3,446 research outputs found

    Mixed-reality for unmanned aerial vehicle operations in near earth environments

    Get PDF
    Future applications will bring unmanned aerial vehicles (UAVs) to near Earth environments such as urban areas, causing a change in the way UAVs are currently operated. Of concern is that UAV accidents still occur at a much higher rate than the accident rate for commercial airliners. A number of these accidents can be attributed to a UAV pilot's low situation awareness (SA) due to the limitations of UAV operating interfaces. The main limitation is the physical separation between the vehicle and the pilot. This eliminates any motion and exteroceptive sensory feedback to the pilot. These limitation on top of a small eld of view from the onboard camera results in low SA, making near Earth operations di cult and dangerous. Autonomy has been proposed as a solution for near Earth tasks but state of the art arti cial intelligence still requires very structured and well de ned goals to allow safe autonomous operations. Therefore, there is a need to better train pilots to operate UAVs in near Earth environments and to augment their performance for increased safety and minimization of accidents.In this work, simulation software, motion platform technology, and UAV sensor suites were integrated to produce mixed-reality systems that address current limitations of UAV piloting interfaces. The mixed reality de nition is extended in this work to encompass not only the visual aspects but to also include a motion aspect. A training and evaluation system for UAV operations in near Earth environments was developed. Modi cations were made to ight simulator software to recreate current UAV operating modalities (internal and external). The training and evaluation system has been combined with Drexel's Sensor Integrated Systems Test Rig (SISTR) to allow simulated missions while incorporating real world environmental e ects andUAV sensor hardware.To address the lack of motion feedback to a UAV pilot, a system was developed that integrates a motion simulator into UAV operations. The system is designed such that during ight, the angular rate of a UAV is captured by an onboard inertial measurement unit (IMU) and is relayed to a pilot controlling the vehicle from inside the motion simulator.Efforts to further increase pilot SA led to the development of a mixed reality chase view piloting interface. Chase view is similar to a view of being towed behind the aircraft. It combines real world onboard camera images with a virtual representation of the vehicle and the surrounding operating environment. A series of UAV piloting experiments were performed using the training and evaluation systems described earlier. Subjects' behavioral performance while using the onboard camera view and the mixed reality chase view interface during missions was analyzed. Subjects' cognitive workload during missions was also assessed using subjective measures such as NASA task load index and non-subjective brain activity measurements using a functional Infrared Spectroscopy (fNIR) system. Behavioral analysis showed that the chase view interface improved pilot performance in near Earth ights and increased their situational awareness. fNIR analysis showed that a subjects cognitive workload was signi cantly less while using the chase view interface. Real world ight tests were conducted in a near Earth environment with buildings and obstacles to evaluate the chase view interface with real world data. The interface performed very well with real world, real time data in close range scenarios.The mixed reality approaches presented follow studies on human factors performance and cognitive loading. The resulting designs serve as test beds for studying UAV pilot performance, creating training programs, and developing tools to augment UAV operations and minimize UAV accidents during operations in near Earth environments.Ph.D., Mechanical Engineering -- Drexel University, 201

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Mixed Reality on a Virtual Globe

    Get PDF

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    A Tutorial on Geographic Information Systems: A Ten-year Update

    Get PDF
    This tutorial provides a foundation on geographic information systems (GIS) as they relate to and are part of the IS body of knowledge. The tutorial serves as a ten-year update on an earlier CAIS tutorial (Pick, 2004). During the decade, GIS has expanded with wider and deeper range of applications in government and industry, widespread consumer use, and an emerging importance in business schools and for IS. In this paper, we provide background information on the key ideas and concepts of GIS, spatial analysis, and latest trends and on the status and opportunities for incorporating GIS, spatial analysis, and locational decision making into IS research and in teaching in business and IS curricula
    • …
    corecore