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Preface

The state of the art in optical characterization of materials is advancing
rapidly. New insights into the theoretical foundations of this research
field have been gained and exciting practical developments have taken
place, both driven by novel applications and innovative sensor tech-
nologies that are constantly emerging. The big success of the inter-
national conferences on Optical Characterization of Materials in 2013,
2015, 2017, 2019 and 2021 proves the necessity of a platform to present,
discuss and evaluate the latest research results in this interdisciplinary
domain. Due to that fact, the international conference on Optical Char-
acterization of Materials (OCM) took place the sixth time in March
2023.

The OCM 2023 was organized by the Karlsruhe Center for Spec-
tral Signatures of Materials (KCM) in cooperation with the German
Chapter of the Instrumentation & Measurement Society of IEEE. The

Despite the conference’s young age, the organizing committee has
had the pleasure to evaluate a large amount of abstracts. Based on
the submissions, we selected 19 papers as posters and talks, a plenary
lecture, a panel discussion and several practical demonstrations.

The present book is based on the conference held in Karlsruhe, Ger-
many from March 22–23, 2023. The aim of this conference was to bring
together leading researchers in the domain of Characterization of Ma-
terials by spectral characteristics from UV (240 nm) to IR (14 µm), mul-
tispectral image analysis, X-ray methods, polarimetry, and microscopy.
Typical application areas for these techniques cover the fields of, e.g.,
food industry, recycling of waste materials, detection of contaminated
materials, mining, process industry, and raw materials.

The editors would like to thank all of the authors that have con-
tributed to these proceedings as well as the reviewers, who have in-

i

Karlsruhe Center for Spectral Signatures of Materials is an association
of institutes of Karlsruhe Institute of Technology (KIT) and the busi-
ness unit Inspection and Optronic Systems of the Fraunhofer Institute
of Optronics, System Technologies and Image Exploitation IOSB.
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vested a generous amount of their time to suggest possible improve-
ments of the papers. The help of Lukas Roming and Jürgen Hock in
the preparation of this book is greatly appreciated. Last but not least,
we thank the organizing committee of the conference, led by Britta Ost,
for their effort in organizing this event. The excellent technical facilities
and the friendly staff of the Fraunhofer IOSB greatly contributed to the
success of the meeting.

March 2023 Jürgen Beyerer
Thomas Längle

Michael Heizmann
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Monitoring the sorting performance in
lightweight packaging waste sorting plants

using data of sensor-based sorters

Sabine Schlögl, Georg Schmölzer, Alexander Weber, Alexander
Anditsch, and Alexia Aldrian-Tischberger

Montanuniversity Leoben, AVAW,
Franz-Josef-Straße 18, 8700 Leoben

Abstract To achieve the necessary improvements in lightweight
packaging waste sorting plants to increase the recycling rate,
sensor-based material flow monitoring and plant control is the
subject of current research and development. This study inves-
tigates whether data from existing sensor-based sorters could be
used for this purpose. The results show that data recorded dur-
ing sorting correlate strongly with ideal analysis data. Further-
more, a correlation between the data of the first sorter and the
output fractions of later sorting stages could be established. The
results therefore show a great potential for the use of sensor-
based sorting data.

Keywords Monitoring, NIR, SBS, sensor-based sorting data,
pixel-/object-based monitoring, lightweight packaging waste

1 Introduction

In 2019, 79.6 Mio. t [1] of packaging waste were created within the Eu-
ropean Union (EU), marking the highest value recorded. To reduce the
negative impact of packaging waste in general and plastic packaging
in particular, a variety of new waste legislation measurements was pre-
sented throughout the last few years. One of them being the recycling
rate for plastic packaging waste of 50% by 2025 [2]. This results in new
requirements for lightweight packaging waste sorting plants to enable
the aspired circular economy.
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Many conventional sorting plants are currently operated as black
boxes. Besides the manual analysis of input and output compositions,
little process data is gathered and stored to enable plant control. How-
ever, the collection of such data is essential to find key aspects for opti-
mization of both existing and newly built sorting plants. The research
project “EsKorte” investigates not only the implementation of addi-
tional sensors for material flow monitoring but also the exploitability
of existing, but not yet used, sensor-based sorting (SBS) data for mate-
rial flow monitoring and control. Two research questions have been ad-
dressed with the presented analysis of SBS-data gathered during multi-
level sorting of plastic packaging waste material using an experimental
setup with a near-infrared sensor:

(1) Is SBS-data suitable for monitoring key sorting parameters?

(2) Is SBS-data suitable for predicting the sorting results of successive
sorting steps?

2 Materials and Methods

2.1 Materials

The sample material was collected in a plastic packaging waste sorting
plant in Austria. The samples taken in the output fractions were bev-
erage cartons (BC), polyethylene terephthalate (PET) bottles, as well as
containers made from polyethylene (PE) and polypropylene (PP). The
samples included different brands, filling quantities and contents to
represent the variety of plastic packaging waste. To ensure the best
possible detection and sorting during the trials, the samples were man-
ually cut into 3x3 cm pieces. This is due to the experimental setup
requiring a reduced grain size. Caps and strongly curved particles
were excluded from the sample material to ensure uniform particle
properties. Three mixtures were created with the sample material (see
Table 1). M1 represents an evenly distributed material, M2 a higher
share of transparent PET-material and M3 a dominant polyolefin con-
tent. The corresponding pixel (px) and object (obj) shares differ due to
the different area densities.

2
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Table 1: Composition of sample mixtures (M1-M3) based on weighing (top) and corre-
sponding average classified sensor data (bottom).

M1 M2 M3
kg wt% kg wt% kg wt%

BC 0.507 25 0.4046 20 0.1925 10
PET 0.507 25 0.8092 40 0.1925 10
PE 0.507 25 0.4046 20 0.7700 40
PP 0.507 25 0.4046 20 0.7700 40

px px% obj obj% px px% obj obj% px px% obj obj%

BC 1073070 37 1620 33 838767 27 1232 23 403373 20 617 18
PET 1030385 35 1971 40 1644041 52 3072 57 395155 19 765 22
PE 415414 14 674 14 336186 11 542 10 619754 30 1011 30
PP 405092 14 654 13 336577 11 545 10 626035 31 1030 30

2.2 Experimental setup

The multilevel sorting was conducted with a chute sorter (working
width 500 mm, length: 455 mm) using an NIR-sensor (Model: EVK
Helios-G2-NIR1 [3]). The experimental setup, including the vibration
conveyor for material separation, is presented in Figure 1.

Figure 1: Experimental setup and associated schematic layout [4].

The detected pixels are 1.60 mm wide and have a length smaller than
1.60 mm (depending on the sliding speed). For the classification a
teach-in was created in “SQALAR” [5]. To achieve the required clas-
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sification close to 100% in each particle not only the pure materials,
but also the mixed spectra resulting from labels on the objects were
included. The settings for the differentiation of background and mate-
rial (Spectrum Mean Intensity ≤ 340) were determined in an iterative
process. In preliminary tests the light settings where evaluated. Lower
background light caused better object localization for PET, while higher
emitter light caused stronger excitation in the NIR range. The recom-
mended default settings were altered accordingly. The reference spec-
tra, as well as the resulting classified false color images can be seen in
Figure 2.

Figure 2: Reference spectra for classification (a) First derivative of reference spectra (b)
Created material classes with assigned spectra (c) False colour images (orange:
BC, blue: PET, red: PE, green: PP, grey: Not Classified [NC]).

2.3 Data aquisition

Each pixel is classified based on the chosen reference spectra in the soft-
ware. During the trials this classification is visualized in a livestream of
false colour images on a screen. Real-time data recording is achieved
by using Matlab [6] to continuously scan and analyze the false-color
images on the screen. The resulting values include the total number
of counted pixels per material as well as the corresponding number of
objects. An object is defined as an area bigger than 70 pixels of the
same colour. Objects smaller than 70 pixels are typically fault detec-
tions and therefore ignored. Further the trial time and input mass for

4



Monitoring the sorting performance using SBS data

each sorting step is documented to calculate the throughput.

2.4 Experimental procedure

Each test run consists of four sorting levels (BC, PET, PE, PP), while ev-
ery level includes both rougher and cleaner (see Figure 3). In a rougher,
all target particles are to be sorted out, whereby the purity is low. In the
cleaner, this fraction is purified by removing impurities. All input and
output fractions were analysed at lower throughput to avoid overlap
(Average values: rougher: 9 kg/h, cleaner: 8 kg/h, analysis: 2 kg/h).
For each mixture (M1–M3) five repetitions of test runs were performed.

Figure 3: Flowchart of multilevel sorting; A: Analysis.

2.5 Data analysis

The data from all test runs were analysed with respect to the following
parameters. x represents the number of pixels or objects. YieldInput is
the result in respect to the input composition, while YieldLevel refers to
the input of the respective sorting stage.

(1) Coefficient of variation = standard deviation
mean

(2) YieldInput =
xi,Eject
xi,Input

(3) YieldLevel =
xi,Eject
xi,Level

(4) Purity =
xi,Eject
xEject

5
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3 Results

3.1 Reproducibility

Both pixel-based and object-based data was analysed to evaluate the
reproducibility of data gathered from sensor-based sorters. The results
show low values for the coefficient of variation (CV): CVPixel = 0.07,
CVObject = 0.1. The CV values increased with each sorting level, indi-
cating a slightly better usability of sensor data from early sorting steps
(see Figure 4). The higher values for NC are noteworthy, though these
are also in most cases below the critical limit of CV = 0.5. In general,
the type of material class influences the CV values more than the input
mixture (see Figure 5).

Figure 4: Coefficient of variation throughout the sorting levels. Pixel-based data (left)
and object-based data (right); I: Input, R: Rest.

3.2 Exploitability of sensor-based sorting data

To assess whether the SBS data of BCRougher is suitable for monitoring,
a comparison was made with the input analysis data generated at op-
timal singulation (“ground truth”). In Figure 6 it can be seen, that the
pixel data represents the ground truth slightly better than the object
data. Nevertheless, the object data also shows a linear correlation and
is similar to the input composition at small values.

6
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Figure 5: Influence of mixtures and materials on coefficient of variation.

Figure 6: Comparison of Input analysis and data from SBS in BCRougher ; Pixel-based (left)
and object-based (right).

3.3 Monitoring of Yield

To determine whether the SBS data is suitable for monitoring, the yield
was assessed in relation to the input as well as in relation to the re-
spective sorting stage (see Figure 7). There is no continuous correlation
between input composition and yield but clusters depending on the
sorting level were discovered. The best values are for BC, followed by
PET. For YieldInput, the values for PE and PP are usually around 45 –
60 px%, from which it could be deduced that the input-related yield
drops sharply from the third sorting stage onwards, regardless of ma-
terial. In contrast, the sorting level-related yield (Figure 7: right) shows
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a clearer distinction between PE and PP. The low values of PE result
from a poorer discharge behaviour, which could be observed during
the tests. In general, at least a rough prediction of yield based on SBS
data generated in the first sorting step appears to be possible.

Figure 7: Yield depending on BCRougher composition. Pixel-based values in relation to
input (left) and respective sorting stages (right).

3.4 Monitoring of Purity

Since the purity of output fractions is a relevant criterion for recycla-
bility, its monitoring with SBS data was further investigated. Figure 8
visualises that the composition of mixture (M1-M3) is more important
than the sorting level, since there is no gradient along the sorting levels
within a mixture. Lower limits and averages are higher for object-based
values, which might be because pixel-based purity is degraded by mis-
classifications at the edges of particles.

The proportion of the target fraction increases with the purification
steps (see Figure 9), which is plausible since it reflects the behaviour
of sorting plants. The values of the input analysis (black) and the val-
ues of BCRougher (red) are very similar, while in the eject of the rougher
(purple) the purity increases strongly. The purity of the output frac-
tions, i.e. the cleaner eject (blue), is the highest and usually has the
smallest range. The correlation with BCRougher data for all output frac-
tions has a maximum range of 10.6 percentage points. This includes
results for the fourth sorting level.

8
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Figure 8: Dependence of purity on mixtures (M1-M3) and sorting levels (BC, PET, PE,
PP); left: pixel-based, right: object-based.

Figure 9: Increasing material shares [obj%] with increasing sorting level (left) and depen-
dence of purity [obj%] in output fractions on BCRougher composition (right).

4 Conclusion

The data presented demonstrates that SBS data has high potential for
material flow monitoring. The data shows a low variation with rep-
etition and a strong correlation between the results of the optimally
singulated analysis and the data recorded during sorting. Based on the
data of the first sorting stage (BC), a clear distinction of the yields of
the different sorting stages is possible. Furthermore, there is a clear
correlation between the BCRougher data and the resulting purity of the
output fractions. Based on these results, further investigations can be
made to not only monitor but predict the sorting performance.
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Detecting Tar Contaminated Samples in
Road-rubble using Hyperspectral Imaging and

Texture Analysis

Paul Bäcker1, Georg Maier1, Robin Gruna1, Thomas Längle1, and
Jürgen Beyerer1,2

1 Fraunhofer Institute of Optronics, System Technologies and Image 
Exploitation IOSB, Fraunhoferstraße 1, 76131 Karlsruhe, Germany

2 Vision and Fusion Laboratory (IES), Karlsruhe Institute of 
Technology (KIT), Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

Abstract Polycyclic aromatic hydrocarbons (PAH) containing
tar-mixtures pose a challenge for recycling road rubble, as the
tar containing elements have to be extracted and decontami-
nated for recycling. In this preliminary study, tar, bitumen and
minerals are discriminated using a combination of color (RGB)
and Hyperspectral Short Wave Infrared (SWIR) cameras. Fur-
ther, the use of an autoencoder for detecting minerals embedded
inside tar- and bitumen mixtures is proposed. Features are ex-
tracted from the spectra of the SWIR camera and the texture of
the RGB images. For classification, linear discriminant analysis
combined with a k-nearest neighbor classification is used. First
results show a reliable detection of minerals and positive signs
for separability of tar and bitumen. This work is a foundation for
developing a sensor-based sorting system for physical separation
of tar contaminated samples in road rubble.

Keywords Hyperspectral Imaging, Autoencoder, Polycyclic
Aromatic Hydrocarbons

1 Introduction

Until the 1980s, tar was primarily used as a binder for road surface con-
struction in Germany [1]. It has since been outlawed for the construc-
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tion of new roads due to its high levels of Polycyclic Aromatic Hydro-
carbons (PAHs) that have been identified to be carcinogenic, mutagenic
and genotoxic and can contaminate the groundwater [2]. Further, the
use of recycled tar containing materials as a foundation of new road
surfaces has been restricted.

Other materials present in road rubble are bitumen, which replaced
tar as binder material, and minerals, which make up the biggest part
of the road surface mixture (∼95 wt%) and are used in the road foun-
dation. Both of these materials are valuable for recycling, but are fre-
quently lost as they cannot be separated from the tar containing frac-
tions. Therefore, they are deposited at a landfill, which is increasingly
expensive, or fed into a highly energy consuming tar decontamination
process where they are damaged due to high temperatures altering the
molecular structure of the minerals.

The mixing of tar contaminated road rubble with uncontaminated
bitumen and minerals is due to different road layers and repaired road
patches that appear in close proximity and are therefore mixed during
demolition. Further, many uncontaminated mixtures are unnecessarily
declared as tar containing, as this can be cheaper for the demolition
crews than carrying out the mandated testing procedures. This test-
ing includes taking point-samples in a certain raster and having them
analyzed in a laboratory.

To acquire a rough estimate over possible PAH concentration,
solvent-based paints can be sprayed onto the rubble. Such paints react
with the PAHs creating a fluorescent effect that is visually observable.
This method is however not sufficient for official classification, as this
detection method is not accurate for all PAHs and cannot be used for
dense classification and sorting of all material to limit paint usage.

As part of the InnoTeer project, the entire process from the creation of
rubble at the construction site to transportation, separation and decon-
tamination is reevaluated [3]. Fraunhofer IOSB is developing a method
to efficiently separate the tar from the mixture of materials using visual
inspection with the goal to develop a sensor-based sorting system.

1.1 Related Work

Methods such as gas chromatography, high-performance liquid chro-
matography [4] and mass spectroscopy deliver accurate estimations of

12
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PAH content. However, these Methods offer low throughput at a high
cost and require dissolving the tested materials, rendering the methods
unsuitable for recycling.

Visual methods for detecting PAHs include fluorescent spectroscopy.
UV-excited fluorescence of PAH molecules in the Mid Infrared spec-
trum is widely used in astronomy to investigate properties of astro-
nomical objects [5]. [6]. However, the detected PAHs are in gaseous
form, which alters their fluorescence compared to PAHs in solid com-
pounds. Quazi et al. have used fluorescent spectroscopy to detect
and distinguish between different kinds of PAHs in soil samples [7].
Excitation is performed in low-wavelength regions of the visual spec-
trum (blue to green), detection in slightly higher wavelengths (green
to red). Different excitation wavelengths have shown to excite differ-
ent PAHs. In addition to detection, the varying distribution patterns of
different PAHs were observed with phenantrene forming spherical par-
ticles, whereas naphtalene forms a uniform film. The approach seems
promising, however the analysis was carried out in microscopic scale
and at low speeds (several seconds for a 200 × 200µm patch). Adap-
tation of this method to the macroscopic scale has to the best of our
knowledge not been tried in the context of PAH detection in soil.

Li et al. use a Fourier Transform Infrared (FTIR)-Spectrometer to
measure the reflectance of different PAHs in soil over a broad Mid
Infrared spectrum (2500 – 16000nm) with a spectral resolution of
4cm−1 [8]. The 35 measured samples were analyzed using a hybrid
variable selection approach, that combines wavelength interval selec-
tion and wavelength point selection as preprocessing for a partial least
squares regression. The method shows high accuracy, but the use of a
point-measuring FTIR-Spectrometer in large throughput sensor-based
sorting applications is not feasible. Jahangiri et al. have investigated
differences between bitumen-based asphalts in terms of different ad-
ditives using a FTIR-Spectrometer [9]. This illustrates the big variety
in road surfaces which further complicates the task of separating tar-
from bitumen-based binder.
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Figure 1: Data Processing pipeline. Preprocessing includes separating the samples from
each capture and removing dead pixels. An autoencoder (AE) for detecting
minerals embedded in tar and bitumen is trained on a subset of mineral fea-
tures and applied to the training samples of tar and bitumen.

2 Materials and Methods

The problem of detecting tar in road rubble is posed as a classification
problem between the classes tar, bitumen and minerals. Solving the
problem requires data capture, preprocessing and classification. Pre-
processing includes segmentation of the different samples, dead-pixel
correction, feature extraction and a novel method for removing mineral
patches embedded in the tar and bitumen samples. Figure 1 gives an
overview of the different steps used in this work.

2.1 Samples

Samples for the classes tar and bitumen are both taken from the top
layers of road surfaces and constitute a mixture of differently sized
mineral elements and the binder (tar or bitumen). The class of minerals
contains only solid pieces of minerals from the foundation layer. The
sample size has been chosen to be between 16 and 32mm. Figure 2
shows examples of samples.

2.2 Data Acquisition Hardware

In this work, data from a hyperspectral Short Wave Infrared (SWIR)
camera and a high-resolution RGB camera were combined for clas-
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Figure 2: Examples for the three classes. From left to right: bitumen, tar, minerals.

sification. Both cameras are line-scanning cameras that have been
mounted above the same linear stage. The linear stage carrying the
samples is moving past the line-scanning cameras for image acquisi-
tion. For the hyperspectral camera, the line is illuminated using six
halogen work lights. Illumination for the RGB camera is provided by
two white-light LED-bars.

2.3 Preprocessing

As a first preprocessing step, dead-pixel correction is performed by
quadratic interpolation in the spectral domain. Sample masks are au-
tomatically extracted using a binary threshold, with small artifacts be-
ing removed by morphological operation (opening) and filtering the
remaining elements by size and shape.

Our goal is to be able to overlap RGB- and SWIR images (Image
Registration). Therefore, the transformation between the cameras is es-
timated. First, the nonlinear lens distortion is calculated for each cam-
era separately using a known calibration pattern. The resulting camera
pixels are now related through a linear transformation, assuming all
captured objects lie in the same plane. The main components of this
transformation are a scaling factor, which is necessary because of the
different resolutions and slightly different capture areas of the imag-
ing sensors, and a translation between the cameras. These scaling and
translation changes could be covered by a similarity transform (which
always preserves shape). However, due to small inaccuracies in the
mounting of the cameras, a more general perspective transformation is
assumed (homography). The transformation matrix is estimated using
a set of matching points on a calibration pattern. Using the transfor-
mation matrix, both images can be transformed into each others view.
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Figure 3: Detection of minerals in tar and bitumen. The upper row shows unedited RGB
images. The lower row shows an overlay of the RGB images and a contrast-
enhanced inverse reconstruction error as computed by the autoencoder.

2.4 Distinguishing Surface Minerals from Tar and Bitumen

A challenge when trying to distinguish between tar, bitumen and min-
erals is that tar and bitumen are mixtures containing large amounts of
minerals (∼95 wt%) and much less solvent (∼5 wt%). Although a thin
layer of binder is prevalent, there are several surface patches displaying
clean minerals. Figure 3 shows examples for this.

In this work, a pixelwise autoencoder was trained on a subset of sam-
ples in the minerals-class. The in- and output of the autoencoder are
spectra corresponding to a single pixel. The autoencoder is structured
as a multilayer perceptron network with a latent space of 32 neurons.
As a preprocessing step for tar and bitumen, the autoencoder is applied
to all pixels in the training set. If the reconstructed spectrum is close
to the original spectrum, it is assumed that the pixel shows a mineral
(see Figure 3). These pixels are disregarded for training. This results in
more homogeneous training data and increases the distance between
the tar and bitumen classes and the minerals. In Section 3, the effect of
this measure on classification performance is discussed.
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2.5 Feature Extraction

In this work, classification is performed both on a pixel- and an ob-
ject level. For pixelwise analysis, each pixel is initially treated as a
separate sample, whereas objectwise classification uses data collected
for an entire sample. As pixel features, the Standard Normal Variate-
normalized spectra and their derivatives are used. Object features are
the object-wide means of the spectral information as well as texture in-
formation. Since texture features require multiple pixels, they are not
used in the pixelwise analysis. For texture features, the frequencies in
the grayscale-converted RGB image is analyzed using Discrete Fourier
Transformation and Local Binary Patterns (LBP) are extracted.

2.6 Classification

Classification is either performed using object features, such as ex-
tracted texture features and mean spectra, or pixelwise using only the
captured spectrum of each pixel. For pixelwise classification, a major-
ity decision (MD) is added to get the desired object wide decisions.
Classification is performed using Linear Discriminant Analysis (LDA),
combined with a k-nearest neighbor (KNN) classifier. The LDA reduces
the feature space to n − 1 where n is the number of different classes.
Other classifiers, such as a multilayer perceptron and a support vector
machine, have also been considered, but did not perform as good.

3 Experimental Results

Table 1 shows the recall scores for different classification methods. For
all classifications, a split of 80/20 for training- and testing data was
used. The classification results were cross-validated by using 50 differ-
ent training/testing splits. Classification was performed either object-
wise or using a pixelwise classification with a majority decision.

The pixelwise majority decision model without an autoencoder per-
formed best with an overall recall of 93.69%. For real life scenarios, a
reliable detection of tar may be more important than the maximizing
recall over all classes, since small amounts of tar can suffice to render a
fraction contaminated, prohibiting the use as recycled material. There-
fore for the pixelwise majority decision classifiers, robust versions were
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Table 1: Results for different classification algorithms. Values marked with an asterisk
indicate that the classes bitumen and tar were treated as a single class.

Classification Results (Recall)
Classifier Features Mineral Bitumen Tar
Objectwise All 96.65 86.86 83.57
Objectwise M. vs. O. Texture 98.2 97.85* 97.85*
Pixel MD SWIR, RGB 99.71 85.60 94.84
Pixel MD AE SWIR, RGB 100.0 86.23 91.41
Pixel MD robust SWIR, RGB 98.97 56.34 100.0
Pixel MD AE robust SWIR, RGB 100.0 59.62 99.03

implemented, that assign all samples with more than 30% of pixels be-
ing classified as tar to the tar class. This achieves a perfect recall for
tar samples using the pixelwise majority decision and a 99.03% recall
when using the autoencoder.

The objectwise classification using both texture- and spectral features
performed slightly worse overall than the pixelwise methods. How-
ever, it is more computationally which could be critical in real-world
systems. For separating minerals from tar and bitumen, a single RGB
camera can be sufficient to attain good separation with 98.02% of the
detected minerals being true positives. This indicates the possibility of
using a low-cost preselection stage using only a RGB camera to remove
the minerals from the material flow.

The usage of an autoencoder for preprocessing of the training sam-
ples improves the overall classification recall for mineral and bitumen.
Especially minerals can be identified consistently, as shown by the re-
call scores for the two models using the autoencoder. The majority de-
cision to some degree obscures the positive effects of the autoencoder
on the robustness of the detection of minerals. This improvement is ob-
servable in the overall recall over all pixels without majority decision,
as shown in table 2 for pixelwise classification with- and without au-
toencoder. The False number of false positives in the mineral class has
been halved using the autoencoder improving the recall from 98.0% to
99.19%. Recall scores for tar are slightly decreased both for the major-
ity decision and recall over all pixels. One possible explanation for this
might be that the tar samples contain a certain type of mineral that is
not present in the bitumen samples. Masking out these minerals from
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Table 2: Results for different classification algorithms on a per-pixel level.

Pixelwise Classification Results (Recall)
Classifier Features Mineral Bitumen Tar
Pixelwise SWIR, RGB 98.05 62.27 71.82
Pixelwise with AE SWIR, RGB 99.19 62.87 70.17

the training samples would therefore remove a means of detecting tar.

4 Conclusion and Future Work

In this work, we demonstrated that minerals, tar and bitumen can be
distinguished using a combination of a hyperspectral SWIR camera and
a RGB camera with overall recall scores of up to 93.69%. Using a robust
majority decision, the recall for tar was further increased, resulting in
mineral and bitumen fractions with high purity. The use of an autoen-
coder achieved mixed results, improving the detection of minerals and
bitumen, but performing worse in the detection of tar. Possible reasons
for this have been identified and will be investigated further.

A focus of future research is determining whether the achieved re-
sults generalize to all road rubble. Each of the used fractions in this
study is taken from two different sources. Both tar- and bitumen based
binders can include additives like rubber, polymer and fiber [9] to op-
timize for certain properties like temperature stability or noise genera-
tion. The utilized differences may be based in large parts on differences
in these additives instead of strictly tar- or bitumen specific proper-
ties. Evaluation with additional test samples from multiple sources
will therefore be needed to further validate the results.

The three classes used in this study do not include rocks used in
the foundation layer that are in parts sprayed with a thin layer of PAH
contaminated binder for adhesion with the higher road-layers. These
foundation-layer rocks are challenging, as the surface contains patches
of this adhesive binder as well as patches without this binder. For real-
world applications, this class of samples will have to be addressed as
well.

Finally, additional measurement systems like fluorescent spec-
troscopy and MWIR will be utilized to directly identify PAHs or other
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chemical properties relating to tar or bitumen. An ideal solution to
the problem will deliver estimates for the PAH concentration of each
sample in addition to a classification.
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Abstract Bulky waste contains valuable raw materials, espe-
cially wood, which accounts for around 50% of the volume. Sort-
ing is very time-consuming in view of the volume and variety of
bulky waste and is often still done manually. Therefore, only
about half of the available wood is used as a material, while the
rest is burned with unsorted waste. In order to improve the ma-
terial recycling of wood from bulky waste, the project ASKIVIT
aims to develop a solution for the automated sorting of bulky
waste. For that, a multi-sensor approach is proposed including:
(i) Conventional imaging in the visible spectral range; (ii) Near-
infrared hyperspectral imaging; (iii) Active heat flow thermogra-
phy; (iv) Terahertz imaging. This paper presents a demonstrator
used to obtain images with the aforementioned sensors. Differ-
ences between the imaging systems are discussed and promis-
ing results on common problems like painted materials or black
plastic are presented. Besides that, pre-examinations show the
importance of near-infrared hyperspectral imaging for the char-
acterization of bulky waste.

Keywords Material characterization, waste wood, bulky waste,
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1 Introduction

The increased use of wood is a key to achieve national and interna-
tional goals in the fight against climate change and minimize the CO2
footprint [1]. In this situation, the use of waste wood as a substitute for
fresh wood is an interesting way to reduce the scarcity of wood. Waste
wood for use as a material has meanwhile become a scarce commod-
ity itself in Germany [2]. This is also because, according to national
legislation, it can only be reused as raw material if it is free of wood
preservatives and other contaminants such as PVC. The development
of new sources for ”clean” waste wood is therefore gaining importance.
Although half of the bulky waste consists of wood, only about half of
it has been used as a recycling material so far [3]. Reasons for that are
the difficult separation of impurities from wood and a huge variety of
materials.

Established methods for sorting bulky waste are manual picking and
automatic waste sorting based on heavily shredded materials, with the
cost of shredding worsening the ecological balance. A concept similar
to the system proposed here was presented in [4], but for the sorting of
building rubble that is not as homogeneous as bulky waste.

Thus, the project ASKIVIT (Altholzgewinnung aus Sperrmüll durch
künstliche Intelligenz und Bildverarbeitung im VIS-, IR- und Terahertz-
Bereich) aims at developing a solution for the automated sorting of
bulky waste. The goal is to extract wood, wood-based materials, and
non-ferrous metals based on a multi-sensor approach combined with
artificial intelligence. Conventional RGB, near-infrared hyperspectral,
and thermographic cameras, as well as a developed terahertz imaging
system, are used in this work. In the first step, the different sensors
are described and the fusion approach based on a convolutional neural
network (CNN) is motivated. Preliminary investigations are carried
out to determine the potential of near-infrared hyperspectral material
characterization using machine learning. Moreover, the benefit of a
multi-sensor approach is discussed and verified with sample images.
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2 Material and methods

In this section, the different imaging systems are described and the
fusion approach based on a CNN is motivated.

2.1 Visible imaging

Humans can characterize material from bulky waste very accurately
only by its appearance in the visible spectral range. Therefore, images
from conventional RGB cameras, that imitate the human eye, include
highly relevant information. Furthermore, RGB cameras are available
in high resolution and often by one order of magnitude more cost-
effective compared to other sensors used for material characterization
[5].

In the course of this study, a prism-based RGB line scan camera (SW-
4000T-10GE) was chosen. The built-in prism of the camera splits in-
coming light onto three spatial separated chips, each measuring one
color channel. The frame rate was set to 625 Hz. Halogen lamps were
used as a light source for visible as well as near-infrared radiation. The
later was utilized for the near-infrared imaging system.

By moving the samples on a conveyor belt, images with two spatial
axes were constructed using the push-broom method. The complete
setup including all imaging systems presented in this paper can be
seen in Figure 1.

2.2 Near-infrared hyperspectral imaging

Near infrared (NIR) hyperspectral imaging is another sensor principle
that is used in this work to characterize bulky waste. It is particularly
suitable for the detection of organic products and thus also for the iden-
tification of wood. Whereas color cameras can only view the superficial
appearance, spectral information provided by NIR hyperspectral cam-
eras shows the physical-chemical composition of the material.

As a measuring device, the camera FX17e from SPECIM is chosen.
The camera collects hyperspectral images with 224 bands ranging from
900 nm to 1700 nm. The frame rate was chosen to be 104.17 Hz, such
that the resolution was equal in both spatial axes of the image.
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Figure 1: Measurement setup including conventional RGB, NIR hyperspectral, terahertz,
and thermography imaging.

2.3 Active heat flow thermography

Like the recording of RGB and NIR hyperspectral images, thermogra-
phy is a camera-based sensor technology. In contrast to the first two
methods mentioned, the samples in thermography do not have to be
illuminated during the measurement, but are heated in advance. A
detector that is sensitive in the thermal infrared range (wavelength:
approx. 3 µm to 14 mm) records the thermal radiation that the samples
emit on the basis of Planck’s law. The radiation intensity depends on
the temperature of the samples and their emissivity. In order to be able
to make statements about material parameters beyond the emissivity,
the samples are heated with infrared radiators as they were transported
by the conveyor belt.

The infrared camera is a Geminis 327k ML from IRCAM (Erlangen,
Germany) having a dual-band HgCdTe detector (the 1st sensitivity
band: 3.7 – 5 µm; the 2nd sensitivity band: 8 – 9.4 µm) with 640 x 512
pixel. Only the 2nd band was used in order to avoid parasitic sig-
nals from direct irradiation by the infrared heater into the camera. A
frame rate of 100 Hz and a 25 mm lens were used. The camera was
arranged in such a way that the width of the conveyor belt filled the
image along the long edge. The distance between the camera and the
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heater amounted to 0.6 m.
The infrared heater consists of two Carbon Twin-Tube Emitters from

Heraeus Noblelight having a length of 0.7 m and a power of 6000 W/m
each. The peak wavelength of their radiation spectrum was 2 µm. The
heaters were placed about 0.28 m above the conveyor belt. Given the
velocity of the conveyor belt of 0.108 m/s, the energy per area deposited
in the samples is

EA =
6000 W

m
0.108 m

s
= 55.56

kJ
m2 . (1)

The increase in temperature on the sample surface as a result of heat-
ing by the radiant heater depends on the underlying thermophysical
parameters. Therefore, structured samples can obtain a characteristic
temperature pattern that allows a look underneath the sample surface.

2.4 Terahertz imaging

Terahertz radiation is electromagnetic radiation between far infrared
and millimeter waves. Due to the capability of terahertz waves to pen-
etrate through most of the dielectric materials, such as plastics, paper,
foams, or upholstery, the differences in the refractive index may be ob-
served in 3D [6]. Opposed to X-ray radiation, terahertz is non-ionizing.
Therefore, it enables safe 3D imaging on complex structures, which are
common for bulky waste.

For this application, a terahertz camera was developed as a line scan
camera with 12 emitters and 12 receivers, which operate in the W-band
(75 – 110 GHz or approx. 2.7 – 4 mm wavelength). A synthetic aperture
radar (SAR) design for the terahertz imaging system was chosen [7].
The received signal (amplitude and phase) depends on the refractive
index and spatial position of the sample structure. The aim of this
system is to provide additional 3D information on overlapping and
complex features of pre-crashed bulky waste.

144 effective aperture elements (12 emitter and 12 receiver combina-
tions) are scanned for all frequencies Nf that are used to scan the scene
within the W-band. The data acquisition algorithm obtains measured
reference, receiver, and encoder signals. The data acquisition time as
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Figure 2: Terahertz measurement on a sample with various materials (left), and two re-
constructed terahertz images at various distances to the array to obtain reflec-
tion and shadow images, respectively.

well as the resolution depends on the number of frequency points Nf
and the covered bandwidth, respectively. Each set of complex Nf x144
data has to be reconstructed in a defined reconstruction volume in or-
der to obtain a 3D image, which can be later observed at each recon-
struction plane (referenced as a distance to the imaging array).

The used reconstruction algorithm is based on matched filter ap-
proach [8]. For the given sample shown in the photograph on the left
of Figure 2, the reconstruction volume of 80 x 40 x 10 cm was chosen
with corresponding 800 x 400 x 50 voxels. The reconstruction was made
from 134 line scans, i.e. on average, one picture was taken every 6 mm
with a speed of 0.30 m/s.

The reconstructed images show good results from the reflection of
the objects (middle) as well as from the shadow image (right). The
metal reflects most of the radiation, whereas shaped metals show
prominent shapes due to scattering from the surfaces which are not
parallel to the scanner imaging plane. A piece of a CD (as well as
metallic markers) shows the strongest reflection due to conductive ma-
terials and a parallel face toward the scanner. Wood and cardboard
reflect part of the radiation. The chosen rubber mat has a stripped
structure, which reflects a big part of terahertz radiation giving a good
contrast for shadow images of the wood. Upholstery and plastics are
the most transparent in the terahertz range, therefore only tiny changes
in the image can be recognized. This is important for the characteriza-
tion of material composites, as terahertz radiation enables the detection
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of wood and metal underneath upholstery or plastic.
The terahertz images in Chapter 3.2 were obtained using 0.108 m/s

conveyor belt speed. The line scans were obtained every
6 ms. The chosen reconstruction volume was 80 x 55 x 18 cm with
1600 x 550 x 80 voxels in x, y, z directions correspondingly.

2.5 Sensor data fusion approach

The characterization of materials can be solved by a broad variety of
classification methods, including classical and machine learning meth-
ods [9, 10]. Senecal et al. showed that using a CNN optimized for
multispectral data can result in very high classification accuracy if the
data set is large enough [11]. However, multispectral datasets are often
very limited in size. Therefore, it is a key point in our project to en-
able fast data recording to capture a dataset sufficient in size. This is
done by using the setup described in the previous sections. The benefit
of CNN architectures is that they can use much of the spatial and all
spectral information at the same time, and therefore make use of the
spectral differences between the materials early. The relevant spatial
and spectral features are learned by the network automatically and si-
multaneously, which is hard to reproduce by a classical feature design.

To combine the information of the proposed sensor modalities, a fu-
sion technique together with a registration is necessary. In this way,
the strength of each imaging system can be used to achieve a classifica-
tion result better than using one technology individually. Lately, early
fusion methods based on deep learning e.g. CNNs show very promis-
ing results on multispectral datasets like EuroSAT [12]. In early fusion,
data from various sensors is registered and merged before classifica-
tion [13].

In our project, the registration is done by using a marker-based regis-
tration approach. For the registration of RGB, NIR, and thermographic
cameras, AruCo markers [14] are introduced supported by a similar
marker for the Terahertz spectrum. With this marker-based approach,
the image registration is robust and accurate, even if sensors show sig-
nificantly different intensities on the same object. After registration, the
preprocessed data from all sensors will be given into a CNN, which is
currently under development. The CNN will implicitly perform an
early fusion and classify the material perceived by the sensors.
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3 Results and discussion

After describing the setup, preliminary results of NIR hyperspectral
imaging will be presented. Moreover, recordings from all imaging sys-
tems will be shown and discussed.

3.1 Preliminary results of NIR hyperspectral imaging

Hyperspectral image analysis is state of the art for material characteri-
zation used for sorting applications. Therefore, pre-examinations have
been carried out based on NIR hyperspectral data combined with a
common classifier, namely partial least squares discriminant analysis
(PLS-DA). The samples to be analyzed are different objects appearing
in bulky waste. The objects were divided into six classes, namely wood,
upholstery, rubber, plastic, metal, and ceramic. Each class can include
slightly different types of material. The class wood for example in-
cluded particle board, old varnished window scantlings, high-density
fiberboard, and plywood.

Hyperspectral images of the samples were acquired using the FX17e
camera and the setup described in section 2.2. Eight images of differ-
ent sample collections were chosen for training from which 105 pixels
were randomly selected. From another eight images, 104 pixels were
extracted for testing. A single pixel contains 224 values, each repre-
senting the reflectance of the material at a different wavelength. As a
preprocessing step, standard normal variate (SNV) correction was per-
formed [15]. Additionally, outliers that differ more than five standard
deviations from the mean have been removed from training data in
order to improve the classification model.

In the spectral plot of Figure 3 the intensity over wavelengths for
different materials is visualized. The intensity values can be negative
due to SNV correction. Several spectra are drawn on top of each other
for each class, making the variance of the data visible. It can be seen
that the spectral data varies very little within each class and, by looking
at the course of the spectra, the classes are visually distinguishable
from each other.

The classification performance of the PLS-DA model is evaluated on
test data with a confusion matrix (on the right of Figure 3). The overall
accuracy on test data is 0.64. In the confusion matrix, it can be seen that
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Figure 3: Measured spectra (left) of different materials after SNV correction and outlier
removal. And confusion matrix (right) of PLS-DA classifier trained and tested
on NIR hyperspectral data.

plastic is falsely classified as upholstery in most cases. A reason for that
might be that the two materials are not linearly separable. However, the
material wood (including particle board, varnished wood, fiberboard,
and plywood) is classified correctly with a probability of 0.79. This
confirms the assumption, that NIR hyperspectral imaging gives highly
relevant information for detecting waste wood in bulky waste.

3.2 Comparison of sensor modalities

After showing the potential of hyperspectral material characterization
in the near-infrared range, this section will focus on the comparison of
the presented imaging systems. Therefore, four sample quantities were
chosen and images were recorded using the setup shown in Figure 1.
The results can be seen in Figure 4.

Sample 1 contains old varnished window scantlings, and Sample 2
are pieces of red and black rubber mats. Samples 3 and 4 are wood
chips partially covered with foam and metal pieces, correspondingly.
RGB and NIR hyperspectral data contain multiple channels, each repre-
senting a different wavelength. The corresponding images are in color
or rather false color in the case of NIR hyperspectral data (selected
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Figure 4: Various samples acquired by various sensor modalities. Each row shows a cor-
responding imaging technology from top to bottom: RGB, NIR hyperspectral,
thermographic, and terahertz imaging.
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wavelengths are 1100 nm, 1300 nm, and 1500 nm). In the terahertz pic-
tures, the given number defines the visualized plane from the whole
reconstruction volume by the distance of the plane to the imaging ar-
ray. The distance is chosen such that the features relevant to the un-
derlying comparison are visible. The sample carrier is approximately
680 mm away from the terahertz imaging array.

The RGB image of Sample 1 shows the paint color and surface but
does not reveal the wood structure. The same applies to the NIR
pseudo-RGB image, but it is less affected by the paint. The thermo-
graphic and terahertz images show the wood texture with its charac-
teristic annual ring pattern under the paint so that this sample can
be clearly identified as wood with help of thermography or terahertz.
The terahertz image shows the upper plane that is 599 mm below the
imaging array, which leads to a sample thickness of approx. 8 cm.

Sample 2 shows a common problem of sorting black polymers. It is
not readily recycled in conventional plastic sorting facilities due to the
high absorption of black pigments to radiation in NIR or visible wave-
length range [16]. The red rubber chips in Figure 4 are clearly visible
in the RGB image, while the black ones are hardly recognizable on the
background of the black sample carrier. This also applies to the NIR
pseudo-RGB image. In thermography, however, red and black rubber
both have a significantly improved sensitivity and can therefore be eas-
ily distinguished from the background. The terahertz image contains
information about the height of the visible mats encoded in the recon-
structed volume. The image is blurred out due to the scattering of the
texture of the black mats.

Samples 3 and 4 show foam and metal on wood chips, respectively.
NIR pseudo-RGB images are again less influenced by the paint color
of the material in comparison to the RGB images. Foam and metal
are distinguishable from wood chips in almost all images. Terahertz
images show strong reflection from metals, whereas wood chips absorb
most of the radiation. In thermography, metal appears darker than
wood because it absorbs the radiation from the radiant heater less and
has a higher heat capacity and lower emissivity than wood. In contrast
to that, foam appears very bright due to its low thermal capacity.
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4 Conclusions and outlook

A novel approach for bulky waste material characterization has been
presented. Different sensor modalities including visible, NIR hyper-
spectral, thermography, and terahertz imaging are exploited to achieve
a better classification result than using a single technology individu-
ally. Regarding terahertz imaging, a synthetic aperture radar system
was developed, which is specifically designed for sorting applications.
The system aims to provide additional 3D information on overlapping
and complex features of pre-crashed bulky waste.

All four imaging systems were brought together to build a demon-
strator acquiring data using RGB, NIR, thermography, and terahertz
imaging techniques in one attempt. The recorded and post-processed
images showed promising results on common problems like painted
materials or black plastic. The presented thermography and terahertz
images reveal the wood texture with its characteristic annual ring pat-
tern under the paint. Besides that, thermography showed good sensi-
tivity for plastic regardless of color.

Pre-examinations on NIR hyperspectral data have shown that waste
wood is distinguishable from plastic and upholstery. Furthermore, us-
ing a PLS-DA six different materials from the used set of bulky waste
samples were classified with an accuracy of 0.64.

Whereas the PLS-DA estimated the class of each pixel separately, a
CNN is able to make use of the spatial and spectral information at the
same time. Therefore, a CNN performing a patch-wise classification on
all sensor modalities will be part of future work. With an even larger
dataset, the goal is to reach a high classification accuracy on a huge
variety of different materials from bulky waste. With thermographic
and terahertz imaging it might be even possible to look underneath
overlapping material.
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15. Å. Rinnan, F. Van Den Berg, and S. B. Engelsen, “Review of the most com-
mon pre-processing techniques for near-infrared spectra,” TrAC Trends in
Analytical Chemistry, vol. 28, no. 10, pp. 1201–1222, 2009.

16. A. Turner, “Black plastics: Linear and circular economies, hazardous
additives and marine pollution,” Environment International, vol. 117,
pp. 308–318, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0160412018302125

36



Semi-supervised methods for CNN based
classification of multispectral imagery

Manuel Bihler, Jiachen Zhou, and Michael Heizmann

Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of
Technology (KIT), Hertzstraße 16, 76187 Karlsruhe, Germany

Abstract Deep Convolutional neuronal networks, with their re-
cent increase in performance, have become one of the standard
techniques for RGB image classification. Due to a lack of large
labeled datasets, this is not the case for multispectral image
classification. To overcome this, we analyze the use of semi-
supervised learning for the case of multispectral datasets. We
use parameter reduction strategies to create small and efficient
multispectral CNNs and combine these computationally efficient
classifiers with semi-supervised learning methods. We choose
the state-of-the-art semi-supervised methods MixMatch, ReMix-
Match, FixMatch, and FlexMatch, to conduct experiments on the
multispectral dataset EuroSAT. Additionally, we challenge this
semi-supervised multispectral approach with a decreasing num-
ber of labeled images. We found that with only 15 labeled images
per class, we can reach an accuracy above 80 %. If more labeled
images are provided, the analyzed semi-supervised methods can
even surpass basic supervised learning strategies.

Keywords Artificial intelligence, image processing, multispec-
tral images, semi-supervised learning, CNN, consistency regu-
larization, parameter reduction

1 Introduction

The use of deep convolutional neural networks for RGB image classi-
fication has led to a series of breakthroughs [1–4]. Extending convo-
lutional neural networks to process multispectral imagery is becoming
increasingly prevalent, especially in the field of characterization of ma-
terials, quality insurance in the food industry, or recycling of waste

37



M. Bihler et al.

materials [5]. In these fields, it is common to use multispectral (MS)
data to separate materials based on their different spectral characteris-
tics. While AI systems like CNNs show superior performance on large
RGB datasets [1, 3, 4], the lack of large labeled multispectral datasets
makes them difficult to employ in a multispectral setting. Compared
to RGB images where there exist large publicly available datasets such
as CIFAR-10 [6], and ImageNet [7], large labeled multispectral datasets
are rare. In this work, we aim to improve the performance of CNNs on
small unlabeled multispectral datasets by combining semi-supervised
learning (SSL) methods with CNNs optimized for multispectral data
(multispectral CNNs).

Semi-supervised learning provides a powerful tool to leverage un-
labeled data and too largely alleviate the need for labeled data. This
is particularly advantageous when collecting labeled data is expensive
or time-consuming because expert knowledge or expensive machinery
may be involved in the labeling process. This approach has shown im-
pressive results in a wide variety of tasks, including facial expression
recognition and natural language processing [8, 9].

To the best of our knowledge, the combination of SSL methods and
multispectral CNNs is not discussed in previous work. We present a
study on recently proposed state-of-the-art SSL methods in the context
of classifying multispectral images. In this work, we show that modern
SSL methods can be very effectively used to reduce the need for labeled
data drastically. We also aim to make SLL methods more comprehensi-
ble for researchers outside the deep learning community. Therefore, in
detail, we describe the methods used in the following section and then
show results based on the EuroSAT dataset [10].

2 Semi-Supervised Methods

In image classification, semi-supervised learning (SSL) has proven to
be a powerful paradigm for utilizing unlabeled data to mitigate the
reliance on large labeled datasets. Compared with the results of pre-
vious SSL algorithms (π-Model [11], Mean teacher [12], Virtual Ad-
versarial Training [13] and Pseudo-Label [14]), the four state-of-the-art
SSL algorithms: MixMatch [15], ReMixMatch [16], FixMatch [17], and
FlexMatch [18], all unify the current hybrid approaches for SSL. In this
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section, we bring an overview of these four algorithms.
1. MixMatch: Unlike previous methods [11, 14], MixMatch intro-

duces a single loss term unifying all three main semi-supervised ap-
proaches: entropy minimization [14, 19], consistency regularization
[11,20] and generic regularization [21,22]. MixMatch utilizes a form of
consistency regularization by using data augmentation for images. Two
data augmentation methods are used subsequentially on both labeled
and unlabeled images: first random horizontal flip and then random crop.
Like Pseudo-Label [14], MixMatch applies multiple individual aug-
mentations on an unlabeled image to create different instances, whose
model predictions are then averaged to generate one pseudo-label for
this unlabeled image. MixMatch uses a slightly changed version of the
MixUp algorithm for regularization. Both labeled and unlabeled im-
ages and their corresponding labels are interpolated to generate mixed
inputs and mixed labels.

2. ReMixMatch: To make MixMatch more data-efficient, two new
techniques are introduced and directly integrated into MixMatch’s
framework: distribution alignment and augmentation anchoring. Dis-
tribution alignment maximizes the mutual information between model
inputs and outputs so that unlabeled data is fully utilized to im-
prove the model’s performance. Distribution alignment encourages
the marginal distribution of the model’s predictions on unlabeled data
to match the marginal distribution of the ground-truth labels. Recent
work found that applying stronger forms of data augmentation can sig-
nificantly improve the performance of consistency regularization [23].
Augmentation anchoring is added as a replacement for the consistency
regularization in MixMatch. The basic idea is to use the model’s pre-
diction for a weakly augmented unlabeled image as the pseudo-label
for many strongly augmented versions of the same image.

3. FixMatch: FixMatch is a significant simplification compared with
MixMatch and ReMixMatch. Its simplification lies in combining only
two main approaches to semi-supervised learning: consistency regular-
ization and Pseudo-Label [14]. FixMatch first generates pseudo-labels
on weakly augmented unlabeled images using their model predictions.
For a given image, the pseudo-label is only retained if the model pro-
duces a high-confidence prediction. In other words, when the model
assigns a probability to any class above the predefined threshold τ, the
prediction is accepted, and the model output is then converted to a
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one-hot pseudo label. Then, the model’s prediction for a strongly aug-
mented version of the same image is used to train the model against
this pseudo-label.

4. FlexMatch: FixMatch uses a predefined constant threshold τ for
all classes to select unlabeled data that contribute to the training, thus
failing to consider different learning statuses and learning difficulties
of different classes. To address this issue, Curriculum Pseudo Labeling
(CPL) is introduced to utilize unlabeled data according to the model’s
learning status. The core of CPL is to adjust thresholds for different
classes at each time step to feed the model with the fitting unlabeled
data for the current learning status.

3 Results

In this section, we discuss our three main results. First, we present
our classifier with a reduced number of parameters optimized for MS
data and show the classification results on RGB and MS datasets, us-
ing supervised learning (SL). Secondly, we present the classification re-
sults using our classifier in combination with the above discussed SSL
methods. Lastly, we show how the combination of MS data and SSL
methods performs on datasets with a drastically decreased number of
labeled images.

We use the datasets CIFAR-10 [24] and EuroSAT [10]. While CIFAR-
10 is only used as a benchmarking dataset, EuroSAT is our main dataset
for learning and testing the discussed strategies and methods. With
27,000 patches, EuroSAT is currently the largest labeled multispectral
dataset for image patch classification. Additionally, it also contains the
RGB bands, making it a perfect candidate for comparing RGB and MS
learning strategies. Each multispectral image in the EuroSAT dataset
consists of 13 channels, but only ten are relevant for identifying and
monitoring land use classes and are used in our experiments. For the
following experiments, we randomly sample 20 % and 10 % of labeled
data from this dataset as validation and test sets respectively, while
the remaining 18,900 labeled images are used as training data in either
semi-supervised or fully supervised learning. We make sure that there
is no overlap between these datasets.
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3.1 Parameter Reduction

The success of deep neuronal networks like ResNet [25], or Wide
ResNet [26], with their thousands of layers and millions of parame-
ters, also lies in the availability of enormous datasets like CIFAR-10.
In the case of multispectral imagery, where such datasets are lacking,
very deep networks would easily overfit due to the extreme number of
model parameters. Additionally, applying semi-supervised algorithms
with deep CNNs as backbone classifiers can consume significant com-
putational resources, making it a very costly and time-consuming com-
bination of methods. To tackle this problem, we develop our own clas-
sifier optimized for the case of semi-supervised learning for multispec-
tral imagery. This classifier is based on the Wide ResNet architecture
and adopts parameter-reducing strategies presented in recent work on
small and efficient CNNs, such as SqueezeNet [27] and MobileNet [28].

For further modification and evaluation, we choose the following
Wide ResNet structures with fewer parameters while maintaining com-
petitive accuracy according to the results in [26]: WRN-40-04, WRN-
16-08, WRN-22-08 and WRN-28-10, where the first number depicts the
depth and the second the widening factor k.

The structure of each residual block in the Wide ResNet consists
of two 3x3 convolutional layers and hence is named B(3, 3), where B
indicates the building block and (3, 3) the list of two kernel sizes of the
convolutional layers. To decrease the number of parameters further, we
additionally apply the microstructure from SqueezeNet [27] in every
building block. Specifically, we replace all the 3x3 convolutional layers
in each B(3, 3) building block with Fire Modules from SqueezeNet.
In Figure 1 a sketch of the Fire module is depicted, and a detailed
description of all variables used in the following is given in the caption.
In each Fire Module, we set s1x1 equals to 0.125 · CIn, e1x1 equals to
0.75 · COut and e3x3 equals to 0.25 · COut. The number of input and
output channels of each 3x3 convolutional layer in the B(3, 3) block
will be kept the same after replacement. The macro network structure
of the original Wide ResNet will also be preserved. Hence, we call
our network Wide ResNet with Fire Modules (WRN+FMs). It closely
mimics the macro-architectural design of the Wide ResNet architecture
while adapting the micro-architectural elements from the SqueezeNet
to reduce network parameters.
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Figure 1: Fire Module structure as replacement for 3x3 convolutional layer.
CIn, COut: Number of input or output channels of the network block.
s1x1: Number of output channels of the Squeeze-Layer.
e1x1, e3x3: Number of output channels of the 1x1 or 3x3 convolutional layer in
the Expand-Layer, where e1x1 + e3x3 = COut.

We evaluate the new set of classifiers on two datasets, the RGB
dataset CIFAR-10, and the multispectral dataset EuroSAT. In this sec-
tion, we only use fully supervised learning to be able to compare our
results with other SL benchmarks. For data augmentation, we do not
use heavy data augmentation as proposed in semi-supervised learning
algorithms and use only horizontal flips and random crops for images.
Supervised training of Wide ResNet-28-10 (without FM) consumes too
much training time and computing resources; therefore, we show re-
sults from literature [26, 29]. Our experimental results are shown in
Table 1.

It can be concluded from Table1 that applying Fire Modules into the
Wide ResNet structure brings benefits and also some expected down-
sides. With this parameter reduction strategy, the total number of net-
work parameters can be significantly reduced, up to about 90% of the
original network size. As a result, our WRN-28-10+FMs consists of
only 2.42 million parameters and is 15 times smaller than the origi-
nal WRN-28-10. Nevertheless, it achieves a classification accuracy of
96.19% on the EuroSAT MS dataset, only 0.41% less than the bench-
mark network SpectrumNet. From the results on EuroSAT in Table2,
we find that WRN-28-10+FMs can achieve the best validation accuracy
among our four new networks.

3.2 Semi-supervised Methods on MS data

We conduct experiments for the four selected SSL methods on the Eu-
roSAT dataset using our classifier WRN-28-10+FMs and exhibit the re-
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Table 1: Evaluation of different versions of Wide ResNet with and without Fire Modules
on different datasets using fully supervised learning. The marked results are
extracted from literature.

Dataset Classifier Parameter Accuracy (%)

CIFAR-10
RGB

WRN-28-10 36.49 M 95.83∗

WRN-28-10+FMs 2.40 M 92.51
WRN-22-08 17.20 M 95.62∗

WRN-22-08+FMs 1.20 M 91.51
WRN-16-08 11.00 M 95.19∗

WRN-16-08+FMs 0.86 M 90.79
WRN-40-04 8.90 M 95.03∗

WRN-40-04+FMs 0.57 M 90.25
SpectrumNet 0.72 M 92.29

EuroSAT
Multispectral

WRN-28-10+FMs 2.42 M 96.19
WRN-22-08+FMs 1.21 M 95.76
WRN-16-08+FMs 0.87 M 94.89
WRN-40-04+FMs 0.58 M 94.25
SpectrumNet (Benchmark) 0.73 M 96.60∗

sults in Table 2. For semi-supervised learning, the number of labels for
RGB and MS imagery is limited to 165 per class, i.e., the total number
of labeled images for training is 1,650. This represents 6% of the entire
dataset. The number of unlabeled images is set to 4,000 for both RGB
and MS datasets to create a more realistic setting, as collecting high-
dimensional MS images is more expensive and time-consuming. For
comparison against supervised learning, we also conduct experiments
using four different numbers of labeled images: (i) 5,650 to mimic the
semi-supervised setting with the same number of samples: 4,000 unla-
beled and 1,650 labeled images; (ii) 1,650 labeled images to simulate the
same number of labeled images; (iii) 850 images and; (iv) 18,900 images
to test the (unfair) lower and upper limit of supervised learning.

Table 2 show that all four SSL methods can still help our network
achieve comparative classification accuracy, even though only limited
labeled data is used. As expected, the supervised approach with the
full amount of labeled images performs the best, with 96.56%. How-
ever, if the total number of labels is reduced to 5,650, the supervised
method is outperformed by the semi-supervised method ReMixMatch
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by 0.69%, although only 165 labeled images are used per class. One
reason for this advantage of ReMixMatch lies in the utilization of
strong data augmentation applied on both labeled and unlabeled im-
ages, which improves the performance of consistency regularization
and helps the network achieve better robustness to noisy data. In gen-
eral, MS images are expected to result in greater classification accu-
racy than RGB images in theory, given the additional information that
is present in the spectral bands and increases the separation between
classes. Except for MixMatch, all methods meet our expectations and
perform better under MS conditions by 1.37% on average.

Table 2: Results of different semi-supervised learning methods on EuroSAT RGB and
MS dataset using our WRN-28-10+FMs as classifier. Supervised learning with
850 and 18,900 images are not comparable with the SSL methods, they show the
upper and lower limit of the methods for benchmarking purpose.

Dataset SSL Methods Accuracy (%)

EuroSAT
RGB

MixMatch 94.64
ReMixMatch 94.78
FixMatch 88.28
FlexMatch 92.91

EuroSAT
MS

MixMatch 91.61
ReMixMatch 95.18
FixMatch 90.20
FlexMatch 94.71
SL with 850 images 68.65
SL with 1,650 images (same number of labels) 78.33
SL with 5,650 images (same number of samples) 94.49
SL with 18,900 images 96.56

3.3 Limited number of labeled images

In this section, we drastically decrease the number of labeled images to
test the limit of the discussed semi-supervised methods. The number
of labeled MS images is decreased to 15, 30, 85 images per class, which
represents only 0.5 %, 1% and, 3% of the entire dataset, while keep-
ing the total number of unlabeled images the same with 4,000. This
procedure is similar to other benchmarks in the literature [15–18].
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The results from Figure 2 show that the classification performance
of the network becomes better with an increasing number of labeled
samples used in training. Among all the SSL methods, ReMixMatch
consistently outperforms the other methods. FlexMatch follows ReMix-
Match and proves to be the second best. The reason for this trend can
be concluded as following: on the one hand, distribution alignment
in ReMixMatch not only minimizes the entropy of pseudo labels for
unlabeled data like all the other SSL methods do but also maximizes
the mutual information between model inputs and outputs to incorpo-
rate unlabeled data for better model performance. On the other hand,
a rotation loss [30] is directly included in the ReMixMatch loss term.
Comparing SSL and SL for the case of 85 images per class drastically
shows the power of semi-supervised learning. The SL approach with
850 images can only reach a classification accuracy of 68.65%, while the
best SSL method reaches 95.07%.

Figure 2: Results for the four SSL methods with a limited number of labeled images. For
the SSL methods, 4,000 unlabeled images are available in addition to the de-
picted number of labeled images. For supervised learning, a gray solid/dashed
line is shown for the case of the same number of samples (5,650 images) and
the same number of labeled images (1,650 images), respectively.
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4 Conclusions and Outlook

By adjusting the macro size of the Wide ResNet architecture and chang-
ing the micro-structure according to the SqueezeNet architecture, we
obtain a small and efficient network with up to 15 times fewer pa-
rameters. We show that this network can compete with other popular
networks on RGB datasets and can also be effectively trained on much
smaller multispectral datasets. Based on the increased computational
speed, it can be combined with modern SSL methods for RGB and
multispectral datasets. To the best of our knowledge, the combination
of SSL methods compressed CNNs, and multispectral datasets, have
not been discussed in previous work. This work proves that using
85 images per class, state-of-the-Art SSL methods reach similar or even
higher accuracies than supervised learning, depending on the augmen-
tation strategies of the supervised approach. By decreasing the number
of labeled images to 15 per class, the power of semi-supervised learn-
ing becomes even more prevalent, with 84.78% compared to SL 78.33%
(1,650 images). Our results show that the newest SSL method in our
comparison ReMixMatch outperforms the other methods not only for
RGB but also for multispectral data.

These results show that SSL can be applied to MS data, and expen-
sive labeling can be reduced dramatically. However, more research is
needed to improve the number of augmentation strategies for multi-
spectral data. Data augmentation plays a vital role in semi-supervised
learning. There are still only a few specialized data augmentations
available for multispectral channels compared with RGB channels.
In future work, we are interested in investigating data augmentation
methods for multispectral imagery according to the characteristics of
different channels. We expect that the shown methods can increase
the total number of available labeled datasets, which would benefit the
whole research community in the field of image classification.
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Abstract In order to enable high quality recycling of polypropy-
lene (PP) plastic, additional classification and separation into the
degree of degradation is necessary. In this study, different PP
plastic samples were produced and degraded by multiple extru-
sion and thermal treatment. Using near infrared spectroscopy,
the samples were examined and regression models were trained
to predict the degree of aging. The models of the multiple ex-
truded samples showed high accuracy, despite only minor spec-
tral changes. The accuracy of the models of the thermally aged
samples varied with the design of the training set due to the
non-linear aging process, but showed sufficient accuracy in pre-
diction.

Keywords Hyperspectral imaging, Plastic waste, Multiple Ex-
trusion, Thermal aging, Regression, Sensor-based sorting

1 Introduction

With their versatile applications, plastics are indispensable for a high
living standard in all areas of life, be it hygiene, lightweight construc-
tion and transport, food supply or technology [1, 2]. The plastic pro-
duction worldwide amounts to 390 mio. t (2021) and in Germany alone,
around 12 mio. t are consumed every year [3]. This causes massive
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plastic waste streams, which are currently mainly disposed of through
energy recovery in Europe and by landfill in most other regions of
the world [4, 5]. However, so-called end-of-life-plastics are an impor-
tant resource both for the plastic industry through mechanical recycling
and the chemical industry through chemical recycling, yielding recy-
cled plastic materials and platform chemicals and monomers respec-
tively [6,7]. To underline their economical and environmental potential,
plastic waste streams are referred to as secondary raw materials [8]. Spe-
cial focus needs to be laid on the recycling of post-consumer secondary
raw materials, which are plastics which have undergone their service-
life once, as opposed to pre-consumer- or post-industrial materials, as the
recycling rates of the former are very low [3, 4, 9].

For plastics recycling, particularly mechanical recycling, the quality
of the resulting recyclate strongly depends on the characteristics of the
input stream. The material homogeneity is therefore an important pre-
requisite for the input stream. To achieve this, the input stream is pre-
processed and sorted in multiple stages, where sensor-based sorting
plays a crucial role. The umbrella term sensor-based sorting describes
a family of systems that enable the physical separation of individual
particles from a material stream on the basis of information acquired
by one or multiple sensors. A particular strength of the technology is
its flexibility in terms of the criteria according to which sorting can be
performed. This flexibility exists due to the variety of eligible sensor
principles as well as the freely programmable data evaluation.

1.1 Contribution

During their service life, plastics undergo an aging process, inducing
changes in the material’s chemical and physical properties and poten-
tially compromising its quality [10]. There are multiple factors which
cause degradation effects during processing and service life such as
thermo-mechanical stress during processing, causing chain scission
and/or cross linking, exposure to UV-radiation, humidity, high tem-
peratures or other weathering conditions, causing (thermo-)oxidative
degradation [8, 11]. The mechanism of the oxidative degradation of
polymers is referred to as autoxidation [12]. In the case of polypropy-
lene (PP), autoxidation occurs after an induction period, accelerating
the degradation exponentially [13]. Metal impurities from catalyst
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residues may accelerate this process still further [14]. To counteract
material degradation and to compensate a negative influence by aged
polymers, stabilizers, compatibilizers and other additives are used [15].
Detailed knowledge of the degree of degradation of a secondary raw
material stream is therefore highly useful for determining and adjust-
ing the composition and concentration of the master batch in question,
thereby improving the recycling of mixed materials with varying de-
grees of degradation.

In this study, a virgin PP homo-polymer has undergone two separate
accelerated aging experiments. The first has been a recycling simula-
tion by multiple processing and the second a service life simulation us-
ing an oven and thermo-oxidative conditions. The test specimen were
injection-moulded and analyzed using NIR spectroscopy. Regression
models were trained using NIR spectra to model the aging stage and
predict the degree of degradation of unknown samples.

1.2 Related Work

Existing work has demonstrated the general suitability of NIR spec-
troscopy for age prediction of plastic samples. In [16], different types
of plastics (virgin polymers) were investigated and regression mod-
els were trained using NIR spectra to predict the polymer degrada-
tion and a polymer quality assessment of the samples, caused by con-
trolled, laboratory thermal aging. It showed the general suitability of
NIR spectroscopy for determining polymer degradation, however ac-
curacy depends on the type of plastic. Acrylonitrile butadiene styrene
(ABS) and polyethylene terephthalate (PET) proved to be particularly
suitable, while low-density polyethylene (LDPE) and PP were more
difficult to evaluate. The chemical stability of polyethylene (PE) and
PP was named as the cause. In [17], the investigations were extended
to include the prediction of the extrusion cycles, which also showed
differences in accuracy depending on the type of plastic. It was rec-
ommended to include more data in the model generation. Specifically,
the prediction of the age of thermally treated PP samples was the sub-
ject of [18], with focus on the chemical modification of the polymer
structure. In [19], the investigations were extended to plastic waste
degraded under natural circumstances.
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2 Materials and Methods

In the following, the production of the PP plastic samples is outlined.
Subsequently, the data acquisition and the calculation of the regression
models for the prediction of the aging stage are described.

2.1 Accelerated aging of test specimen

A PP homo-polymer (Moplen HP 500N, LyondellBasell, Rotterdam,
Netherlands) in granular form was used as raw material for the accel-
erated aging experiments. Multiple processing was performed using a
twin-screw extruder (Thermo Scientific™HAAKE™Rheomex PTW 16,
Thermo Fisher, Waltham, Massachusetts, US) with a processing tem-
perature range of 185 - 236 °C and 200 rpm. The extrusion process
was repeated five times. From each extrusion cycle, a quantity was
used for the preparation of test specimen (plates, 80 x 80 x 2.5 mm).
Test specimen for further analysis were produced using an injection
moulding system (Allrounder 320 C, Arburg, Loßburg, Germany). For
the thermo-oxidative aging, test specimen were injection mouled im-
mediately from the raw material using the above mentioned injec-
tion moulding system and conditions. The plates were placed in an
aging furnace (Memmert Universalschrank UF75, Memmert, Büchen-
bach, Germany) at 150 °C and 100 % ventilation. An overview can be
found in Table 1.

Table 1: Overview of the two datasets consisting of differently aged PP samples.

Dataset A Dataset B

Plastic type PP PP
Material Moplen HP 500N Moplen HP 500N
Treatment extrusion thermal
Aging state parameter 1, 3, 5 (times) 10, 22, 27, 30, 34 (days)
Number of samples 3x10 5x10

2.2 Data acquisition

Due to the possibility to distinguish different types of plastics, the use
of hyperspectral cameras in the near-infrared (NIR) wavelength range
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is widespread within the sensor-based sorting industry [20]. Based on
the chemical molecules present, or specifically their functional groups,
different types of plastics have individual absorption characteristics
and therefore show distinct spectra in the NIR wavelength range. On
an experimental level, the sensor technology has also been used to in-
vestigate different characteristics, e. g., aging states of plastic. However,
the use of NIR spectra for plastic age prediction is limited due to sev-
eral possible properties. Regression on the basis of NIR spectra is an
inverse problem, i. e., the exact composition of the sample cannot be
derived from the spectral information. One problem is the overlap of
the absorption bands [21, 22].

For this study, the specimen were recorded using a hyperspectral
NIR line-scan camera in the wavelength range of 900 – 1700 nm. The
camera model is FX17 from Specim, consisting of a spatial resolution
of 640 pixels. Per pixel, 256 spectral bands were acquired, resulting
in a spectral resolution of slightly more than 3 nm. Due to different
reflection properties caused by surface characteristics and camera po-
sition, variations occur in the raw spectra falling through the camera
apparatus and captured by the sensor. These so-called scatter effects
are minimized with the help of pre-processing steps.

First, the output of the hyperspectral sensor, which can be inter-
preted as the spectral reflectance, was converted to absorption units
a = log(1/R). The wavelength range was then cropped to avoid un-
wanted edge effects. To minimize scattering effects, the Signal Normal
Variant (SNV) was applied. The mean value of each spectrum is sub-
tracted and then divided by its standard deviation.

2.3 Evaluation of the NIR spectra of aged PP samples

For each image, the foreground pixels were segmented and an average
absorption spectrum was calculated from all spectra within the sample
mask. This turned out to be a relevant measure to suppress noise ef-
fects and to better highlight the small spectral changes. The mean NIR
absorption spectra within a degradation stage are shown in Figure 1.
Clearly visible absorption bands of the NIR spectrum are associated
with CH2 and CH3 groups of the PP molecules. In the range between
1100 and 1225 nm as well as 1350 to 1450 nm, absorption bands of
the second overtone region of the methylene and methyl group or the
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respective combination vibrations with CH groups are located. Ab-
sorption bands of the CH3 groups are located at lower wavelengths
(1195 nm, 1360 nm) compared with CH2 absorption bands (1215 nm,
1395 nm) [23]. Due to the spectral proximity, there is a strong overlap
of the absorption bands.

When looking at the samples that have been extruded several times,
a decrease in the intensity of the absorption bands associated with
CH2 and CH3 can be observed. A linear relationship between spectral
changes and the number of extrusion cycles can be assumed. The ob-
servations can be explained by the increasing degradation of the poly-
mer chains per extrusion cycle.

The observation of the spectra of the thermally aged PP samples
show a similar course, but clear differences are recognizable. The ther-
mally aged samples clearly show inhomogeneous degradation behav-
ior related to the spatial area, visible as spots on the surface. The ex-
tracted local NIR spectra of a sample therefore show different aging
stages depending on the spatial pixel position. With increasing ther-
mal age, the intensity of the CH3 and CH2 absorption bands decreases.
The behavior is clearly non-linear and can rather be modeled as an
exponential relationship. Furthermore, stabilizing additives prevent
chain scission at the beginning of aging. Once the additives are con-
sumed, the aging process takes its exponential course. The start of the
exponential aging process therefore has an induction period.
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Figure 1: Mean absorption spectra of multiple extruded PP samples (1-, 3- and 5-fold
extruded) after SNV (left) and mean absorption spectra of thermally aged PP
samples (10, 22, 27, 30, 34 days) after SNV (right).
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2.4 Regression-based age prediction

Linear regression models were trained to predict the degree of degra-
dation of the PP samples based on the NIR absorption spectra. For
this purpose, Partial Least Squares (PLS) Regression was used. The
algorithm is based on the assumption of a linear relationship y = Xb
between the input data X (spectral data) and the target values y (aging
time or extrusion cycles). Even though this is not the case, especially
for the thermally aged samples, its application in hyperspectral data
evaluation has nevertheless proved successful and showed good results
even for non-linear datasets [24]. The algorithm projects the data into
a space with a smaller dimension, depending on the number of latent
variables (LV) defined manually beforehand. The ability to model com-
plex relationships increases with the number of LVs, but runs the risk
of overfitting. The selection of the parameter is therefore crucial. When
calculating the regression model, the number of LVs must be specified.
This largely determines the ability of the model to adapt to complex
data. In order to obtain a highly generalizing model using only a small
amount of training data, a trade-off in the training stage is necessary.
To determine the number, Leave-One-Out Cross-Validation was used.
In each run, one partition is used as the test set and one model is
trained with the remaining partitions. A metric is calculated for each
model and then averaged over the metric values to obtain an overall
assessment of the suitability of the parameterization of the model. This
is done for a given number of LVs, and then the number of the best,
most generalized model is chosen.

Extrusion cycle prediction model

To calculate the PLS regression for Dataset A, 10 single-extruded and 10
five-extruded samples were used for training. The remaining 10 triple-
extruded samples formed the independent test set. The optimization
of the numbers of LVs resulted in a number of 5, this value was later
used for calculation of the PLS model.
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Thermal age prediction model

The investigations were divided into two parts, both using Dataset B.
First, it was analyzed whether linear regression is suitable to model
the nonlinear aging process by using only a few target values. For this
purpose, the samples with aging stages 10, 27 and 34 (days) were used
for training. The calculated model (Model 1) was evaluated using test
data obtained from the samples with aging stages 22 and 30 (days). For
the model calculation, a LV number of 8 was used after optimization.

In a second study, all 5 aging stages were used for model training.
For this purpose, 5 samples per aging stage were selected for model
training and 5 samples each were used for the test set. Thus, the total
number of spectra used for model training was reduced compared to
the first study, but included a wider range of target values. The model
(Model 2) was calculated using a number of 8 LVs.

Evaluation metrics

As a metric to evaluate the regression model, the Root Means Squared
Error (RMSE) and R2 score is used. The RMSE score

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(1)

estimates the standard deviation of the prediction of a regression
model. Here, ŷi describes the prediction result and yi the ground truth
value. A distinction can be made between the RMSE of the calibration
set (training) and the prediction set (test). In addition, the R2 score

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2)

indicates how well the independent variables are suited to explain the
variance of the dependent variables, where n is the number of samples.

3 Experimental Results

The performance of the regression models for predicting the age of
PP plastics is examined below. A distinction is made between thermal
aging and aging by multiple extrusion.
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3.1 Extrusion cycle prediction results

The performance of the model was analyzed by calculating the RMSE
and R2 of the test set. Both values are depicted together with the exact
structure of the training and test set in Table 2. The model achieved an
RMSE of 0.367 on the independent test data of the aging stage not yet
considered during training. Figure 2 shows the model-predicted values
plotted against the real values. The results show a general suitability of
the model for the estimation of extrusion cycles. The calculated RMSE
of the training data of 0.118 shows similarity to the obtained value in
the test data. In addition, the calculation of the median of the estimated
aging states of the test data (ỹpred = 3.052) shows that the results scat-
ter around the target value. The data show a linear correlation between
the target value and the spectral information. Therefore, the linear PLS
model can model the correlation with high accuracy using only two
aging stages during training. During model calculation, it has been
shown that the main focus must be on the generation of the training
data and its pre-processing. Only the calculation of mean value spectra
makes it possible to visualize the small change in the absorption spec-
trum with respect to noise influences. Thus, multiple extrusion leads
only to a small change in the functional groups.

Table 2: Performance of the regression models on a respective independent test set for
the prediction of the thermal aging stage resp. the number of extrusion cycles.

Train Test A LV RMSE R2

Dataset A 1, 5 3 5 0.367 -
Dataset B, Model 1 10, 27, 34 22, 30 8 2.158 0.709
Dataset B, Model 2 10, 22, 27, 30, 34 10, 22, 27, 30, 34 8 1.437 0.970

3.2 Thermal age prediction results

The age-prediction models of PP were assessed by calculating the
RMSE and R2 of the test set. Both values are depicted together with the
exact structure of the training and test set in Table 2. Figure 4 shows
the model-predicted values plotted against the real values.

The evaluation of the thermally aged PP samples resulted in the
calculation of two models, each based on different training data or
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Figure 2: Results of the regression model for
predicting the number of extru-
sion cycles. Measured versus pre-
dicted number of cycles.
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Figure 3: Difference of the mean NIR ab-
sorption spectra of all 1-fold and
the 5-fold extruded PP samples
used for model training.

different aging stages. The analysis of the spectra already showed a
nonlinear course of aging. The first model, calculated from only three
aging stages, achieved an RMSE of 2.158 on the test data. The scatter
of the estimated aging highlights the problem of modeling the non-
linear aging process using a few target values. Prediction of the 22
days aged samples was consistently overestimated, illustrated by the
median ỹpred,22 = 23.292. In contrast, the 30 days aged samples were
only slightly overestimated on average (ỹpred,30 = 31.367), but the val-
ues strongly scatter (σypred,30 = 2.324). The RMSE of the training data
of 0.696 is also significantly lower than the RMSE of the independent
test data. In addition to the nonlinear aging process, the tests also
confirmed a delayed start of the aging process by admixed additives.

For the second regression model, the training set was adapted by in-
cluding all 5 aging stages. The test set resulted in an RMSE of 1.437.
The RMSE of the training data of 0.857 is similarly low. In addition,
comparison of the medians of the test and training sets shows a uni-
form spread of the estimated target values around the real ones.

The comparison of both models showed that more aging stages in the
training set are more important to model the nonlinear course than the
absolute number of training spectra. Furthermore, it was shown that
despite local differences in the aging stages within a sample, the mean
spectra is suitable to represent the aging time of the entire sample.
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Figure 4: Results of the regression models of thermally aged PP samples, measured ver-
sus predicted days. Model 1 (left) and Model 2 (right).

4 Conclusion and Future Work

The investigations showed the general suitability of NIR spectroscopy
for the prediction of different aging and degradation stages of PP plas-
tic. Thermally aged as well as multiple extruded PP samples were
investigated. Different regression models were calculated to estimate
the duration of thermal aging or the number of extrusion passes. Spe-
cial attention was paid to the pre-processing and spectral averaging
of the NIR spectra in order to make small spectral differences visible.
The calculated regression models showed a correlation between aging
condition and spectral information. The exponential progression of
thermally aged samples must be modeled sufficiently well. More tar-
get values in model training greatly improves the generalizability of
the model. One challenge is the inhomogeneous aging visible on the
spatial area of the samples and therefore impacting the spectra, which
can be investigated in further studies.
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11. E. Strömberg and S. Karlsson, “The design of a test protocol to model
the degradation of polyolefins during recycling and service life,” Journal of
Applied Polymer Science, vol. 112, no. 3, pp. 1835–1844, 2009.

12. L. M. Smith, H. M. Aitken, and M. L. Coote, “The fate of the peroxyl radical
in autoxidation: how does polymer degradation really occur?” Accounts of
chemical research, vol. 51, no. 9, pp. 2006–2013, 2018.
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München, 2007.

15. R. Pfaendner, H. Herbst, K. Hoffmann, and F. Sitek, “Recycling and resta-
bilization of polymers for high quality applications. an overview,” Die
Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and
Physics, vol. 232, no. 1, pp. 193–227, 1995.

16. A. Alassali, S. Fiore, and K. Kuchta, “Assessment of plastic waste mate-
rials degradation through near infrared spectroscopy,” Waste management,
vol. 82, pp. 71–81, 2018.
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Abstract This study explored the possibility of detecting differ-
ent types of meat in a miniaturized patty by applying a random
forest classifier on the spectral dimension followed by neighbor-
hood majority voting on the spatial dimension to improve the
random forest prediction. Hyperspectral images of patties made
of 100% beef, 100% pork, and 100% horse meat were acquired
with a short-wave infrared (SWIR) hyperspectral camera. The
pixel-wise meat type prediction by random forest multi-class
classifier was accurate to 97.5%. After the majority voting of the
neighboring pixels, the prediction accuracy increased to 100%.
As next, synthetic hyperspectral images of adulterated patties
were generated for validating the model. The prediction accu-
racy of the model on the synthetic images were bigger than 98%.
The findings of the proposed workflow support the development
of rapid analysis tools in tandem with machine-learning to de-
tect adulteration in minced meat.

Keywords Hyperspectral imaging, random forest, majority vot-
ing, food safety, adulteration, authenticity

1 Introduction

Meat is known for its commercial and nutritional values, yet it is prone
to fraudulent and accidental adulteration which violates consumers’
safety and protection [1–3]. Besides falsification of meat by other ma-
terials than the declared ingredients (e.g. beef/offal), the proportion
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of ingredients or the main components (e.g. meat muscles vs fat) may
deviate from the stated composition [2, 4, 5]. The DNA-based analy-
sis is the golden standard of authenticating the meat species and their
origin, but it’s a time-consuming method [3].

Most of the past studies utilized hyperspectral imaging (HSI) in the
visible and near-infrared region (VNIR) (450 to 1000 nm) in tandem
with chemometrics and artificial intelligence with promising outcomes.
Both minced meat and meat cuts can be authenticated via these tools
by examining either the whole composition or only the fatty acids pro-
files [4–9]. However, the spatial information was often left out due to
the complexity of the data dimension, and the prediction models were
often trained by averaged spectra [4, 6, 8–10]. Ropodi et al. demon-
strated the application of multi-spectral imaging in the visible region
using 16 spectral features with help of the support vector machine
(SVM) giving 93.5% accuracy in detecting horse meat in beef minced
meat. The authors also reported that the color-change during storage
had a negative influence on the prediction results [6]. Jiang et al. used
HSI in the VNIR range coupled with pixel-wise partial least square
regression (PLSR) to quantify duck in beef minced meat. The PLSR
model was trained by average spectra of patties with different levels of
adulteration. Afterwards, the pixel-wise regression was applied in the
spatial domain to generate adulteration heat maps [8].

This paper explored the feasibility of detecting different meat species
in a patty by using a hyperspectral camera in the short-wave infrared
(SWIR) region between 930 to 2500 nm in tandem with a pixel-wise ran-
dom forest (RF) multi-class classifier, followed by neighborhood major-
ity voting on every pixel across the 2D spatial dimension. The trained
RF classifier aimed to classify every pixel into one of three classes as
beef, horse or pork, regardless of the meat’s freshness level. The neigh-
borhood majority voting was applied subsequently on spatial dimen-
sion to improve the pixel-wise classification.

2 Materials and methods

2.1 Meat Sample Preparation and Training Datasets

Minced meat of 100% pork, 100% beef, and 100% horse were purchased
from local butchers in Munich, Germany. A patty with ca.10 g of each
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meat type was placed on a sterile Petri dish and measured on the pur-
chase day (Day 0) and five days after the purchase day (Day 5). Between
Day 0 and Day 5, meat was stored in the fridge at T = 6 ± 2◦C. Patties
containing different meat types were not used in this study to avoid the
uncertainty in the ground truth image pixel labels of those mixtures.
Instead, synthetic patties were generated to validate the model. The
process of generating synthetic patty is elaborated in section 2.4.

2.2 SWIR hyperspectral imaging system and data acquisition

The SWIR spectra in the region (930 - 2500 nm ) were captured using
HySpex SWIR 384 SN 3197 (Norsk Elektro Optikk AS, Oslo, Norway)
with a 5.45 nm sampling interval which delivers 288 data points per
spectrum. The camera was equipped with 1m objective with ca. 84
cm distance between the objective and the sample’s surface, resulting
in an image resolution of 0.33 mm/px with 32 bit color depth. The
samples on the translating stage were exposed to two halogen light
sources mounted at a symmetrical angle. The reflection spectra were
recorded by the push broom method at an acquisition rate of 33800 µs
per spectral line.

2.3 Radiometric Correction and Initial Pre-processing

A radiometric correction was applied to all images using the software
HyRad (Norsk Elektro Optikk AS, Oslo, Norway), which adjusted each
spectrum based on the reflection of a white reference. The subsequent
data preprocessing explained below was performed using the Python
3.9.12 programming language.

Initially the saturated spectral values of a given pixel were replaced
by the nearest pixel’s unsaturated spectral values or by the averaged
spectrum of the surrounding unsaturated pixels [11, 12]. Then the re-
gion of interest (ROI) was extracted by removing the irrelevant image
sections, such as background, sampling stage, and Petri dish. The ROI
extraction process utilized Gaussian blurring filter with a kernel size
of (4x4) and 0.5 standard deviations on the grayscale image obtained
from the first spectral feature (930 nm) followed by the automatic Otsu
thresholding method to create a mask [13,14]. Finally, all spectra within

67



E. Djaw et al.

the mask were extracted and scaled using the ’Standard Scaler’ func-
tion from scikit-learn python library.

2.4 Random Forest Classification and Dataset

A random forest (RF) multi-class classifier with 100 trees, ’entropy’
as the criterion for node-splitting and 20 as the tree’s maximum
depth, was trained using all spectral features (288 features) in 3 cross-
validations. A balanced amount of data across three meat categories
were ensured in the training data set. There were 43200 data points
from meat measured on Day 0 and 28800 data points from meat mea-
sured on Day 5. Not all data points were used for training; the unused
data points were set aside to generate synthetic hypercubes in valida-
tion stage.

Pixel-Wise Prediction & Majority Class Of The Neighboring Pix-
els. Every pixel was classified into one of three classes (beef, horse, or
pork) by the trained random forest classifier. Consecutively, each pre-
diction result was evaluated spatially by comparing it to the majority
class from its surrounding pixels (kernel size 3x3). In case of a class
mismatch between the observed pixel and the majority class within the
neighbors, the RF prediction probability for all classes of the observed
pixel were replaced by the averaged probabilities of its surrounding
pixels.

Synthetic Patties For Validation. Synthetic patties (50x50 px) with
segmented regions in various shapes, sizes, and grey levels were gener-
ated automatically using the function ”random shapes“ from the scikit-
image python library. Every shape and the background were assigned
to a particular class based on its grey level (Figure 5). Sequentially,
each pixel was filled with a random spectrum belonging to the assigned
class hence generating a hypercube.

3 Results and discussion

As seen in Figure 1, no difference can be observed by the naked eye
either between the spectra of different meat types or between fresh and
old. Nevertheless, the classification model in this study focused on dif-
ferentiating the meat types, not the freshness level of the meat. There-
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fore, the experiment aimed to generalize 100% beef patty regardless of
the mixture of fresh or old beef as a beef patty.

Figure 1: Average spectra of all patties.

Figure 2: Confusion matrix from pixel-wise RF multi-class classifier.

The pixel-wise RF classification gave an accuracy of 97.3%, where
’pork’ has the highest precision, recall, and f1-score values (each 99%),
followed by ’horse’ (each 97%) and ’beef’ with 96% recall and 97% of
each precision and f1-score. A closer look at the confusion matrix in
Figure 2 shows a higher number of falsely predicted ’beef’ as ’horse’
and vice versa. The mis-classifications from pixel-wise RF classifier
were more apparent to occur on single pixels than in a region (Figures
3 and 4, pixel-wise images).

The falsely predicted pixels by pixel-wise RF classifier were corrected
by comparing each pixel with its neighbors (majority voting; 3x3 ker-
nel; see 2.4). The significant improvement can be observed in fresh
(Figure 3) and five days old patties (Figure 4), comparing the images in
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Figure 3: Fresh Meat (Day 0) Classification; Left: grayscale images at 1115 nm; Cen-
ter: Pixel-wise classification results; Right: Pixel-wise classification results after
neighborhood majority voting and probability values correction. Each pixel
was colored based on the predicted class: red refers to ’beef’, green refers to
’horse’, and blue refers to ’pork’.

the middle (pixel-wise) to the images on the right (neighborhood ma-
jority voting). The success of the model is remarkably dependent on
the correlation between the camera’s spatial resolution, the accuracy of
pixel-wise prediction, and the kernel size used in neighborhood major-
ity voting.

The spectra at 1115, 930, and 1250 nm respectively appeared to be the
most important features observed by RF. The inclusion of these features
led to the biggest decrease of a tree’s impurity in RF model [15]. These
regions refer to the 2nd and 3rd overtone regions of C-H molecular
group, except at 930 nm where O-H and C-H are overlap [16]. These
findings indicate that a prediction model can be built using only these
spectral features, which is to be explored further. For instance, the
fat region seems to be in the highest contrast after observing the gray
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Figure 4: Old Meat (Day 5) Classification; Left: grayscale images at 1115 nm; Center:
Pixel-wise classification results; Right: Pixel-wise classification results after
neighborhood majority voting and probability values correction.

scale images at 1115 nm (see the pictures on the left in figure 3 and 4).
Besides, a study by Lestari et al. demonstrated an improved prediction
by using 1D FTIR on the extracted fat from meatballs in detecting rats
in beef meatballs [17].

A comparison between patties from day 0 and day 5 shows that false
predictions occurred more often on patties from day 5 (Figure 4, middle
images) than day 0 (Figure 3 , middle images), as previously stated by
Ropodi et al [6]. However, in our case, this could also be due to fewer
spectra collected for old patties (day 5) than fresh patties (day 0).

The validation of the complete workflow on synthetic patties showed
promising results. The falsely classified pixels were mostly corrected
by neighborhood majority voting. The shape of the kernel, which was
square altered the shape of regions containing edges, as depicted on
the synthetic patty images in figure 5.
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Figure 5: Synthetic Patties with 90.4% beef (A + B or ”Red” area), 2.8% horse (C + D or
”Green” area), and 6.8% pork (E + F or ”Blue” area) of which 2.8% old beef (B),
1.0% old horse (C), and 5.8% old pork (F).

Furthermore, figure 5 also validates the model’s generalization, re-
gardless of the freshness level. The old beef spectra (B) were mostly
falsely predicted as horse and some of the old pork (E) were predicted
as horse or beef.

4 Conclusions and Outlook

Random forest multi-class classification on the spectral dimension
followed by neighborhood majority voting in the spatial dimension
showed promising results to authenticate minced meat of different
types (beef, horse, and pork). The prediction by pixel-wise RF clas-
sifier based solely on spectral dimension was accurate to 97.5%. After
introducing the majority voting of the neighboring pixels in the spatial
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dimension, the prediction accuracy increased to 100%.
The findings of this study can be used to develop rapid analysis tools

for minced meat authentication. Furthermore, a prior image processing
on the grayscale image to separate high-fat from low-fat regions may
also provide an alternative approach, which is to be explored in detail
as next.
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Abstract This paper describes a novel computer vision method
for the estimation of lycopene concentration in tomatoes using
a multispectral imaging approach with up to 15 bands. It is
shown that combining intensity measurements at wavelengths
from near-infrared to ultraviolet using a neural network model
achieved correlation of R2=0.977 and RMS error=4.63 mg/kg
against ground truth lycopene concentration. Our results are
comparable or superior to other methods from the literature,
which are analysed in detail in the paper. The method can be
reproduced with minimal cost and demonstrates the feasibility
of the method for industrial application. The main contribution
is that a broader range of wavelengths are considered compared
to most previous work, with rigorous analysis using a combina-
tion of simple regression and artificial neural networks.

Keywords Machine vision, multispectral, lycopene, tomato

1 Introduction

Tomatoes have a vital role in food supply, accounting for 16% of global
vegetable3 production during the last decade [1]. Tomatoes are a rich
source of nutrients, including vitamins A and C, lycopene, and potas-
sium. Lycopene is one of the most valuable bio-active compounds in

3 Tomatoes are technically fruits but often classified as vegetables in a culinary sense.
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tomatoes due to a health stimulating carotenoid with antioxidant prop-
erties and helps to prevent cardiovascular diseases, cancers, neurode-
generative maladies, and other conditions [2, 3]. With an estimated
global annual production of 180 million tonnes [4] tomatoes are the
primary natural source of lycopene in our diets. Lycopene content cor-
relates with the maturity of a tomato [5] and is therefore a critical factor
in supply chain logistics for optimising harvesting, transportation and
storage.

Humans have a natural ability to assess food quality and safety
via a simple analysis of the appearance of the tomato in the visi-
ble spectrum. The availability of sensors beyond the visible spec-
trum and progress in computer vision are extending this basic sub-
jective capability, with 1000s of peer reviewed papers featuring key-
words “hyperspectral imaging” and “fruit/vegetable/etc” during the
last decade. The latest research is aimed at estimation of properties
including ripeness, disease and nutritional value [6].

This paper describes a novel non-destructive method for the esti-
mation of lycopene concentration in tomatoes using multispectral data
analysis. The main contribution is that a broad range of wavelengths
is considered (15 bands between 365nm and 940nm) and rigorously
analysed using a combination of simple regression and artificial neu-
ral networks. The outputs offer invaluable information for researchers
of automated tomato lycopene estimation (or general ripeness/quality
estimation using lycopene as a proxy).

2 Related Work

Traditional methods for the precise measurement of lycopene content
are high performance liquid chromatography (HPLC), thin layer chro-
matography (TLC) [7], and spectrophotometric absorbance (SPM) [8].
These chemometric methods have been available for several decades
but are time consuming, require hazardous chemicals and destroy the
samples.

Non-invasive spectroscopic techniques such as near infrared spec-
troscopy (NIRS), nuclear magnetic resonance spectroscopy, Raman
spectroscopy (RS) and fluorescence spectroscopy are powerful spectro-
scopic techniques and have been investigated for applications in the
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food industry. However, these methods are mostly expensive, are lim-
ited to a small number of sample measurement points, and are dedi-
cated for laboratory use only [9, 10].

Consequently, computer vision techniques have been explored that
deploy reflected or transmitted light to measure lycopene concentra-
tion. Some of these methods use the visual spectrum (VIS) in the form
of the CIE L*a*b* colour representation. Other methods use multispec-
tral or hyperspectral techniques, often extended to near-infrared (NIR)
and/or ultraviolet (UV) wavelengths.

Methods based on the L*a*b* representation of the visual spectrum.
Aries et al. [5] achieved a promising logarithmic regression correla-
tion of R2=0.96 between lycopene and the a* value from a chroma
meter, when averaging 14 spots on the equatorial region of tomatoes.
Vazques-Cruz et al. [11], used a similar approach with a point spec-
trophotometer, to obtain linear regression R2=0.985 using neural net-
works (NN) with two hidden layers to map intensities of L*, a*, b*,
a*/b* and area of vine leaf to lycopene concentration. Ye et al. [12],
claim a lower correlation of R2=0.81, but using a handheld camera and
ambient lighting, thus showing promise for realistic low-cost appli-
cations. The highest result found in the literature was a correlation
between a* and lycopene of R2=0.985, from Barrios et al. [13] using
third-grade polynomial regression. In their case, images were taken by
a compact camera with white LED illumination and so appears also
more practical than some of the earlier methods.

Spectral methods. Some works have incorporated non-visible light
into computer methods for lycopene estimation, as already stated. The
motivation for this is that better-discriminating, and generally richer,
data for riper tomatoes may be accessible.

A linear correlation coefficient of R2=0.96 between predicted and
measured lycopene values was published by Polder et al. [14], using
a hyperspectral camera with 256 spectral bands. A multispectral ap-
proach with 19 wavelengths using LED illumination by Liu et al. [15]
gave a lower value of 0.94, but using a set-up more practical for non-
laboratory conditions. Tihalun et al. [16] use both VIS/NIR spectrome-
ter and chroma meter for Hunter L*a*b* representation of VIS. In con-
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trast to other works, that paper used transmitted light passing through
the tomato sample rather than reflected light. Results favoured the
L*a*b* method: R2=0.96 compared to R2=0.85 with the spectrometer.

Discussion of the prior work. The non-destructive lycopene content
detection methods considered above are presented in Table 1. The re-
sults suggest that non-destructive estimation of the lycopene content
by optical sensors is viable. Five methods have R2 higher than 0.95,
of which, four are based on L*a*b* colour space. Multi/hyper spectral
methods have an average correlation of R2=0.916 compared to R2=0.943
for the L*a*b* colour space methods.

Table 1: Comparison of previous methods with that proposed in this paper.

The success of the L*a*b* methods are probably due the a* parameter
representing a green (chlorophyll) to red (lycopene) transition, reflect-
ing a tomato’s natural colour changes during maturation. Fig. 1, shows
the relationship between a* and lycopene concentration using data cap-
tured for this paper (method described below). That is, an initial rapid
transition from green to red as lycopene increases, followed by minimal
change in a* thereafter. This demonstrates why a* alone can be success-
ful, but also that it is not very discriminating for ripe tomatoes. In ad-
dition, hardware used for a* methods are well established off-the-shelf
components with time-proven calibrations, compared to hyperspectral
or multispectral systems which are usually bespoke with proprietary
calibration methods.
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Figure 1: Measured relationship between a* and lycopene concentration. The graphs are
identical with polynomial regression, but with axes reversed.

A higher R2 value for a given regression might be an indicator of
a superior fit to the data, but it can also be misleading in terms of
achieving a useful model. For example, regression of measured a* vs
ground truth lycopene concentration can be high as R2= 0.96 or as low
as R2=0.80 depending on the somewhat arbitrary axis order (Fig. 1).
Further, the regression offers no scientific basis to the underlying rela-
tionship. R2 of a linear regression between estimated and ground truth
lycopene is more robust due to its resilience against over-fitting (as is
root mean squared error (RMSE)). Unfortunately, not all past methods
provide such parameters for comparison.

In addition to accuracy, other important factors for real-world appli-
cation are practicality, speed and cost. The highest R2 in L*a*b* meth-
ods are detected using multiple points around the sample relying on
close proximity of the sensor (e.g. [5, 11]). Such a sampling technique
is less practical than a single distant snapshot for high-throughput,
high-speed sorting applications. Hyperspectral and multispectral tech-
niques with more bands might increase the complexity of the system
further. Therefore, the requirement of our method (and some others)
for specialised illumination must be balanced against its benefits of
more robust data capture.
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3 Multispectral method for lycopene estimation

For this research, multispectral light reflections in 15 bands between
365nm and 940nm were used to investigate the precision of the method
and its practicality for use in a controlled but non-contact industrial
environment. The aim was to attain robustness and high correlation
of predicted and measured lycopene content, especially for fully ripe
tomatoes, while using commercially available devices that can easily be
deployed in industry. The wavelength range was selected based on the
assumption that a multispectral system consisting of more than three
bands, covering both the full VIS spectrum and beyond, should contain
more information than a system just utilising RGB sensor information
converted to L*a*b*. That is, the L*a*b* data comprise a subset of the
broader multispectral data and so should not exceed it in performance.

In this paper, multispectral data capture is optimised in the follow-
ing ways. (1) Tomatoes were illuminated by dome lighting to avoid
shadows and specular reflections. (2) The size and hardware construc-
tion were chosen to ensure uniform intensity over the entire fruit 3D
surface. (3) The tomato was imaged from four sides to avoid situations
where the red pigment is not evenly established during growth. While
this arrangement might have limited direct applicability, the aim is to
establish a robust baseline on which to build upon in future research.

Experiment: methods and materials. Fifty cultivar Saluoso tomatoes
were harvested in late-autumn from a hydroponic greenhouse in south-
east Slovakia. They were selected randomly, but covered a complete
range from fully green to fully red. A multispectral image was cap-
tured (see below) for each tomato sample. Each sample was then
blended within an hour and dissolved in hexan-etlylen-aceton followed
by spectrophotometric absorbance measurement at 503nm, in accor-
dance with the method of Anthon and Barrett [17]. This process al-
lowed the acquisition of a ground truth baseline from which compar-
isons could be made. One sample was later removed due uncertainty
during dissolution.

Multispectral images were captured by a Basler Ace monochromatic
and near infrared area-scan camera. For each case, a series of LEDs
in the range 365nm to 940nm were used to illuminate the sample in a
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bespoke Technomedia dome with 340mm inner diameter. The system
was calibrated with a spectralon target plate at seven points to ensure
uniformity of image intensity between each wavelength.

Images were then segmented using basic thresholding functions in
Halcon software. Next, image processing was split into two paths. (1)
Convert the three images corresponding to RGB bands (478nm, 520nm,
635nm) to the L*a*b* colour space to calculate an average pixel in-
tensity of a* for correlation with lycopene concentration. (2) Average
segmented image intensities were fed into a shallow neural network
(SNN), with five hidden layers, trained using the MATLAB fitnet

function to map the multispectral data to measured lycopene values.

Tomato surface area involved in computation. Lycopene is not dis-
tributed evenly inside tomatoes, but is almost four times more concen-
trated in the skin compared to the pulp, and five times higher than the
seeds [18]. Further, different parts of a tomato’s surface may be more
mature than other parts. The multispectral images were therefore taken
from four sides: stem, bloom, left and right. Results are shown in Ta-
ble 2. These R2 regression results confirm the hypothesis that larger
coverage improves correlation.

Table 2: R2 correlation between a*
and ground truth lycopene
content for various sides of
sample. Logarithmic, 2nd,
3rd and 4th grade polyno-
mial regressions are shown.

Selected spectra and wavelength bands contribution. The green
colour of unripe tomatoes is due to the prevalence of chlorophyll. Dur-
ing ripening, the synthesis of lycopene results in a red colour. Lycopene
has a carotenoid molecular structure of eleven double bonds, allowing
it to absorb energy from UV light between 270 and 310nm and blue
and green light between 350 and 530nm [19]. In the proposed method
therefore, this range is covered with seven spectral bands from 365 to
520nm. This is in addition to three wavelength bands in red spectra
to capture the green to red colour shift. In total 15 wavebands were
included, including NIR.
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In Fig. 2, the measured average intensity of each waveband is plot-
ted as a function of ground-truth lycopene concentration. Polynomial
regression lines are also shown for ease of comparison. The figure
shows several wavelengths with similar shape, suggesting little benefit
of including them all. However, about seven different trends can be
recognised. For a well-designed neural network, during training, the
weights will become optimised to exploit these trends.
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Figure 2: Averaged pixel intensity of reflected light as a function of lycopene for all
wavelengths. [Colour coding approximately matches wavelength. “+”: ultravi-
olet/blue, “x”: yellow/green, “ · ”: red/infrared.]

Shallow Neural Network (SNN). The additional information available
from multispectral data was incorporated using Levenberg-Marquardt
backpropagation SNN with 5 hidden layers. This approach is known to
better model the non-linear interaction of sparse data. Modern meth-
ods for computer vision typically use convolutional neural networks
(CNNs). However, that is deemed unnecessary here since the inputs
are single values corresponding to mean intensity measurements for
each wavelength (i.e. there is little benefit from setting entire images
as inputs, as expected by most CNN architectures). In future work,
it might be possible to use CNNs in order to incorporate potentially
useful spatial information.
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To investigate the influence of the various wavebands on the appear-
ance of lycopene, an SNN was trained for all possible band combina-
tions using identical settings. In addition, one more input to the SNN
was added: the physical size of the tomato sample as a 16th possi-
ble input. The motivation for this is that, as lycopene is more highly
concentrated near the surface, the physical size may affect average con-
centration levels of the sample. As presented below, the best prediction
was, indeed, achieved with that additional input.

For evaluation, the leave one out cross validation (LOOCV) method
was used. Given a sample size of 49 therefore, 49 training sessions were
performed for each of 65,535 possible combinations of wavebands from
1 to 16 bands. Fig. 3 shows the general effect of the number of bands
considered (1,2,...16) in terms of performance.
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Figure 3: SNN performance expressed in maximum and average R2 correlation (left) and
minimum and average RMSE (right) of prediction against number of input
wavelength bands.

Multispectral LOOCV linear regression correlation reached a max-
imum of R2=0.9765 for lycopene prediction and measured ground
truth concentration. This corresponds to RMS error of prediction of
4.63 mg/kg. A combination of 11 bands gave this result (all those in
the legend for Fig. 2 except 485nm, 520nm, 635nm, 850nm).

It was found that the SNN performance does not improve when the
number of input bands is above about eight. This might be due to the
introduction of noise with additional bands with very similar shape or
due to the model over-fitting. Therefore, although the 11 wavebands in
the optimal SNN mentioned above had best correlation in experiments,
it is likely that almost equally good outputs are possible with fewer (not
necessarily identical) inputs.
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Discussion. Our method allowed us to explore both the multispectral
and the L*a*b* approaches. At best, we found that fitting a* against
lycopene concentration using 4th grade polynomial regression gave
R2=0.9557. While this sounds promising, the a* value rapidly con-
verges with moderate lycopene concentration, meaning the regression
curve has limited use above certain maturity levels. This problem is
also apparent in some other research that focuses on L*a*b* space. Fur-
ther, high-grade polynomials such as this are widely known to over-fit
and should be interpreted with care.

As an alternative to the above approach, where polynomial fitting
might be somewhat arbitrary, we have also trained SNNs with varying
numbers of hidden layers for all possible combinations of the wave-
lengths and sample size. Through trial-and-error, it was found that
results improved with the number of hidden layers up to about 5, be-
yond which, little improvement was obtained. For this reason, only
results from SNNs with exactly five hidden layers are presented. Re-
sults show that the stability and prediction of correlation increase with
the number of wavebands, as hypothesised. Additional bands, includ-
ing those outside the visual spectrum, have proven their contribution
to model robustness and preciseness.

The results from both previous works and our own, are shown in
Table 1. This indicates that the performance of our method is compa-
rable to others, while maintaining a more reproducible approach and
application of cross-validation, which not all others do.

4 Conclusion

While previous research has shown promise for lycopene concentration
estimation using computer vision, this research offers a more robust
grounding with detailed experiments in controlled conditions. This
demonstrates what may be possible using intensity analysis at a range
of wavelengths in a laboratory setting, which can be reproduced with
minimal cost. The limitations of L*a*b* space are demonstrated and it
is shown how our multispectral approach goes some way to overcome
these using neural networks. Future work will aim to investigate how
the approach can be extended to operate in an agricultural setting.
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Abstract Multispectral Imaging is an increasingly applied tech-
nique for the estimation of several quality parameters across the
food chain. The microbiological quality and safety as well as
the detection of food fraud are among the most significant as-
pects in food quality and safety assessment. MSI analysis was
performed using a VideometerLab instrument (Videometer A/S,
Videometer, Herlev, Denmark), while more than 9000 food sam-
ples were examined in total, for the assessment of microbiolog-
ical quality and the detection of food fraud. For estimating mi-
crobial populations, total aerobic counts (TAC) were determined.
Several regression and classification algorithms were employed,
including partial least squares regression (PLS-R), support vec-
tor machines (SVM), partial least squares discriminant analysis
(PLS-DA), tree-based algorithms etc. The slope of the regres-
sion line, root mean squared error (RMSE), coefficient of deter-
mination (R-squared) and accuracy score were used as metrics

87



A. Lytou et al.

for the evaluation of models’ performance. In adulteration case,
the prediction of different levels of pork in chicken meat and
vice versa yielded high accuracy scores i.e., over 90% , while,
using the SVM algorithm, the presence of bovine offal in beef
was successfully detected. Additionally, Random Forest algo-
rithm was efficient (accuracy>93% ) in discriminating seabass
and seabream fish fillets. Concerning microbiological quality, as
indicated by the performance indices, the developed models ex-
hibited satisfactory performance in predicting microbial load in
different foods (RMSE<1.00, R-squared>0.80). Indicatively, MSI
spectral data combined with PLS-R could satisfactorily predict
TAC and Pseudomonas spp. counts on the surface of chicken fil-
lets regardless of storage temperature and batch variation based
on the performance metrics (R-squared: 0.89, RMSE: 0.88) while,
this algorithm presented also satisfactory performance in estima-
tion microbial populations in brown edible seaweed (R-squared:
0.80, RMSE: 0.90). However, in this case, selecting the appro-
priate analytical approaches and machine learning algorithms is
still challenging.

Keywords Multispectral Imaging, Food Quality, Machine
Learning, Food Fraud

1 Introduction

The interest in using optical technologies that are capable of real-time
quality, safety and authenticity assessment has been continuously in-
creasing [1]. Food industry, apart from stabilizing the products to avoid
food losses and food waste, should also focus to the development of
rapid analytical technologies for the estimation of the microbiological
quality and freshness. The last few decades there has been a huge effort
from stakeholders to investigate alternative methods that are suitable
for online, real-time food quality/safety assessment [2]. In recent years,
rapid development of non-invasive sensing technologies for food qual-
ity contributed to significant transformations in the supply chain [3].
The data acquired from sensors do not indicate anything without pro-
cessing and conversion into useful information using pattern recogni-
tion or prediction models. Towards this direction, machine learning
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algorithms such as, Partial least squares regression (PLS-R), Linear dis-
criminant analysis (LDA), and Quadratic discriminant analysis (QDA)
have been reported as reliable tools for the development of predictive
models models for quality or adulteration assessment in meat [4], [5].
Moreover, deep learning approaches such as artificial neural networks
(ANNs) and support vector machines (SVMs) have been employed, val-
idated, and compared through available online platforms/tools (e.g.,
sorfML, Metaboanalyst), softwares (e.g., The Unscrambler) or program-
ming languages (R, MatLab, Python), in an attempt to provide accurate
predictive models for food spoilage assessment [6], [7]. This work is
an overview of studies investigating Multispectral Imaging Analysis,
by analyzing various foodstuffs, in an attempt to collect a satisfactory
amount of MSI data which in combination with machine learning mod-
els can provide significant information about the quality and authen-
ticity of foods.

2 Materials and Methods

The whole experimental procedure is briefly shown in Figure 1. The
four main steps of the analytical process were 1. Samples’ collection,
2. Microbiological analysis, 3. Multispectral Imaging Analysis and 4.
Data analysis.

• Samples’ collection: Various food samples (9000 samples in to-
tal) were collected during the last 5 years. In brief, poultry meat
(2300), beef (400), pork (700), fish (1000), pineapple (400), leafy
vegetables (500), seaweeds (500), shellfish (500) etc, were sub-
jected to microbiological and MSI analysis, whereas 2000 sam-
ples were analysed covering different adulteration scenarios (i.e.,
chicken vs pork, beef vs offal etc.) In an attempt to increase the
diversity of the samples and subsequently the size and the vari-
ability of the dataset, apart from the fresh samples, samples that
were stored at different temperatures (0, 5, 10, 15°C) for certain
time intervals, were also tested. In this way, samples with dif-
ferent microbiological populations and freshness levels were also
analysed.

• Microbiological analysis: For the estimation of total aerobic
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Figure 1: Schematic representation of the procedure from samples’ collection to data
analysis in brief.

counts (TAC), a specific quantity of food sample was transferred
aseptically to a stomacher bag, diluted ten times using sterile
maximum recovery diluent (MRD) and homogenized in a stom-
acher (Lab Blender, Seward Medical, London, UK) for 120 s at
room temperature. The homogenate was then serially diluted in
testing tubes and 0.1 mL of the appropriate dilution was spread
in duplicate on the respective culture medium depending on the
microbial group. After incubation, colonies were enumerated and
their counts were logarithmically transformed (log CFU/g).

• Multispectral Imaging Analysis (MSI): Multi-spectral images
(MSI) were captured using a Videometer-Lab instrument
(Videometer A/S, Herlev, Denmark) that acquires images in 18
different non-uniformly distributed wavelengths from UV (405
nm) to short wave NIR (970 nm), namely, 405, 435, 450, 470, 505,
525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and
970 nm. LED-based spectral imaging as illustrated in Figure 2
is a fast, non-destructive, and versatile technology for providing
high contrast food chemical maps when combined with machine
learning methodology. LEDs covering UV, Visual, and NIR wave-
lengths are sequentially strobed into an integrating sphere with a
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superwhite coating. The food sample is placed in the opening of
the lower half sphere and receives a very homogenous and dif-
fuse illumination. The built-in calibration and exposure control
ensures optimal dynamic range, reproducibility, and traceability.

Figure 2: VideometerLab instrument used for spectral imaging of food systems. LED
strobes of UV-Vis-NIR wavelengths are used to generate a spectral image. Re-
flectance and fluorescence modes may be combined in the same imaging se-
quence.

The spectral image, as illustrated in Figure 3, provides informa-
tion about a rich set of important food compounds like plant and
microbial metabolites, pigments, moisture, and lipids. Further
it offers a way to measure or remove effects from physical food
properties like scattering, specularity, translucency, and hetero-
geneity.

Figure 3: LED band-sequential imaging for MSI results in a spectral cube data structure
that maps many food-related compounds.
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• Data analysis: Various algorithms were employed in the analysis
of the MSI data, including Partial Least Squares Regression (PLS-
R), Support Vector Regression (SVM-R), tree-based algorithms
(Random Forests Regression (RF-R) and Extra Trees) k-Nearest
Neighbours’ Regression (kNN-R), Linear Discrimination (LDA),
Quadratic discrimination (QDA) etc. A part of the dataset was
used for the training of the model, while an independent, exter-
nal dataset was used for the validation (testing) of the model. The
performance of the developed models was evaluated via the fol-
lowing metrics and indicess: root mean squared error (RMSE),
correlation coefficient (r), overall accuracy, precision, and recall.

3 Results

Some indicative results of the MSI applications using various foods are
presented below.

3.1 Estimation of microbial population in chicken fillets regardless
of storage temperature and batch variation: A PLS-R model was de-
veloped by Spyrelli et al [8] for the estimation of microbial counts in
chicken fillets. The model parameters and performance metrics (slope,
R-squared, RMSE), for the estimation of the population of TAC and
Pseudomonas spp. using MSI spectral data, are presented in Table 1.

Table 1: Performance metrics of PLS-R models estimating TAC and Pseudomonas spp.
population of chicken fillets using MSI data.

TAC Number of samples slope (a) R-squared RMSE

Calibration 330 0.74 0.86 0.73
Cross Validation 330 0.73 0.84 0.78

Prediction 72 0.77 0.90 0.98
Pseudomonas spp.

Calibration 330 0.73 0.85 0.83
Cross Validation 330 0.71 0.83 0.88

Prediction 72 0.70 0.90 1.21

For TAC, the RMSE and R-squared values for model calibration and
cross validation were 0.73 and 0.78 log CFU/cm2, as well as 0.86 and
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0.84, respectively, whereas the respective values for the prediction were
0.99 log CFU/cm2 and 0.90, respectively. The predicted values were
mostly observed within the area of ±1.0 log CFU/cm2, which is con-
sidered microbiologically acceptable, while an overestimation for low
counts (below 4.0 log CFU/cm2) was evident. Concerning the PLS-R
model assessing Pseudomonas spp. counts, RMSE and R-squared values
were 0.83 log CFU/cm2 and 0.85, respectively, for calibration, while for
cross validation they were 0.87 and 0.83 log CFU/cm2, respectively.
For the prediction of Pseudomonas spp. counts, RMSE and R-squared
values were estimated at 1.21 and 0.90 log CFU/cm2 respectively.

3.2 Microbiological quality assessment of seaweed obtained from dif-
ferent geographical areas and harvest years: The prediction model
development and validation for the MSI of A. esculenta from MI and
SAMS samples, from different harvest years are presented below (Ta-
ble 2), while the findings of this study have been extensively described
in [9]. The performance of the model developed in separate for the
samples from the different geographical areas was not satisfactory.

Table 2: Linear regression fit parameters between actual and predicted TAC values for
the different datasets (A. esculenta MI, SAMS, MI+SAMS) acquired from MSI
analysis.

MI slope (a) R-squared RMSE
Cross Validation 0.67 0.67 0.96

Prediction 0.49 0.51 0.95

SAMS

Cross Validation 0.79 0.79 1.18
Prediction 0.56 0.40 1.83

MI+SAMS

Cross Validation 0.92 0.92 0.81
Prediction 0.84 0.81 1.04

Extended spectral differences have been observed among the years
of harvesting suggesting that maybe the MSI is not suitable for effi-
cient microbial population estimation due to the dependence of this
method from the “colour” of the samples that can be misleading for
the prediction model. In the case that data from SAMS and MI were
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combined, performance statistics values were improved compared to
those models developed for each origin in separate (R-squared: 0.80,
RMSE: 1.04). Probably by enlarging the size of data, the model was
trained/learned better (good performance statistics in cross validation)
and the differences in products among the differences in years were
more successfully incorporated into the model, while the significance
of the visual features (colour related) was degraded.

3.3 Discrimination of fish fillet samples based on different fish
species: Several machine learning algorithms were tested for their abil-
ity to classify fish fillets to the correct fish species. All the tested models
yielded high accuracy scores (>90 % classified to the correct group) for
images captured both from the skin and from the flesh side of the fillet
(Table 3). Models developed using data from images captured from the
skin side, exhibited even better performance (accuracy > 96 % ).

Table 3: Accuracy scores ( % ) for the discrimination of fish fillets based on species (i.e.,
seabass, seabream) using different algorithms.

Accuracy % SVM Extra trees Random Forest
Skin 98.39 97.85 96.77
Flesh 95.65 93.48 94.57

3.4 Detection of meat adulteration: In Table 4 the performance met-
rics for the external validation and the classification in five classes for
the MSI data is presented. The developed models yielded high per-
formances especially for the classes containing higher proportions of
chicken (classes 0 and 25% ).

The classification models of SVMs for the detection of the adulter-
ation of beef with bovine offal (bovine hearts) showed higher or equal
performance in terms of accuracy scores for the respective cases com-
pared with the pork-chicken adulteration scenario. The overall correct
classification (accuracy) for the case of pork in chicken and offal in beef
was 90 % and 100.00 % , respectively. These findings are part of results
published before [10].
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Table 4: Linear regression fit parameters between actual and predicted TAC values for
the different datasets (A. esculenta MI, SAMS, MI+SAMS) acquired from MSI
analysis.

True class
Pork in chicken 0 % 25 % 50 % 75 % 100 %

Recall (% ) 100 100 100 100 50
Precision (% ) 100 100 100 66.67 100

Offal in beef 0 % 25 % 50 % 75 % 100 %
Recall (% ) 100 100 100 100 100

Precision (% ) 100 100 100 100 100

4 Conclusion

MSI data coupled with machine learning algorithms exhibit potential
towards efficient detection of adulteration and microbial counts esti-
mation and could be a rapid and non-invasive tool for the quality as-
sessment in various foodstuffs.

This work has been funded by the project DiTECT (861915).
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L. Cuadros-Rodrı́guez, “’alternative data mining/machine learning meth-
ods for the analytical evaluation of food quality and authenticity–a review,”
in Food research international, 2019.

7. S. Jaafreh, O. Valler, J. Kreyenschmidt, K. Günther, and P. Kaul, “In vitro
discrimination and classification of microbial flora of poultry using two
dispersive raman spectrometers (microscope and portable fiber-optic sys-
tems) in tandem with chemometric analysis,” in Talanta, 2019.

8. E. Spyrelli, C. Papachristou, G.-J. Nychas, and E. Panagou, “Microbiologi-
cal quality assessment of chicken thigh fillets using spectroscopic sensors
and multivariate data analysis,” in Foods, 2021.

9. A. Lytou, P. Tsakanikas, D. Lymperi, and G.-J. Nychas, “Rapid assessment
of microbial quality in edible seaweeds using sensor techniques based on
spectroscopy, imaging analysis and sensors mimicking human senses,” in
Sensors, 2022.

10. L.-C. Fengou, A. Lianou, P. Tsakanikas, F. Mohareb, and G.-J. Nychas, “De-
tection of meat adulteration using spectroscopy-based sensors,” in Foods,
2021.

96



Self-supervised Pretraining for Hyperspectral
Classification of Fruit Ripeness

Leon Amadeus Varga∗, Hannah Frank∗, and Andreas Zell

University of Tuebingen, Cognitive Systems
Sand 1, 72076 Tuebingen
∗ : shared contribution

Abstract The ripeness of fruit can be measured in a non-
destructive way using hyperspectral imaging (HSI) and deep
learning methods. However, the lack of labeled data samples
limits hyperspectral image classification. This work explores
self-supervised learning (SSL) as pretraining for HSI classifica-
tion of fruit ripeness. Three state-of-the-art SSL methods, Sim-
CLR, SimSiam, and Barlow Twins are implemented, and augmen-
tation techniques for HSI are developed. A 3D-2D hybrid con-
volutional network is proposed to support the pretraining pro-
cedure. This model is evaluated against a ResNet-18 and a HS-
CNN. The pretraining is evaluated on the fruit ripeness predic-
tion task using the proposed second version of the DeepHS fruit
data set. Besides comparing the classification performance of the
pretrained models to only supervised training, the influence of
the model architecture and size, pretraining method, and aug-
mentations for SSL is investigated. This work shows that it is
possible to transfer the ideas of SSL to HSI. It is possible to ex-
tract essential features in an unsupervised manner via this pre-
training. Pretraining stabilizes classifier training and improves
the classifier performance. Further, it can partially compensate
for the need for large labeled data sets in HSI classification.

Keywords Self-supervised learning, pretraining, hyperspectral
imaging, HSI classification, fruit ripeness

97



L. A. Varga, H. Frank, and A. Zell

1 Introduction

Knowing the ripeness of fruit is of great interest in the food industry.
Especially exotic fruit, like avocados, kiwis, or papayas, are harvested
when still unripe, kept in storage rooms, and are often shipped for
weeks from far away. In addition, those kinds of exotic fruit often have
a relatively high price. A reliable estimation of the fruit’s ripeness state
is required.

For this, usually, chemical and physical indicators like the sugar con-
tent and fruit flesh firmness are employed, all of which are obtained by
destructive measurement.

It is also possible to predict the ripeness of fruit using hyperspec-
tral imaging (HSI) [1, 2], which is non-destructive and therefore has
become increasingly popular in recent years. Current work shows that
combining HSI and deep learning can improve those predictions even
further [3–5].

However, deep neural networks are usually trained in a supervised
manner. Obtaining the actual ripeness state of a fruit still comes with
destroying it, making the labeling process tedious and labeled samples
scarce. Training networks on small training sets can be challenging,
and overfitting becomes likely. Therefore, it is desirable to also use
unlabeled fruit recordings that can be obtained without much effort.

Self-supervised learning (SSL) methods have produced astonishing
results in computer vision [6–8] and may be applied for pretraining in
this particular case of hyperspectral image classification to stabilize the
training and potentially improve the network’s predictions.

2 Experiments

2.1 Data Set

This work extended the already publicly available hyperspectral fruit
data set, DeepHS [5], by additional recordings of avocados, kiwis, man-
gos, persimmon, and papayas. We used the same measurement setup
and proceeding described by Varga et al. [5]. Each fruit was recorded
by the Specim FX 10 with 224 bands (398 nm - 1004 nm) and the Corning
microHSI 410 Vis-NIR Hyperspectral Sensor with 249 bands (408 nm - 901
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nm). Labels (firmness, sugar level, and overall ripeness) were obtained
by destructive measurement.

The resulting DeepHS v2 data set consists of 4671 recordings in total,
1018 labeled. Only the labeled subset was used for classification, while
for self-supervised pretraining, also the unlabeled samples were used.

2.2 Models

Varga et al. [5] already proposed the HS-CNN network, a small con-
volutional neural network specialized for HSI data and the application
for fruit ripeness classification.
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Figure 1: Architecture of the 3D-2D hybrid model.

We suggest a slightly modified variant, a 3D-2D hybrid model, us-
ing a 3D convolution instead of a 2D convolution in the first layer –
inspired by HybridSN [9]. Its architecture is shown in Fig. 1. The back-
bone consists of a 3D convolutional layer for spectral-spatial feature
learning and two 2D convolutional layers for more abstract spatial fea-
ture learning. Finally, a fully-connected layer operating on the spectral
dimension is used for actual classification. With the hybrid version, we
obtained a larger model (≈ 20× as many parameters than the baseline).

Additionally, we evaluated our methods using a ResNet architec-
ture [10], which is also commonly employed for self-supervised learn-
ing (e.g., [6–8]) but has significantly more parameters compared to the
other two models.

2.3 Self-supervised Pretraining

The model was pretrained using one of the three SSL methods: SimCLR
[6], SimSiam [7], Barlow Twins [8].
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All employ a siamese network architecture [11] where each branch
is built by the encoder, the convolutional part of the classifier model,
followed by a projection head. For the latter, we used a MLP with
two layers. A ReLU non-linearity and batch normalization [12] was
applied for each layer. The input dimension was 50 (for the baseline or
hybrid model, and 512 for the ResNet-18), the hidden dimension was
16, and the embedding dimension was eight. For SimSiam, we used
an additional prediction MLP, consisting of a single linear layer with
input and output dimension of eight. The temperature parameter for
SimSiam was chosen to be τ = 0.1. For Barlow Twins, a weighting factor
λ = 0.01 was used.

A critical component of SSL are the data augmentations. We evalu-
ated 21 augmentation techniques, including four basic image transfor-
mations (rotating, flipping, cropping, random noise), two more specific
ones (wavelength-dependent noise and pixel-wise intensity scaling), 13
augmentations that modify parts of the hyperspectral cube (i.e., drop
or blur specific pixels, channels, or an entire sub-cube [13]), as well as
two mixing augmentations (inspired by MixUp [14] and ScaleMix [15]).

Based on the ablation studies (see Sec. 4), only a subset of the aug-
mentations (random rotations with probability 50%, random cropping
with probability 30%, modification of the hyperspectral cube, and mix-
ing with probability 20%) was actually used for pretraining.

The networks were optimized with SGD [16] with a weight decay of
10−4, a momentum of 0.9, and a learning rate of 10−2, decayed with the
cosine decay schedule without restart [17]. We trained for 80 epochs
with an effective batch size of 32.

2.4 Evaluation

For the evaluation of self-supervised pretraining, the produced embed-
dings were considered. They were evaluated qualitatively (based on 3D
visualizations) and quantitatively (based on the k-Nearest-Neighbor
accuracy). For the visualization, the feature values of the embed-
ding were plotted in three-dimensional space, after applying PCA. k-
Nearest-Neighbor (k-NN) classification [18] was employed for the em-
bedded labeled samples, using k = 5, the cosine distance and leave-
one-out cross-validation (see, e.g., [7, 19]).
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Additionally, we measured the performance for classification with-
out and with pretraining. For the pretrained model, first, the fully-
connected part was trained on top of the pretrained backbone, and
then all model weights were further fine-tuned on the classification
task (e.g., [6–8]). Without pretraining, the randomly initialized model
was trained using settings similar to Varga et al. [5].

After the supervised training, the model was evaluated on the test
set. Test time augmentations [20] were applied with probability 50%.

Using five different seeds each, we conducted experiments for all
possible combinations of fruit types, cameras, and categories.

3 Results

(a) Embedding, before (left) and after pretraining (right).
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(b) k-NN accuracy.

Figure 2: (a) 3D visualization of the embedding before and after pretraining via Barlow
Twins – coloring by ripeness levels: unripe (green), ripe (yellow), overripe (red)
and unlabeled (black). (b) k-NN accuracy on the ripeness levels of the labeled
samples (train and validation set) during pretraining with SimCLR. For the
hybrid model and the avocados, recorded by the Specim camera.
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To evaluate the pretraining per se, we visualized the embeddings in 3D
and monitored the k-NN accuracy during pretraining (see Fig. 2).

The spatial arrangement in the 3D space correlates with the ripeness
level; samples of the same ripeness level are brought closer together.
This fits the development of the k-NN accuracy, which increases as
pretraining advances and finally converges towards 80%. This shows
that pretraining can extract meaningful features and find useful repre-
sentations for the data, without using label information.

Table 1: Classification accuracies (median, IQR) for regular classifier training versus Sim-
CLR pretraining plus fine-tuning, for the HS-CNN (baseline) and hybrid model.
One example for the five different fruit: Avocado (ripeness, Specim), kiwi (sugar,
Specim), mango (firmness, Specim), kaki (sugar, Specim), papaya (ripeness, Corn-
ing), and over all fruit, categories and camera types. Highest accuracies in bold.

Avocado Kiwi Mango Kaki Papaya Overall

Baseline Without pretraining
83.3%

(±4.2%)
65.2%

(±4.3%)
50.0%

(±33.3%)
50.0%

(±4.3%)
77.8%

(±11.1%)
55.6%

(±32.2%)

With pretraining
87.5%

(±0.0%)
73.9%

(±8.7%)
50.0%

(±8.3%)
66.7%

(±8.7%)
88.9%

(±0.0%)
58.3%

(±32.2%)

Hybrid Without pretraining
75.0%

(±4.2%)
73.9%

(±13.0%)
50.0%

(±33.0%)
58.3%

(±13.0%)
88.9%

(±11.1%)
54.2%

(±33.3%)

With pretraining
91.7%

(±4.2%)
78.3%

(±4.3%)
50.0%

(±16.7%)
58.3%

(±4.3%)
88.9%

(±11.1%)
58.3%

(±36.1%)

Further, the pretrained model was evaluated on the downstream
classification task. Especially, classification performance with pretrain-
ing and additional fine-tuning was compared to classification without
pretraining.

We present the classification accuracy per fruit in Tab. 1.
The pretraining led, for all examples, to a performance improvement.

We achieved an overall classification accuracy of 58.3%. Comparing the
baseline model initially designed for pure classification to our newly
proposed hybrid model with pretraining, overall, we could observe an
improvement of approx. 3% in classification accuracy. For some fruit,
it could be increased by more than 10%. Where this was not the case,
the IQR was reduced, indicating that pretraining increased stability.

Further, experiments, visible in Fig. 3, show that pretraining even
could compensate for the need for large amounts of labeled samples.
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Figure 3: Classification accuracy (median and IQR) versus fraction of labeled samples
used for classifier training for the baseline model with default classifier training
(red) and hybrid model with pretraining (via SimCLR) plus fine-tuning (blue).
Example: Avocado, Specim camera, ripeness classification.

4 Ablation Study

4.1 Classifier Model

For each of the three models, the classification accuracy with and with-
out pretraining is visualized in Fig. 4.
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Figure 4: Classification accuracies for the HS-CNN baseline, hybrid and ResNet-18 model,
without pretraining (red) and with pretraining via SimCLR (blue).
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For classification without pretraining, the HS-CNN performs best
among all three models (55.6% accuracy). With pretraining, the per-
formance can be improved only by a small amount, probably due to
the affected backbone extracting only spatial and no spectral features.

The hybrid model, with 54.2% accuracy, performs slightly worse for
classification without pretraining than the baseline, possibly due to
overfitting. However, more importantly, with pretraining, the accu-
racy improved by a larger amount – reaching equal accuracy (58.3%)
and indicating that a more powerful backbone makes pretraining more
effective for the hybrid variant.

The ResNet-18 performs worse than the other two models without
and with pretraining. Again, this is probably due to overfitting and
spatial feature extraction. However, it has the most significant improve-
ment (more than 5%) by pretraining.

Overall, pretraining improved the classification accuracy relative to
classification without pretraining. This improvement is more signifi-
cant for larger models. We claim that pretraining can prevent overfit-
ting and enables the training of larger models.

4.2 Self-supervised Pretraining Method

SimCLR SimSiam Barlow Twins
Method
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Figure 5: Classification accuracies for pretraining via SimCLR, SimSiam, Barlow Twins us-
ing the hybrid model. Over all fruit, categories and both cameras.

Secondly, we compare the three pretraining methods employed [6–8].
Although their approaches are very different, the classification per-

formance is rather similar (visualized in Fig. 5). Overall, SimCLR per-
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formed best, slightly better than SimSiam, which both have a median
classification accuracy of 58.3%. Barlow Twins obtains only 56%.

4.3 Augmentations

Further, we evaluated the influence of the 21 proposed data augmen-
tation techniques, by grouping them and using only one group for
pretraining, respectively. Fig. 6 shows the resulting classification accu-
racies for the avocado fruit as a representative example.

The basic augmentations (rotating, flipping, cropping, and cutting)
showed the highest accuracy (> 80%) and therefore seemed to be most
important. The pixel augmentations, like the modification of edge pix-
els and dropping random or consecutive pixels, were also helpful for
pretraining. On the other hand, dropping multiple consecutive chan-
nels led to the worst classification accuracy (< 70%). Also, dropping or
blurring visible color channels decreased performance.

In general, distorting the spectrum resulted in low classification ac-

Figure 6: Classification accuracies for self-supervised pretraining (via SimCLR) using
only the group of (a) basic augmentations, (b) noise augmentations, (c) aug-
mentations that blur or drop random pixels, (d) drop consecutive pixels, (e)
blur or drop random channels, (f) drop consecutive channels, (g) drop a sub-
cube, (h) blur or drop edge pixels, (i) blur or drop edge channels, (j) blur or
drop visible color information channels, and (k) mixing augmentations. Over
all three SSL methods. Example: Avocado, Specim, ripeness classification.
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curacy. We found that, for hyperspectral image data, introducing noise
systematically instead of entirely random is more valuable.

5 Conclusion

In this work, the hyperspectral data set of ripening fruit was extended
by two new measurement series and three new fruit types.

Further, we show that it is possible to transfer the ideas of SSL to
hyperspectral data. SSL pretraining extracts essential features in an
unsupervised manner and allows using larger models. It can stabilize
classifier training and improves the classification accuracy in some sit-
uations. Therefore, pretraining can partially compensate for the need
for large labeled data sets in HSI classification.

Fig. 7 shows the improvements achieved using SSL pretraining for
the ripeness classification for the five different fruit. The classification
accuracy could be boosted by more than 10% for the avocados and also
for the kiwis. For mangos, kakis, and papayas, the classification itself
is not stable, but for the papayas as well as overall, pretraining could
reduce the variability. Summarizing, the pretraining allows a more
reliable ripeness classification for specific exotic fruit.

Avocado Kiwi Mango Kaki Papaya
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Figure 7: Classification accuracies for the baseline model without pretraining (red) ver-
sus the hybrid model with SimCLR pretraining (blue). For the Specim camera
and the five different fruit (avocado, kiwi, mango, kaki, papaya), classified by
all three categories (ripeness, firmness and sugar content).
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E. Säckinger, and R. Shah, “Signature verification using a ”siamese” time
delay neural network,” Int. J. Pattern Recognit. Artif. Intell., vol. 7, no. 4, pp.
669–688, 1993.

12. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, ser. JMLR Workshop and Conference Proceedings, F. R. Bach and
D. M. Blei, Eds., vol. 37. JMLR.org, 2015, pp. 448–456.

13. J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and J. Li, “Hyperspectral im-
age classification using random occlusion data augmentation,” IEEE Geosci.
Remote. Sens. Lett., vol. 16, no. 11, pp. 1751–1755, 2019.
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Abstract Techniques based on thermography are well-
established for destruction-free material inspection. A similar
technique was invented independently in environmental sci-
ences to explore exchange processes at air-water interfaces.
The analysis was, however, limited to one-dimensional vertical
transport assuming a horizontally homogeneous and stationary
exchange process on average. In this contribution, first steps
pursuing a true spatio-temporal approach are presented. This
allows much faster measurements, identification of the trans-
port mechanisms and has the prospect to even measure the
shear stress right at the water surface, which drives exchange
processes at a windy water surface.

Keywords Thermography, Lock-In Technique, Heat Transport,
Interface

1 Introduction

Lock-in thermography and heat flux thermography are well-
established techniques for destruction-free material inspection [1, 2].
A periodically varying or flashed heat flux is applied at the surface of
an object and the temperature response of the surface is captured with
a thermographic camera. The applied heat at the surface diffuses into
the material of the object. Above cracks, holes or other material inho-
mogeneities with lower heat conduction, the material surface remains
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warmer. In this way, it is possible to look below the surface of opaque
materials.

It is less known that similar techniques were invented independently
in environmental sciences [3,4] to explore exchange processes on ocean,
lake, and river surfaces or in laboratory simulation facilities such as
wind-wave tunnels. Water would be a perfectly homogeneous material
without any flow, because the applied heat at the water surface just
diffuses into the bulk of the water body. In reality, turbulent transport
processes cause inhomogeneous heat flow at the surface.

Section 2 briefly explains the basics of thermography to explore tur-
bulent transport processes across the air-water interface and the estab-
lished technique with periodic heating. Then, two new approaches are
discussed: a direct analysis of the intermittent transport process under
spatially constant irradiation (Section 3) and a line-shaped irradiation
to measure the water surface velocity and the gradient of the shear flow
(Section 4).

2 Basics

The basic characteristic of transport processes across interfaces is that
turbulent transport becomes less efficient closer to the interface because
turbulent fluctuations (“eddies”) become smaller in size. Below a cer-
tain scale, turbulent fluctuations are even damped by viscosity. This
leads to the formation of a viscous boundary layer. Therefore, the final
transport to the interface can only take place by molecular diffusion.

This basic characteristic of the transport process can be seen in ther-
mographic images, taken after a constant heat flux density was applied
to the interface for a certain time. This can be done, for instance, by
irradiating the water surface using a CO2 laser beam expanded to an
area of up to a square meter. The radiation penetrates only 14 µm into
the water. That means that the controllable heat flux density is placed
directly at the surface. An MWIR thermal camera images the water
surface temperature over a slightly deeper layer [5]. The 10.6 µm laser
radiation is not directly detected in the surface temperature images,
because the camera is sensitive only in the 3–5 µm wavelength region.

After 0.5 s, at a low turbulence level with a wind speed of 2 m/s, the
heat has penetrated only such a short distance into the water, that it is
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0.5 s 2.0 s 0.5 s
2 m/s wind 2 m/s wind 7 m/s wind

Figure 1: Temperature increase at the water surface in the Heidelberg Aeolotron wind-
wave tank. The area heated by a CO2 laser (about 25 cm × 25 cm) is marked
by white outline. The time after switching on the laser and the wind speed
applied to the water surace is given below the images.

still inside the viscous boundary layer. Because heat conduction into
the water is driven only by molecular diffusion, the surface tempera-
ture in the heated area is uniform (Figure 1, left image). After a four
times longer time span (2 s, Figure 1, middle image), the heat has pen-
etrated about twice the distance into the water. Now the influence of
the turbulent heat transport in deeper layers starts to become visible.
At a higher turbulence level with a wind speed of 7 m/s, the turbulent
structures can already be seen 0.5 s after switching on the heat flux and
exhibit a much finer scale and different patterns (Figure 1, right image).
With a higher wind speed, the induced velocity gradient at the water
surface is steeper and turbulence comes closer to the interface.

Previous research of the controlled flux technique has not looked into
the evolution of these structures, but rather used it for fast measure-
ments of the speed of heat exchange, expressed by the transfer velocity
k (units m/s), in wind-wave facilities [6] and at sea [7]. This is be-
cause heat can be used as a proxy tracer for environment- and climate-
relevant trace gases exchanging across the atmosphere-ocean interface
with this technique. All other field measuring techniques integrate and
average over much larger spatial and temporal scales [5]. By consid-
ering the different diffusion coefficients of heat and gases dissolved in
water, the transfer velocity of gases can be computed from those for
heat [8].
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The periodic variation of the heat flux by a CO2 laser — or lock-
in technique — has the advantage that all the information about the
response of the system is contained in the switching frequencies and its
higher harmonics. Constant or randomly fluctuating heat flux densities
by sensible heat transfer, latent heat transfer (evaporation) or radiative
cooling into the sky, are the more suppressed, the longer the amplitude
variation is measured.

At low switching frequencies, the heat response at the surface can
follow the applied heat flux density j and reaches a constant tempera-
ture increase of

∆T =
j

ρcpk
; k =

j
ρcp∆T

, (1)

so that k can be determined if the heat flux density is known; ρ is
the density and cp the specific heat capacity of water. If the switching
frequencies are increased beyond a critical frequency νc, the amplitude
of the temperature response starts to decrease. Finally, the penetration
depth becomes so shallow that the response is no longer determined
by turbulence but only by molecular diffusion. Then the temperature
amplitude response ∆T is given by [4]

∆T =
j

ρcp(2πνDh)1/2 . (2)

Dh is the molecular diffusion coefficient for heat in water (thermal dif-
fusivity). The frequency response is therefore similar to a low-pass
filter. However, the amplitude response for higher frequencies does
not decrease with ν−1 but slower, only with ν−1/2. The asymptotic
constant and the damped parts of the amplitude response curve meet
at the critical frequency νc (Figure 2). Eqs. (1) and (2) yield

νc =
k2

2πDh
; k =

√
2πνcDh. (3)

This means that the transfer velocity k can also be computed from
the measurement of the amplitude response without any knowledge
about the heat flux density j. Figure 2 also shows that transport across
the thin heat boundary layer at the water surface is quite fast. Up to
frequencies of 1 Hz the amplitude response shows no damping.
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Figure 2: Frequency response of the heat boundary layer at the water surface for fre-
quencies between 0.1 to 100 Hz; from [9].

3 Analysis of intermittency

The approach discussed so far has still two deficits. Firstly, the mea-
surements are still quite slow, because averaging over several periods
of the periodic heating and a frequency sweep are required. Secondly,
horizontal averaging over the heated footprint is performed. The av-
eraging over both temporal and spatial scales misses all the important
information contained in the patterns.

In this paper, two first steps into a true spatio-temporal analysis are
described. The setup used for these measurements is shown in Fig-
ure 3. At the water surface, the camera images an area larger than the
area heated by the CO2 laser. Because of the drift of the water induced
by the wind, a characteristic temperature profile averaged perpendic-
ular to the wind direction and time establishes (red line in Figure 4).
There is a heating zone characterized by an increase in temperature fol-
lowed by an equilibrium zone with more or less constant temperature.
After the water leaves the heated zone, the mean temperature decays
again.

The analysis here is limited to the equilibrium zone averaged only
over 25 images taken with a frame rate of 600 Hz. This arrangement
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IR-Camera
(1.5 - 5.5 μm)
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CO2 IR-Laser
(10.6 μm)

Laser Optics
(see Fig. 4.4)

h

Wind

Water

Camera 
FOV

Lens

Figure 3: Setup of thermography at the ceiling of the Heidelberg Aeolotron; from [10]

Figure 4: Temperature response at water surface by heating an area of about 60 cm ×
60 cm. Wind direction is right to left; from [10].

made it possible to measure the transfer velocity instantaneously ac-
cording to Eq. (1) with a temporal resolution of 0.042 s. This is faster
than the time constant of the transfer process.

A few seconds after the measurements were started, the wind was
switched on and within several seconds the transfer velocity jumped
up (Figure 5). At the lowest wind speed, the transfer velocity remains
quite constant, whereas with increasing wind speed more and more
spikes with up to 10 times higher transfer velocity show up. They
could be related to extensive turbulent mixing at the surface caused by
micro–scale wave breaking events (wave breaking without bubble en-
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Figure 5: Instantaneous transfer velocities k measured at different wind speeds (indi-
cated by the drive frequency of the wind fans) in the Heidelberg Aeolotron
with a water depth of 32 cm. The wind was switched on a few seconds after
the start of the measurement and was kept on for 15 min; from [10].
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trainment). After the start of the wind, the wind-wave field gradually
evolves from small ripples to larger and larger gravity waves. Except
for the initial waves at medium wind speeds, where a clear overshoot
of the transfer velocity is observed, the transfer velocity is remarkably
insensitive to status of the wind wave field. When the wind is stopped
after 15 min, the transfer velocity immediately decreases.

4 Analysis of the shear current at the interface

The measurements shown above, clearly demonstrate that the wind is
the main driver of the transport process. The wind induces a shear
flow at the water interface within the aqueous viscous boundary layer.
This shear layer can also be investigated using thermography. The key
idea is to heat up only a line perpendicular to the wind direction at the
water surface with a penetration depth for the radiation of about one
millimeter matching the thickness of the viscous mass boundary and
to apply a short pulse of a few milliseconds, which yields a very thin
heated line. If only the surface was heated up by a CO2 laser, the line
would quickly disappear because of vertical diffusion into the water.
With the deeper penetration depth used here, vertical diffusion is not
dominant so that the horizontal transport in the shear layer can be
studied. An Erbium fiber laser with a wavelength in the near infrared
(1568 nm) is used, which has a penetration depth of 1.0 mm.

Stewing [11] showed that the widening of the lines at the water sur-
face is proportional with the diffusion of heat in horizontal direction, as
long as there is no shear current at the water surface, but only the wa-
ter body as a whole moves in the water channel of a wind-wave facility
(Figure 6, lower left image). This is already the case a few seconds after
the wind is turned off. Because of inertia, the water body continues to
move and decreases its velocity only slowly [12].

With a wind-induced shear current at the water surface, the situation
is completely different (Figure 6, first three images). Because of the ve-
locity gradient at the water surface, different parts of the heated line
move with different velocities. Although only the heated line at the wa-
ter surface is seen, the slower moving parts now diffuse also vertically
towards the surface. The result is that the line widens much faster in
flow direction and its temperature drops much faster. The complexity
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Figure 6: Evolution of heated lines produced by a 100 W 1540 nm fiber laser with 10 ms
duration every 200 ms at a low wind speed in the Heidelberg Aeolotron; lower
left thermal image seconds after the wind has been turned off; image sector
about 20 cm × 20 cm.

of the velocity field at the water surface influenced by a wind-induced
shear current together with wind-induced waves can be seen and stud-
ied in these images. The flow field at the surface is turbulent and there
are thin streaks in wind direction with much higher velocity.

5 Conclusions and outlook

The active thermography techniques described here show how power-
ful this optical inspection methods are. They allow a detailed analysis
of complex flow fields and transport processes at free interfaces and
can look below the surface. This progress in experimental techniques
for environmental research may also stimulate new approaches in en-
gineering sciences and material inspection.
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Abstract Diabetes is a worldwide public health problem. Ac-
cording to the survey of the Robert Koch Institute, in Germany,
at least 7.2 percent population (aged between 18 to 79 years)
have diabetes. Therefore, the demand for glucose monitoring is
increasing, especially for non-invasive glucose monitoring tech-
nology. In this work, we proposed a novel method to enhance
the sensitivity of glucose monitoring by return-path ellipsome-
try with a quarter-wave plate and mirror. The coaxial design im-
proves the sensitivity and reduces the complexity of optical sys-
tem alignment by means of a fixed quarter-wave plate. The pro-
posed system showed higher sensitivity compared to the trans-
mission configuration.

Keywords Glucose measurement, Mueller matrix, return-path
ellipsometry, optical polarimetry

1 Introduction

Diabetes is a worldwide public health problem. According to the sur-
vey of the Robert Koch Institute, in Germany, at least 7.2 percent popu-
lation (aged between 18 to 79 years) have diabetes [1]. Diabetes patients
cannot regulate their blood glucose levels when their blood sugar goes
up. High blood sugar levels staying too long in the bloodstream cause
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serious health problems, such as nerve damage, vision loss, and kidney
disease. Therefore, regular self-monitoring of blood glucose (SMBG) is
essential in managing diabetes.

SMBG can be categorized into two types: invasive and non-invasive
methods. The former methods include blood glucose monitoring and
skin-attachable glucose sensors. However, these methods might cause
discomfort and skin irritation which increase the risk of skin or tissue
damage. Hence, the development of non-invasive glucose monitoring
has been increasing in recent years. In the literature, the non-invasive
methods of SMBG found are optical polarimetry [2], optical coherence
tomography [3], Raman spectroscopy [4] and surface plasmon reso-
nance [5]. Compared to these methods, the advantages of optical po-
larimetry are wide detection range, simple setup and capability of high
scattering effects and weak signals. Nevertheless, the limitation of opti-
cal polarimetry is the resolution of glucose concentration. According to
the guideline from Food and Drug Administration (FDA) in the United
States, a minimum accuracy of 12 mg/dl is required for blood glucose
monitoring test systems [6]. Phan and Lo used the Stokes-Mueller ma-
trix polarimetry system to measure glucose concentration and claimed
the limitation was 20 mg/dl [7]. Mukherjee et al. achieved a sensitivity
of 20 mg/dl by a Mueller matrix polarimeter with dual photoelastic
modulators [8]. Al-Hafidh et al. developed multireflection polarimetry
which used micromirrors to enlarge the optical path length. They can
achieve a 30-fold enhancement with 11 reflections [9]. However, their
system required 11 mirrors which increase the complexity of assmebly,
alignment and calibration. In this work, we proposed a simple method
to enhance the sensitivity of glucose monitoring by means of a quarter-
wave plate and mirror. The design is based on a coaxial design which
can be easily applied to current optical polarimetry.

2 Measurement principle

The principle of optical polarimetry is based on the property of optical
activity of glucose solution, i.e., the change of optical rotation is related
to the concentration of the glucose concentration. The phenomenon
can be described as [9]

α = CL[α]Tλ , (1)
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where α is the measured optical rotation, C is the concentration of the
solution, L is the optical path length and [α]Tλ is the rotation power of
the chiral material (e.g., sugar and glucose) which is related to tem-
perature T and wavelength λ of the light source. Therefore, for low
concentrations of glucose, high accuracy and sensitivity measurements
for optical rotation are required.

Inspired by the concept of Chen et al. [10], we improve the measure-
ment sensitivity of the optical rotation for glucose solution by return-
path ellipsometry (RPE) [11]. In the configuration of RPE, the light
beam transmits through the sample and returns by reflecting optical
elements. Compared to conventional ellipsometry, the main feature is
that RPE has a higher sensitivity to the optical properties of samples
because of the double reflection from the sample.

NPBS

Sample Mirror

PSA

QWP

PSG

Figure 1: The schematic of the proposed return-path ellipsometry.

Figure 1 shows the schematic of the proposed return-path ellip-
someter, which consists of a polarization state generator (PSG), non-
polarizing beamsplitter (NPBS), quarter-wave plate (QWP), mirror and
polarization state analyzer (PSA). The polarization effect of optical ele-
ments or interaction at boundaries can be described by Stokes vectors
and Mueller matrices [12]. Stoke vectors S describe the polarization
state of light beams. s0 represents the total intensity. s1, s2 and s3
denote the relative difference (linear or circular). Mueller matrices M
represent the characteristics of the altering of Stokes vectors when light
interacts with matter.

S =


s0
s1
s2
s3

 , M =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

 . (2)
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The PSG can generate light with different polarization states SPSG and
the PSA can measure the state of polarization of light SPSA. Then, the
measured Mueller matrix can be obtained by

SPSA = Mmeas · SPSG. (3)

The measured Mueller matrix Mmeas in the return-path ellipsometry
can be described as

Mmeas = Mr
BS · MS(α) · MQWP(−θ) · MM · MQWP(θ) · MS(α) · Mt

BS, (4)

where MBS, MQWP(θ) and MM are the Muller matrices of the NPBS,
QWP and mirror, and r, t and θ denote the reflection and transmission
of the NPBS and fast-axis orientation angle of the QWP. It should be
noted that the Mueller matrix of optically active medium is the same
for propagation and propagation back to the medium [13]. If every
optical element is ideal, Mr

BS and MM are diagonal matrices, where the
diagonal elements are 1, 1, −1, and −1. Mt

BS is a diagonal matrix with
diagonal elements 1, 1, 1, and 1. For simplicity, the Mueller matrix of
an optically active medium can be treated as a circular retarder [8]

MS =


1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1

 . (5)

The QWP whose retardance is 90◦ can be expressed as

MQWP =


1 0 0 0
0 cos2 2θ cos 2θ sin 2θ sin 2θ

0 cos 2θ sin 2θ sin2 2θ − cos 2θ
0 − sin 2θ cos 2θ 0

 . (6)

If the fast axis θ is 0, the measurement result can be simplified as

Mmeas =


1 0 0 0
0 cos 2α sin 2α 0
0 sin 2α − cos 2α 0
0 0 0 −1

 . (7)
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From Eqs. 5 and 7, it is clear that the measured rotation angles by the
return-path ellipsometry are twofold compared to the measured rota-
tion angles by the transmission configuration because the optical path
length increases twice. Therefore, with the return-path configuration,
we can enhance the sensitivity two times. In Eq. 7, the rotation angle
of the glucose concentration can be calculated by

arctan
m32

m22
= arctan

−m23

m33
(8)

It is worth noting that if the QWP in the configuration is removed, the
measured Mueller matrix becomes a 4×4 identity matrix, i.e., the sen-
sor cannot measure the rotation angle induced by the optically active
medium.

3 Experiment setup

Figure 2 shows a prototype of a return-path ellipsometer. The principle
is based on dual rotating-compensator [14] and return-path Mueller
matrix ellipsometry. Therefore, the ellipsometer can measure full
Mueller matrices [15] and the optical rotation can be solved by the
measured matrices. The setup consists of a laser with a wavelength
of 638 nm from Integrated Optics, a linear polarizer (LPVISE100-A,
Thorlabs, Inc.), an NPBS, two QWPs (WPQ10ME-633, Thorlabs, Inc.),
a silver mirror (PF10-03-P01, Thorlabs, Inc.) and a Stokes polarimeter
(PAX1000VIS, Thorlabs, Inc.). QWP1 is mounted on a stepper motor
rotation mount (K10CR1, Thorlabs, Inc.). The sample is a cuvette with
an optical path length of 30 mm.

4 Experimental results

Before the measurements of glucose concentration, the NPBS and
QWP2 need to be calibrated first. The NPBS has strong polarization
distortions which induce polarization changes in the measurements
and cause calculation errors. The calibration procedure of the NPBS
can be found in Ref [16]. The measured Mueller matrix of the NPBS is

123



C.-W. Chen et al.

LP

Mirror

QWP2

Sample

NPBS

Laser

QWP1

Polarimeter

Figure 2: Photograph of the return-path ellipsometer, where LP, QWP and NPBS are lin-
ear polarizer, quarter-wave plate and non-polarized beamsplitter, respectively.

shown as

MNPBS =


1 −0.167 −0.004 0.002

−0.175 1.010 0.006 0.002
0.002 −0.005 −0.981 −0.251
−0.003 0.005 0.261 −0.945

 . (9)

As can be seen, the NPBS is not a perfect element. Therefore, careful
calibration of each optical element in the system is necessary and im-
portant. In Section 2, the fast axis of the QWP should be adjusted to 0◦.
Then the product of MQWP, MM and MQWP is a 4×4 identity matrix.
After the fast axis adjustment of the QWP, We obtained the Mueller
matrix as

MQWP · MM · MQWP =


1 −0.003 0.014 −0.009

0.010 0.992 −0.003 −0.004
0.009 0.004 0.996 0.034
−0.009 0.004 −0.041 0.993

 . (10)

The result is very close to the ideal condition (4×4 identity matrix).
The error sources might be the alignment and wavelength mismatch
between the laser and the QWP.

In glucose concentration measurements, the glucose solution of 5%
from B. Braun SE was first placed in a quartz cuvette with an optical
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path length of 30 mm and a wall thickness of 10 mm. Deionized wa-
ter was used to dissolve the glucose concentration to 50 mg/ dl, 117
mg/dl and 150 mg/dl. An additional sample with deionized water
was prepared for reference. An ultrasonic bath was used to speed up
the dissolving process. Figure 3 shows the measurement of the glucose
concentration. For the transmission measurements, the laser beam only
passes the cuvette once. For the return-path measurements, the laser
beam passes the cuvette forward and backward.

Figure 3: Photograph of the glucose measurements.

Figure 4 shows the measurement results for optical rotation angles
with different glucose concentrations by the transmission and return-
path ellipsometers. Table 1 demonstrates the fitting result (linear fit-
ting) of the measurements. It can be seen that the slope of the return-
path configuration (0.0047) is higher than the slope of the transmission
configuration (0.0014), which proves the concept of sensitivity enhance-
ment for glucose sensing. The coefficients of determination (R2) in both
methods are close to 1, i.e., the polarization model derived in Section
2 can well explain the optical rotation for different glucose concentra-
tions.

Table 1: Fitting results for optical rotation angles with different glucose concentrations
by the transmission and return-path ellipsometers.

Configuration Linear fitting R2

Transmission y = 0.0014x + 0.0116 0.98
Return-path y = 0.0047x − 0.0501 0.93

However, the accuracy of the return-path configuration is lower than
the accuracy of the transmission configuration. The reasons might be
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the alignment of the cuvette and the temperature of the glucose concen-
tration. Because of the return-path configuration, the laser beam will
pass the cuvette twice with four boundaries. If there is a small align-
ment error, the cuvette might induce polarization errors. As shown
in the literature [13], the glucose concentration is sensitive to the tem-
perature which was not controlled in the experiments. In addition, a
pipette is used to transport a measured volume of the deionized water
and glucose solution to the cuvette. The maximum permissible sys-
tematic error and random error of the pipette are ±0.5% and ±0.15%
which might lead deviations of the concentration.
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Figure 4: Measurement results of optical rotation for different glucose concentrations.

5 Conclusion

In this work, we proposed a novel glucose sensor by return-path
Mueller matrix ellipsometry. Compared to the work from Phan and
Lo and Mukherjee et al. (transmission Mueller matrix ellipsometry),
the sensitivity of the measured rotations angle increases two times be-
cause the light passes the sample forward and backward. In principle,
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if the return-path configuration is applied to their systems, the sensi-
tivity of their systems can be enhanced to 10 mg/dl which fulfills the
FDA regulation. The proposed sensor uses a coaxial design, decreasing
the optical system alignment’s complexity. The measurement sensitiv-
ity is enhanced by using a fixed QWP (fast axis 0) and a mirror, i.e.,
the optical path length is twofold. For high-speed measurements, a
liquid crystal or a division-of-amplitude photopolarimeter can be used
to achieve several µs per Stokes vector. Currently, we only use the glu-
cose concentration which has no scattering and depolarization effect.
For real applications, both effects should be taken into account. There-
fore, we will add intralipid with different glucose concentrations for
the next step. In the future, we plan to evaluate the sensitivity, accu-
racy and uncertainty of the glucose sensor and study the calibration
and stability of the system.
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Abstract Characterization of materials at interfaces includes
also transfer processes taking place there. This is an ubiquitous
phenomenon in the environment, technical processes, and living
species. Because at least one of the two phases at the interface is
mobile, these processes are characterized by a complex interplay
between molecular diffusion and turbulent transport. In this pa-
per, a new technique is introduced for fluorescence imaging of
the mass transfer across the air-water interface.

Keywords Fluorescence Imaging, Interface, Mass Transfer

1 Introduction

The characterization of materials by optical techniques, as it was pre-
sented at all previous OCM conferences [1] contains a wide range of
material properties, wavelengths from x-rays to thermal infrared, and
a remarkable wealth of different optical effects, e. g., the refractive in-
dex, reflectance, emission, absorption, fluorescence, elastic and inelas-
tic scattering. With this wealth of techniques quite different material
properties can be investigated. This includes the concentration of var-
ious chemical species, classification of different materials for sorting,
3-D surface shape and surface contamination, to name just a few.

Dynamic material properties are so far missing. An important class
of dynamic processes is the exchange of mass across the interface from
one medium into another. Here the question is how fast is this process
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and which factors are controlling its mechanisms. At first glance this
property might appear quite exotic, but it is actually an ubiquitous
process:

Environment In environmental sciences, the exchange of mass between
the compartments of the planet earth, i. e., land, oceans, lakes,
rivers, and atmosphere is an important process [2]. What con-
trols evaporation from water or land surfaces? How much of
the climate relevant gas species emitted by human activities into
the atmosphere are transferred into oceans, biosphere and finally
into sediments? The most prominent example of this kind is the
global carbon cycle.

Engineering In chemical engineering transfer processes are relevant
for any gas-liquid, gas-solid, liquid-liquid (immiscible liquids)
and liquid-solid reactions. Here the essential question is how
to design the corresponding systems in order to maximize the
transfer rate and to increase the efficiency [3].

Biology Any living species requires food in order to win energy and
to take in the required chemical species to live and grow. Plants
transport water and minerals from the soil via roots and xylem
to leaves, where they take up carbon dioxide and convert it by
photosynthesis into organic material. Animals take up oxygen via
lungs or gills. Oxygen carried by blood cells is transported with
the blood flow to reach finally each cell, where oxygen is taken
as a energy source for metabolism. Waste of the cell metabolism,
including carbon dioxide, has to be transported away, and is often
chemically converted and finally segregated.

Common to all these processes is that they are of complex nature be-
cause of two basic facts. Firstly, the transport is often accompanied by
chemical reactions. Secondly, at least one of the two phases at the inter-
face is not solid. Therefore mass is not only transported by molecular
diffusion but also by flow. Except for microfluidic systems, the flow is
turbulent. This gives rise to viscous boundary layers at the interface, in
which molecular diffusion is dominant. Outside of the boundary layer,
the transport is controlled by turbulent velocity fluctuations.

In the past, most measuring techniques for mass transfer were non-
imaging and non-optical. But already almost forty years ago, it be-
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came evident that only contactless imaging techniques can resolve the
mechanisms controlling them [4, 5]. From 2005–2015 the joint DFG
research unit GRK 1114 “Optical Techniques for Measurement of In-
terfacial Transport Phenomena” of the Technical University Darmstadt
and Heidelberg3 helped to advanced imaging techniques.

In this paper we focus on one of the most complex problem, the
gas transfer across air-water interface, which is undulated by wind
waves. Under these conditions, the aqueous mass transfer boundary
layer, which is the bottleneck for the transfer, is just 10–350 µm thick [6].
Therefore it is obvious that absorption techniques will not work, but
fluorescence imaging may work. Nevertheless, serious experimental
challenges have to overcome even in laboratory facilities:

1. The concentration of a gas dissolved in water has to be made
visible by a suitable fluorescence technique.

2. The fluorescence intensity of the thin layer will be weak and be-
cause of the fast movements of the water surface by waves and
the shear flow only sub-ms exposure times are possible. There-
fore very bright light sources and sensitive cameras are required.

3. Since sub-mm structures have to be resolved, it is impossible to
focus over the range of height variations caused by wind waves.
Therefore either a wave-following imaging system or permanent
refocusing is required.

The paper is organized as follows. After a brief historic description
of fluorescence imaging for mass transfer in Section 2, the basic princi-
ples of a newly designed and optimized fluorescence technique are ex-
plained (Section 3) and first test results from a small linear wind-wave
facility are shown (Section 4). The paper closes in Section 5 with an
outlook on the planned setup at the large Heidelberg Air-Sea Interac-
tion Facility, the Aeolotron4 and 4-D (3 spatial and one time coordinate)
imaging of the imaged concentration fields.

3 https://gepris.dfg.de/gepris/projekt/462057?language=en
4 https://www.youtube.com/watch?v=UN0WLx9Ow9Q&t=25s
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Figure 1: Sketch of the boundary layer thickness imaging technique proposed by Hiby,
when an alkaline gas is absorbed by an acid liquid: low flux density with
neutral layer at the surface (left) and higher flux with the neutral layer within
the mass boundary layer (right).

2 Historical development

To the best knowledge of the authors, the chemical engineer Julius
W. Hiby (RWTH Aachen) was the first to use fluorescence imaging
for mass transfer studies. He studied absorption of acid or alkaline
gases in falling films and reported already in 1966 the usage of fluo-
rescent dyes which are either only fluorescent in the alkaline or acid
region [7]. His work was widely overlooked because he published only
a few German language papers and just a single late English publica-
tion in 1983 [8].

Figure 1 illustrates the fluorescent technique proposed by Hiby. In
order to explain the basic idea, it is sufficient to assume that a) the mass
boundary layers on both sides of the interface are layers of constant
thickness with only molecular diffusion taking place there and b) the
process is stationary with a constant flux density j from air to water.
Outside of the boundary layer the turbulent mixing should be so strong
that the concentrations are constant. This simplification is known as the
film model.

The water is slightly acid (pH 4) and a low concentration of an al-
kaline gas R is put into the air space. At the acid interface it reacts
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with the H+-ions. Therefore the concentration of the gas [R], is zero
at the water surface forcing a constant flux density j, which is given
according to Fick’s first law for stationary diffusion as

j =
Da

za
∆c = ka[R]. (1)

The quantity k has the dimension of a velocity and is known as the
transfer velocity, Da the diffusion coefficient of R in air, and za the thick-
ness of the mass boundary layer in air. The H+-ions are converted
at the interface into RH+-ions. Therefore a coupled counter diffusion
takes place in the aqueous mass boundary layer: H+-ions diffuse up-
wards and RH+-ions downwards. The left figure shows the limiting
condition, when the H+-ions become zero at the interface. Because the
flux density j remains constant

j =
Dw

zw
∆c = kw[RH+] = kw[H+]. (2)

If the concentration of R is further increased, no more H+-ions are
available at the water surface and the alkaline gas now reacts with
water to produce OH−-ions. These ions diffuse downwards and at a
neutral layer within the boundary layer react with the H+-ions to water
again (left part of Figure 1). Assuming that the coupled diffusion coef-
ficients remain the same, half of the boundary layer thickness becomes
alkaline, if the concentration of R is the double of the limiting case
shown in the left figure. With a pH indicator which fluoresces only in
the alkaline region, the total fluorescence intensity is then proportional
to the alkaline fraction of the boundary layer thickness.

In this way, the thickness of the mass boundary layer can be mea-
sured by the fluorescence intensity. Fluorescence starts, when the H+-
ion concentration becomes zero at the interface. By comparing Eqn. (1)
and (2), the concentration in the air space must reach the following
value

[R] =
kw

ka
[H+]. (3)

At a pH value of 4 the H+-ion concentration is 10−4 Mol/L. Because
of the much slower diffusion in liquids, kw is typical three orders of
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magnitude lower than ka. Therefore fluorescence starts already at air
concentrations of R higher than about 10−7 Mol/L, which corresponds
to a partial pressure of only 2.5 ppm (parts per million). Therefore this
technique is remarkably sensitive.

However, it has also two significant disadvantages:

1. The transfer process is governed by an interplay between turbu-
lent and molecular transport. Therefore it is not stationary. This
means that in regions where kw is significantly higher than the
average, there will be no fluorescence at all and it can not be de-
termined how large the transfer velocity is in this regions.

2. The concentration of the dye must be at least an order of mag-
nitude lower than the H+-ion concentration. Otherwise the dye
would no longer be an indicator but influence the chemical re-
actions. The low indicator concentrations hindered so far, to
perform measurements at higher wind speeds where the mass
boundary layer is correspondingly thin and therefore the fluores-
cence intensity is too low.

3 Basic principle of the new pH indicator method

In order to overcome the weaknesses of previous techniques, a new pH
indicator method has been developed [9, 10]. Its principle is based on
a direct chemical reaction with the indicator itself. When an alkaline
trace gas R enters the water, it immediately undergoes an acid-base
reaction with the pH indicator IH at the water surface

R + IH → RH+ + I−. (4)

In this way an invisible gas R is replaced at the air-water interface
by the alkaline form of the fluorescent dye I−, which diffuses together
with RH+ across the boundary layer (Figure 2). Two basic prerequisites
must be met for the technique to work:

1. The concentration of the fluorescent dye has to be much higher
than those of the H+ and OH−-ions. This ensures for the alkaline
trace gas to predominantly deprotonate the pH indicator accord-
ing to reaction (4).
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Figure 2: Sketch of the new fluorescence imaging with a sufficient high pH indicator
concentration to replace a trace gas via an acid-base reaction at the surface.

2. The pK value of the trace gas should be significantly above the
pH value in the water-sided boundary layer to guarantee all gas
molecules are protonated when dissolving in the water and the
equilibrium of reaction (4) is strongly on the left side.

Both conditions jointly result in a linear relationship between the con-
centrations of the trace gas dissolving in water and the pH indicator’s
alkaline form

[I−] ∝ [R]w. (5)

For experimental realization of the requirements on the new chem-
ical system, we work with an indicator concentration [Itot] of about
10−4 Mol/L. Then in a pH range from 5 to 9

[Itot] ≫ [H+], [OH−]. (6)

The fluorescent dye pyranine (Trisodium 8-hydroxypyrene-1,3,6-
trisulfonate) has proven to be ideal, with a pK value close to the neu-
tral range. We determined the pK value to 7.89 ± 0.01 from absorption
measurements of pyranine (Figure 3). Compared to the formerly used
ammonia [9] with pK = 9.24, ethylamine and other amines are planned
to be used instead, as they have the advantage of a significantly higher
alkalinity with a pK value larger than 10.6.
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Figure 3: Absorption spectra of a 10−4 molar pyranine solution at pH values as indicated.
Only the alkaline form of pyranine absorbs in the range of 440–500 nm.

4 First results

In a measurement the pH value of the water is initially adjusted to 5,
causing a large proportion of the pyranine to be in its acidic form IH.
Subsequently, an alkaline gas is added to the gas space, which increases
the alkaline form of pyranine I− as it invades into water.

Both forms of pyranine are fluorescent, but only the alkaline form
absorbs light at wavelengths larger than 440 nm (Figure 3). Therefore
the fluorescence will be according to Eq. (5) proportional to the con-
centration of the dissolved gas, when fluorescence is excited at 450 nm.
At the starting pH value of 5 about a permille of pyranine is already ex-
istent in its alkaline form, so the water bulk generates a non-negligible
background fluorescence. To suppress this, the dye tartrazine is addi-
tionally added, which absorbs the excitation light and prevents it from
penetrating into deeper water layers. Consequently, the detected fluo-
rescence pattern displays only the concentration fields of the gas in the
uppermost centimeter of the water-side boundary layer.

The new method has already been tested in a small linear wind-
wave facility and proven to work as expected. With increasing flux
density j of the alkaline gas, the patterns just get brighter, but there is
no threshold effect as with the Hiby method (Figure 4).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Example images taken in a small linear wind-wave facility with the new pH
indicator method [9]. The applied flux of the alkaline gas ammonia increased
from images (a) to (h) and started to decrease again at image (i).

5 Outlook

The technique is ready to be used in the Heidelberg Aeolotron, an
annular wind-wave-facility 10 m in diameter [11]. The fluorescence is
stimulated by four light sources radiating from above through a glass
window onto the channel’s water surface with a total optical peak
power of 250 W irradiating about 0.25 m2 at the water surface. Seven
Lucid Vision Atlas 10GigE ATX051S cameras image the fluorescence
patterns at the water surface from underneath through a bottom glass
window at 500 fps and a resolution of 1224 × 1024 pixel.

This arrangement makes 3-D imaging possible to reconstruct the
shape of the water surface as well and to distinguish the thin boundary
layer at the water surface from structures swept down into the bulk wa-
ter by surface renewal events. A light field imaging approach, similar
to the technique of Wanner and Goldlücke [12] to separate reflective
and transparent surfaces, will be used.
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Abstract Computed Tomography Imaging Spectrometer (CTIS)
systems are snapshot hyperspectral imaging devices capable of
capturing dense spectra of static as well as dynamic scenes. A
three-dimensional hyperspectral cube is smeared across the spa-
tial dimension via Diffractive Optical Element (DOE) and pro-
jected across multiple angles forming a two-dimensional com-
pressed sensor image. In this paper we demonstrate material
characterization and classification capability of a compact CTIS
system leveraging spectral signatures. Then we propose an ap-
proach to simultaneously reconstruct and segment into regions
corresponding to different materials hyperspectral images with
enhanced spatial resolution from CTIS sensor measurements.

Keywords CTIS, spectral reconstruction, super resolution, opti-
cal characterization

1 Introduction

Hyperspectral Imaging (HSI) plays an important role in the field of op-
tical characterization of materials [1]. It allows, for example, to distin-
⋆ Authors contributed equally.
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Figure 1: Optical layout of a commonly used CTIS system. Image based on [4].

guish or identify materials that look almost identical in a monochrome
or color image. HSI-devices acquire a complete spectrum for each im-
aged object point. The resulting hyperspectral cube has three dimen-
sions: the two spatial ones and the spectral dimension.

A Computed Tomography Imaging Spectrometer (CTIS) is based on
a non-scanning (snapshot) technique [2]. Other methods in this area
are the multi-aperture filtered camera and the pixel-level filter array
camera [3]. They are both based on spectral filters. CTIS, on the other
hand, uses a diffractive optical element (DOE) in combination with
computational imaging algorithms. Figure 1 shows an optical layout of
a commonly used CTIS system. The objective lens images the scene on
the left to an intermediate image plane. There, it is cropped by a field
stop, which defines the system’s field of view. The collimating lens
collimates the light, which is then spectrally dispersed by a diffractive
optical element. A re-imaging lens creates the final sensor image. An
example is shown on the right. It contains several higher diffraction or-
ders arranged around the undiffracted zeroth order image of the scene.
The higher diffraction orders are spectrally smeared. Blue light hits the
sensor closer to the center than its red counterpart.

A reconstruction algorithm is needed to get the hyperspectral
image from this spatio-spectral smeared sensor image. It solves
a similar inverse problem as the reconstruction algorithms needed
for computed tomography scanners. The different diffraction or-
ders can be conceived of as two-dimensional projections of the
three-dimensional hyperspectral-cube onto the image sensor. The
Expectation-Maximization (EM) algorithm has been predominantly
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used in CTIS image reconstruction [5]. The EM iteratively solve for
the latent hyperspectral cube starting from an initial estimate. EM can-
not handle priors and it is sensitive to the presumed noise and sys-
tem model leading sometimes to poor reconstruction quality. Deep
learning-based approaches have been devised to tackle the shortcom-
ings of the EM solver: In [6] the authors used a sequential approach
with a CNN followed by an EM solver wherein the CNN provides the
initial estimate for the EM stage. Zimmermann et al. [7] proposed an
end-to-end learning approach performing customized reshaping oper-
ations at the beginning to get an input shape suitable for 3D processing
of high dimensional input data that is followed by a U-Net like architec-
ture used to refine the estimated hyperspectral cube. We have recently
proposed HSRN [8] tackling for the first time spectral reconstruction
and spatial super-resolution from CTIS measurements. It allows to
achieve a higher spatial resolution than that of the zeroth diffraction
order while reconstructing accurate spectral information.

2 Method

We propose a two-stage approach for object classification using hyper-
spectral data captured by a CTIS system (see Figure 2). In the first
stage we train our HSRN [8] architecture for hyperspectral reconstruc-
tion and spatial super resolution with up to ×5 the resolution of the
zeroth diffraction order for synthetic data. In the second stage, the re-
constructed hyperspectral cubes are used to train a ResUnet [9] to per-
form semantic segmentation. The network produces two segmentation
maps, one corresponding to object classes and the other underlining
whether those objects are real or fake. Note that the two networks are
trained separately. In more details, we use slightly modified architec-
tures of both networks for better reconstruction quality and to avoid
over-fitting. For HSRN [8] we increase the number of filters within the
refinement network from 64 to 128 for all convolution layers and set
the super-resolution factor to 5 for synthetic data and 2 for real data
while keeping the rest of the architecture unchanged. For ResUnet [9]
we use the modified architecture shown in Figure 2, the network has
two output layers, one for each segmentation task. We train both net-
works for 500 epochs and use the training settings of HSRN suggested
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Figure 2: Left: Proposed two-stage architecture for hyperspectral image reconstruction
and semantic segmentation, the two networks are trained separately. Upper
right: The slightly modified ResUnet architecture used to learn object class
and real/fake segmentation maps. Lower right: A reconstruction example
with ×5 spatial super-resolution and the corresponding segmentation maps,
we also show spectral density curves of two selected image regions (real and
fake lemons) along with the Pearson correlation coefficient to assess the accu-
racy of the reconstructed spectra.

in [8]. The cross-entropy loss is used to train the ResUnet.

3 Datasets

Synthetic data We use Fourier optics to simulate CTIS sensor images
using hyperspectral cubes from FVgNet dataset [10] containing 252 la-
beled scenes of real and fake fruits and vegetables. A DOE that gener-
ates a structure with 5 × 3 diffraction orders is used in the simulation
(see Figure 2). The simulated zeroth order has a spatial resolution
of 102 × 102 pixels while the ground truth hyperspectral cubes have
510 × 510 pixels which corresponds to a ×5 spatial super-resolution
of the reconstructed cube. As in [10], we use a spectral range of
[400nm, 730nm] with 34 spectral bands. We chose randomly 80% of
the scenes as training data and the rest for testing, random vertical and
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Figure 3: Photo of the miniaturized prototype together with the ground truth setup.

horizontal flipping is used as data augmentation.

Real data We have implemented a setup to validate that our recon-
struction method also works on real world CTIS data. A photo of the
system is shown in Figure 3. For the dataset needed to train our model,
we always acquire a CTIS measurement together with a ground truth
measurement. Our CTIS system is built with off-the-shelf lenses, a
computer-generated hologram, a commercial smartphone lens and a
13 MP monochrome smartphone image sensor. The dimensions of the
prototype are only 36.0 mm × 40.5 mm × 52.8 mm. This small size is
achieved by using a Galilean instead of the commonly used Keplerian
beam expander. Its diagonal field of view is 29◦. The DOE creates a
5 × 5 arrangement of the diffraction orders. The zeroth order image
size is 420 × 312 pixels, which corresponds to around 10% of the hor-
izontal and vertical sensor size. Filters are used to limit the captured
spectral range from 470 nm to 700 nm. Each CTIS measurement is
made of two images captured with different exposure times (7.8 ms
and 250 ms). This is needed to get an image with a well exposed ze-
roth order and one with well exposed higher diffraction orders. Our
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prototype is therefore not a single-shot camera. Figure 4(a) shows a
sample acquisition of a ColorChecker. The zeroth order part of the im-
age taken with the longer exposure time is exchanged with that of the
shorter exposure time. More information about a similar system can
be found in [11]. Amann et al. [11] use the same prototype, just with a
different shortpass filter.

(a) Sensor image (b) Modulation transfer function (sagittal)

Figure 4: Sensor image of the CTIS prototype and MTF measurement results comparing
the CTIS prototype with the ground truth setup.

To capture the ground truth data, we built a hyperspectral camera
based on a VariSpec tunable color filter. The hyperspectral image is
captured time-sequentially. We use a flip mirror to bypass light into
this reference system. This way, it sees the object from the same point
of view as the CTIS system. The VariSpec filter has a bandwidth of
7 nm. We therefore capture our scenes in 7 nm steps and also recon-
struct the CTIS images with this channel width. The camera captures
the scene with a spatial resolution that is around ×4 higher (in each
dimension) than that of the zeroth order image of the CTIS prototype.
Figure 4(b) shows a modulation transfer function (MTF) of the CTIS
system compared to the ground truth system. This has been deter-
mined using a measurement of a Siemens star. It shows that we have a
three times better imaging quality with the ground truth system than
with the CTIS system (zeroth order). It thus can be used to train our
network accounting for super-resolution.
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4 Experimental Results

Synthetic Data Spectral reconstruction, as well as semantic segmenta-
tion results, are presented in this section. To highlight the contribution
of spectral information for object classification, we compare results ob-
tained by training the ResUnet using the reconstructed hyperspectral
cubes from CTIS measurements with the ones obtained using RGB im-
ages extracted from the reconstructed hyperspectral cubes. Quantita-
tive results are shown in Tables 1 and 2, while the qualitative are in
Figures 5 and 6. From Table 1 and Figure 5 it can be seen that the

Table 1: Quantitative metrics for spectral reconstruction and image super-resolution on
FVgNet [10].

Split PSNR (dB) SSIM MAE (1e−3)
Train 51.943 0.995 1.5
Test 51.781 0.995 1.6

Table 2: Quantitative metrics for semantic segmentation on the test set of FVgNet [10]:
Obj refer to the semantic segmentation task on object classes meanwhile R/F
refer to the task of classifying real and fake objects (better in bold).

Input mIoU (%) F1 Precision Recall
Obj R/F Obj R/F Obj R/F Obj R/F

RGB 78.61 91.54 0.878 0.953 0.862 0.966 0.907 0.941
Hyperspectral 86.63 91.95 0.926 0.956 0.902 0.958 0.957 0.954

model produces acceptable reconstructions both spatial and spectral-
wise with ×5 super-resolution factor. Figure 5 shows how semantic
segmentation using only RGB data fails sometimes to learn correct
pixel labels due to the limited information carried out by the three color
components, instead the network might rely heavily on semantic cues.
In the case of semantic segmentation from spectral data, results are
much better for both classification tasks, in particular achieving a gain
of more than 8% on the objects’ semantic segmentation task. Although
segmentation metrics for Real/Fake classification task using spectral
data is only slightly better than the one using RGB as shown in Table
2 and Figure 6, such behavior can be due to the network capability to
better leverage semantic cues in the latter case.
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Figure 5: Qualitative results on hyperspectral reconstruction and semantic segmentation
of various objects. We show also spectral density curves of some chosen image
regions.

Real Data In this section we present reconstruction results on real
data captured by our compact CTIS system. Figure 7 shows a few re-
constructed images in sRGB space and some selected individual spec-
tral bands along with spectral density curves of some image regions to
highlight the discrepancies between the spectrum of real and fake red
peppers.

5 Conclusion

We presented a compact CTIS prototype using a Galilean design and a
ground truth acquisition apparatus that allows to capture high quality
hyperspectral images. We showcased spectral reconstruction and ma-
terial classification capability from CTIS measurements using a deep
learning based approach to reconstruct spatially super-resolved hyper-
spectral cubes and perform semantic segmentation of fake and real
fruits and vegetables leveraging their spectral signature.

146



Material characterization using a compact CTIS with SR capability

Reconstructed RGB From hyperspectralFrom RGB Ground truth

1 
Fake

1 
Real

2 
Fake

2 
Real

1

2

Spectral density curves

GT (Fake)

Reconstructed (Fake): corr=0.948

GT (Real)

Reconstructed (Real): corr=0.937

Wavelength (nm)

GT (Fake)

Reconstructed (Fake): corr=0.948

GT (Real)

Reconstructed (Real): corr=0.937

400 550450 500 600 650 700

400 550450 500 600 650 700

Fake BG Real

.020

.015

.010

.005

.000

.025

.030

.035

.040

.100

.075

.050

.025

.000

.125

.150

.175

Figure 6: Qualitative results on Real/Fake semantic segmentation. We also show spectral
density curves of some chosen image regions.
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Abstract Sulfur dioxide is an ideal tracer to study the partition-
ing of the resistance of gas transfer across the water interface
between air and water because the pH value in water controls
the effective solubility of sulfur dioxide. Friman and Jähne [1]
already demonstrated that it is possible to measure sulfur diox-
ide concentration profiles with laser induced fluorescence (LIF),
but the best excitation wavelength under standard atmospheric
conditions was not known. Here, we report the result of our
investigation to select the best excitation wavelength for sulfur
dioxide fluorescence to reach maximum intensity with the low-
est possible absorption.

Keywords Sulfur Dioxide, Fluorescence Imaging

1 Introduction

Fluorescence imaging has two specific advantages. Firstly, it allows to
measure concentration fields. The simplest setup is to stimulate the
fluorescence by a light sheet to obtain a planar cross-section of a 3-D
concentration field. Secondly, by using the right combination of the
stimulation wavelength and spectral range, it is very specific and can
be tuned to measure the fluorescence of a single chemical component.
Therefore fluorescence imaging has become very useful in life sciences,
fluid dynamics and combustion research. In this paper we describe
fluorescence imaging of sulfur dioxide. It nicely demonstrates that all
details must carefully be considered to set up an optimal measuring
system.
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Our interest in sulfur dioxide is caused by the fact that sulfur diox-
ide is an ideal tracer to study the partitioning of the resistance of gas
transfer across the air-water interface. The dimensionless solubility ex-
presses how much of a dissolved species is contained per volume unit
in water as compared to air. The solubility of a volatile species or gas
in water decides whether it can be transported more easily in water
or in air. A species with a low solubility experiences a high concen-
tration difference in water compared to the concentration difference in
air, because not much of the dissolved species can be transported by a
volume element in water. The transport experiences then a high resis-
tance, i. e., concentration difference in water. In this case the transport
processes in water control the speed of transfer and not those in the air
space. For a high solubility in water, it is the other way round. At a
wind-driven water surface the transition between water-side to air-side
control occurs at a solubility between 500 and 1000 [2, 3].

The physical solubility of sulfur dioxide is about 29 at room temper-
ature [4]. At pH-values larger than 1, sulfur dioxide reacts with water
to form hydrogen sulfite. Therefore, the effective solubility increases
tenfold per pH-value (Figure 1, top). At pH values higher than 4.5, the
solubility reaches such high values that sulfur dioxide is transported
better in water than in air. At a pH-value of about 3.3, the air-side and
water-side resistances are expected to be equal, which means that the
transfer is about half as fast as at high pH-values with pure air-side
and negligible water-side resistance. Niegel [5] verified this in a small
linear wind-wave facility (Figure 1, bottom).

The transfer resistance can therefore be shifted from water-side to
air-side control when the pH-value changes from 2.5 and 4.5 and any
ratio of the transfer resistance between air and water can be set by the
pH-value. This allows a detailed investigation of the partitioning of
the transfer resistance between air and water, which has not yet been
performed at all. Of special interest is the direct measurement of the
concentration sulfur dioxide reaches in air right at the water surface.
This value directly yields the partitioning ratio of the resistance be-
tween air and water. It has never been observed yet to which extend
this ratio fluctuates and which parameters control these fluctuations.

Such a measurement, however, requires to measure vertical sulfur
dioxide profiles in the air down to the wavy water surface using a flu-
orescence technique. Friman and Jähne [1, 6] demonstrated that it is
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air-side controlled

water-side controlled

Figure 1: Top: Effective solubility of sulfur dioxide depends on the pH-value of water;
Bottom: Measured transfer velocities of sulfur dioxide at different pH-values
in a small wind-wave facility [5].
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Figure 2: UV absorption spectra of sulfur dioxide (absorption cross-section) at wave-
lengths from 100 to 400 nm [7].

possible to measure sulfur dioxide concentration profiles with laser in-
duced fluorescence (LIF), although only a suboptimal fixed excitation
wavelength of 223.7 nm was available. Because sulfur dioxide has a
complex absorption spectrum, the best excitation wavelength was un-
known. Competing processes such a fluorescence quenching or disso-
ciation of the sulfur dioxide molecule lower the fluorescence quantum
yield and must be considered.

The paper is organized as follows. Section 2 reviews the knowl-
edge about the absorption spectra and fluorescence of sulfur dioxide.
Then the setup to measure sulfur dioxide fluorescence is explained
(Section 3) and the results are discussed in Section 4.

2 Sulfur Dioxide Absorption Spectra and Fluorescence

Sulfur dioxide has a complex absorption spectrum in the UV (Figure 2),
which is caused by electronic transitions together with changes of the
vibration and rotation state. Measurements of sulfur dioxide by ab-
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Figure 3: Left: Fluorescence absorption cross-section measured at 5–13 µbar pure sulfur
dioxide [8]; right: Absorbance and fluorescent intensity of 10 ppbv sulfur diox-
ide in air at 13 mbar [10].

sorption spectroscopy are possible in the band between 260 and 310 nm
or with a tenfold increased sensitivity in the deep UV around 200 nm.
It is known from literature [8] that the quantum yield of sulfur diox-
ide fluorescence excited in the weaker second absorption band between
260 and 310 nm is low even in pure sulfur dioxide gas at low pressures.
The quantum efficiency for fluorescence is only high in this band at
high temperatures. Sick [9] used it for fluorescence imaging of sulfur
dioxide in flames.

In the deep UV, radiation can dissociate the sulfur dioxide molecule.
Hui and Rice [11] observed that the high quantum efficiency for flu-
orescence at 0.13 mbar decreases from about one at 225.8 nm down to
zero at 215.24 nm by this effect. This is in agreement with the findings
of Ahmed and Kumar [8], who observed that the fluorescence absorp-
tion cross-section (absorption cross-section times fluorescence quantum
yield) shows a strong decrease (Figure 3, left), even though the absorp-
tion cross-section still increases.

Matsumi et al. [10] used fluorescence to measure atmospheric sulfur
dioxide concentrations. They found a maximum fluorescence inten-
sity with an excitation wavelength of 220.8 nm (Figure 3, right). The
pressure in the measuring chamber was reduced to 13 mbar.

No data about sulfur dioxide fluorescence could be found in air at
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Figure 4: Absorption spectrum of sulfur dioxide from [12] smoothed to the line width of
the InnoLas SpitLight Compact OPO-355, data collection by [13].

atmospheric pressures. Therefore the optimum excitation wavelength
under this condition was unclear and a new investigation was required.

3 Experimental Setup

Fluorescence was excited by an InnoLas SpitLight Compact OPO-355
with UV extension to tune the excitation wavelength between 220 and
230 nm with a pulse energy of about 4 mJ at 20 Hz. Within this wave-
length range, the pulse energy of the OPO remained constant. As an
absorption reference we used the measurements from Rufus et al. [12]
as made available by the MPI Mainz UV-VIS spectral atlas [13]. The
high-resolution data were smoothed to the line width of the OPO (Fig-
ure 4). The absorption cross-section at 220.7 nm is about ten times
larger than at 227.8 nm.

A flow of 20 NL/min of dry air set by a mass flow controller was
mixed with a flow of 28.8 NmL/min of sulfur dioxide set by a sec-
ond mass flow controller to obtain a sulfur dioxide concentration of
1440 ppm in air at atmospheric pressure. The mixed flow was directed
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Figure 5: Fluorescence spectrum of sulfur dioxide in air measured by Beronova [14] at
absorption lengths of 55.3 mm and 135.8 mm.

through a Duran glass tube with a diameter of about 6 cm. The OPO
laser beam entered the tube at one end through a quartz glass win-
dow and the fluorescent light was imaged with a PCO edge 4.2 UV
back illuminated UV sensitive camera using a Linos inspec.x 2.8/50
UV-VIS APO prototype lens. The imaging system covered an absorp-
tion distance between 55.3 mm and 135.8 mm, i. e., a laser beam length
of 80.5 mm. Further details about the experimental setup can be found
in Beronova [14].

4 Results and Discussion

In contrast to Matsumi et al. [10] (Figure 3), we found that the fluo-
rescence intensity is about the same at all absorption peaks after the
laser beam intensity has already been attenuated slightly by an ab-
sorption distance of 55.3 mm at 1440 ppm sulfur dioxide concentration
(Figure 5). After a further distance of 80.5 mm, the fluorescence is even
about two times higher at 227.8 nm than at 220.8 nm, because the ab-
sorption there is significantly lower (Figure 4).

For experiments in wind-wave facilities the laser beam has to travel
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a distance of about 1 m in air before it reaches the water surface. In this
experiments it is planned to use sulfur dioxide concentrations of only
100 ppm. Therefore laser beam experiences about the same attenuation
and the absorption peak at 227.8 nm is the then the best choice for
maximum fluorescence intensity close to the water surface.

It could be demonstrated that sulfur dioxide fluorescence measure-
ments are possible in air at atmospheric pressure and an optimum ex-
citation wavelength of 227.8 nm was be found. The higher fluorescence
intensity at higher wavelengths in contrast to the results of Matsumi
et al. [10] (Figure 3) is obviously caused by additional fluorescence
quenching because of more frequent collisions of sulfur dioxide with
other molecules in air. The quenching appears to be higher at lower
excitation wavelengths.
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Imaging radar systems for non-destructive
material testing

An overview of the state of the art, the
limitations and the opportunities of radar

technology.
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Abstract Radar systems have been used for over 100 years to
measure distances and angular positions accurately. Radar sys-
tems benefit from relatively long wavelengths, which means that
most absorption and scattering mechanisms do not have a rel-
evant influence on the propagation conditions of the emitted
electromagnetic waves. As a result, radar systems were and
are used primarily for measurements under poor environmen-
tal conditions. Today, we usually find applications that work
with waves in the meter to millimeter wave range. Especially in
the millimeter wave range, the influence of the atmosphere can
no longer be neglected. Communication systems, in particular,
with their need for large bandwidths, are driving the develop-
ment of components in the millimeter wave range, thus opening
up further fields of application. In this context, imaging radar
systems are increasingly important in various application areas.
This paper will look at the possible applications in industrial
process monitoring [1] [2] [3] [4] [5]. The monitoring of produc-
tion processes benefits from the phenomenon’s importance that
many non-conductive materials are partially transparent to an
electromagnetic wave. Radar systems thus allow a view below
the surface and can therefore measure the material thickness of,
e.g. plastics in extruders. This paper will investigate the advan-
tages and disadvantages of radar technologies and procedures
and their suitability for use in production lines.

Keywords Non-destructive-testing, industrial, application, in-
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line, radar, imaging, synthetic-aperture-radar, MIMO, coherent,
portal-scanner, high-frequency, conveyor belt

1 Distance measurement

Before we look at imaging systems, however, let us first consider how
a radar system measures the distance to an object in the first place.
Usually, explanations use the concept of pulsed radar systems. In the
transceiver path, pulses are generated and emitted. The pulse propa-
gates until it reflects off an object, and the signal is beamed back to the
radar. The time between the transmission of the pulse and the recep-
tion of the reflected pulse is twice the distance between the radar and
the target. If there are several targets in the direction of propagation,
the radar system measures the different echoes, provided the pulse is
short enough. This approach, still used in many air surveillance sys-
tems, is unsuitable for industrial applications. System concepts which
can create extremely short pulses to generate a sufficiently high-range
resolution are expensive. While resolutions in the centimeter or me-
ter range are sufficient for long distances, industrial applications usu-
ally require resolutions in the centimeter to the millimeter-wave range,
sometimes even down to the micrometer range. However, the gener-
ation of extremely short pulses with simultaneously high energy and
the necessary back-end structures with high sampling rates are uneco-
nomical for industrial applications.

For this reason, the basis of almost all low-cost systems are ap-
proaches based on frequency-modulation. Here, a frequency ramp is
emitted. As with the pulsed concept, the transmitted signal is reflected
at the target and radiated back to the radar. The received signal is
mixed with the currently transmitted signal at the receiver. Since the
frequency modulation is continuous, the signal’s transit time to the tar-
get and back means that the currently transmitted frequency no longer
corresponds to the received frequency (Fig. 1). A constant ramp slope
results in constant frequency ωa of the output signal sa:

sa ≈ A · cos( ω̇τt︸︷︷︸
ωa

), with ω̇ = 2π
B
T
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Figure 1: FMCW Principle.

The IF frequency ωa is directly proportional to distance. In contrast
to a pulsed system, the system does not measure time but the frequency
shift. This concept allows more precise measurements than a compa-
rable pulsed system. Another advantage is that the transmitter emits
continuously, so the total transmission power is not bundled into one
short pulse. As a result, a much lower maximum transmission power
is required to achieve the same system dynamics than a single pulse.

2 Mechanical scanners

Close-range applications usually use focusing optics with the object to
be viewed in the focal point. If the object is moved in the focal point,
it can be imaged two-dimensionally. The wavelength of the measur-
ing frequency used determines the achievable lateral resolution. For
a system at 300 GHz, focussing to below 500 µm can theoretically be
achieved with a short focal length. Since radar systems allow phase
and time-of-flight measurement, objects can be reconstructed two- and
three-dimensional. Here, a distinction must be made between resolu-
tion and measurement accuracy. The resolution determines the ability
of a radar to separate two neighbouring objects from each other. The
bandwidth of the radar system determines the minimum distance be-
tween two objects to be divided. It is usually a maximum of 10% to 30%
of the centre frequency of the radar system. For the sake of simplicity, a
distance resolution of 2 mm is assumed. If there is only one scattering
center in this range cell, e.g. a flat surface, the range to this surface
can be determined much more precisely via the phase information in
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Figure 2: Transmission image of a bar of chocolate with (left) and without (right) impu-
rities.

a coherent radar. Usually, the longitudinal measurement accuracy is
higher by a factor of 100 than the lateral resolution of a corresponding
system. Theoretically, packaged products can be inspected in this way
(Fig. 2), but the measuring time could be faster for use in a conveyor
line, so the technology is more suitable for single-piece inspection. This
is especially true for moulded plastic parts where the composition and
structure of internal layers need to be imaged. A fast imaging sys-
tem with a single channel requires a quick mechanical scanning pro-
cess and a high measuring speed of the sensor. High-frequency sys-
tems typically do not use detector concepts that allow continuous wave
measurements with update rates between several thousand and hun-
dred thousand measurements per second. Most scanning methods are
based on a linear motorised XY scanner. The most significant disad-
vantage of 2D scanner systems is the low scanning speed, so a scan
of an area of a DIN A4 sheet can take up to one hour. Faster motor

162



Imaging radar systems for nondestructive material testing

Figure 3: Comparison of the scan paths for a classic XY scanner (left) and a rotating
scanner approach (right).

concepts with a lower positioning accuracy can realise such a measure-
ment in one to two minutes. But even with this speed improvement,
the mechanical 2D scanner concepts are far from the measurement time
needed for inline quality control systems in production lines. The time
loss is mainly caused by braking and acceleration of the linear motor
stages. The change in direction causes a time gap that slows down the
entire measuring system. A promising approach to speed up the mea-
surement is to change from a linear motor concept to a rotating scanner
concept (Fig. 3, right). A transmission measurement is carried out with
these systems, such as the T-Sense. The device under test (DUT) passes
between the two rotating probes. In the current generation of devices,
30,000 measuring points are scanned per second with this fast scanning
method. This concept makes it possible, for example, to check a DIN
A4 envelope within a few seconds.

3 Illustration with SAR method

However, these measurement methods are unsuitable for larger struc-
tures such as window frames or wind turbine blades. For more com-
plex 3D structures, synthetic aperture techniques (SAR) are often used.
With these, the object to be examined is scanned at a greater distance
with a coherent radar, and a synthetic aperture is created. In this case,
no strongly bundling antenna concepts are used, as in the case of close-
range scanning, but rather antennas with a particularly wide antenna
lobe. A SAR radar processor stores all amplitudes and the correspond-
ing phase position of the echo signals of all pulse repetition periods
over a time T from all positions where the section to be observed is
located in the antenna’s footprint. During scanning, the individual re-
flection points of the object to be measured are detected at different
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Figure 4: Test sample and the corresponding SAR image at 120 GHz.

angles, and a focussed image is generated by mathematical methods
such as the ”back projection” algorithm. When using a synthetic aper-
ture in an endless motion, the numerical aperture of the image is deter-
mined only by the aperture angle of the antenna. As the distance from
the target increases, the size of the synthetic aperture also increases so
that the spatial resolution is independent of distance. For this reason,
satellite-based radar systems often use SAR methods for Earth obser-
vation. However, they are also excellently suited for close-range appli-
cations and are used today, particularly for security scanners (Fig. 4). If
you want to use a 3D SAR approach in an inline measurement config-
uration, you can use a TX/RX line and the conveyor belt’s movement
to span the virtual aperture. A fully populated array is technologi-
cally complex due to the high number of channels required. In this
context, MIMO lines with reduced TX/RX channels have recently been
investigated. However, hybrid approaches can also be used that com-
bine mechanical scanner concepts with the assembly line configuration.
There is also the possibility of moving a single-channel system for slow
belt speeds. Here again, a rotating scanning approach is a reasonable
alternative [6]. In the implementation presented, the antenna rotates at
a frequency of 10 Hz, so the duration per cycle (360°) is 100 ms. For a
SAR configuration, the band movement should ideally be orthogonal
to the direction of movement of the antenna. Unfortunately, this is no
longer guaranteed in the side ranges, as the direction of movement of
the antenna corresponds to the direction of movement of the conveyor
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Figure 5: The path of movement of the antenna (yellow), the measuring range of the
semicircle (β) and the side edges of the semicircle where no measurements are
recorded (dark blue area).

Figure 6: Visualisation of the 3D point cloud using the example of an advent calendar.

belt. Therefore, the measuring range is limited to the middle (Fig. 5,
measuring range marked in light blue). Any sectional planes can now
be placed in the resulting 3D point cloud to precise search for product
defects (Fig. 6).
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4 Imaging through MIMO radar systems

However, SAR methods require the movement of either the sensor or
the object to be examined. Therefore, research is currently focusing on
the development of radar-based camera systems. Since fully occupied
antenna arrays are still too costly, MIMO systems are used. MIMO
stands for Multiple-Input Multiple-Output. It is a system consisting
of several transmitting and receiving antennas. MIMO systems can be
developed for different operating modes, the most common being the
design in which each transmitting antenna transmits a time-delayed
transmission signal independently of the other transmitting antennas.
The basic idea of this concept is to use an array of transmitters (TX
array) to illuminate the object under test and an array of receivers (RX
array) to detect the backscattered radiation coherently. This concept
creates a virtual far-field antenna between the transmitter and each re-
ceiver antenna. The thinning of the array is achieved by design. By
folding the TX and RX arrays, a fully occupied antenna array can thus
be simulated. To simulate a fully occupied array with 100 elements,
one needs ten transmitters and ten receivers in the best case and ten
times the measurement time since all transmitters must be switched
through one after the other. The virtual antenna elements’ arrange-
ment is usually made so that the resulting virtual array corresponds to
the geometry of a fully occupied antenna array. The best-known appli-
cation for this technology is the body scanner, which is now installed
at numerous airports worldwide [7] [8]. The illustration (Fig. 7) shows
a typical MIMO image of a person as created with comparable security
scanners. When set up in one location, the MIMO radar system resem-
bles a phased array antenna with a thinned-out antenna array. Each
radiator has its transmit-receive module and A/D converter. But in a
phased array antenna, each radiator transmits only one (possibly time-
delayed) copy of a transmit signal generated in a central waveform
generator. In a MIMO system with sequential control of the system,
the measurement time increases according to the number of transmis-
sion channels. For this reason, MIMO systems are often used in which
each radiator has its own waveform generator with which an individ-
ual signal form can be emitted. This unique waveform forms the basis
for assigning the echo signals to their source. For more effective radar
signal processing, each individual transmit signal can then be specif-
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Figure 7: Radar image of a person taken with a MIMO system at 15 GHz.

ically modified (”adaptive waveform”) to improve the signal-to-noise
ratio (SNR) for each target in the subsequent sampling. Furthermore,
suppose the generation of the respective waveform in the transmitters
is synchronous with each other, i.e. based on a synchronising clock
from a central ”mother generator”. In that case, this is referred to as
coherent MIMO. By increasing the frequency of such systems and com-
bining them with low-cost silicon technology, highly integrated radar
cameras can be developed. The first compact prototypes already ex-
ist [9], but this development is still in its infancy and requires further
steps, especially with regard to integration and the evolution towards
higher frequencies. In the long term, however, 300 GHz radar cameras
could be used in a wide range of industrial areas.

5 Conclusion

In recent years, radar systems have developed into indispensable sen-
sor systems in the industrial environment. Their application area fo-
cuses on measurement environments with very harsh environmental
conditions. At the moment, however, other advantages of radar sys-
tems are coming to the fore. In addition to the high measurement
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speed, research focuses on imaging processes with high spatial resolu-
tion. 3D-SAR concepts are a promising approach. These future works
apply in particular to real-time capability with simultaneous high as-
sembly line speeds.
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Abstract A spectral line is modeled by a Voigt profile, which is
a convolution of a Gaussian and a Lorentzian. The width of the
Gaussian is described by the standard deviation σ; the width of
the Lorentzian, by its lower quartile γ. One common method
of computing a Voigt profile uses the real part of the complex-
valued Faddeeva function, which is conceptually demanding
and whose evaluation is computationally expensive. Other com-
putational methods approximate Voigt profiles by simpler func-
tions. We show that the shape of a Voigt profile only depends on
the ratio ρ = γ/σ and, consequently, introduce a one-parameter
family of standardized Voigt profiles. Then we present a con-
ceptually simple and efficient numerical method for computing
these standardized Voigt profiles – we only require basic nu-
merical integration. Next we compute the second derivative by
a finite-difference formula and determine empirically the rela-
tionship between the shape parameter ρ and the location of the
inflection points described by their quantiles. This empirical re-
lationship suffices to determine the parameters of a Voigt profile
directly from data points and thus avoids the use of computa-
tionally costly, time-consuming, and sometimes failing general
iterative fitting methods. In particular, this new and faster ap-
proach allows more real-time analyses of spectral data.

Keywords Voigt profile, classification, standardization, compu-
tation, line spectra analysis, spectroscopy
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1 Introduction

The centered Voigt profile is defined as the convolution

V(x; σ, γ) =
∫ +∞

−∞
G(x − z; σ)L(z; γ) dz (1)

of a centered Gaussian and a centered Lorentzian,

G(x; σ) =
1

σ
√

2π
e−

x2

2σ2 and L(x; γ) =
γ

π(x2 + γ2)
(2)

with width parameters σ > 0 and γ > 0. For any pair of parameters,
the total area of the Voigt profile is one,∫ ∞

−∞
V(x; σ, γ) dx = 1 . (3)

Thompson reviews some computational algorithms [1]. Based on work
by Johnson, Wuttke provides a library in which the Voigt profile is
computed via the complex Faddeeva function [2].

Section 2 briefly reviews the geometries of the Gaussian and the
Lorentzian. The section particularly stresses that up to scaling and
shifting there is only one shape of a Gaussian - the standardized Gaus-
sian is the shape prototype. Moreover, the inflection point of the Gaus-
sian reveals the width parameter. Section 3 shows that the shape of
a Voigt profile depends only on the ratio of the parameters ρ = γ/σ.
Therefore Voigt profiles form a one-parameter family of the standard-
ized form V(x; 1; ρ) with shape parameter ρ > 0. Then, Section 4 presents
an elementary numerical method to compute these standardized Voigt
profiles. Finally, Section 5 applies numerical differentiation to the com-
puted standardized Voigt profiles and establishes an empirical rela-
tionship between the location of the point of inflection and the ratio
parameter ρ. This empirical relationship shows how ρ and eventually
the parameters γ and σ can be read of a graph of a Voigt profile.

The relationship between the inflection point and the shape parame-
ter allows to match Voigt profiles to line spectra directly without having
to use general iterative fitting algorithms. Section 6 sketches a proce-
dure to do so.
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2 Geometries of the Gaussian and Lorentzian

Of course, the Gaussian does not need an introduction. We review only
briefly the aspects relevant to our treatment of the Voigt profile.

Any Gaussian can be transformed into any other Gaussian by a lin-
ear transformation. So, the tabulated standard Gaussian is the shape
prototype of all Gaussians. See Figure 1.

The transformation rule

G(x; σ/α) =
α

σ
√

2π
e−α2x2/(2σ2) = α · G(α · x; σ) (4)

with scaling parameter α > 0 is of particular interest. For example, for
α > 1 the expression on the right-hand side describes that the graph is
compressed horizontally and stretched vertically by the factor α. The
area stays the same. This has the same effect as, on the left-hand side,
dividing the standard deviation σ by α, i.e. the effect of consistently
compressing the width parameter. Consequently, for all Gaussians, the
inflection points are invariantly one standard deviation away from the
maximum. Also, the inflection points are invariantly located at the
quantiles 0.1587 and 0.8413.

A Lorentzian also looks bell-shaped. See Figure 2. However, a
Lorentzian approaches the horizontal asymptote y = 0 so slowly that
the improper integrals for the expected value and the standard devi-
ation diverge. Regardless of the symmetry about zero, the expected
value and the standard deviation are undefined. We need another
quantity to describe the width of a Lorentzian.

The values ±γ are the upper and lower quartiles. They are the
locations that cut off the top and bottom 25% of the area under the
Lorentzian.

As for the Gaussian we have the transformation rule

L(x; γ/α) =
γ/α

π(x2 + γ2/α2)
=

γ/α

π/α2
(
(α · x)2 + γ2

)
=

αγ

π
(
(α · x)2 + γ2)

) = α · L(α · x; γ)

for α > 0. For example, halving the parameter γ (left-hand side), com-
presses the Lorentzian horizontally by the factor two and doubles it
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Figure 1: The Gaussian with σ = 1. The
inflection points deviate are at
±σ. The left inflection point has
the quantile rank ≈ 0.1587.

Figure 2: The Lorentzian with γ = 1. The
upper and lower quartiles are at
±γ. The left inflection point has
the quantile rank 1/3.

vertically (right-hand side). The area stays the same. The parameter γ
is a sensible width parameter and has an invariant geometric meaning.

3 Standardization and Classification of Voigt Profiles

Let α > 0. For a Voigt profile we obtain the transformation rule

V(x; σ/α, γ/α) =
∫ ∞

−∞
G(x − z; σ/α) L(z; γ/α) dz

=
∫ ∞

−∞
α · G(α · (x − z); σ) α · L(α · z; γ) dz

=
∫ ∞

−∞
α2 · G(αx − αz; σ) L(α · z; γ) dz

Substitute u = α · z, hence du = α dz,

= α
∫ ∞

−∞
G(αx − u; σ) L(u; γ) du

= α · V(α · x; σ, γ)

In particular, we get for α = σ a standardized expression with Gaussian
width parameter 1,

V(x; 1, γ/σ) = σ · V(σ · x; σ, γ) . (5)
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Equivalently, every Voigt profile is a suitably scaled standardized Voigt
profile,

V(u; σ, γ) =
1
σ

· V
(u

σ
; 1,

γ

σ

)
. (6)

The shape of a Voigt profile only depends on the ratio ρ = γ/σ. The
Voigt profiles can be classified into different shapes with respect to the
single parameter ρ > 0.

Now we show that V(x; σ, γ) and V(x; σ/α, γ/α) = α · V(α · x; σ, γ)
with homogeneously scaled parameters have the inflection points at
the same quantiles. Let p denote the x-coordinate of an inflection point
of f (x) = V(x; σ, γ), so p is a zero of the second derivative f ′′. The
second derivative of the scaled function satisfies

d2

dx2

(
α · V(α · x; σ, γ)

)
=

d2

dx2

(
α · f (α · x)

)
= α3 · f ′′(α · x) , (7)

which possesses the correspondingly scaled zero p/α. The quantile
rank at this position is given by∫ p/α

−∞
α · f (α · x) dx =

∫ α · p/α

−∞
f (u) du , (8)

where we substituted u = α · x and du = α · dx. The right-hand side
describes the quantile rank of the unscaled function at the inflection
point p. The quantile rank of the inflection point is a scaling invariant.

Section 5 establishes empirically an increasing relationship between
the shape parameter ρ and the quantile rank of the smaller inflection
point. There is a one-to-one correspondence between the Voigt profile
shapes and the parameter ρ = γ/σ.

4 Quick-and-Dirty Computation of Voigt Profiles

We compute a standardized Voigt profile V(x; 1, ρ) approximately by
suitably truncating the improper convolution integral and by numeri-
cally integrating the remaining definite integral.

Due to the symmetry of the Gaussian, G(x − z; σ) = G(z − x; σ), the
Voigt profile value at x equals the integral with respect to z over the
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product of the Gaussian with mean x and the centered Lorentzian.∫ ∞

−∞
G(x − z; 1) L(z; ρ) dz =

∫ ∞

−∞
G(z − x; 1) L(z; ρ) dz (9)

We know that the values of the Gaussian are very close to zero outside
[µ − 4σ, µ + 4σ], so a sensible truncation is∫ ∞

−∞
G(z − x; 1) L(z; ρ) dz ≈

∫ x+4

x−4
G(z − x; 1) L(z; ρ) dz . (10)

Since both functions, the Gaussian and the Lorentzian, can be approx-
imated quite accurately by polynomials on reasonably small intervals,
a piecewise low-degree numerical integration formula is sufficient for
practical accuracy. We use the iterated trapezoid rule and iterated mid-
point rule so that the proximity of the two estimates indicates how
accurate they are. Moreover, the arithmetic mean of these values pro-
duces the result of the iterated trapezoid rule with twice as many
subintervals. Finally, a weighted average of the two iterated trapezoid
values coincides with Simpson’s rule. These steps are the beginning of
Romberg’s scheme and can be extended, if more accuracy is needed.

To set up the iterated integration rules we divide [x − 4, x + 4] into n
equidistant subintervals of length ∆z = 8/n. The trapezoid rule uses
the nodes zk = x − 4 + k · ∆z with 0 ≤ k ≤ n.

V(x; 1, ρ) ≈ Tn(x; ρ) =
(G(z0 − x; 1) L(z0; ρ)

2
+

n−1

∑
k=1

G(zk − x; 1) L(zk; ρ) +
G(zn − x; 1) L(zn; ρ)

2

)
· ∆z

=
(G(−4; 1) L(x − 4; ρ)

2
+

n−1

∑
k=1

1√
2π

e−(zk−x)2/2 ρ

π(z2
k + ρ2)

+

G(4; 1) L(x + 4; ρ)

2

)
·

8
n

=
8ρ

nπ
√

2π
·
( e−8

2
(
(x − 4)2 + ρ2

)+
n−1

∑
k=1

e−(−4+8k/n)2/2

(x − 4 + 8k/n)2 + ρ2 +
e−8

2
(
(x + 4)2 + ρ2

))
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On the other hand, let mk = x − 4+ (k − 1/2)∆z with 0 ≤ 1 ≤ n denote
the midpoints of the subintervals. The iterated midpoint rule is

V(x; 1, ρ) ≈ Mn(x; ρ) =
n

∑
k=1

G(mk − x; 1) L(mk; ρ) · ∆z

=
n

∑
k=1

1√
2π

e−(mk−x)2/2 ρ

π(m2
k + ρ2)

·
8
n

=
8ρ

nπ
√

2π

n

∑
k=1

e−(−4+8(k−1/2)/n)2/2

(x − 4 + 8(k − 1/2)/n)2 + ρ2

The trapezoid value with twice as many subintervals is the arithmetic
mean

T2n(x; ρ) =
(
Tn(x; ρ) + Mn(x; ρ)

)
/2 (11)

and Simpson’s rule is the weighted average

Sn(x; ρ) =
4 · T2n(x; ρ)− Tn(x; ρ)

3
≈ V(x; 1, ρ) . (12)

Figure 3 shows some computed Voigt profiles for various ra-
tio parameters ρ that have been computed using the above formu-
las with n = 32 subintervals at the equidistant arguments x ∈
{−16.0,−15.9,−15.8, . . . , 16.0}. We use equidistant arguments to pre-
pare for the consistent use of a finite-difference formula to determine
numerically the second derivative of the Voigt profile.

5 Empirical Relationship between the Shape Parameter
and the Points of Inflection

To approximate the second derivative of a Voigt profile based on the
equidistant samples we use the finite difference formula

d2

dx2 V(x; 1, ρ) ≈ V(x − h; 1, ρ)− 2V(x; 1, ρ) + V(x + h; 1, ρ)

h2 . (13)

Figure 4 shows the second derivatives of Voigt profiles for various
parameters ρ that are computed by the finite difference formula. We
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Figure 3: The standardized Voigt profiles
V(x; 1, ρ) for various ρ = γ/σ
ratios and their numerically de-
termined inflection points.

Figure 4: The numerically determined sec-
ond derivatives of V(x; 1, ρ) for
various ρ. The zeros (inflection
points of V) depend monotoni-
cally on the shape-parameter.

Table 1: The positions of the inflection points for various shape parameters ρ. The limit-
ing quantile rank for ρ → ∞ seems to be 1/3, see Figure 2.

Index ν Shape Param. ρν Inflection Points Quantile Rank Qν

Gauss 0 (±1, 0.242) 0.1587
1 0.5 (±1.16, 0.179) 0.2190
2 1 (±1.34, 0.140) 0.2550
3 2 (±1.74, 0.094) 0.2922
4 4 (±2.69, 0.055) 0.3178
5 8 (±4.83, 0.029) 0.3288
6 16 (±9.35, 0.015) 0.3321
7 32 (±18.53, 0.007) 0.3330

Lorentz ∞ n.a. 1/3

see qualitatively that the deviation of the inflection points from the
mean increases with the parameter ρ. We compute estimates of these
positions by finding the pair of neighboring second-derivative values
with a sign change to which we apply linear interpolation. The func-
tion value estimates of the inflection points are also computed as linear
interpolations of the neighboring already computed function values.
The results are documented in Table 1.

According to the scatter plot in Figure 5 we start with the linear
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Figure 5: The location of the points of in-
flection depends monotonically
on the shape-parameter ρ. A
linear fit with theoretically pre-
scribed intercept 1 provides a
reasonable fit.

Figure 6: Relationship between quantiles
of the smaller point of inflec-
tion and the shape parameter.
The shown function is given by
QR = 1/3 − 1/(ρ + C)2.3 with
C = (1/3 − 0.1587)−1/2.3.

model

x = 1 + m · ρ , (14)

in which we choose the intercept 1 from the limiting case as the posi-
tion of the inflection point of the Gaussian. Based on a least squares
approximation for the data points (ρν, xν), 1 ≤ ν ≤ n, we compute the
slope estimate

m̂ =
∑n

ν=1 ρν(xν − 1)
∑n

ν=1 ρ2
ν

≈ 0.536 . (15)

There is another useful relationship. We pair the shape parameter ρ
with the quantile rank of the left inflection point. We have already com-
puted estimates of the symmetrically located points of inflection. Now
we numerically integrate the Voigt profile between the inflection points,
subtract this estimated area from one, and divide it by half to obtain
the quantile. The numerical integration uses the iterated Simpson rule
on the equidistant nodes between the inflection points and, separately,
computes the trapezoids from the inflection points to the neighbor-
ing node inside. The widths of these trapezoid are smaller than the
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equidistant stepsize since we estimated the position (and the value) of
the inflection point by linear interpolation. The resulting quantiles are
listed in Tab 1 and the relationship is shown in Figure 6. By inspired
guessing we have found

QR ≈ 1
3
− 1

(ρ + C)k with C = (1/3− 0.1587)−1/k and k ≈ 2.3 . (16)

6 Application to Line Spectra

To analyze a line spectrum of Voigt profiles we propose the following
procedure. First, numerically compute the first and second derivatives
of the spectral data. A spectral line consists of a subinterval [ℓ, m]
with positive first derivative and a subinterval [m, r] with negative first
derivative. Integrate the original data over [ℓ, r], keeping track of the
integral values from ℓ to (1) the first sign change of the second deriva-
tive, (2) the sign change of the first derivative at m, (3) the second sign
change of the second derivative, and (4) the right endpoint r. Use asym-
metries such as “the value at (4) is not twice the value at (2)” or “the
values at (1) and (3) are not symmetric about (2)” to determine overlap-
ping spectral lines and suitably adjust the values. The adjusted ratio
(1)/(4) determines the shape parameter, the adjusted horizontal differ-
ence between the location of the maximum and the inflection points
determines the parameter σ, and, finally, the adjusted value (4) deter-
mines the required vertical scaling of the Voigt profile.

The details of this procedure, especially the necessary adjustments
for significantly overlapping spectral lines are the subject of current
research.
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