer MLP as

a mapping of f (x), where x ∈ Rn is the input and the output is x6 ∈ Rm. The final

loss value as a scalar is calculated as:

L=
1
2
||y−φ(W2φ(W1x))||2 (3.40)

Where W1 are the trainable parameters (we only show weights here, biases are set

up as zero for illustrative simplicity) of the 1st hidden layer, and W2 are the trainable

parameters of the 2nd hidden layer. φ is a ReLU function, thus parameterless. Our

goal is to use backpropagation to optimize the values of the parameters W1 and W2.

The forward pass consists of a sequence of functions:

f = f5︸︷︷︸
MSE

◦ f4︸︷︷︸
φ(.)

◦ f3︸︷︷︸
W2×

◦ f2︸︷︷︸
φ(.)

◦ f1︸︷︷︸
W1×

(3.41)

The intermediate outputs of each function are:

x2 = f1(x) =W1 × x

x3 = f2(x2) = φ(x2)

x4 = f3(x3) =W2 × x3

x5 = f4(x4) = φ(x4)

L= f5(x5,y) =
1
2
||x5 − y||2

(3.42)

In order to update the trainable parameters W1 and W2 respectively, we need to
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calculate the gradients of the final loss scalar with respect to the target parameters:

dL
dW2

=
dL
dx5

dx5

dW2
dL
dW1

=
dL
dx5

dx5

dx4

dx4

dx3

dx3

dx2

dx2

dW1

(3.43)

We then update each layer based on the final loss scalar using the gradients.

The details of how to calculate the gradients efficiently are not included here. Back-

propagation grants the model the ability to learn, differing from the way biological

intelligent systems operate. Combined with later hardware revolutions, featuring

much more powerful computing chips, the AI revolution finally kicked off in 2012

after the deep learning model AlexNet won the ImageNet competition for object

recognition.

3.2.7 Stochastic Gradient Descent

In deep learning, the most commonly used optimization technique is called stochas-

tic gradient descent (SGD), which usually operates in batches. Although SGD does

not guarantee global minima of solutions, it introduces stochastic noise, which is

a key factor leading to the convergence of the algorithm. It is worth mentioning

that SGD relies on suitable initialization of network parameters. The goal here is to

minimize the scalar loss value with respect to the model parameters:

L= Ex∼q(x)[loss f unction(model,x)] (3.44)

Where q(x) is the distribution of the training images. However, computing

over the entire q(x) is too challenging. In practice, we aim to estimate the gradient

of dL
dx by randomly sampling a small subset from q(x) at every iteration t:

Lt = loss f unction(model,xt) (3.45)

We then calculate the gradient of Lt instead and update the model parameters

θ at each iteration t as:
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θt+1 = θt −gamma∇Lt(θt ,xt) (3.46)

Where γ is the step size of optimization, and it is normally set up as a hyperpa-

rameter called learning rate. The learning rate γ is the most crucial hyperparameter

in network training, and it has been widely observed that different learning rate

annealing schedules could aid convergence.

Adam [58] A variant of the SGD algorithm is now the default training al-

gorithm for deep learning models, called ADAM (adaptive moment estimation).

ADAM is a combination of adaptive gradient methods and momentum methods.

ADAM first computes the 1st and 2nd order moments of gradients using exponen-

tially weighted moving averages before updating the model parameters:

mt = β1mt−1 +(1−β1)∇Lt(θt ,xt)

st = β2st−1 +(1−β2)∇
2Lt(θt ,xt)

θt+1 = θt −gamma
1

√
st + ε

mt

(3.47)

Bias correction is normally used for the momentum in the beginning of the

training:

m̂t = mt/(1−β
t
1)

ŝt = st/(1−β
t
2)

(3.48)

3.2.8 Training tricks

At its core, deep learning is an engineering science; therefore, its performance de-

pends on a lot of heuristic tricks. For example, the initialization of the weights

and other parameters also plays a crucial role in training. The initial weights are

typically sampled from a Gaussian distribution, and the parameters of the Gaus-

sian distribution might affect the initialization effect. Regularisation is also vital

to prevent overfitting. Commonly used techniques include dropout layers, which

randomly disable connections between neurons with a hyperparameter probability.
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Weight decay is another typical technique to prevent overfitting, which is equivalent

to l2 regularization in ridge regression.

3.3 Deep Learning for Medical Image Segmentation

Segmentation: Given an unseen pixel (x) from a medical image, the goal is to deter-

mine the label (y) for that x. This is typically achieved using a maximum likelihood

estimation approach, implemented as a supervised learning algorithm trained on

seen images with paired pixel-wise labels. Essentially, recognising the labels of the

pixels involves estimating a probability distribution p(y
∣∣x;θ), where θ represents

the model parameters. The default task is binary pixel-wise segmentation, where

the probability of y is 1 when the algorithm determines x to be in the foreground

class, and the probability of y is 0 for the background class. Thus, the sum of the

two candidate probabilities is 1. To assign labels more effectively, the probability

distribution is squashed into the interval between 0 and 1 using logistic regression

(Sigmoid function): p(y = 1
∣∣x;θ) = σ(θTx). It should be noted that the normaliza-

tion function is typically Softmax in a multi-class scenario.

Challenges: In recent decades, the volume of medical imaging data has be-

come ”big”. As a result, state-of-the-art data-driven methods have been introduced

to the medical imaging domain to address important issues such as more efficient

and accurate diagnosis. However, the amount of available medical imaging data is

still significantly smaller than that of natural imaging data. This is because: 1) data

acquisition in the medical domain is expensive and requires medical devices; 2)

acquiring ground truth data is very expensive as it requires expertise from medical

professionals. These factors pose several technical challenges that need to be ad-

dressed by the medical imaging community, including: 1) the issue of label scarcity;

2) the issue of noisy labels and inter/intra-rater variability; 3) efficient learning of

volumetric data.

Nowadays, computer-aided diagnosis relies on pixel/voxel-wise segmentation

of medical images, where each pixel or voxel is classified into a category belong-

ing to different classes such as background healthy tissue, foreground pathological
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tissue, or different types of soft tissues or bones. The decision-making process is

based on the learned features of the models. Since the renaissance of deep learn-

ing due to AlexNet [59], numerous deep learning-based segmentation models have

been proposed. Among them, U-Net [60] has emerged as the most widely adopted

model due to its superior performance.

3.3.1 Supervised Learning

Early deep learning models in medical image segmentation were based on convo-

lutional networks used for image classification methods. Due to the use of fully

connected layers for classification in those networks, the sliding window method

had to be enabled to classify each patch of a volume, as demonstrated by the clas-

sical method DeepMedic [61]. In DeepMedic, the authors developed a two-stream

approach, with each stream taking inputs at different resolutions. The fully con-

volutional network was the first model to replace the fully connected layer with

a convolutional layer for end-to-end pixel-wise classification. U-Net [62] inher-

ited the merits of the originally proposed fully convolutional network (FCN) [43].

Like FCN, U-Net can perform classification at each pixel regardless of the res-

olution of input images. The success of U-Net comes from the intensive use of

skip-connections between its encoder and decoder. These skip-connections have

the following advantages: 1) the model makes decisions based on fused low-level

and high-level features, with low-level features being especially important in grey-

scale medical imaging. Previous approaches might not have effectively utilized

low-level features; 2) reusing low-level features is an efficient learning strategy,

particularly given the limited availability of labelled training data. Additionally,

this feature reuse can be seen as a form of regularization that reduces overfitting;

3) skip-connections, in general, aid optimization, especially in reducing the issue

of exploding gradients and smoothing the loss surface. Another important factor

of U-Net is its symmetric design, where the decoder has a capacity as large as the

encoder. Previous methods, on the other hand, employed very lightweight decoders.

Sequence-modelling-inspired architectures such as Transformers have also gained

tremendous research interest in the community. However, as of early 2023, there is
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still no concrete evidence that Transformers have fully surpassed U-Net in medical

image segmentation tasks, judging from recent results from MICCAI segmentation

competitions. Another important aspect to consider is that U-Net has significantly

lower computational requirements compared to Transformers, which might be an-

other reason why U-Net remains the most popular segmentation framework to date.

Surprisingly, U-Net has also shown its potential in other recent advancements, such

as generative diffusion models and GANs. The potential improvements and appli-

cations of U-Net architecture still remain one of the most active research fields in

neural network architectures.

State-of-the-Art: In the segmentation of medical images, a recent frame-

work called nnU-Net [63], standing for ”not-new U-Net,” consistently outperformed

many complicated models across different tasks. The most striking uniqueness of

nnU-Net is that it dedicates most of its efforts to configuring a domain-specific data

preprocessing pipeline and implementing good machine learning practices. In terms

of modelling, nnU-Net uses the standard U-Net [62]. The standardized data prepro-

cessing pipeline drastically improves the quality of training data, resulting in its

leading performance on several leaderboards of medical image segmentation com-

petitions. For example, in all of the MICCAI challenges in 2021, 5 out of 7 were

based on nnU-Net. The inspiring success of nnU-Net breaks the medical imaging

community’s stereotype that more advanced models outweigh more careful data en-

gineering work in achieving good performance. nnU-Net verifies that good input is

as important as a good model.

3.3.2 Semi-Supervised Learning

Semi-supervised learning (SSL) is a branch of representation learning in which the

training data contains both labelled and unlabelled data. SSL training, therefore,

consists of two parts: supervised learning on labelled data and self-training on unla-

belled data. Most popular semi-supervised learning methods have the same learning

objective, which is based on maximising the mutual information between the input

and the output.
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3.3.2.1 SSL in Classification

Popular classes of common SSL methods have been compared in a benchmark study

[64]. A direct application of the smoothness assumption is called label propaga-

tion, which propagates labels to unlabelled data based on the similarity between

labelled and unlabelled data [65]. However, constructing similarity graphs for label

propagation involves computationally heavy Laplacian matrices, leading to scal-

ability issues. Another common method is entropy minimisation, which aims to

drive models to achieve low-entropy predictions on unlabelled data [66] [67]. One

drawback of entropy minimisation is the risk of overfitting, which can lead to in-

correct decision boundaries for data points in low-density regions (see Appendix

E in [64]). Other attempts include generative models, such as the one proposed

in [68], which combines GANs in training but suffers from unstable training. The

state-of-the-art methods are dominated by consistency regularisation methods, as

they are easy to use and effective across different tasks. Among the consistency

regularisation methods, Mean-Teacher [1] is the most representative example. It in-

volves two identical models that are fed inputs augmented with different Gaussian

noises. The first model learns to match the target output of the second model, while

the second model uses an exponentially moving average of the parameters from the

first model. One of the state-of-the-art SSL methods [69] [2] combines entropy

minimisation and consistency regularisation.

3.3.2.2 SSL in Segmentation

In semi-supervised image segmentation, consistency regularisation is commonly

used [70] [71] [72] [73] [74] [3], where different data augmentation techniques

are applied at the input level. Another related work [75] forces the model to

learn rotation-invariant predictions. In addition to augmentation at the input level,

feature-level augmentation has gained popularity in consistency-based SSL seg-

mentation [4, 76]. There have also been attempts to create perturbations using dual

network branches [77] [78]. However, in contrast to [77] and [78], the perturbations

we use are also learned via the network itself. Apart from consistency regularisation

methods in medical imaging, other attempts have been made, including the use of
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generative models to create pseudo data points for training [79] [80], as well as the

use of different auxiliary tasks as regularisation [81] [82].

A summary of recently proposed semi-supervised medical image segmentation

methods can be found in Table 3.2.
References Dimension Modality Datasets Highlights

Consistency Regularisation
MIDL2023 [83] 3D CT/MRI ACDC/AMOS/BraTS Multi-scale

MedIA2023 [84] 3D MRI ACDC/Prostate/MMWHS Contrastive loss for consistency

TMI2023 [85] 3D MRI ACDC/Prostate/PROMISE Consistency on adversarial noise

MIDL2022 [86] 2D CT/MRI CARVE/BraTS Consistency on morphological feature perturbations

MIDL2022 [87] 3D CT ACDC Consistency on two different networks

TMI2022 [88] 3D CT COVID-SemiSeg/SEG-C19/LIDC SwapMix data augmentation

BMVC2022 [89] 2D MRI ACDC MixUp data augmentation

TMI2022 [90] 2D/3D MRI/CT LA/MS-CMR/Hippocampus(Vandervilt). Consistencies on contextual and structural features

TMI2022 [91] 2D Fundus DRIVE Combined with domain adaptation

MICCAI2022 [92] 2D Histological MoNuSeg Consistency for each scale

MICCAI2022 [92] 2D OCT SEG/UKBB Consistency on geometrical boundaries from different methods

MICCAI2022 [93] 2D Endoscopic Kvasir/CVC-ClinicDB/EndoScene/ETIS-Larib-Polyp-CVC-ColonDB Temporal consistency on adjacent frames

TMI2022 [94] 2D Fundus SEG/UKBB Geometrical constraints on two branches of Graph Neural Network

MedIA2022 [95] 3D MRI BraTS/Prancreas-NIH/NPC-MRI Consistency across different scales

TMI2022 [96] 2D Histological AC3/AC4/CREMI/Kasthuri15 Mean-Teacher

MICCAI2022 [97] 2D MRI Consistency on different models outputs

MedIA2022 [98] 3D MRI PROMISE12/ACDC Teacher model uses dropouts, student model uses signed distance function

MedIA2022 [99] 3D Ultrasound EchoNet-Dynamic/CAMUS bi-directional spatiotemporal features fusion models

Pseudo Labelling
TPAMI2023 [100] 3D CT HUST-COVID Multi-task

MICCAI2022 [101] 3D CT/MRI CARVE/BraTS A new Bayesian formulation of pseudo labels

TPAMI2023 [102] 3D CT/MRI ACDC/MMWHS/REFUGE A new formulation of pseudo labels via risk estimation

MICCAI2022 [103] 3D MRI LA/Pancreas Uncertainty-aware

MICCAI2022 [104] 3D CT Med. Seg. Decathlon Active learning framework with Human feedback

MICCAI2022 [105] 3D MRI ACDC Extra local contextural constrinats

MICCAI2022 [106] 2D OCT CORN-1/CCM30/BJH Active learning framework

MICCAI2022 [107] 2D MRI ACDC/MM-WHS Fuzzy fusion for pseudo labelling

CVPR2022 [108] 2D Histological DSB/MoNuSeg Contrastive learning on features from different patches

MICCAI2022 [109] 2D MRI BraTS Combined with domain adaptation

Generative Modelling
TMI2022 [110] 2D CT/MRI LiST/ISIC/LA GAN as regularisation

TMI2022 [111] 3D CT COVID-19-20/Mosmed-1110 Generate pathological areas highlighed by pseudo labels

TMI2022 [112] 3D Fundus/OCT Private Adversarial training to tell the prediction apart from label

TMI2022 [113] 3D NIR VESSEL-NIR LSTM and GAN for generating sequential images

CVPR2022 [114] 3D CT KiTS19/AtrialSegChallenge Generate the input volumes as regularisation

TMI2022 [115] 3D MRI MIDAS Segmentation base model is a Transformer

Hybrid
CVPR2023 [116] 2.5D CT LA/KiTS19/LiTS Two branches, uncertainty-aware

CVPR2023 [117] 3D CT/Hist. ACDC/KiTS19/CRAG teacher-student model

CVPR2023 [118] 3D CT/MRI LA/NIH Pancreas teacher-student model, pseudo labels fusion

MedIA2022 [119] 2D CT/MRI Hecktor/BraTS Novel area similarity contrastive loss

Table 3.2: A summary of very recent semi-supervised learning methods in medical image
segmentation from MIDL, MICCAI, TMI, MedIA, CVPR and BMVC (2022-
2023)

3.3.2.3 Mutual Information and entropy minimisation

Many semi-supervised learning methods aim to maximize the mutual information

between the input and output. We can view the learning of a model as a mapping

between the high-dimensional imaging input and the low-dimensional categorical

output. It is natural to assume that the information is preserved between the input

and output. This assumption is particularly important in scenarios where labels
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are not available, and thus we can formulate an objective function for unlabelled

data. As described by Birdle [120], such an objective function can intuitively aim

to maximize the mutual information between the input and output of the unlabelled

data. The mutual information I(y;x) between the input x and the output y can be

defined as [120] based on the definition of forward KL divergence (kl(p(x)||q(x)) =∫
p(x) p(x)

q(x)dx):

I(y;x) = KL(p(x,y)||p(x)p(y))

=
∫ ∫

p(y,x)log
p(y,x)

p(y)p(x)
dydx

=
∫ ∫

p(y|x)p(x)log
p(y,x)

p(y)p(x)
dydx

=
∫

p(x)dx︸ ︷︷ ︸∫
dxp(x)(.):Ex

∫
p(y|x)log

p(y|x)
p(y)

dy

(3.49)

Now let’s say if the y contains C total classes for a classification task, then

[120]:

I(y;x) = Ex[
i=C

∑
i=1

p(yi|x)log
p(yi|x)

Ex(p(yi)|x)
]

= Ex[
i=C

∑
i=1

p(yi|x)log(yi|x)]−
i=C

∑
i=1

Ex[p(yi|x)logEx[p(yi|x)]]

=−Ex[H(y)]+H(Ex[y])

=H(ȳ)− ¯H(y)

(3.50)

The above loss function [120] is the entropy of the average of the outputs mi-

nus the average of the entropy of the outputs. To maximise the above loss function,

we need to maximise the 1st term H(ȳ). For each training data, it should be evenly

distributed across all classes, which corresponds to entropy minimisation. Mean-

while, the second term should be minimised. For each training data, it should have

a maximum probability for one class compared to all other classes, which can be

implemented using pseudo-labelling.



Chapter 4

MisMatch: Calibrated Segmentation

via Consistency on Differential

Morphological Feature Perturbations

with Limited Labels

This chapter describes differential morphological operations via neural networks

and a novel consistency regularisation framework for semi-supervised segmenta-

tion. The current form of this chapter has been published in IEEE Transactions on

Medical Imaging. A shorter version of this chapter has been presented as an oral

presentation (top 11.6 % ) at the 5th International Conference on Medical Imaging

with Deep Learning (MIDL) 2022. I conceived the idea, implemented the code,

performed the experiments and wrote the draft for the manuscript; my colleague

Yukun provided feedback on experiments design; all of the co-authors contributed

to the writing of the manuscript.

4.1 Abstract
Semi-supervised learning (SSL) is a promising machine learning paradigm to ad-

dress the ubiquitous issue of label scarcity in medical imaging. The state-of-the-

art SSL methods in image classification utilise consistency regularisation to learn

unlabelled predictions which are invariant to input level perturbations. However,
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image level perturbations violate the cluster assumption in the setting of segmen-

tation. Moreover, existing image level perturbations are hand-crafted which could

be sub-optimal. In this paper, we propose MisMatch, a semi-supervised segmen-

tation framework based on the consistency between paired predictions which are

derived from two differently learnt morphological feature perturbations. MisMatch

consists of an encoder and two decoders. One decoder learns positive attention for

foreground on unlabelled data thereby generating dilated features of foreground.

The other decoder learns negative attention for foreground on the same unlabelled

data thereby generating eroded features of foreground. We normalise the paired

predictions of the decoders, along the batch dimension. A consistency regularisa-

tion is then applied between the normalised paired predictions of the decoders. We

evaluate MisMatch on four different tasks. Firstly, we develop a 2D U-net based

MisMatch framework and perform extensive cross-validation on a CT-based pul-

monary vessel segmentation task and show that MisMatch statistically outperforms

state-of-the-art semi-supervised methods. Secondly, we show that 2D MisMatch

outperforms state-of-the-art methods on an MRI-based brain tumour segmentation

task. We then further confirm that 3D V-net based MisMatch outperforms its 3D

counterpart based on consistency regularisation with input level perturbations, on

two different tasks including, left atrium segmentation from 3D CT images and

whole brain tumour segmentation from 3D MRI images. Lastly, we find that the

performance improvement of MisMatch over the baseline might originate from its

better calibration. This also implies that our proposed AI system makes safer deci-

sions than the previous methods.

4.2 Introduction

Training of deep learning models requires a large amount of labelled data. How-

ever, in applications such as in medical image analysis, anatomic/pathologic labels

are prohibitively expensive and time-consuming to obtain, with the result that label

scarcity is almost inevitable. Advances in the medical image analysis field requires

the development of label efficient deep learning methods and accordingly, semi-
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supervised learning (SSL) has become a major research interest within the com-

munity. Among the myriad of SSL methods used, consistency regularisation based

methods have achieved the state-of-the art in classification [1, 2, 69, 121], thus we

focus on this genre in this paper.

Figure 4.1: Different strategies for consistency regularisation. (a) Previous methods [1,
2, 3] use hand-crafted augmentation at input level to create predictions with
different confidences. (b) Previous method [4] uses hand-crafted augmentation
at feature level to create predictions with different confidences. (c) Our method
end-to-end learns to create predictions with different confidences.

Existing consistency regularisation methods [1, 2, 69, 121, 4, 76, 3, 75] are

mainly focusing on producing predictions which are invariant against different in-

put level perturbations. In other words, we can interpret that consistency regularisa-

tion methods aim at training networks which generate augmentation invariant pre-

dictions. For example, if we apply weak augmentation such as flipping on an input

image, the model will assign a high probability of this image belonging to its correct

label, hence, the prediction of the weakly augmented image is with high confidence;

if we apply strong augmentation such as rotation on an input image, then the testing

is much more difficult and the model might assign a low probability of this image

to its correct label, therefore, such a prediction of a strongly augmented image is

with low confidence. A consistency regularisation is enforced to align the paired

predictions. The relationship between consistency regularisation and augmentation

invariant predictions imply that such networks should be having better calibration,

which will be empircally verified in section 4.8. However, data augmentation tech-
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niques used in existing semi-supervised learning are typically hand-crafted which

might be sub-optimal. Practically, such augmentation techniques are not adaptive

across pixels which may be problematic as spatial correlations amongst pixels are

crucial for segmentation, e.g. neighbouring pixels might belong to the same cate-

gory. Most importantly, direct adaption of input level perturbations in segmentation

violates the cluster assumption which is the foundation of semi supervised learning,

we will explain this issue further in later section 4.3.

In this paper, we propose an end-to-end learning framework to generate pre-

dictions with different confidences. In order to change prediction confidences at

a pixel-wise level in a realistic way, we use two different attention mechanisms

to respectively dilate and erode foreground features which correspond to the ar-

eas of “ground truth”. A preliminary version of this manuscript has been pre-

sented at MIDL 2022 [86]. Comparing to the previous MIDL version, we now

included extra experiments on two 3D data sets using a different base network;

a more detailed explanation of the motivation; a more principled method sec-

tion under the guidance of the theory of effective receptive field. The code is

here: https://github.com/moucheng2017/MisMatchSSL. Our contri-

butions are summarised as:

• We provide an intuition of the relationship between consistency regularisation

and semi-supervised learning, and why consistency regularisation with data

augmentation wouldn’t work well in segmentation.

• We propose a framework called MisMatch for semi supervised segmentation,

by combining differential morphological feature perturbations with consis-

tency regularisation.

• We discovered that our consistency regularisation improves model calibra-

tion, leading to safer AI deployment for medicine.

• We intensively evaluated our framework on four medical applications includ-

ing: 1) 2D segmentation of lung vessel of CT images; 2) 2D segmentation

https://github.com/moucheng2017/MisMatchSSL
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of brain tumour of MR images; 3) 3D segmentation of left atrium of MR im-

ages; 4) 3D segmentation of whole tumour from MRI images. We conclude

that our consistency regularisation on feature perturbations is more effective

than consistency on input level perturbations.

4.3 Motivations

Figure 4.2: Cluster assumptions in semi supervised classification and semi supervised seg-
mentation. (a) In classification, limited labels will cause wrong decision bound-
ary (red straight line), where each dot is an image. (b) In classification, cluster
assumption with consistency regularisation on input level perturbations at im-
ages helps to find a better decision boundary, because low density regions of
images align well with the correct decision boundary. (c) In segmentation, lim-
ited labels will cause wrong decision boundary (red straight line), where each
dot is a pixel. (d) In segmentation, cluster assumption with consistency reg-
ularisation on input level perturbations at pixels will not help to find a better
decision boundary, because low density regions of pixels do not align with the
correct decision boundary (tight boundaries between objects).

Cluster assumption In this section, we will explain the cluster assumption for

semi-supervised classification and how it is violated if we straightforwardly trans-

fer existing consistency regularisation methods from classification to segmentation.

The cluster assumption is a variant of the smoothness assumption. The smoothness

assumption states that if two data points (x1 and x2) are adjacent to each other, their

outputs or labels (y1 and y2) should also be close to each other. The cluster as-

sumption directly derives from the smoothness assumption, for example, if there is

a dense population of data points in a space, then it is highly likely that cthe luster

of those densely neighbouring data points are in the same class. In other words, the

cluster assumptions implies there exists low density regions among different classes

or different clusters of data points and the correct decision boundary should lie at

the low-density regions. Equivalently, the key is to find the low-density regions
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which leads to the rightful decision boundary.

Consistency with Data Augmentation in Classification We start with a clas-

sical two moon example to explain how consistency regularisation with data aug-

mentation works in semi-supervised classification. Each moon represents a class

and each dot represents an image for semi-supervised classification. As shown in

the two moons example in Fig. 4.2(a), if there are very limited labelled data points

such as two data points, any decision boundary between the two labelled data points

is possible, for example, the examplar decision boundary shown in Fig. 4.2(a) can

wrongly classify half of the data points. The two moon example in Fig. 4.2(a) and

(b) is also a perfect example for cluster assumption that the low density region be-

tween the two moons can separate the two moons from each other. In Fig. 4.2(b),

let’s focus on the two images x and y which are from the upper moon class and lower

moon class respectively. If we apply two random augmentations (directional arrows

in Fig. 4.2(b)) on the images, we will get p1(x) and p2(x) from x, p1(y) and p2(y)

from y. Since x is closer to the low-density region, the augmented x could cross

the decision boundary thereby p2(x) could be wrongly classified as the lower moon

class, meanwhile, p1(x) still stays in the cluster of upper moon class. In this case,

p1(x)! = p2(x) although they are derived from the same data point x. The differ-

ence between p1(x) and p2(x) will be more than 0 which can be back-propagated to

optimise the model parameters. On the contrary, the image y is closer to the centre

of the cluster of lower moon class, that p1(y) and p2(y) are the same, resulting in

0 differences which does not affect the model parameters. Hence, it is easy to tell

that the consistency regularisation with data augmentation makes the model param-

eters sensitive to the images closer to the low-density regions. This property will

naturally drive the model to locate the low-density regions which happen to be the

correct decision boundary.

Consistency with Data Augmentation in Segmentation However, consis-

tency regularisation with data augmentation will have clear limitations in segmen-

tation. In segmentation, as shown in Fig. 4.2(c), now we have each dot as a pixel

and all of the pixels are densely distributed across the image space. In Fig. 4.2(c)
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and (d), we highlight the object boundary with continuous red and blue dots along

the two sides of the boundary respectively. As there are hardly low-density regions

between objects, it becomes hard to align the objects boundaries with low-density

regions. If we have only two labelled pixels from each class, we will not be able

to locate the correct decision boundary as illustrated in Fig. 4.2(c). If we apply

two different augmentations on x and y with consistency regularisation as shown in

Fig. 4.2(d), although the model can still locate the pixels which are sensitive to the

consistency regularisation, due to the lack of clear low-density regions, the model

will not correctly locate the right decision boundaries.

Practical Limitations of Strong Data Augmentations in Segmentation

Common strong data augmentation techniques typically distort the spatial charac-

terisation of the objects such as shearing. As shown in Fig.4.3, the image-wise label

Figure 4.3: Strong data augmentations (e.g. shearing) change pixel-wise labels therefore
they might make pixel-wise consistency regularisation not feasible for segmen-
tation.

stay the same, regardless of the data augmentation is applied. However, strong data

augmentation will modify the pixel-wise labels, leading to difficulty of applying

consistency regularisation at pixel-wise if two different strong data augmentations

are applied on the same image. To avoid this practical issue, specific strong data

augmentation such as CutMix was chosen in order to use consistency regularisation

in segmentation [3]. In our paper, we propose an alternative solution. We use aug-

mentation at the feature level in lieu of augmentation of the data level, to completely



4.4. Methods 65

avoid this practical issue.

Proposal Although the low-density regions do not align with the objects

boundaries anymore, the evidence in [4, 3] suggests that the low-density regions

actually align well with the objects boundaries in the feature space. This means that

it might be possible to use consistency regularisation on the predictions which are

invariant to feature perturbations to identify the correct decision boundaries in seg-

mentation. This directly inspired us to focus on feature perturbations in our work

that we want to design learnable feature perturbations which are realistic and se-

mantically meaningful. More specifically, we decide to apply morphological-alike

perturbations on the features. In the following sections, we show how to use in-

ductive biases of neural network topology to ask the networks to end-to-end learn

morphological feature perturbations.

4.4 Methods

4.4.1 Background: ERF and the foreground

Effective Receptive Field We introduce how to control the size of the foreground

features by controlling the effective receptive field (ERF). The ERF [122] measures

the size of the effective area at the centre of receptive field and it impacts the most

on the prediction confidence of the central pixel of the receptive field, which should

overlap with the foreground objects with the highest confidence at the foreground

central pixel. If we want to apply morphological operations on features of fore-

ground objects, equivalently, we need to adjust the ERF on the foreground. As

found in [122], a larger ERF means the model can effectively take a larger area of

the image into account during inference of decision making, resulting in higher pre-

diction confidence at the centre, meanwhile, a smaller ERF leads to less confident

prediction on the central pixel due to the lack of visual information of neighbouring

pixels. More importantly, ERF is highly affected by the network architecture. In

particular, the dilated convolutional layer can increase the ERF to an extent depen-

dent on the dilation rate [122]. Skip-connections conversely can shrink the ERF,

though the extent of this effect is as yet unknown [122]. We are therefore inspired
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by [122] to design a network to control the ERF, in order to deliberately change the

prediction confidence to morph the foreground features.

Figure 4.4: MisMatch (U-net based): decoder fd1 leads to dilated high confidence detection
of foreground and decoder fd2 leads to eroded high confidence detection of
foreground. The final prediction is the average between outputs of fd1 and fd2.
Any other encoder-decoder segmentation network could be used.

Overview of MisMatch In this paper, we learn to realistically morph the fore-

ground features by controlling the ERF for consistency regularisation. In order to

create a paired predictions with different confidences for consistency regularisation,

our strategy is to dilate the foreground features and erode the foreground features,

we also compare our strategy with other possible strategies in an ablation study in

later section 5.7. As introduced in the last section, the prediction confidence can

be affected by the ERF while the ERF is decided by the network topology. More

specifically, we use the dilated convolutional layer to raise the ERF on one hand to

dilate the foreground features, and we use skip-connections to decrease the ERF on

the other hand to erode the features of foreground. However, we do not know how

much confidence should be changed at each pixel. To address this, we introduce
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soft attention mechanism to learn the magnitude of the confidence change for each

pixel. Now we introduce how we achieve this in the next section.

Differences between proposed methods and classical morphological opera-

tions We also would like to highlight the difference between our approach at feature

space and the classical morphological operations at image space. Traditional mor-

phological operations simply remove/add boundary pixels using local neighbouring

information which is not differentiable, in contrast, our approach is differentiable

and can be fully integrated in neural networks.

4.4.2 Architecture of Mismatch

As shown in Fig.4.4, MisMatch is a framework which can be integrated into any

encoder-decoder based segmentation architecture. In this section, we use 2D U-net

[62] due to its popularity in medical imaging, although later we also have an ex-

periment using a MisMatch based on a 3D V-net. Our U-net based MisMatch (Fig

4.4) has two components, an encoder ( fe) and a two-head decoder ( fd1 and fd2).

The first decoder ( fd1) comprises of a series of Positive Attention Shifting Blocks,

which shifts more attention towards the foreground area, resulting in dilating high-

confidence predictions on the foreground. The second decoder ( fd2) containing a

series of Negative Attention Shifting Blocks, shifts less attention towards the fore-

ground, resulting in eroding high-confidence predictions on the foreground.

4.4.3 Positive Attention Shifting Block

The positive Attention Shifting Block aims at increasing the ERF of the foreground,

therefore dilating the foreground features. In a standard U-net, a block ( f (.)) in

the decoder comprises two consecutive convolutional layers with kernel size (K) 3

followed by ReLU and normalisation layers. If the input of f (.) is x and the output

of f (.) is f (x), to increase the ERF of f (x), we would aim to generate an attention

mask with a larger ERF than the ERF of f (x). To do so, we add a parallel side

branch f ′(.) next to the main branch f (.). The side branch intakes x but outputs

f ′(x) with a larger ERF. We apply Sigmoid on the output of the side branch as an

attention mask to increase the confidence of f (x). The new block containing both
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f (.) and f ′(.) is our proposed Positive Attention Shifting Block (PASB). The side

branch of the PASB is a dilated convolutional layer with dilation rate 5.

4.4.3.1 ERF size in Positive Attention Shifting Block

Given the size of ERF of nth layer as,
√

n [122], which is the input x, as output from

the previous layer. The ERF of f (x) is ERFf (x) = K
√

n+2. To make sure the ERF

of f ′(x) is larger than K
√

n+2:

ERFf ′(x)

ERFf (x)
=

K′

K

√
1

1+ 1
n+1

> lim
n→+0

K′

K

√
0.5 > 1 (4.1)

From Eq4.1, we find K′ > 1√
0.5

K ≈ 1.5K. We double the condition as our design

choice, then K′ is 9 when K = 3. However, the large kernel sizes significantly in-

crease model complexity. To avoid this, we use a dilated convolutional layer to

achieve K′ at 9, which requires a dilation rate 5. As the side branch has a larger

ERF than the main branch, it can raise the confidence on the foreground of the

main branch. Previous work [123, 124] has reported similar uses of a dilated con-

volutional layer to increase the ERF for other applications, without explaining the

rationale for their use. See visual evidence in Fig 4.4(q) and (r).

4.4.4 Negative Attention Shifting Block

The negative Attention Shifting Block aims at decreasing the ERF on the fore-

ground, therefore eroding the foreground features. Following PASB, we design

the Negative Attention Shifting Block (NASB) again as two parallel branches. In

NASB, we aim to shrink the ERF of the f (x) in order to produce a smaller ERF than

the one from the main branch. In the side branch in NASB, we use the same archi-

tecture as the main branch, but with skip-connections as skip-connections restrict

the growth of the ERF with increasing depth [122].

4.4.4.1 ERF size in Negative Attention Shifting Block

Neural networks with residual connections are equivalent to an ensemble of net-

works with short paths where each path follows a binomial distribution [125]. If

we define p as the probability of the model going through a convolutional layer and
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1− p as the probability of the model skipping the layer, then each short path has

a portion of
(N

k

)
pk(1− p)n−k, contributing to the final ERF. If we assume p is 0.5,

the ERF of the side branch is guaranteed to be smaller than the ERF of the main

branch, see Eq.4.2.

ERFf ′(x)

ERFf (x)
= 0.25

√
1

1+ 2
n

+0.5

√
1

1+ 1
n+1

+0.25

< lim
n→+∞

0.25+0.5+0.25 = 1

(4.2)

As the side branch has a smaller ERF than the main branch, it can reduce the confi-

dence on the foreground of the main branch. See visual evidence in Fig 4.4(u) and

(v).

4.4.5 Loss Functions

For experiments on BRATS 2018 and CARVE 2014, We use a streaming training

setting to avoid over-fitting on limited labelled data so the model doesn’t repeatedly

see the labelled data during each epoch. When a label is available, we apply a

standard Dice loss [126] between the output of each decoder and the label. When a

label is not available, we apply a mean squared error loss between the outputs of the

two decoders. This consistency regularisation is weighted by hyper-parameter α .

For experiments on LA 2018, we train simultaneously on labelled and unlabelled

images by combine consistency regularisation loss with Dice loss.

4.5 Experiments

We perform a few sets of experiments: 1) comparisons with baselines including

supervised learning and state-of-the-art SSLs [2, 1, 82, 4] using either data or fea-

ture augmentation; 2) investigation of the impact of the amount of labelled data

and unlabelled data on MisMatch performance; 3) ablation study of the decoder

architectures; 4) ablation study on the hyper-parameter such as α
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4.5.1 Data sets & Pre-processing

CARVE 2014 The Classification of pulmonary arteries and veins (CARVE) dataset

[127] has 10 fully annotated non-contrast low-dose thoracic CT scans. Each case

has between 399 and 498 images, acquired at various spatial resolutions between

(282 x 426) to (302 x 474). 10-fold cross-validation on the 10 labelled cases is per-

formed. In each fold, we split cases as: 1 for labelled training data, 3 for unlabelled

training data, 1 for validation and 5 for testing. We only use slices containing more

than 100 foreground pixels. We prepare datasets with differing amounts of labelled

slices: 5, 10, 30, 50, 100. We crop 176 × 176 patches from four corners of each

slice. Full label training uses 4 training cases. Normalisation was performed case

wise.

BRATS 2018 BRATS 2018 [128] has 210 high-grade glioma and 76 low-grade

glioma MRI cases, each case containing 155 slices. We focus on binary segmenta-

tion of whole tumours in high grade cases. We randomly select 1 case for labelled

training, 2 cases for validation and 40 cases for testing. We centre crop slices at 176

× 176. For labelled training data, we extract the first 20 slices containing tumours

with areas of more than 5 pixels. To see the impact of the amount of unlabelled

training data, we use 3100, 4650 and 6200 slices respectively. Case-wise normali-

sation was performed and all modalities were concatenated. We train each model 3

times and take the average.

LA 2018 Atrial Segmentation Challenge Data set [129] has 100 volumes of

3D gadolimium-enhanced MR scans with corresponding left atrium segmentation

masks. Each scan is isotropic with resolution at 0.625 x 0.625 x 0.625 mm3. We

follow [130] and split 100 scans into 80 for training and 20 for testing. We also

directly use the pre-processing from [130] to normalise the centre crop each scan.

Task 01 Brain Tumour Task01 Brain Tumour from Medical Segmentation

Decathlon consortium [131] is based on BRATS 2017 with different naming format

from BRATS 2018. Each case in The Task01 Brain Tumour has 155 slices with

240 x 240 spatial dimension. We merge all of the tumour classes into one tumour

class for simplicity. We do not apply centre cropping in the pre-processing here. In
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the training, we randomly crop volumes on the fly with size of 96 x 96 x 96. We

separate the original training cases as labelled training data and testing data. We use

the original testing cases as unlabelled data. For the labelled training data, we use 8

cases with index number from 1 to 8. We have 476 cases for testing and 266 cases

for unlabelled training data. We apply normalisation with statistics of intensities

across the whole training data set. We keep all of the MRI modalities as 4 channel

input.

Table 4.1: MisMatch (MM) vs Baselines on CARVE. Metric is Intersection over Union
(IoU).

Supervised Semi-Supervised
Labelled Sup1 Sup2 MTA MT FM CCT Morph MM

Slices [62](2015) Ours(2021) [82](2019) [1](2017) [2](2020) [4](2020) 2021 Ours(2021)
5 48.32±4.97 50.75±2.0 54.91±1.82 56.56±2.38 49.30±1.81 52.54±1.74 52.93±2.19 60.25±3.77

10 53.38±2.83 55.55±4.42 57.78±3.66 57.99±2.57 51.53±3.72 55.25±2.52 57.08±2.96 60.04±3.64
30 52.09±1.41 53.98±4.42 60.78±4.63 60.46±3.74 55.16±5.93 60.81±4.09 60.19±4.97 63.59±4.46
50 60.69±2.51 64.79±3.46 68.11±3.39 67.21±3.05 62.91±6.99 65.06±3.42 64.88±3.25 69.39±3.74

100 68.74±1.84 73.1±1.51 72.48±1.61 71.48±1.57 72.58±1.84 72.07±1.75 72.11±1.88 74.83±1.52
Param. (M) 1.8 2.7 2.1 1.88 1.88 1.88 2.54 2.7

Infer.Time(s) 4.1e-3 1.8e-1 7.2e-3 4.3e-3 4.5e-3 1.5e-1 8e-3 1.8e-1

Table 4.2: MisMatch (MM) vs Baselines on BRATS. Metric is Intersection over Union
(IoU).

Supervised Semi-Supervised
Unlabelled Sup1 Sup2 MTA MT FM CCT Morph MM

Slices [62](2015) Ours(2021) [82](2019) [1](2017) [2](2020) [4](2020) 2021 Ours(2021)
3100 53.74±10.19 55.76±11.03 50.53±8.76 55.29±10.21 57.92±12.35 56.61±11.7 53.88±9.99 58.94±11.41
4650 53.74±10.19 55.76±11.03 47.36±6.65 58.32±12.07 54.29±9.69 56.94±10.93 55.82±11.03 60.74±12.96
6200 53.74±10.19 55.76±11.03 50.11±8.00 56.92±12.20 56.78±11.39 57.37±11.74 54.5±9.75 58.81±12.18

4.5.2 Implementation

We use Adam optimiser [58]. Hyper-parameters are: α = 0.002, batch size 1 (GPU

memory: 2G), learning rate 2e-5, 50 epochs. Each complete training on CARVE

takes about 3.8 hours. The final output is the average of the outputs of the two

decoders. In testing, we take an average of models saved over the last 10 epochs

across experiments. Our code is implemented using Pytorch 1.0 [132].

4.5.3 Baselines

In the current study the backbone is a 2D U-net [62] with 24 channels in the first

encoder. To ensure a fair comparison we use the same U-net as the backbone across

all baselines. The first baseline utilises supervised training on the backbone, is
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Figure 4.5: Expected calibration error [5] against accuracy in 10-fold cross-validation ex-
periments on 50 labelled slices with CARVE. Y-axis: IoU. X-axis: ECE. Each
calibration error is calculated from the gap between the confidence and accu-
racy for each testing image. Each data point in this figure is one testing image.
The fitted 2nd order trends of our MisMatch are flatter than U-net, meaning
MisMatch is more robust against the calibration error.

trained with labelled data, augmented with flipping and Gaussian noise and is de-

noted as “Sup1”. To investigate how unlabelled data improves performance, our

second baseline “Sup2” utilises supervised training on MisMatch, with the same

augmentation. Because MisMatch uses consistency regularisation, we focus on

comparisons with five consistency regularisation SSLs: 1) “mean-teacher” (MT)

[1], with Gaussian noise, which has inspired most of the current state-of-the-art

SSL methods; 2) the current state-of-the-art model called “FixMatch” (FM) [2].

To adapt FixMatch for a segmentation task, we use Gaussian noise as weak aug-

mentation and “RandomAug” [133] without shearing for strong augmentation. We

do not use shearing for augmentation because it impairs spatial correspondences of

pixels of paired dense outputs; 3) a state-of-the-art model with multi-head decoder
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[4] for segmentation (CCT), with random feature augmentation in each decoder

[4]. This baseline is also similar to models recently developed [3, 76]; 4) a fur-

ther recent model in medical imaging [82] using image reconstruction as an extra

regularisation (MTA), augmented with Gaussian noise; 5) a U-net with two stan-

dard decoders, where we respectively apply erosion and dilation on the features in

each decoder, augmented with Gaussian noise (Morph)”; 6) an uncertainty aware

mean-teacher based SSL segmentation model [130]. Our MisMatch model has been

trained without any augmentation.

4.6 Segmentation Results

Figure 4.6: Full results of 10 fold cross-validation on CARVE. X-axis: number of labelled
slices. Y-axis: IoU

MisMatch consistently and substantially outperforms supervised baselines, the

improvement is especially obvious in low data regime. For example, on 5 labelled

slices with CARVE, MisMatch achieves 24% improvement over Sup1. MisMatch

consistently outperforms previous SSL methods [2, 1, 82, 4] in Table 5.2, across

different data sets. Particularly, there exists statistical difference between Mismatch

and other baselines when 6.25% labels (100 slices comparing to 1600 slices of full

label) are used on CARVE (Table 4.3). Qualitatively, we observed in Fig 4.8 that,

the main performance boost of MisMatch comes from the reduction of false positive
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detection and the increase of true positive detection.

Interestingly, we found that Sup2 (supervised training on MisMatch with-

out unlabelled data) is a very competitive baseline comparing to previous semi-

supervised methods. This might imply that MisMatch can potentially help with the

supervised learning as well.

We also found data diversity of training data highly affects the testing perfor-

mance (Fig 4.6) in cross-validation experiments. For example, in fold 3, 7 and 8

on CARVE, MisMatch outperforms or performs on-par with the full label training,

whereas in the rest folds, MisMatch performs marginally inferior to the full label

training. Additionally, more labelled training data consistently produces a higher

mean IoU and lower standard deviation (Table 5.3). Lastly, we noticed more un-

labelled training data can help with generalisation, until it dominates training and

impedes performance (Table 5.3).

We further verify that consistency regularisation on feature perturbations is bet-

ter than consistency regularisation on input perturbations by comparing MisMatch

against UA-MT [130] which is an representative example of the methods using in-

put perturbations. We compare MisMatch against UA-MT on two 3D datasets left

atrium and whole tumour areas (see section 4.5.1). On the segmentation on left

atrium, our method not just outperform UA-MT but also converges faster, as illus-

trated in Fig.4.9.

During testing of trained models on the whole tumour segmentation from the

Task01 Brain Tumour data set[131], we noticed one emerging property of our model

that the our model achieves better performance when it is tested on volumes larger

than the size of the training volumes (see Table 4.7 and Table 4.8). Also if the

testing size is smaller than the training size, the performance becomes worse (see

Table 4.7 and Table 4.9).

Table 4.3: P-value between MM and baselines. Non-parametric Mann-Whitney U-Test.
100 labelled slices of CARVE.

Sup1 Sup2 MTA MT FM CCT Morph
9.13e-5 1.55e-2 4.5e-3 4.3e-4 1.05e-2 1.8e-3 2.2e-3
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4.6.1 Ablation Studies

We performed ablation studies on the architecture of the decoders of MisMatch with

cross-validation on 5 labelled slices of CARVE: 1) “MM-a”, a two-headed U-net

with standard convolutional blocks in decoders, the prediction confidences of these

two decoders can be seen as both normal confidence, however, they are essentially

slightly different because of random initialisation, we denote the decoder of U-net

as fd0; 2) “MM-b”, a standard decoder of U-net and a negative attention shifting de-

coder fd2, this one can be seen as between normal confidence and less confidence;

3) “MM-c”, a standard decoder of U-net and a positive attention shifting decoder

fd1, this one can be seen as between normal confidence and higher confidence; 4)

“MM”, fd1 and fd2 (Ours). As shown in Fig 4.7, our MisMatch (”MM”) outper-

forms other combinations in 8 out of 10 experiments and it performs on par with the

others in the rest 2 experiments. Among the results when MisMatch outperforms,

MisMatch outperforms MM-a by 2%-14%; outperforms MM-b by 3%-18%; out-

performs MM-c by 4%-22%. We also tested α at 0, 0.0005, 0.001, 0.002, 0.004

with the same experimental setting. The optimal α appears at 0.002 in Table 4.4.

We also found that gradient cutting helps to improve segmentation performance too,

see Table 4.6. In terms of network topology, as shown in Table 4.5 , it seems that

larger dilation is not always beneficial.

Table 4.4: Ablation studies on alpha value using CARVE with 5 labelled slices.

alpha 0.0 0.0005 0.001 0.002 0.004
IoU 50.75 59.16 59.45 60.25 58.89

Figure 4.7: Ablation studies on decoder architectures, cross-validation on 5 labelled slices
with CARVE. MM is ours.
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Figure 4.8: Visual results. Yellow: ground truth. Red: False Positive. Green: True Posi-
tives. Blue: False Negatives. Row 1-4: CARVE. Row 5-6: BRATS

Table 4.5: Ablation studies on dilation rate in 3D V-net based MisMatch using LA 2018
with 2 labelled cases, α as 1 and cutting gradients, network width 8. Metric is
Dice score.

Iteration 2000 3000 4000 5000
Dilation 6 0.6571 0.6621 0.6699 0.6561
Dilation 9 0.7363 0.7283 0.7180 0.6561

Dilation 12 0.6980 0.6957 0.6889 0.6561
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Table 4.6: Ablation studies on stopping gradients in 3D V-net based MisMatch using LA
2018 with 2 labelled cases, α as 1, network width 8. Metric is Dice score.

Iteration 2000 3000 4000 5000
Stop gradient 0.6896 0.7148 0.7090 0.7057

Gradient 0.6717 0.6944 0.6952 0.6837

Figure 4.9: Results on LA 2018 between UA-MT and MisMatch with 2 labelled cases,
lr 0.01, batch 4, consistency 1 and network width 8. This further confirms
that consistency regularisation on feature perturbations is more effective than
consistency on input perturbations.

Table 4.7: Testing Results on 3D segmenting the whole tumour from Task 01 Brain Tumour
from Medical Segmentation Decathlon. Training with learning rate 0.001 and
3500 epochs. Testing on 96× 96× 96 cubes. Jac: Jaccard. HD: Hausdorff
Distance. ASD: Average Surface Distance.

Metrics Dice (↑) Jac (↑) HD (↓) ASD (↓)
UA-MT 0.5454 0.3864 55.25 22.74

MisMatch (Ours) 0.57 0.4197 49.07 22.86

4.7 Visualisation of the effectiveness of Learnt Atten-

tion Masks
We visualise the probabilistic certainty of foreground feature maps before and after

attention, attention weights and how much the certainty are changed in Fig4.10 on
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Table 4.8: Testing Results on 3D segmenting the whole tumour from Task 01 Brain Tumour
from Medical Segmentation Decathlon. Training with learning rate 0.001 and
3500 epochs. Testing on 48× 48× 96 cubes. Jac: Jaccard. HD: Hausdorff
Distance. ASD: Average Surface Distance.

Metrics Dice (↑) Jac (↑) HD (↓) ASD (↓)
UA-MT 0.2926 0.1769 72.66 31.98

MisMatch (Ours) 0.3133 0.1944 85.35 39.27

Table 4.9: Testing Results on 3D segmenting the whole tumour from Task 01 Brain Tumour
from Medical Segmentation Decathlon. Training with learning rate 0.001 and
3500 epochs. Testing on 128× 128× 96 cubes. Jac: Jaccard. HD: Hausdorff
Distance. ASD: Average Surface Distance.

Metrics Dice (↑) Jac (↑) HD (↓) ASD (↓)
UA-MT 0.5945 0.4390 54.88 22.15

MisMatch (Ours) 0.6086 0.4650 47.66 23.58

CARVE. We focus on zoomed-in area of one vessel which is one region-of-interest

of the foreground. As shown in (c) and (e), the certainty outputs between the two

decoders are different, the one from the positive attention decoder has more detected

high certainty areas on the top of the anatomy of the interest. As illustrated in (j)

and (n), the attention weights in the two decoders are drastically different from each

other. More specifically, the attention weights in the negative attention decoder have

relatively low values around the edges, as shown in green and blue colours, on the

contrary, the attention weights in the positive attention decoder have high values in

most of the regions of the interest.

Another evidence supporting the effectiveness of attention blocks are the

changes of the certainty as shown in (r) and (v). After positive attention weights

are applied on (g), it is clear to see in (r) that the surrounding areas of the originally

detected contours are now also detected as regions of the interest. Besides, in (v),

we observe expected negative changes of the certainty around edges caused by the

negative attention shifting.

The histograms of the feature maps also support the effectiveness of our learnt

attention masks. Between the histograms in (j) and (m), for the high certainty in-

terval between 0.9 and 1.0, the negative attention block has more high uncertainty

pixels than the positive attention block. This is because the negative attention block
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Figure 4.10: Visulisation of predicted certainty of the foreground in the last positive atten-
tion shifting decoder and the last negative attention shifting decoder. We focus
on the zoomed-in regions on the foreground area containing one vessel.

decreases certainty on foreground, thereby ending up with increasing certainty on

background, where background class is the majority class naturally containing more

pixels than the foreground class.
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Figure 4.11: Reliability diagrams [5] from experiments on 50 labelled slices with CARVE.
Blue: Confidence. Red: Accuracy. Each row is on one testing image. X-axis:
bins of prediction confidences. Y-axis: accuracy. Column 1: U-net. Column
2: outputs of positive attention decoders. Column 3: outputs of negative atten-
tion decoders. Column 4: average outputs of the two decoders. The smaller
the gap between the accuracy and the confidence, the better the network is
calibrated.

4.8 Confidence and Calibration of Mismatch
Expected Calibration Error To qualitatively study the confidence of MisMatch,

we adapt two mostly used metrics in the community, which are Reliability Diagrams

and Expected Calibration Error (ECE) [5]. Following [134], we first prepare M

interval bins of predictions. In our binary setting to classify the foreground, we use

5 intervals between 0.5 to 1. Say Bm is the subset of all pixels whose prediction

confidence is in interval Im. We define accuracy as how many pixels are correctly
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classified in each interval. The accuracy of Bm is formally:

acc(Bm) =
1

|Bm| ∑
i∈Bm

1(ŷi = yi) (4.3)

Where ŷi is the predicted label and yi is the ground truth label at pixel i in Bm.

The average confidence within Bm is defined with the use of p̂i which is the raw

probability output of the network at each pixel:

con f (Bm) =
1

|Bm| ∑
i∈Bm

p̂i (4.4)

Ideally, we would like to see con f (Bm) = acc(Bm), which means the network is

perfectly calibrated and the predictions are completely trustworthy. To assess how

convincing the prediction confidences are, we calculate the gap between confidence

and accuracy as Expected Calibration Error (ECE):

ECE =
M

∑
m=1

|Bm|
n

|acc(Bm)− con f (Bm)| (4.5)

MisMatch is well-calibrated and effectively learns to change prediction

confidence As shown in Fig4.11, both positive attention shifting decoder and nega-

tive attention shifting decoder are better calibrated than the plain U-net. Especially,

positive attention shifting decoder produces over-confident predictions. Meanwhile,

negative attention shifting decoder produces under-confident predictions for a few

confidence intervals. This verifies again that MisMatch can effectively learn to dif-

ferently change the prediction confidences of the same testing images.

Robustness of MisMatch Against Calibration Errors As shown in the scat-

ter plot (Fig4.5) of paired IoU and corresponding Expected Calibration Error (ECE)

of all of the testing images in cross-validation experiments on 50 labelled slices of

CARVE, higher calibration errors correlate positively with low segmentation accu-

racy. In general, MisMatch has predictions with less calibration errors and higher

IoU values. As shown in the 2nd order regression curves for each trend, MisMatch

appears to be more robust against calibration error, as the fitted curve of U-net has
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a much more steep slope than MisMatch. In other words, with the increase of cali-

bration error, MisMatch suffers less performance drops.

4.9 Conclusion
We propose MisMatch, an augmentation-free SSL, to overcome the limitations

associated with consistency-driven SSL in medical image segmentation. In lung

vessel segmentation tasks, the acquisition of labels can be prohibitively time-

consuming. For example each case may take 1.5 hours of manual refinement with

semi-automatic segmentation[127]. Longer timeframes may be required for cases

with severe disease. MisMatch requires 100 slices of one case for training whereas

the fully labelled dataset comprises 1600 slices across 4 cases. MisMatch when

trained on just 10% of labels achieves a similar performance (IoU: 75%) to models

that are trained with all available labels (IoU: 77%).



Chapter 5

Expectation-Maximization Pseudo

Labelling for Segmentation with

Limited Annotations

This chapter provides a new perspective of pseudo labelling through the lens of

Bayesian statistics. This chapter is based on a publication which was shortlisted

for Young Scientist Award (top 0.8% among submissions) at the 25th Interna-

tional Conference on Medical Image Computing and Computer Assisted Interven-

tion (MICCAI) 2022. The current form of this chapter is under review at Medical

Image Analysis Special Issue on MICCAI 2022. I conceived the idea, implemented

the code, performed the experiments and wrote the draft of the manuscript; my col-

leagues Yukun, Chen and Yipeng provided feedback on experiments designs and

the notations; all of the co-authors contributed to the writing of the manuscript.

5.1 Abstract
We study pseudo labelling and its generalisation for semi-supervised segmentation

of medical images. Pseudo labelling has achieved great empirical successes in semi-

supervised learning, by utilising raw inferences on unlabelled data as pseudo labels

for self-training. In our paper, we build a connection between pseudo labelling and

the Expectation Maximization algorithm which partially explains its empirical suc-

cesses. We thereby realise that the original pseudo labelling is an empirical estima-
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tion of its underlying full formulation. Following this insight, we demonstrate the

full generalisation of pseudo labels under Bayes’ principle, called Bayesian Pseudo

Labels. We then provide a variational approach to learn to approximate Bayesian

Pseudo Labels, by learning a threshold to select good quality pseudo labels. In the

rest of the paper, we demonstrate the applications of Pseudo Labelling and its gen-

eralisation Bayesian Psuedo Labelling in semi-supervised segmentation of medical

images on: 1) 3D binary segmentation of lung vessels from CT volumes; 2) 2D

multi class segmentation of brain tumours from MRI volumes; 3) 3D binary seg-

mentation of brain tumours from MRI volumes. We also show that pseudo labels

can enhance the robustness of the learnt representations.

5.2 Introduction

5.2.1 Label scarcity: one major bottleneck of deep learning in

medical imaging

Medical image segmentation is to accurately label pixels of interest in medical im-

ages, as a foundational step towards a broad range of downstream tasks such as

computer-aided diagnosis, real-time surgical navigation, drug discovery and so on.

Recent years have seen rises of deep learning enabled medical image segmenta-

tion methods for more accurate and faster segmentation results. However, there is

no free lunch. According to the scaling laws [135], given fixed computational re-

sources and model sizes, the performances of deep learning models depend on the

amount of paired data and labels. Unfortunately, it is notoriously difficult to ac-

quire a large amount of annotations for segmentation of medical images because of

the high costs of money and time. Unlike natural images which are normally 2D,

medical images are usually volumetric with high resolution, making the pixel-level

annotation process exponentially more labour intensive than standard image seg-

mentation tasks in computer vision. In addition, the annotation process of medical

images require highly skilled medical experts which are extra costly.

To address the unavoidable label scarcity issue in medical image segmenta-

tion, semi-supervised learning has been introduced to jointly train on both labelled
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Figure 5.1: Comparison between pseudo labelling approach (SegPL) and the other ap-
proaches. Pseudo labelling approaches enjoy simplicity in implementation in-
cluding corresponding benefits such as scalibility and robustness.

and unlabelled data to bootstrap the model performance. The unlabelled images

normally have a much larger quantity than the labelled ones, but they are normally

ignored in supervised learning. Semi-supervised learning is attractive because it

improves the model by using the existing resource of unlabelled images, avoiding

investments in label acquisitions. Apart from semi-supervised learning for address-

ing label scarcity, other approaches have also been invented such as outsourcing

data labelling [136] combined with federated learning, which cannot really avoid

labelling costs. However, semi-supervised learning still remains attractive as it has

a good trade-off balance between the cost and the improvements of the models. The

current paper focuses on semi-supervised learning.

5.2.2 Brief review of semi-supervised learning

Most of the semi-supervised learning methods aim at minimising the entropy of

predictions of unlabelled data in order to make “firm” predictions. Entropy min-

imisation has a long history in representation learning. One of the earliest form of

entropy minimisation was derived from the mutual information between the input

and output in unsupervised learning [120]. Entropy regularisation gained tremen-

dous popularity in semi-supervised image classification after the authors in [66]

proposed to minimise the entropy on unlabelled data as a strong regularisation to

drive the model to learn a good decision boundary. Since then, entropy minimisa-

tion has been evolving from its original explicit form to varying implicit forms.
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Among different implicit forms of entropy minimisation, consistency regular-

isation is the most common one and it is behind most of the recent state-of-the-

art methods in semi-supervised classification and segmentation [2, 69, 75, 3, 137].

There are mainly two types of consistency regularisation, one is soft consistency

regularisation which applies distance based loss directly on the raw outputs or the

probabilities of predictions, the other type is hard consistency regularisation which

transforms raw outputs to pseudo label to supervise the raw outputs or the probabil-

ities of predictions. Both types of the consistency regularisation [1, 2, 69, 138, 137]

enforce the deep learning models to make predictions which are invariant to the

perturbations at the input level or the feature level [4, 3, 139, 137]. For methods

with consistency regularisation on input level, a lot of them are derived from a

classic method called Mean-Teacher [1]. The mean-teacher model has two mod-

els, the weight of the student model is the exponential moving averaging weights

of the teacher model. The teacher model intakes a normal input while the student

model intakes the same input but added with Gaussian noise, a mean square error

is used for soft consistency regularisation between the outputs of the teacher and

the student model. Another more advanced teacher-student model called FixMatch

achieved state-of-the-art performance in semi-supervised classification [2]. In Fix-

Match [2], the model intakes two forward passes, one pass with weakly augmented

(e.g. flipping) input and the other one pass with strongly augmented (e.g. shearing,

random intensity) input. Then the output of the weakly augmented input will be

used to generate a pseudo label as the ground truth for training the output of the

strongly augmented input, the workflow of FixMatch is illustrated in (d) in Fig.5.1.

Although FixMatch and its variants have achieved great successes in image classi-

fication, it was noticed that it was not straightforward to directly apply FixMatch-

style methods in image segmentation, because the cluster assumption does not hold

at pixel-level in dense prediction tasks [3]. To adopt consistency regularisation in

segmentation, the authors in [4] have discovered that it is possible to apply pertur-

bations on the features for instead of inputs before the consistency regularisation is

applied. In [4], the authors directly apply augmentation techniques on the features
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Figure 5.2: Pseudo-labelling process for binary segmentation. Pseudo-label y′n is gen-
erated using unlabelled data xu and model with parameters from last itera-
tion θ . Therefore, pseudo-labelling can be seen as the E-step in Expecation-
Maximization. The M-step updates θ using y′n, y and data X . In our 1st im-
plementation, namely SegPL, the threshold T is fixed for selecting the pseudo
labels, which is the original pseudo labelling, as an empirical approximation
of its true generalisation. In our 2nd implementation, namely SegPL-VI, the
threshold T is dynamic and learnt via variational inference, which is an learnt
approximation of its true generalisation.

of different decoders before the consistency regularisation (see (c) in Fig.5.1) for

semi-supervised image segmentation. Apart from adding directly perturbations on

the features directly, it is also feasible to add perturbations on the features through

architectural modifications. For example, one can train two identical models but

with different initialisation and apply consistency regularisation with pseudo labels

on the two outputs [139] (Fig5.1 (b)) also for semi-supervised image segmenta-

tion. The aforementioned methods have also been tested and compared against our

method in later section.5.7.

5.2.3 Motivations and contributions

It has come to our attention that most of the existing pseudo labelling papers are

purely empirical without investigating the reason behind its empirical successes.

Therefore we decided to revisit pseudo labelling and we noticed that pseudo la-

belling has a deep connection with the classical machine learning approach Ex-

pectation Maximization. Our second motivation is inspired by a recent paper in

semi-supervised image classification, showing that it is entirely possible to achieve

competitive results with smartly selected good quality pseudo labels [140]. In this

paper, we build up our insight of pseudo labelling on the Expectation Maximization



5.3. Related works 88

algorithm, we as well provide empirical investigations of pseudo labelling in semi-

supervised medical image segmentation and its robustness. A shorter version of this

paper has been published at MICCAI 2022 [101]. We summarize our contributions

in the following bullet points.

• We interpret pseudo labelling within the framework of the Expectation Max-

imisation (EM) algorithm. As the EM algorithm is gauranteed to converge

to local minimum. We therefore partially explain the empirical success of

pseudo labelling.

• We provide a learning method to find the generalised pseudo labels using

variational inference.

• We investigate the use of pseudo labelling in semi-supervised medical image

segmentation and its characteristics such as robustness.

5.3 Related works

5.3.1 Pseudo Labelling

The original pseudo labelling [67] was proposed for semi-supervised multi-class

image classification. In the original pseudo labelling, the pseudo labels are created

as arg max outputs (same as running the inferences) on the predictions on the unla-

belled data. The created pseudo labels are used to train the unlabelled data following

standard supervised learning fashion. The original pseudo labelling actually creates

the pseudo label online on-the-fly. It was also suggested to carefully use the pseudo

labels that one should first warm-up the model with only supervised learning, then

gradually ramp-up the weight of the pseudo supervision. Pseudo labelling has be-

come popular in semi-supervised learning because it is computationally cheap but

with good performance. It has been shown that semi-supervised learning can sur-

pass its supervised learning counterpart [141] on ImageNet classification by using

pseudo labelling on an internet-level unlabelled data. Another recent work breaks

the trend of growing complexity of consistency regularisation methods and achieved
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competitive results with only pseudo labels[140] in semi-supervised image classi-

fication. In image segmentation, a pseudo labelling approach has also achieved

impressive results [142] whereas the pseudo labels are refined with self-attention

mechanism. Pseudo labelling also has its own potential issue which is called confir-

mation bias [143] that if wrong pseudo labels are used, noisy training will happen

and the errors will be accumulated and potentially amplified. This potential issue

inspired us and in later section, we will introduce a stochastic training of pseudo

labels that learns to pick up correct pseudo labels.

5.3.2 Semi-supervised learning in medical image segmentation

Most of the existing methods for semi-supervised segmentation are stemmed

from the methods in semi-supervised classification described in the previous sec-

tion.5.2.2. For example, the mean-teacher based consistency regularisation meth-

ods have been popular in semi-supervised medical image segmentation [80, 71,

70, 73, 144, 145, 146, 147, 148, 149]. One of the earliest mean-teacher model in

medical imaging was proposed by Yu [130], they improve on mean-teacher model

by using uncertainty to generate a mask to apply consistency regularisation only on

low-uncertainty areas. In addition to data level perturbations, feature level perturba-

tions based consistency regularisation methods also popular. For instance, Luo [87]

uses different initialisation of different decoders to achieve feature perturbations.

Xu [137] uses differential morphological operations to add feature perturbations in

the decoders before consistency regularisation. Pseudo labelling approaches have

also been previously explored in medical image segmentation. Bai [150] used con-

ditional random fields to remove the false positives of the pseudo labels. Wang

[151] uses uncertainty to refine pseudo labels. Wu [152] combines pseudo labels

with two headed network to form a cross pseudo supervision. Another recent work

[114] uses a variational auto-encoder as student model and learns from pseudo la-

bels which generated by deterministic teacher model.
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5.4 Pseudo Labelling As Expectation-Maximization
In this section, we provide a new perspective of semi-supervised learning with

pseudo labels as the Expectation-Maximization (EM) algorithm. We focus on a

binary segmentation case as most of medical image segmentation tasks are binary

ones on differentiating the foreground area from the background area. Multi-class

segmentation can be trivially extended from the binary case with a multi-channel

Sigmoid, by separetely treating each channel as a binary output, combining with

the argmax operation before the final prediction.

5.4.1 Problem formulation

Given a set of N total available training images as X = {xn ∈ RHW : n ∈

(1,2, ...,L,L + 1, ...,N)}, where XL = {xl ∈ RHW : l ∈ (1, ...,L)} are L labelled

images; YL = {yl ∈ RHW : l ∈ (1, ...,L)} are L labels for XL; XU = {xu ∈ RHW : u ∈

(L+ 1, ...,N)} is the rest of the U or (N −L) unlabelled images. We have a seg-

mentation network with parameters as θ and our final goal is to predict the labels

p(Y |X ,θ) of the whole data X with respect to θ .

5.4.2 Pseudo labels as latent variables

In order to find the optimal parameters of θ , the common approach is maximum

likelihood estimation for maximising the likelihood of P(X |θ) with respect to θ ,

which contains two parts, namely the supervised learning part and unsupervised

learning part. The supervised learning part is to find the following joint data density

with known full information of the labels:

p(XL,YL|θ) (5.1)

The unsupervised learning part is to find the underlying likelihood with the

same parameters without full information of the data:

p(XU |θ) (5.2)

Since labels are not observable for XU , we can treat this as a missing data
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problem and introduce latent variables Y ′
U . We therefore transform the above Eq. 5.2

to an estimation of the following marginal likelihood:

p(XU |θ) =
∫

p(XU ,Y ′
U |θ)dY ′

U (5.3)

We notice that the generation of pseudo-labels naturally poses a generative

task. We also observe that the pseudo labels are only used as an intermediate step

towards the final prediction of the labels. Thereby we propose to treat pseudo-labels

as an implementation of the latent variables in the above Eq. 5.3. Eq. 5.3 also shows

that it is not an easy task to train a model in semi-supervised fashion, because it is

difficult to simultaneously estimate the optimal values of two different sets of vari-

ables. To address this difficult learning problem, we can decompose this problem by

iteratively estimating the the latent variables Y ′
U and the observed variable XU . We

now notice that this can be solved by a typical Expecation-Maximization (EM)[46]

algorithm. By plugging the Jensen’s inequality, one can iteratively refine the Evi-

dence Lower Bound of the log likelihood of the data in Eq.5.3

5.4.3 E-M Pseudo Labelling

We now describe each component of the pseudo labelling in the sense of the EM

algorithm in the following paragraphs.

E-step At the nth iteration, the E-step estimates the posterior of the latent vari-

able with the model (θ n−1) from the last iteration (n−1). According to the cluster

assumption that similar data points are supposed to have similar labels [153], the

E-step runs the inference on unlabelled data and generate pseudo-labels accord-

ing to its maximum predicted probability. In practice, in binary segmentation, the

pseudo-labels for the foreground class 1 are picked using a fixed threshold value

(T ) between 0 and 1. Normally, this threshold is set up as 0.5. This binarization

is actually equivalent to the plug-in principle [66], which is a common approach

for estimating the posterior probability using an empirical estimation in statistics.

Therefore, the pseudo-labelling itself is the E-step:



5.4. Pseudo Labelling As Expectation-Maximization 92

yhw′
u = 1(θ n−1(xhw

u )> T = 0.5) (5.4)

The above equation Eq. 5.4 is pseudo-labelling at the pixel level. Where h

and w are the index for the height and the index for the width of the pixel location

respectively, for each unlabelled image xu. yhw′
u is the pixel-wise pseudo label. More

details of the connection between E-step and pseudo labelling is in the later section

sec.5.4.4 on the convergence of pseudo labelling.

M-step At the M-step of iteration n, we will update the model parameters θ n−1

using the estimated latent variables (pseudo-labels Y ′
U ) from the E-step. The images

X are ignored for simplicity in the following expression (e.g. differing from the

MICCAI version):

θ
n := argmaxθ p(θ n1|θ n−1,Y ′

n) (5.5)

The above Eq.5.5 is normally solved by setting the partial derivatives of the

sum of the p(Y ′
n) with respect to θ as zero, which can be calculated with modern

automatic differentiation based deep learning toolbox such as Pytorch [132]. In

practice, we solve Eq.5.5 via stochastic gradient descent. To use the stochastic gra-

dient descent, we need to define an objective function and we use the common Dice

loss ( fdice(.)) [126] as this is a segmentation task, where a is predicted probability

and b is the label:

fdice(a,b) =
2∗a∗b+ ε

a+b+ ε
(5.6)

Loss function of SegPL We weight the Eq.5.5 with a hyper-parameter α . For

the whole data set including both unlabelled and labelled data, we can extend the

Eq.5.5 and Eq.5.4 to a combination between the supervised learning part LL and the

unsupervised learning part LU :
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LSegPL = α
1

N −L

N

∑
u=L+1

fdice(θ
n−1(xu),1(θ

n−1(xu)> T = 0.5))︸ ︷︷ ︸
LU

+
1
L

L

∑
l=1

fdice(θ
n−1(xl),yl)︸ ︷︷ ︸

LL

(5.7)

The above loss function 5.7 is the key component of our first proposed semi-

supervised segmentation method, omitting pixels’ locations for simplicity, which

is referred as SegPL (Segmentation with Pseudo Labels) in the paper. LL works

to prevent the networks falling into trivial solutions, trivial solutions happen when

networks constantly predict one single class for all of the pixels.

5.4.4 On the convergence of Pseudo Labelling from the perspec-

tive of EM

In this section, we explain how semi-supervised learning with pseudo-labelling will

always converges from the perspective of EM. We first define a target function as

l(θ), in our case, it would be the log likelihood of the data X . We also need to

introduce a surrogate function q(Y ′
U) which is any arbitrary distribution over the

latent varaible Y ′
U . We follow [46] and show the lower bound of the data likelihood

in the form of the Free Energy of the generative latent variable model:

l(θ)log
∫

p(XU ,Y ′
U |θ)dY ′

U︸ ︷︷ ︸
Eq.3

= log
∫

q(Y ′
U)

p(XU ,Y ′
U |θ)

q(Y ′
U)

dY ′
U

≥
∫

q(Y ′
U)log

p(XU ,Y ′
U |θ)

q(Y ′
U)

dY ′
U

=
∫

q(Y ′
U)logp(XU ,Y ′

U |θ)dY ′
U︸ ︷︷ ︸

De f inition o f Expectation

−
∫

q(Y ′
U)logq(Y ′

U)dY ′
U︸ ︷︷ ︸

Entropy o f surrogate f unction

F (q(Y ′
U),θ)︸ ︷︷ ︸

Free Energy

(5.8)
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We now show another decomposition of the data likelihood starting from the

free energy:

F (q(Y ′
U),θ)

=
∫

q(Y ′
U)log

p(XU ,Y ′
U |θ)

q(Y ′
U)

dY ′
U

=
∫

q(Y ′
U)log

p(Y ′
U |XU ,θ)p(XU |θ)

q(Y ′
U)

dY ′
U

=
∫

q(Y ′
U)logp(XU |θ)dY ′

U +
∫

q(Y ′
U)log

p(Y ′
U |XU ,θ)

q(Y ′
U)

dY ′
U

logp(XU |θ)−KL[q(Y ′
U)||p(Y ′

U |X ,θ)]

= l(θ)−KL[q(Y ′
U)||p(Y ′

U |X ,θ)]

(5.9)

The meaning of the last decomposition in the Eq.5.9 is that, for any fixed θ , the

free energy term has an upper bound by the log likelihood of the data l(θ) because

KL can never be negative. In order to reach that upper bound when θ is fixed,

we need to minimise KL[q(Y ′
U)||p(Y ′

U |X ,θ). The KL distance has its minimum

value at zero only if q(Y ′
U) is equal to p(Y ′

U |X ,θ). Therefore, for given fixed model

parameters, we can reach the upper limit of the lower bound, by simply replacing

the arbitrary function of latent variable as the current estimated posterior of the

latent variable:

q(Y ′
U) = p(Y ′

U |XU ,θ) (5.10)

The above Eq.5.10 is actually the E-step and pseudo labelling in Eq.5.5 is doing

exactly the same thing as in Eq.5.10.

We now explain how M-step increases the log likelihood too. We need to

rewrite the log of data likelihood by combing Eq.5.8 and Eq.5.9:

l(θ) = F (q(Y ′
U),θ)︸ ︷︷ ︸

lower bound

+KL[q(Y ′
U)||p(Y ′

U |X ,θ)] (5.11)

The subsequent M-step is applying supervised learning to optimise the model

parameters with fixed pseudo labels which are produced from the precursory E-step.

As supervised learning can be seen as maximium likelihood estimation, thereby,
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M-step increases the likelihood as if the latent variables were observed, resulting

in rising the data likelihood’s lower bound [46]. In the above Eq.5.11, the q(Y ′
U) is

fixed but estimated from the old parameters θ n−1 whereas the posterior of the latent

variable is now updated as p(Y ′
U |X ,θ n), therefore they are not equal anymore and

the KL term will become a positive value. Together, it is easy to tell that the M-

step increases the data log likelihood by at least the increased amount of the lower

bound.

Until now, it is clear to see that, how the pseudo labelling (E-step), com-

bined with semi-supervised optimisation of model parameters (M-step) can never

decrease the likelihood of the data, leading to guaranteed convergence towards local

optima [46]. In summary, the entire process of increasing data log likelihood can

be expressed as in Eq.5.12:

l(θ n)≥︸ ︷︷ ︸
Jensen′s ineq.

F (q(Y ′
U)

n,θ n)≥︸ ︷︷ ︸
M−step

F (q(Y ′
U)

n,θ n−1) = l(θ n−1)︸ ︷︷ ︸
E−step

(5.12)

5.5 Generalisation of Pseudo Labels via Variational

Inference for Segmentation
In the last section 5.4, we use an empirical estimation of the posterior of the latent

variables (pseudo labels) by setting the T as 0.5. The fixed empirical estimation of

T could be sub-optimal especially in the early stage of training when the networks

do not have good representations and the predictions are not very confident [140].

Potentially, noisy training with some “bad” pseudo labels could accumulate some

errors into the learnt representations. To address this potential issue, we provide an

alternative approach to learn to approximate the true posterior of the pseudo labels.

This alternative approach can be seen as a generalisation of the empirical estimation

approach in SegPL in section 5.4.

5.5.1 Confidence threshold as latent variable

In the last section 5.4, we directly treat pseudo labels as latent variables. However,

in the segmentation task, the pseudo labels are pixel-wise, making the generative
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task a difficult one. To address this, we now introduce a simplification of the graph-

ical model of the pseudo-labelling in 5.4. The key of this simplification is to treat

the threshold value T as the latent variable which is a single value for each image:

p(XU |θ) =
∫

p(XU ,T |θ)dT (5.13)

This simplification makes the computation of the posterior much easier. Firstly,

we have a prior knowledge of the range of this single value T , that any distribution

describing values between 0 and 1 can be used as a prior distribution to approxi-

mate the real distribution of T . Secondly, the approximation of a single value T is

intrinsically simpler than the approximation of pixel-wise unknown labels Y ′. To

see why the approximation of the true posterior of Y ′ is very difficult one, we write

down the posterior of T with Bayes’ rule:

p(T |XU ,θ) =
p(XU |T,θ)p(T )

p(XU |θ)
(5.14)

The new E-step at iteration n with threshold as the latent variable now becomes:

p(Tn = i|XU ,θ
n−1) =

∏
N
u=L+1 p(xu|θ n−1,Tn = i)p(Tn = i)

∑ j∈[0,1]∏
N
u=L+1 p(xu|θ n−1,Tn = j)p(Tn = j)

(5.15)

From the above Eq.5.15, one can tell that the empirical estimation of the thresh-

old T is actually necessary although not optimal. Even after a major simplification

of the latent variables, the posterior of the pseudo-labels is still intractable. Because

there are infinite possible values between 0 and 1 in the denominator in Eq. 5.15.

5.5.2 Variational E-step

To address the aforementioned intractable issue in Eq. 5.15, we use variational in-

ference for the approximation of p(T ). Luckily, after the above simplification of

the graphical model, we actually have a clear prior of T to match, which is any dis-
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tribution describing values between 0 and 1. For the implementation simplicity, we

adapt a univariate Normal distribution for the prior distribution and we denote the

prior distribution of T as a surrogate distribution q(β ). We use extra model parame-

ters φ to parameterize the log variance and the mean of the approximated posterior

distribution of T , conditioning on the image features, see the beneath Eq. 6.3. φ is

implemented as a average pooling layer followed by a single 3 x 3 convolutional

block including ReLU and normalisation layer, then two 1 x 1 convolutional layers

for µ and Log(σ2) respectively. Alternatively, a simple fully connected layer can

also be used as φ , we found no performance differences among different choices of

architectures for φ .

(µ,Log(σ2)) = φ(θ(XU)) (5.16)

p(T |XU ,θ ,φ)≈ N (µ,σ) (5.17)

Differing from the fixed T in E-step in Eq. 5.4, the T in the variational E-step

is dynamic, we denote the stochastic threshold as T for clarity. We use the standard

reparameterization trick [154] to generate the threshold in each iteration:

T = µ + rand ∗ e0.5∗log(σ2)

rand ∼ N (0,1)
(5.18)

As demonstrated in previous Eq.5.11 that the data likelihood term has an Ev-

idence Lower Bound (ELBO) which contains a conditional probability of the data

given latent variable and a KL distance between the posterior and the prior of the la-

tent variable. We therefore write down variational unsupervised learning objective

as:

Log(P(XU)≥
N

∑
u=L+1

ET∼P(T)[Log(P(xu|T))]−KL(p(T)||q(β ))
(5.19)
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Figure 5.3: Comparison between BPL and VAE in details. For BPL, only the unsupervised
learning part is illustrated.

Loss function of BPL The new learning objective P(X ,T,θ) over the whole

data set has a supervised learning P(XL,T,θ) which has not changed from Eq. 5.7,

and an unsupervised learning part P(XU ,T,θ) from the above Eq. 5.19. The final

loss function is an ELBO over the whole data set:

L V I
SegPL =

1
L

L

∑
l=1

fdice(θ
n−1(xl),yl)︸ ︷︷ ︸

LL

+

α
1

N −L

N

∑
u=L+1

fdice(θ
n−1(xu),1(θ

n−1(xu)> T))︸ ︷︷ ︸
LU

+

Log(σβ )−Log(σ)+
σ2 +(µ −µβ )

2

2∗ (σβ )
2 −0.5︸ ︷︷ ︸

LKL: KL(p(T )||q(β )),β∼N (µβ ,σβ )

(5.20)

Where T can be found in Eq. 5.18. Different data sets might need dif-

ferent priors for the best empirical performances. For example, we found that

β ∼ N (0.4,0.1) works well for CARVE. For BRATS, we didn’t tune the prior

and simply adopted β ∼ N (0.5,0.1).
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5.6 The connection between Bayesian Pseudo Label

and Variational Autoencoder

We would like to clarify that the proposed BPL is different from a Variational Auto

Encoder (VAE) [155]. First of all, our BPL and VAE implement the latent variables

differently as shown in Fig.5.3. Also, VAE has a likelihood term on the data recon-

struction p(x′), while BPL estimates the likelihood p(y′) of the label of unlabelled

data. In addition, VAE is fully unsupervised while BPL is semi-supervised.

5.7 Experimental Results

5.7.1 Data sets

The classification of pulmonary arteries and veins (CARVE) We use CARVE

for demonstration of 3D binary segmentation of lung vessel of CT images. The

CARVE dataset [127] comprises 10 fully annotated non-contrast low-dose thoracic

CT scans. Each case has between 399 and 498 images, acquired at various spatial

resolutions ranging from (282 x 426) to (302 x 474). We randomly select 1 case

for labelled training, 2 cases for unlabelled training, 1 case for validation and the

remaining 5 cases for testing. All image and label volumes were cropped to 176 ×

176 × 3. To test the influence of the number of labelled training data, we prepared

four sets of labelled training volumes with differing numbers of labelled volumes at:

2, 5, 10, 20. Normalisation was performed at case wise. Data curation resulted in

479 volumes for testing, which is equivalent to 1437 images. No data augmentation

is used.

BRATS 2018 We use BRATS 2018 [128] for demonstration of 2D multi-class

segmentation of brain tumour of MRI images. The BRATS 2018 comprises 210

high-grade glioma and 76 low-grade glioma MRI cases. Each case contains 155

slices. We focus on multi-class segmentation of sub-regions of tumours in high

grade gliomas (HGG). All slices were centre-cropped to 176 x 176. We prepared

three different sets of 2D slices for labelled training data: 50 slices from one case,

150 slices from one case and 300 slices from two cases. We use another 2 cases for
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unlabelled training data and 1 case for validation. 50 HGG cases were randomly

sampled for testing. Case-wise normalisation was performed and all modalities

were concatenated. A total of 3433 images were included for testing. No data

augmentation is used.

Task01 Brain Tumour We use Task01 Brain Tumour from Medical Segmen-

tation Decathlon consortium [131] as a demonstration of 3D binary segmentation

of brain tumour of MRI images. The Task01 Brain Tumour is based on BRATS

2017 with different naming format from BRATS 2018. This data set was not in our

previous MICCAI version but we included this data set here because it is easy to

download and use for the readers for the future follow-up works. Each case in The

Task01 Brain Tumour has 155 slices with 240 x 240 spatial dimension. We merge

all of the tumour classes into one tumour class for simplicity. We do not apply cen-

tre cropping in the pre-processing here. In the training, we randomly crop volumes

on the fly with size of 64 x 64 x 64. We separate the original training cases as la-

belled training data and testing data. We use the original testing cases as unlabelled

data. For the labelled training data, we use 8 cases with index number from 1 to 8.

We have 476 cases for testing and 266 cases for unlabelled training data. We apply

normalisation with statistics of intensities across the whole training data set. We

keep all of the MRI modalities as 4 channel input.

5.7.2 Baselines

Our baselines include both supervised and semi-supervised learning methods. We

use U-net [60] in SegPL as an example of a segmentation network. Partly due to

computational constraints, for 3D experiments we used a 3D U-net with 8 channels

in the first encoder such that unlabelled data can be included in the same batch. For

2D experiments, we used a 2D U-net with 16 channels in the first encoder. The first

baseline utilises supervised training on the backbone and is trained with labelled

data denoted as “Sup”. We compared SegPL with state-of-the-art consistency based

methods: 1) “cross pseudo supervision” or CPS [139], which is considered the

current state-of-the-art for semi-supervised segmentation; 2) another recent state-

of-the-art model “cross consistency training” [4], denoted as “CCT”, due to hard-
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Table 5.1: Hyper-parameters used across experiments. Different data might need different
α .

Data Batch Size Learning rate Steps α Unlabelled/labelled
BRATS(2D) 2 0.03 200 0.05 5
CARVE(3D) 2 0.01 800 1.0 4
Task01(3D) 1 0.0004 25000 0.1 2

ware restriction, our implementation shares most of the decoders apart from the last

convolutional block; 3) a classic model called “FixMatch” (FM) [2]. To adapt Fix-

Match for a segmentation task, we added Gaussian noise as weak augmentation and

“RandomAug” [133] for strong augmentation; 4) “self-loop [156]”, which solves a

self-supervised jigsaw problem as pre-training and combines with pseudo-labelling.

5.7.3 Training

We use Adam optimiser[58] with default settings. Our code is implemented using

Pytorch 1.0[132] and released in https://github.com/moucheng2017/

EMSSL. We trained all of the experiments with a TITAN V GPU with 12GB mem-

ory. The training hyperparameters are included in Table 5.1.

5.7.4 Pre processing Of the Labels For Multi-Class Segmenta-

tion

The pre-processing of the labels of BRATS has two steps: 1) label fusion to mit-

igate the severe class imbalance between the minority tumour classes and the ma-

jority background healthy tissue class; 2) turning a multi-class label into multiple

binary labels, for each binary prediction, we can use Sigmoid followed by confi-

dence thresholding for pseudo labelling, combined with separate argmax operation

when labels overlap. Here we show two examples of label pre-processing, one is an

abstract example (Fig.5.4) and the other one is a real example (Fig.5.5).

5.7.5 Segmentation performances

The segmentation performances of CARVE 2014, BRATS 2018, Task 01 can be

found in Tab.5.2, Tab.5.3 and Tab.5.4, respectively. As reflected in the quantitative

results in tables, pseudo labelling based SegPL consistently achieves better results

than the baselines of semi-supervised and supervised methods. Especially, as shown

https://github.com/moucheng2017/EMSSL
https://github.com/moucheng2017/EMSSL
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Figure 5.4: An example of the pre-processing of one label of BRATS. 3: enhancing tumour
core. 2: tumour core containing enhancing tumour core. 1: whole tumour con-
taining class 2 and 3. 0: healthy tissues. Different colours represent different
classes.

Figure 5.5: Label fusion and binarized labels. Red: whole tumour including tumour core.
Blue: tumour core including enhancing tumour core. Green: enhancing tumour
core. Segmentation of each tumour class is a binary segmentation.

in Fig.5.6 of the Bland-Altman plot between the best performing baseline CPS and

our SegPL on CARVE when only 2 labelled volumes are used for training, SegPL

statistically outperforms the best baseline. We further confirm the statistical differ-

ence by performing Mann Whitney test on the same results on 2 labelled volumes

and we found the p-vale less than 1e-4. By extending the SegPL with variational

inference to SegPL-VI, we found further improvements on segmentation on most

of the experiments. Interestingly, the improvements brought by SegPL-VI is more

obvious on multi-class experiments on BRATS 2018. As the outputs on BRATS

are multi-channel but SegPL-VI learns one threshold across all of the channel, we

suspect that might bring in strong regularisation effect which results in noticeable

improvements. We also noticed that SegPL-VI could fail to learn optimal threshold
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Figure 5.6: SegPL statistically outperforms the best performing baseline CPS when trained
on 2 labelled volumes from the CARVE dataset. Each data point represents a
single testing image.

sometimes as the result of SegPL-VI on CARVE with 5 labelled volumes are in-

ferior to the corresponding result of SegPL. We expect that more hyper-parameter

searching could improve the performance of SegPL.

As shown in the qualitative results in Fig5.7 of CARVE, SegPL successfully

learnt better decision boundary than other baselines that SegPL can partially sepa-

rate the foreground lung vessels from the background whereas most of the other

methods classifies everything as background. However, SegPL seemed to have

overconfident predictions on the edges of the foreground that it has a lot of false pos-

itive results. Similarly in BRATS, SegPL detected one more class of brain tumour

(blue) than the other baselines in Fig5.8. However, none of the methods including

SegPL can detect the most rare green class of tumour.

One interesting result is shown in Tab.5.4 on 3D binary segmentation of whole

tumour. During training, we use random cropping with fixed size at 64 x 64 x 64

to compensate with the memory of GPU. On testing data, we examined the models

with different sizes of cropped volumes at 323, 643, 963 and 1283. The models

actually generalise well on the scales that they haven’t seen during the training. In

fact, larger cropped volumes result in better results.

Although SegPL achieves higher segmentation accuracy, SegPL enjoys a low

computational burden. As illustrated in the computational need section in Tab.5.2,

SegPL has the least computational burden among all of the tested semi-supervised
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Table 5.2: Our model vs Baselines on a binary vessel segmentation task on 3D CT images
of the CARVE dataset. Metric is Intersection over Union (IoU (↑) in %). Avg
performance of 5 training. blue: 2nd best. red: best

Data Supervised Semi-Supervised
Labelled 3D U-net FixMatch CCT CPS SegPL SegPL+VI
Volumes [60](2015) [2](2020) [4](2020) [139](2021) (Ours, 2022) (Ours, 2022)

2 56.79±6.44 62.35±7.87 51.71±7.31 66.67±8.16 69.44±6.38 70.65±6.33
5 58.28±8.85 60.80±5.74 55.32±9.05 70.61±7.09 76.52±9.20 73.33±8.61

10 67.93±6.19 72.10±8.45 66.94±12.22 75.19±7.72 79.51±8.14 79.73±7.24
20 81.40±7.45 80.68±7.36 80.58±7.31 81.65±7.51 83.08±7.57 83.41±7.14

Computational need
Train(s) 1014 2674 4129 2730 1601 1715
Flops 6.22 12.44 8.3 12.44 6.22 6.23

Para(K) 626.74 626.74 646.74 1253.48 626.74 630.0

Table 5.3: Our model vs Baselines on multi-class tumour segmentation on 2D MRI im-
ages of BRATS 2018. Metric is Intersection over Union (IoU (↑) in %). Avg
performance of 5 runs. blue: 2nd best. red: best

Data Supervised Semi-Supervised
Labelled 2D U-net Self-Loop FixMatch CPS SegPL SegPL+VI

Slices [60](2015) [156](2020) [2](2020) [139](2021) (Ours, 2022) (Ours, 2022)
50 54.08±10.65 65.91±10.17 67.35±9.68 63.89±11.54 70.60±12.57 71.20±12.77

150 64.24±8.31 68.45±11.82 69.54±12.89 69.69±6.22 71.35±9.38 72.93±12.97
300 67.49±11.40 70.80±11.97 70.84±9.37 71.24±10.80 72.60±10.78 75.12±13.31

Table 5.4: Our model vs Supervised baseline on 3D binary tumour segmentation of Task
01 Brain Tumour (BRATS 2017). Metric is Intersection over Union (IoU (↑) in
%). Avg performance of models between iteration 20000 and 25000 with 1000
as the interval. red: best

Testing size 323 643 963 1283

Supervised 61.07±7.93 66.94±12.4 70.13±13.22 72.09±12.48
SegPL-VI 64.44±8.3 71.43±11.91 73.07±11.71 74.48±11.51

learning baselines. Especially in terms of FLOPs, SegPL is very close to supervised

learning methods. This shows that our model has the scaling potential for large

models and large data sets.

5.7.6 Ablation studies on hyper-parameters

We performed brief ablation studies on hyper-parameters on BRATS with 150 la-

belled slices. As shown in Fig.5.9, a) shows that SegPL is very sensitive to learning

rate that it should be at least 0.01. We found that other baselines also needed a large

learning rate. Fig.5.9.b) shows the impact of a warm-up schedule of α from 0 to fi-

nal α value. x axis is the length of linear warming-up of α in terms of whole steps.
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Figure 5.7: Visual results. CARVE trained with 5 labelled volumes. Red: false positive.
Green: true positive. Blue: false negative. Yellow: ground truth. GT: Ground
truth. CPS: cross pseudo labels (CVPR 2021). CCT: cross consistency training
(CVPR 2020). Sup: supervised training.

It appears that SegPL is not sensitive to the warm-up schedule of α . Fig.5.9.c)

illustrates the effect of the ratio between unlabelled images to labelled images in

each batch. The suitable range of unlabelled/labelled ratio is quite wide and be-

tween 1 to 10. Fig.5.9.d) shows that the pseudo supervision cannot be too strong.
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Figure 5.8: Visual results. BRATS 2018 trained with 300 labelled slices. Red: whole
tumour. Green: tumour core. Blue: enhancing tumour core. GT: Ground
truth. CPS: cross pseudo labels (CVPR 2021). CCT: cross consistency training
(CVPR 2020). Sup: supervised training.

Figure 5.9: Ablation studies on BRATS with 150 labelled slices.
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Figure 5.10: Robustness against out-of-
distribution noise. Gamma
is the strength of the out-of-
distribution noises. Using
2 labelled volumes from
CARVE.

Figure 5.11: Robustness against adversarial
attack. Epsilon is the strength
of the FGSM[6] attack. Us-
ing 2 labelled volumes from
CARVE.

Figure 5.12: Ablation studies on priors of
0.4, 0.5 and 0.7. Y-axis:
segmentation losses. X-axis:
training iterations. Red: prior
= 0.5. Blue: prior = 0.4. Pink:
prior = 0.7. All trained on Task
01 Brain Tumour.

Figure 5.13: Ablation studies on priors of
0.4, 0.5 and 0.7. Y-axis: seg-
mentation IoUs. X-axis: train-
ing iterations. Red: prior = 0.5.
Blue: prior = 0.7. Dark blue:
prior = 0.5. All trained on Task
01 Brain Tumour.

This confirms the suggestions from the original pseudo labelling paper that pseudo

supervision should not dominate the training.

5.7.7 Ablation studies on the prior of Bayesian Pseudo Labels

According to the result of the ablation study on the prior values in Fig.4.12 and

Fig.4.13, we might suggest to the future users to start from a high value starting

from 0.9.

5.7.8 Robustness

Medical imaging normally suffer from out-of-the-distribution noises (e.g. varia-

tions in scan acquisition parameters and different patient populations) which sig-

nificantly degenerate the trained model in real-life deployments. We investigate
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the robustness of SegPL on out-of-distribution (OOD) noise using models trained

on CARVE. OOD noises are simulated with unseen random contrast and Gaussian

noise, we then apply mix-up [157] to create new testing samples by adding the OOD

noises on original images. Specifically, for a given original testing image xt , we ap-

plied random contrast and noise augmentation on xt to derive OOD samples x′t . We

arrived at the testing sample (x̂t) via γx′t +(1− γ)xt . As shown in Fig.5.10, as test-

ing difficulty increases, the performances across all baselines drop exponentially.

SegPL outperformed all of the baselines across all of the tested experimental set-

tings. The findings suggest that SegPL is more robust when testing on OOD samples

and achieves better generalisation performance against that from the baselines.

We also examined SegPL’s robustness against adversarial attack as privacy-

preserving collaborative federated learning among hospitals has now become popu-

lar. We focus on using a fast gradient sign method (FGSM)[6]. The FGSM works by

perturbing the input data by adding a small amount of noise, in the direction of the

gradient of the cost function with respect to the input. The objective is to maximize

the loss function, causing the model to make incorrect predictions. With increasing

strength of adversarial attack (Epsilon), all the networks suffered performance drop.

As shown in Fig.5.11, SegPL yet suffered much less than the baselines.

5.7.9 Uncertainty

Since SegPL-VI is trained with a stochastic threshold for unlabelled data therefore

not suffering from posterior collapse. Consequently, SegPL can generate plausible

segmentation during inference using stochastic thresholds. To test the performance

of SegPL-VI on uncertainty quantification, we use random latent variable values

(threshold) with 5 Monte Carlo samples. We focus experimenting on models trained

with 5 labelled volumes of CARVE data set. For comparison, we adopt Deep En-

semble, as it is the gold-standard baseline for uncertainty estimation [158][159].

Both the tested methods Deep Ensemble and SegPL-VI achieved the same Brier

score at 0.97. This result shows that SegPL-VI has the potential to become a bench-

mark method for uncertainty quantification. The Brier score is calculated using

beneath equation Eq.5.21, where, yi j is the ground truth label at pixel at location i,
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Figure 5.14: Learnt threshold with prior at 0.5 trained on Task 01 Brain Tumour.

j, yi j is 1 for foreground pixel and yi j is 0 for background pixel. pi j is the predicted

probability of the pixel being the foreground pixel.

Brier =
1

HW

H

∑
i=1

W

∑
j=1

(pi j − yi j)
2 (5.21)

5.8 Conclusions
In this paper, we interpret pseudo-labelling as EM and explore the potential im-

provement with variational inference following generalised EM. We hope this inter-

peration can shed new lights on explainable AI. Empirically, we examined that the

original pseudo-labelling [67] on semi-supervised medical image segmentation and

we report that pseudo-labelling as a competitive and robust baseline. In the future

pipeline for learning with limited annotations, we expect to exploits full potential if

we combine semi-supervised learning with large-scale pre-training techniques.



Chapter 6

Deep Variational Parameter

Mapping: Applications of

Unsupervised Representation

Learning to MRI parameter

estimation

This chapter presents a deep variational clustering approach for learning without

any labels for estimating diffusion MRI parameters. This chapter is based on a

manuscript which is in preparation for a submission towards a technical conference.

I conceived the methodology, implemented the code, performed the experiments

and wrote the draft of the manuscript. My colleague Paddy Slator provided the

original code of the baseline and the data simulation. My colleague Toby provided

feedback on the mathematical formulations. All of the co-authors contributed to the

writing of the manuscript.

6.1 Abstract
We introduce and demonstrate a new paradigm for quantitative parameter map-

ping in MRI. Parameter mapping techniques, such as diffusion MRI (dMRI) and

quantitative MRI (qMRI), have the potential to robustly and repeatably measure
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biologically-relevant tissue maps that strongly relate to underlying microstruc-

ture. Quantitative maps are calculated by fitting a model to multiple images, e.g.

with least-squares or machine learning. However, the overwhelming majority of

model fitting techniques assume that each voxel is independent, ignoring any co-

dependencies in the data. This makes model fitting sensitive to voxelwise measure-

ment noise, hampering reliability and repeatability. We propose a self-supervised

deep variational autoencoder model fitting approach that breaks the assumption

of independent pixels, leveraging redundancies in the data to effectively perform

data-driven regularisation of quantitative maps. We demonstrate that our approach

outperforms current model fitting techniques in dMRI simulations and real data.

Our approach enables improved quantitative maps and/or reduced acquisition times,

and can hence support the clinical adoption of parameter mapping methods such as

dMRI and qMRI.

6.2 Introduction

Multiple MRI techniques can produce quantitative maps of biophysical, chemical

and physiological tissue properties. Such quantitative parameter mapping tech-

niques include diffusion MRI (dMRI) and quantitative MRI (qMRI). dMRI and

qMRI use an essentially identical approach; by acquiring multiple images then fit-

ting a model to the images, intrinsic values of the relevant tissue properties in each

voxel can be estimated. In dMRI the images have different diffusion weightings and

directions, and model fitting enables estimation of microstructural parameters, such

as diffusivity and kurtosis. In qMRI acquisition parameters such as echo time or in-

version time are varied, and model fits produce maps of chemical tissue properties,

such as T1 and T2.

In the vast majority of applications, such models are fit to the data using non-

linear least squares techniques. Machine learning model fitting is emerging as a

attractive alternative technique. Supervised learning has been demonstrated for a

range of models [160], but the distribution of parameters in the training dataset

introduces biases [161, 162]. Self-supervised learning has the potential to address
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this, but has only been demonstrated in a few models thus far, most prominently

the intravoxel incoherent motion (IVIM) model [163]. Hybrid approaches are also

emerging that merge the benefits of supervised and self-supervised learning [162].

However, whilst these approaches offer improvements, the current generation

of parameter mapping techniques fail to capitalize on the extensive inherent redun-

dancies in the data. Specifically, the overwhelming majority of techniques fit mod-

els to each voxel separately, effectively assuming that each voxel is independent.

This leads to high sensitivity to voxelwise measurement noise, which negatively

affects the quality of derived parameter maps. Bayesian hierarchical modelling

has been proposed as an approach that breaks these assumptions, but requires slow

Markov chain Monte Carlo inference [164]. Convolutional neural networks (CNNs)

have been demonstrated for IVIM fitting [165], but only learn spatial redundancies.

One technique assumes a set of underlying tissue components to regularise quanti-

tative maps [166] in a data-driven way, but at the expense of voxelwise parameter

estimates.

In this paper, we demonstrate a deep learning approach that breaks the

paradigm of independent voxels. Analogously to recent approaches [166], we seek

a lower dimensional representation of the data to parameterise date redundancies.

We therefore adapt ideas from the clustering literature [167] to derive a deep varia-

tional autoencoder for quantitative parameter mapping. We show that our approach

yields improved parameter estimates and maps in simulated and real data.

6.3 Methods
Whilst we emphasise that our approach is a general solution for quantitative param-

eter mapping, for simplicity we assume a dMRI dataset and model throughout the

Methods. Figure 6.1 is a schematic of our method.

6.3.1 Problem formulation

We assume an observed discrete series of, T , dMRI images, S = S(1),S(2), ...,S(T ),

where S(i) is a diffusion weighted image (DWI) with height, H, width, W , and

depth, D. The DWIs are defined S(i) = {s(h,w,d)
(i) ;h ∈ [1,2, ..,H],w ∈ [1,2, ..,W ],d ∈
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Figure 6.1: A schematic of one of our methods with univariate Gaussian Prior. The quanti-
tative mappings of interest are indicated by the red box. The total loss is MSE
loss plus KL loss.

[1,2, ..,D]}, where s(h,w,d)
(i) is the signal at the voxel (h,w,d) for the ith DWI. We

aim to estimate the tissue properties, i.e. model parameters, X = {x(h,w,d);h ∈

[1,2, ..,H],w ∈ [1,2, ..,W ],d ∈ [1,2, ..,D]} where the tissue properties for a voxel

located at (h,w,d) corresponds to the vector x(h,w,d) = (x(h,w,d)1 , ...,x(h,w,d)M ) for the

M tissue properties. The model parameters are estimated with respect to the sig-

nal model. Traditionally, each voxel would be estimated independently of all the

other voxels, for example, the MLE at (h1,w1,d1) is calculated by finding the pa-

rameters that maximise the probability of seeing the observed data; i.e. what max-

imises p((s(h1,w1,d1)
(1) , ...,s(h1,w1,d1)

(T ) )|x(h1,w1,d1)). This is performed independently to

the MLE at (h2,w2,d2). This obviously does not consider the global information of

voxels, and is very inefficient.

6.3.2 Probabilistic model on jointly estimating across all voxels

In this work, we propose to jointly model the distribution of the voxels together

as pθ (S ), which is a computationally challenging task. To address this issue, we

propose to project the implicit high-dimensional distribution of S from the data

space into an explicit low-dimensional continuous distribution in a latent space. We

therefore need to introduce latent variables, z, we anticipate that these variables will

capture underlying biologically-relevant structures in the data. Formally, our goal
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here is to maximise the following joint distribution: pθ (S ) =
∫

pθ (S |z)pθ (z)dz

. Considering dMRI-specific format, with independence assumption for expression

clarity (we note that despite this assumption our proposed model does not treat

voxels as independent due to the shared latent space):

pθ (S )≈
t=T

∏
t=1

d=D

∏
d=1

w=W

∏
w=1

h=H

∏
h=1

pθ (s
(h,w,d)
(t) |z)pθ (z) (6.1)

Our latent modelling choice in Eq. 6.1 enjoys two benefits. The first benefit is,

by conditioning the data from each DWI from each voxel S(h,w,d)
(i) on z, we absorb

all the arbitrary dependencies among voxels into z, a compact representation in a

latent space. In the latent space which has lower dimension than the data space, vox-

els are clustered with their close voxels, therefore inter-voxels information must be

captured. The second benefit is, the complicated underlying distribution of pθ (S )

can be learnt via learning a much simpler distribution pθ (z). However, the marginal

distribution of pθ (z) is still intractable: pθ (z|S ) = pθ (S ,z)/pθ (S ) because the

data density is unknown. To address this computational issue, we deploy a varia-

tional approach to approximate the posterior of pθ (z).

6.3.2.1 Univariate Gaussian prior

We explore different implementations to obtain the posterior of p(z). Let’s denote

the prior of z as q(z). We start with a simple univariate Gaussian Prior as N (0,1).

We first use the encoder to parameterize z from input observed signals:

µ,Log(σ2) = θEncoder(S ) (6.2)

p(z|S ,θEncoder)≈ N (µ,σ) (6.3)

We then use a decoder to map randomly drawn samples z ∼ p(z) to physically-

relevant dMRI model parameters (X) that are inputs to a closed-form dMRI model

that reconstructs the MRI signal. We denote the closed-form physics decoding pro-

cess as φ(.). We emphasise that φ(.) can be any dMRI (or qMRI) model; the details

of the dMRI models we use are described in section 6.3.3. The complete decoding
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process is:

p(S ) = p(φ(X |z,θDecoder)) (6.4)

The loss function becomes an evidence lower bound as:

Log(pθ (S ))≥
d=D

∑
d=1

w=W

∑
w=1

h=H

∑
h=1

Ez∼p(z)[Log(p(φ(x(h,w,d)|z,θ)))]−KL(p(z)||q(z))

(6.5)

The likelihood of Logp(φ(x(h,w,d)|z,θ))) is measured as a mean squared error

loss between estimated signals and raw input signals.

6.3.2.2 Gaussian Mixture Prior

We further enhance our model’s expressivity by considering a prior as a mixture of

univariate Gaussians. We add an extra latent variable y for controlling the index of

the Gaussian component. The prior of y is chosen as a Categorical distribution. The

probabilistic model is:

pθ (S ) =
∫

z

∫
y

pθ (S |z)p(z|y)p(y)dydz (6.6)

In implementation, we build our Gaussian mixture VAE (VAE-GMM) follow-

ing a hierarchical order. We first need to parametrize the mixing coeffients of each

Gaussian using Gumbel Softmax [168, 169]:

c = Gumbel(θEncoder1st (S )) (6.7)

Where c is a normalised vector indicating the weight for each Gaussian and the

sum of the c is 1. We then concatenate c with input to parametrize the parameters

of Gaussians:

µk,Log(σ2
k ) = θEncoder2nd(S ,c) (6.8)

p(z|S ,θEncoder)≈ N (µk,σk) (6.9)

Where k means that the mean and the variance are for the K-th Gaussian. We
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apply the same decoding process as in the last section. And the loss function now

becomes:

Log(pθ (S ))≥ Ez∼p(y|z)p(z|x)[Log(p(φ(X|z,θ)))]−KL(p(z,y)||q(z,y)) (6.10)

6.3.3 MRI models

We test our approach on two dMRI models, the mean signal diffusion kurtosis imag-

ing (MS-DKI)[170] model and ball-stick model [171]. The normalised signal for

MS-DKI is given by

φ(b) = exp(−bD+b2D2K/6) (6.11)

where b is the b-value, D is the diffusivity and K the kurtosis. For ball-stick the

normalised signal is

φ(b,g) = f exp
(
−bD||(g.n)

)
+(1− f )exp(−bDiso) (6.12)

where b is the b-value, g the gradient direction, f is the stick volume fraction, D|| is

the parallel diffusivity of the stick, and Diso is the ball isotropic diffusivity.

6.3.4 Implementations

We follow [155] and use an auto-encoder architecture for our implementation. Our

encoder is 3 fully connected layers and our decoder is one fully connected layer.

6.4 Experimental Results

6.4.1 Baselines

We use least squares fitting and voxel-wise self-supervised fitting as baselines for

the real data, and self-supervised fitting as a baseline for the simulated data. We

note that voxelwise self-supervised fitting has not been previously demonstrated for

the specific MRI models we use. For MSDKI we implemented LSQ fitting with

the dipy python package [172], and for ball-stick with the dmipy package [173].

We implemented self-supervised fitting as described in [174]. In summary, we use

a three-layer artificial neural network (ANN) with the number of nodes in the first
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three layers equal to the number of dMRI volumes, and the output layer having the

same number of layers as the relevant dMRI model.

6.4.2 Data

We first demonstrate our method on an illustrative toy simulated example with

known ground truth. To test our method’s ability to capture underlying data re-

dundancies, we simulated an MSDKI dataset with three underlying clusters. We

chose each cluster’s diffusivity and kurtosis to mimic white matter, grey matter, and

CSF; the mean D,K values for each cluster were {1,1.5}, {1.5,1}, and {3,0} re-

spectively, with diffusivity in units of µm2/ms. We simulated 10,000 voxels, with

relative weightings of each cluster {0.5,0.4,1}. The specific ground truth parame-

ter value was simulated from a Gaussian with the relevant mean D and K for that

cluster, and variance 0.1 for white matter and grey matter clusters, and 0.01 for the

CSF cluster.

For real data, We use publicly-available dMRI data provided by the HCP WU-

Minn Consortium[175] to demonstrate our methods. We used preprocessed[176]

data from a single subject from the 1200 Subjects Data Release.

6.5 Results

Figure 6.2: Comparisons between self-supervised voxel-wise baseline and ours (Gaussian
prior) on simulated model using MSDKI. X axis: ground truth of simulated
kurtosis. Y axis: prediction of kurtosis. Ours vastly outperforms the baseline
in recovery of the ground truth.

Figure 6.2 demonstrates that our VAE approach significantly outperforms vox-
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elwise self-supervised fitting in the simulated data, as our VAE approach produces

predictions aligned better with the ground truth (closer to the diagonal line), with

less variances.

We further conducted ablation studies on our VAE model. The first ablation

study was to find the most optimal dimension of the latent space and we found that

the VAE model couldn’t reconstruct the data if the dimension of the latent space is

too low as shown in 1st row in Fig.5.9. We also found that the strength (α) of the

kl loss has a trade-off as shown in 2nd row in Fig.5.9. However, in general, larger

kl loss brings more stochasticity into the modelling, resulting in higher variances

shown as more scattered data points.

Figure 6.3: Ablation studies. We observe that both latent dimension and kl loss strength
have optimal values.

On the real-data set HCP, figure 6.4 shows that VAE improves ball-stick param-

eter maps compared to the baselines, particularly the stick diffusivity map, which

is less noisy and better highlights anatomical structures. We found that Gaussian

mixture VAE futher improved the image quality in figure 6.4 with more detailed

anatomical structures, for instance, Gaussian mixture VAE successfully capture

more details of the white matter comparing all of the other methods (see the stick

diffusivity maps and ball diffusivity maps).

However, when the MRI model is much simpler with less parameters such as

MSDKI, figure 6.5 shows that our VAE produces maps comparable to the baselines

in MSDKI, without producing any hallucinations.
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Figure 6.4: LSQ, self-supervised, and VAE ball-stick fits to HCP dMRI subject. Our meth-
ods drastically reduces noise and better highlights anatomical features.

Figure 6.5: Comparisons on MS-DKI fits on HCP dMRI subject. Our approach has less
obvious improvements when the MRI model is relatively simple, but doesn’t
hallucinate spurious anatomical features.
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6.6 Discussion on learnt distributions of latent vari-

ables

Figure 6.6: Visualisation of the posterior distribution of the latent variable in our VAE mod-
els after training on HCP data.

We also studied the learnt posterior distributions and present the results in

Fig.6.6. We run stochastic inferences for 500 times for each trained model and

we collect the latent z samples and plot their histograms with bin number 250. As

shown in Fig.6.6.Row 1: VAE with univariate Gaussian prior. In Uni-VAE, we

observe that the learnt posterior distribution of the latent variable is similar to Gaus-

sian and it has the mean value at 0 in both dimension 1 and dimension 2, given that

the mean value in our priors is also 0. Fig.6.6.Row 2: VAE with Gaussian mixture

prior. We observe that the learnt posterior distribution of the latent variable is sim-

ilar to Gaussian Mixture distribution with two obvious peaks. For example in the

first dimension of the latent space (row 2 left), the Gaussian mixture has two peaks

at around -1 and 0 respectively. In the second dimension of the latent space (row

2 right), the Gaussian mixture has two peaks at around -0.5 and 1. However, we

noticed that there are some long tails, implying that there might be more Gaussians,

for example see the long tail on the right hand side in 1st dim of GMM-VAE (left
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bottom of Fig.6.6).

Interestingly, we also noticed that at higher dimensions, the latent space has

more complicated patterns which are hard for interpreting, suggesting that the true

posterior might not be the Gaussian or mixture of Gaussians.

6.7 Conclusion
We introduce a deep VAE model fitting method that exploits data redundancies to

maximise the amount of information extracted in parameter mapping techniques

such as dMRI and qMRI. Our deep VAE approach clearly outperforms the base-

line methods in simulated and real data with the ball-stick model. Using simulated

data with known ground truth, we show that by capturing underlying data structures

our VAE approach can significantly improve estimation of ground truth parameter

values compared to voxelwise fitting (Figure 6.2). In real data with the ball-stick

model, our VAE algorithm reduces noisy features in maps and reveals new anatom-

ical details (Figure 6.4).

We stress that the advantages of our approach can be leveraged in two ways.

Firstly, it could be applied to existing dMRI and qMRI acquisition sequences to

yield improved quantitative maps of tissue structure and function compared to cur-

rent fitting techniques, and hence potentially improve the clinical utility of such

maps. Alternatively, it could be used to significantly shorten dMRI and qMRI ac-

quisitions, whilst maintaining the quality of derived parameter maps, enabling more

comfortable and cheaper scans. Our VAE algorithm can fit any dMRI or qMRI

model by simply modifying the closed-form decoder φ(.).

To conclude, we introduce and demonstrate a deep VAE algorithm for quantita-

tive parameter mapping. Our approach breaks the typical assumption of voxelwise

independence, and can hence identify and exploit data redundancies to improve

the quality of inferred parameter maps. Our work can enable a new generation of

dMRI and qMRI that is more sensitive and specific to underlying tissue structure,

and hence support clinical adoption of these techniques.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Chapter 4

The results from Chapter 4 led to two peer-reviewed publications: one as an oral

presentation at MIDL and the other as a journal paper in IEEE TMI. Furthermore,

the framework proposed in Chapter 4 received validation for its commercial poten-

tial, resulting in a patent application with the assistance of our colleagues at UCLB.

Firstly, Chapter 4 provides a new interpretation of the spatial attention mech-

anism as an implementation of differential morphological operations on the fea-

tures. Chapter 4 then explores the application of this new insight in the context of

semi-supervised segmentation of medical images, resulting in a framework called

MisMatch. MisMatch also addresses the challenge of integrating consistency reg-

ularization from semi-supervised image classification into semi-supervised image

segmentation.

Additionally, Chapter 4 investigates the reasons behind the success of consis-

tency regularization in semi-supervised learning for segmentation. It is discovered

that consistency regularization improves model calibration. The proposed frame-

work, MisMatch, not only outperformed previous semi-supervised segmentation

methods in an in-house implementation but also surpassed these methods on the

LA dataset when following established preprocessing steps using a common public

codebase.
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7.1.2 Chapter 5

Chapter 5 resulted in a peer-reviewed publication for MICCAI 2022, which was

fortunately shortlisted for the Young Scientist Award. The extended version of

that MICCAI publication is currently under review as an invited journal paper at

Medical Image Analysis. Additionally, the method proposed in Chapter 5 led to a

commercial patent application.

The major contribution of Chapter 5 is a new formulation of pseudo-labelling

as a latent variable model, treating pseudo-labelling from a novel perspective in

generative modelling within the context of binary semi-supervised segmentation.

This new formulation led to the discovery of the generalisation of pseudo-labels

and their learning-based approximation.

In our experiments, we evaluated the performance of pseudo-labels in semi-

supervised segmentation and reported that pseudo-labelling offers significant ad-

vantages in terms of efficiency and robustness over other methods used in semi-

supervised segmentation.

7.1.3 Chapter 6

Chapter 6 revisits the classical problem of parameter estimation from MRI signals,

which is traditionally solved by voxel-wise fitting methods. In Chapter 6, we pro-

pose a new method to capture the global representation of all voxels in a latent

space. To model the distribution in the latent space using variational inferences,

two priors were tested: namely, a univariate Gaussian and a Gaussian mixture.

In our experiments, we observed that our reconstruction algorithm successfully

recovers more anatomical structures than baseline methods based on single-voxel

fitting. In the visualisation of the latent space, we found that the samples from the

1st and 2nd dimensions follow the distributions of the prior distributions.

7.1.4 Comparison between MisMatch and Bayesian Pseudo La-

bels

In the quantitative results for the segmentation of vessels in CARVE2014, Bayesian

Pseudo Labels (BPL) achieved a higher intersection over union (IoU) score than
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MisMatch. For instance, when both were trained on 30 labelled slices, MisMatch’s

IoU stood at 63.59%, whereas BPL achieved an IoU of 79%. It’s worth mention-

ing that the base model of BPL in the CARVE experiments is a 3D U-Net, while

MisMatch’s base model in the CARVE experiments is a 2D U-Net.

Although the 3D U-Net base model might have some advantages over the 2D

U-Net, the substantial performance improvements of BPL over CARVE suggest that

BPL can achieve better segmentation accuracy than MisMatch. Additionally, from

an engineering standpoint, it is easier to integrate BPL into existing segmentation

models than it is to incorporate MisMatch.

7.2 Limitations

7.2.1 Chapter 4

Although MisMatch surpasses previous methods in performance, it suffers from

increased model complexity. Future work should incorporate parameter sharing.

For instance, the main branch could be shared across both decoders. The current

implementation of MisMatch supports only binary segmentation.

7.2.2 Chapter 5

The first limitation is that once the model begins to overfit, it becomes overconfi-

dent, predicting with very high confidence, while the learned threshold also tends

to oscillate around the prior mean (see an example of the learned threshold in

Fig.5.14). In this situation, if the prior mean is too low, then the learned thresh-

old will not be able to mask out the inaccurately overconfident pseudo labels. Thus,

calibration becomes very important here. In future work, one could extend the for-

mulation of pseudo labels to take calibration into account.

The second limitation is related to the use of the prior in the current paper.

We use the Univariate Gaussian due to its simplicity and ease of implementation.

However, a Gaussian prior might not be the most optimal choice here.
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7.2.3 Chapter 6

There are limitations to our current form of the VAE algorithm that motivate future

work. Due to the stochastic nature of our method, the inferred parameter maps may

change, potentially hindering the repeatability and reliability of measurements. Our

approach shows the most immediate benefits with more complex models (Figure

6.4), while subtler differences are seen in simpler models (Figure 6.5). We also

notice a trade-off in performance: the model might excel with one parameter at the

expense of others. Additionally, we assume a fixed acquisition scheme, meaning

our VAE algorithm requires the exact same acquisition parameters.

7.3 Future Work

7.3.1 Chapter 4

Inspired by recent breakthroughs in foundational models, we aim to compare semi-

supervised learning with few-shot fine-tuning on foundational models in segmenta-

tion tasks. To increase the impact of MisMatch, we plan to implement MisMatch

on top of nnU-Net [63] or project MONAI. Additionally, a more efficient imple-

mentation is needed to reuse the main branches across the two decoders, which

could also introduce extra regularisation effects. Future work should extend Mis-

Match to multi-class 3D tasks. Consistency in multi-class predictions could provide

additional regularisation, leading to better performance. We also aim to enhance

MisMatch by integrating it with existing temporal ensemble techniques [1].

7.3.2 Chapter 5

The most foreseeable future work involves integrating BPL into nnU-Net [63] or

project MONAI. It could also be interesting to extend BPL to classification tasks.

The current variational inference only learns a single threshold across all pixels. It

would be important to further extend this towards pixel-wise thresholds with prior

structural knowledge of the pixels.

The implementation of the multi-class version of BPL could be further simpli-

fied. We also aim to reuse the learned thresholds on labelled data to improve the

supervised learning component. Future work could also explore the impact of other
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priors for the learned threshold. Potential prior distributions include categorical and

Beta distributions.

Another interesting area for future work would be studying the impact of la-

belled data in preventing collapsed representations. Other future work could exam-

ine the convergence property of SegPL-VI and improvements in SegPL-VI for un-

certainty quantification. The feasibility of applying the proposed methods to other

tasks such as classification and registration also remains unexplored.

7.3.3 Chapter 6

In the future, we aim to develop algorithms that can learn a general mapping be-

tween an arbitrary acquisition sequence and model parameters, as opposed to the

fixed acquisition scheme currently in use. In the current implementation with a

Gaussian Mixture prior, Gumbel sampling is performed to find the index for the

Gaussian component. We aim to extend this framework in the future and use Gum-

bel sampling to determine the appropriate number of Gaussian components. To

increase the impact of the proposed model, we also aim to validate it on other, more

complicated MRI models and other modalities such as hyperspectral imaging.
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