72 research outputs found

    Spectral properties of the trap model on sparse networks

    Get PDF
    One of the simplest models for the slow relaxation and aging of glasses is the trap model by Bouchaud and others, which represents a system as a point in configuration-space hopping between local energy minima. The time evolution depends on the transition rates and the network of allowed jumps between the minima. We consider the case of sparse configuration-space connectivity given by a random graph, and study the spectral properties of the resulting master operator. We develop a general approach using the cavity method that gives access to the density of states in large systems, as well as localisation properties of the eigenvectors, which are important for the dynamics. We illustrate how, for a system with sparse connectivity and finite temperature, the density of states and the average inverse participation ratio have attributes that arise from a non-trivial combination of the corresponding mean field (fully connected) and random walk (infinite temperature) limits. In particular, we find a range of eigenvalues for which the density of states is of mean-field form but localisation properties are not, and speculate that the corresponding eigenvectors may be concentrated on extensively many clusters of network sites.Comment: 41 pages, 15 figure

    Ecosystem Monitoring and Port Surveillance Systems

    No full text
    International audienceIn this project, we should build up a novel system able to perform a sustainable and long term monitoring coastal marine ecosystems and enhance port surveillance capability. The outcomes will be based on the analysis, classification and the fusion of a variety of heterogeneous data collected using different sensors (hydrophones, sonars, various camera types, etc). This manuscript introduces the identified approaches and the system structure. In addition, it focuses on developed techniques and concepts to deal with several problems related to our project. The new system will address the shortcomings of traditional approaches based on measuring environmental parameters which are expensive and fail to provide adequate large-scale monitoring. More efficient monitoring will also enable improved analysis of climate change, and provide knowledge informing the civil authority's economic relationship with its coastal marine ecosystems

    Independent component analysis of magnetoencephalographic signals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Brain source imaging: from sparse to tensor models

    Get PDF
    International audienceA number of application areas such as biomedical engineering require solving an underdetermined linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore identifiability. This problem is encountered in brain source imaging when identifying the source signals from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem has been widely studied during the last decades, giving rise to an impressive number of methods using different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-based approaches, is still missing. In this paper, we propose i) a taxonomy of the algorithms based on methodological considerations, ii) a discussion of identifiability and convergence properties, advantages, drawbacks, and application domains of various techniques, and iii) an illustration of the performance of selected methods on identical data sets. Directions for future research in the area of biomedical imaging are eventually provided

    Exploratory source separation in biomedical systems

    Get PDF
    Contemporary science produces vast amounts of data. The analysis of this data is in a central role for all empirical sciences as well as humanities and arts using quantitative methods. One central role of an information scientist is to provide this research with sophisticated, computationally tractable data analysis tools. When the information scientist confronts a new target field of research producing data for her to analyse, she has two options: She may make some specific hypotheses, or guesses, on the contents of the data, and test these using statistical analysis. On the other hand, she may use general purpose statistical models to get a better insight into the data before making detailed hypotheses. Latent variable models present a case of such general models. In particular, such latent variable models are discussed where the measured data is generated by some hidden sources through some mapping. The task of source separation is to recover the sources. Additionally, one may be interested in the details of the generation process itself. We argue that when little is known of the target field, independent component analysis (ICA) serves as a valuable tool to solve a problem called blind source separation (BSS). BSS means solving a source separation problem with no, or at least very little, prior information. In case more is known of the target field, it is natural to incorporate the knowledge in the separation process. Hence, we also introduce methods for this incorporation. Finally, we suggest a general framework of denoising source separation (DSS) that can serve as a basis for algorithms ranging from almost blind approach to highly specialised and problem-tuned source separation algoritms. We show that certain ICA methods can be constructed in the DSS framework. This leads to new, more robust algorithms. It is natural to use the accumulated knowledge from applying BSS in a target field to devise more detailed source separation algorithms. We call this process exploratory source separation (ESS). We show that DSS serves as a practical and flexible framework to perform ESS, too. Biomedical systems, the nervous system, heart, etc., constitute arguably the most complex systems that human beings have ever studied. Furthermore, the contemporary physics and technology have made it possible to study these systems while they operate in near-natural conditions. The usage of these sophisticated instruments has resulted in a massive explosion of available data. In this thesis, we apply the developed source separation algorithms in the analysis of the human brain, using mainly magnetoencephalograms (MEG). The methods are directly usable for electroencephalograms (EEG) and with small adjustments for other imaging modalities, such as (functional) magnetic resonance imaging (fMRI), too.reviewe

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here
    • …
    corecore