128,649 research outputs found

    Large deformation frictional contact analysis with immersed boundary method

    Full text link
    [EN] This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politecnica de Valencia for their financial support received through the projects DPI2013-46317-R, Prometeo 2016/007 and the FPI2015 program.Navarro-Jiménez, J.; Tur Valiente, M.; Albelda Vitoria, J.; Ródenas, JJ. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics. 62(4):853-870. https://doi.org/10.1007/s00466-017-1533-xS853870624ANSYS®^{\textregistered }® Academic Research Mechanical, Release 16.2Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-XAnnavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(June):206–228. https://doi.org/10.1002/nme.4343Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436. https://doi.org/10.1016/j.cma.2013.09.002Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781. https://doi.org/10.1016/j.cma.2014.09.030Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658. https://doi.org/10.1002/nme.3339Béchet É, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954. https://doi.org/10.1002/nme.2515Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954. https://doi.org/10.1002/nme.2515Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271. https://doi.org/10.1016/S0895-7177(98)00121-6De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20. https://doi.org/10.1007/s00466-011-0623-4Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212. https://doi.org/10.1016/j.cma.2014.02.012Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2Dolbow JE, Devan a (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59(1):47–67. https://doi.org/10.1002/nme.862Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036. https://doi.org/10.1016/j.cma.2005.09.025Giovannelli L, Ródenas J, Navarro-Jiménez J, Tur M (2017) Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elem Anal Des. https://doi.org/10.1016/j.finel.2017.07.010Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng. https://doi.org/10.1002/nme.2907Hammer ME (2013) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51(6):975–998. https://doi.org/10.1007/s00466-012-0780-0Hansbo P, Rashid A, Salomonsson K (2015) Least-squares stabilized augmented Lagrangian multiplier method for elastic contact. Finite Elem Anal Des 116:32–37. https://doi.org/10.1016/j.finel.2016.03.005Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47(2):1474–1499. https://doi.org/10.1137/070704435Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64. https://doi.org/10.1002/nme.3306Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36):4323–4333. https://doi.org/10.1016/j.cma.2005.09.008Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008Laursen T (2003) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinLiu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(June):1489–1512. https://doi.org/10.1002/nme.2376Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37–40):2456–2471. https://doi.org/10.1016/j.cma.2010.03.030Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103(6):445–468. https://doi.org/10.1002/nme.4914Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19. https://doi.org/10.1155/2013/953786Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng 299:283–315. https://doi.org/10.1016/j.cma.2015.11.011Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78:1407–1435. https://doi.org/10.1002/nme.2532Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198:2591–2606. https://doi.org/10.1016/j.cma.2009.03.006Piegl L, Tiller W (1995) The NURBS Book. Springer, BerlinPietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381. https://doi.org/10.1016/S0045-7825(98)00388-0Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913. https://doi.org/10.1016/j.cma.2004.06.001Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Methods Appl Mech Eng 256:38–55. https://doi.org/10.1016/j.cma.2012.12.008Ribeaucourt R, Baietto-Dubourg MC, Gravouil A (2007) A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Comput Methods Appl Mech Eng 196:3230–3247. https://doi.org/10.1016/j.cma.2007.03.004Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng 70:705–727. https://doi.org/10.1002/nme.1903Rogers DF (2001) An introduction to NURBS: with historical perspective. Elsevier, AmsterdamTemizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128. https://doi.org/10.1016/j.cma.2011.10.014Tur M, Albelda J, Marco O, Ródenas JJ (2015) Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng 296:352–375. https://doi.org/10.1016/j.cma.2015.08.001Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ (2015) A modified perturbed Lagrangian formulation for contact problems. Comput Mech. https://doi.org/10.1007/s00466-015-1133-6Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873. https://doi.org/10.1016/j.cma.2009.04.007Tur M, Giner E, Fuenmayor F, Wriggers P (2012) 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002Wriggers P (2006) Computational contact mechanics. Springer, BerlinWriggers P (2008) Nonlinear finite element methods. Springer, Berlin. https://doi.org/10.1007/978-3-540-71001-1Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225. https://doi.org/10.1002/nme.1222Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods. https://doi.org/10.1002/nme.162033070

    A Multiscale Thermo-Fluid Computational Model for a Two-Phase Cooling System

    Get PDF
    In this paper, we describe a mathematical model and a numerical simulation method for the condenser component of a novel two-phase thermosyphon cooling system for power electronics applications. The condenser consists of a set of roll-bonded vertically mounted fins among which air flows by either natural or forced convection. In order to deepen the understanding of the mechanisms that determine the performance of the condenser and to facilitate the further optimization of its industrial design, a multiscale approach is developed to reduce as much as possible the complexity of the simulation code while maintaining reasonable predictive accuracy. To this end, heat diffusion in the fins and its convective transport in air are modeled as 2D processes while the flow of the two-phase coolant within the fins is modeled as a 1D network of pipes. For the numerical solution of the resulting equations, a Dual Mixed-Finite Volume scheme with Exponential Fitting stabilization is used for 2D heat diffusion and convection while a Primal Mixed Finite Element discretization method with upwind stabilization is used for the 1D coolant flow. The mathematical model and the numerical method are validated through extensive simulations of realistic device structures which prove to be in excellent agreement with available experimental data

    Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes

    Get PDF
    A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may occur when the updated Lagrange method is applied, can be avoided. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities and numerical diffusion. Prediction of contact phenomena such as gap openning and/or closing and sliding with friction is accomplished by a special contact element. The method is demonstrated by simulations of an upsetting process and a wire drawing process

    Space-time adaptive finite elements for nonlocal parabolic variational inequalities

    Get PDF
    This article considers the error analysis of finite element discretizations and adaptive mesh refinement procedures for nonlocal dynamic contact and friction, both in the domain and on the boundary. For a large class of parabolic variational inequalities associated to the fractional Laplacian we obtain a priori and a posteriori error estimates and study the resulting space-time adaptive mesh-refinement procedures. Particular emphasis is placed on mixed formulations, which include the contact forces as a Lagrange multiplier. Corresponding results are presented for elliptic problems. Our numerical experiments for 22-dimensional model problems confirm the theoretical results: They indicate the efficiency of the a posteriori error estimates and illustrate the convergence properties of space-time adaptive, as well as uniform and graded discretizations.Comment: 47 pages, 20 figure

    Finite element modeling and analysis of tires

    Get PDF
    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included
    • …
    corecore