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Space-time adaptive finite elements for nonlocal par-.. »lic
variational inequalities

Heiko Gimperlein®P1*, Jakub Stocek®?

¢ Mazwell Institute for Mathematical Sciences and Department of Mathemw. = s, Heriot—Watt
University, Edinburgh, EH14 4AS, United Kingd- ..
b Institute for Mathematics, University of Paderborn, Warburger Str 100, 3. 98 Paderborn,
Germany

Abstract

This article considers the error analysis of fini*e e »~.t discretizations and
adaptive mesh refinement procedures for nonlocal ’~namic contact and fric-
tion, both in the domain and on the bounda. -~ For a large class of parabolic
variational inequalities associated to the fractionai .aplacian we obtain a priori
and a posteriori error estimates and stud, tb: resulting space-time adaptive
mesh-refinement procedures. Particula emp. asis is placed on mixed formula-
tions, which include the contact forces as » L. orange multiplier. Corresponding
results are presented for elliptic pr-".!~ms. Our numerical experiments for 2-
dimensional model problems confirm tu. theoretical results: They indicate the
efficiency of the a posteriori error estimates and illustrate the convergence prop-
erties of space-time adaptive, ¢ well s uniform and graded discretizations.

Keywords: fractional Laplacian; -ri tional inequality; space-time adaptivity;
a posteriori error estimates, a 7 ciori error estimates; dynamic contact.

1. Introduction

Variational ir equa. “ies for time-dependent nonlocal differential equations
have attracted receat interest in a wide variety of applications. Classically,
parabolic obstac. oro' tems arise in the pricing of American options with jump
processes [57, v0]; cuurent advances include their regularity theory [10, 56] and
the a priori analysi of numerical approximations [12, 38]. Mechanical problems
naturallv inv. '~ contact and friction at the boundary with surrounding ma-
terials. For n.local material laws, they are intensely studied in peridynamics
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[18, 47, 55], but even for local material laws boundary integral for .. ations
give rise to nonlocal problems [29, 36, 39]. Friction also plays a role n nr alocal
evolution equations in image processing [17, 33, 46], and obstacle proble.. < arise
in the study of nonlocal interaction energies in kinetic equations [21].

For local differential equations, the pure and numerical ‘.nal '~ of vari-
ational inequalities has a long history [51], especially motiv.*e . by contact
problems in mechanics [42, 44, 61]. Of particular current ir . cest 1. numerical
analysis have been dynamic contact problems for time-dep ndent « quations, in-
cluding adaptive mesh refinements [40, 43], high-order [8] a. 1 Nit .che methods
[19, 23]. Their analysis is crucial for applications fromr tire “vnamics [7, 40] to
blood flow in aortic valves [4].

This article considers the systematic error analysis »f the four standard
parabolic variational inequalities [51] associated to he factional Laplacian as
a nonlocal model operator: obstacle problems ana “iction, both in the domain
and in the boundary. Particular emphasis is | -wecu vu their mixed formulation,
which computes the contact forces as a Lagran,~ multiplier. Numerical ex-
periments present the efficient space-time « 1ap .. mesh refinement procedures
obtained from the a posteriori error estimav ;. We also obtain corresponding
results for elliptic problems.

To be specific, let 2 C R™ be a b. 'mded, n-dimensional Lipschitz domain
with boundary 0. The integral fractional Laplacian (—A)* of order 2s € (0, 2)
with Dirichlet boundary condit’ons . defined by the bilinear form

_ Cags (u(z) —uy))(v(z) —vly)) 4 4
alu,v) = 2 //(Q R Ry Q) dydr.

|z — y["+2e
2s g n+2s
on the fractional Sobr ~v space H*(Q2), and ¢, s = % For f €
(H*(£2))* the associated eneryy is given by
1
E(U> = 70’(1}71}) - <f,1)> ) (1)

2

where (-, -) den. *es pai.ng between H*(2) and (H*(2))*. We study the elliptic
and paraboli~ '-ph. - and 2-phase problems associated to the minimization of
E.

Given y =~ H*('1) with xy < 01in Q¢ = R™\ Q, the time-independent obstacle
(1-phars :) preblem for (—A)® minimizes the energy over K, = {v € Hj(Q) :
v>xie in§

Pr > A. Find u € K, such that E(u) < E(v) for all v € K,.

Foir s € (%,1), the Signorini (thin 1-phase) problem corresponds to an

obstacle g € Hsfé(f) on a codimension 1 subset of Q. With K¢(Q2) = {v €
H%C(Q) vl > gae onT}:

Problem B. Find u € K such that E(u) < E(v) for allv € K.




For friction (2-phase) problems, the energy contains a Lipschitz ¢ .. muous
functional,

js(v) = /S}'|v\da: , FeL>*(Q),S CQopen , (2)
i) :/f}'|v|ds, Fer=()
Problem C. Find u € H{() such that
E(u) +js(u) < E(v) +js(v), Vv € 15(C).

The frictional contact (thin 2-phase) problem ag. '™ requres s € (%, 1):

Problem D. Find u € HZ, () such that
E(u) + jp(u) < E(v) + (0} Yo TE(Q).

The parabolic variants are given by t"-~ corresponding gradient flows, see
Section 6.

In this generality, this article discus.es “he finite element discretizations
for the associated elliptic and para’. ... - 'ational inequalities. We discuss a
time-dependent discontinuous Galerkin .. *mulation for the variational inequal-
ities and a mixed discontinuous “*alerkin formulation. In space, continuous
low-order elements are used. T.ey res 'lts of the article present a unified error
analysis for the different probic.~s: /n a priori error estimate is obtained in
Theorem 6.14 (mixed), resy :ctiely .heorem 6.2 (variational inequality), while
for f € L?(Q) an a poste.' ' erre ¢ estimate is the content of Theorem 6.18,
respectively Theorem 6.7. Cori. ~,onding results for the time-independent prob-
lem are presented in S .cu. n 5.

The a posterio’. er or estimates lead to fast space and space-time adap-
tive mesh refinemen. - rocedures. Numerical experiments in Section 8 provide
a first detailed ,tudy ot chese procedures for both the time-independent and
time-depender.. nr,ble’ 1s. For obstacle and friction problems they confirm the
reliability ar- efhc. .cy of the estimates and compare to discretizations on
graded and unifor, » meshes. In the model problems, the adaptive method con-
verges with “wice ’ae convergence rate of the uniform method.

For time-ir lependent problems, adaptive methods have long been studied
as fast sol = for the nonlocal boundary element formulations of contact prob-
lem. |0, . oundary element procedures for time-dependent problems lead to
integr. ~ equations in space-time [36], unlike the evolution equations considered
in this acticle. An a posteriori error analysis for nonlocal obstacle problems
has been studied in [49], based on the associated variational inequality. The
implementation and adaptive methods for fractional Laplace equations are con-
sidered in [2, 3, 24], without contact. Furthermore, spectral nonlocal operators




have been of interest [50]. For motivations from continuum mechanic . = [27].

The article is organized in the following way: Section 2 recalls the de.. ~itions
and notation related to the fractional Laplacian as well as the suitabic Sobolev
spaces. Section 3 discusses the nonlocal variational inequalities anc ~tablishes
the equivalence of the weak and strong formulations. Section 4 ~sr ribes the dis-
cretization. The a priori and a posteriori error analysis for t . (ime-.. dependent
problems is presented in Section 5. The error analysis for the tir. e-dependent
problems is the content of Section 6. After discussing imp ~mer ational chal-
lenges in Section 7, in Section 8 we present numerical :xper’ments on uniform,
graded and space-time adaptive meshes based on the .~ .ed f rmulation.

2. Preliminaries

This section recalls some notation and some b. “ic properties related to the
fractional Laplacian (—A)®*, 0 < s < 1,inabl ...icu wipschitz domain Q C R™.
The fractional Sobolev space H*(2) is define. hy [39]

H*(Q) = {v e L*(Q) : | | 1s(q) < o0},

where | - |fs(q) is the Aronszajn-Sloboded™ i) . »minorm

() —o(y)?
|U|HS(Q) // P |ZE _ y|n+25 dydx

H?(Q) is a Hilbert space endc ~d wit . the norm

[0 s ey = vl p200) + [V Hs(0)-

The closure in H*(Q) ¢ the su.space of functions v € C*°(Q) with v = 0 on
OQ\ T is denoted by I2,(?). As common, we write Hj(€2) = Hjo(€2). The

dual space of H%(Q is lenoted by Hf_cS (Q), where I'C =T \F, and we denote
the duality pairing .~ -, -).

On H#(Q2) ve ¢ finr a bilinear form as

_ Cys (u(z) —uy))(v(z) —vly)) , o
a(u, )) ~ 9 //(QXIR”)U(]R"XQ) ‘LU _ y‘n+23 dydx ,

7 IT%F(I—S)

where , o = . It is continuous and coercive: There exist C,a > 0

such thav
a(u,v) < Cllullgs|olas . a(u,u) > allulFs (3)

for all u,v € H*(2). Note that the fractional Laplacian (—A)® with homoge-
neous Dirichlet boundary conditions is the operator associated to the bilinear
form a(u,v). For more general boundary conditions see [25]. By the Lax-
Milgram lemma, (—A)® : H5(Q2) — H~*(2) is an isomorphism.




For sufficiently smooth functions u : R” — R, (—A)*u(z) is given L,

(-Ayu) = ene Py, [ HEZt g, (1)

Rn T — y[nt2s

where P.V. denotes the Cauchy principle value. (—A)® may #.so Fe acined in
terms of the Fourier transform F: F((—A)%u)(€) = |¢|?>* Fu(€). his formula-
tion shows that the ordinary Laplacian is recovered for s = 1, ~vhich may be
less obvious from the bilinear form a or the integral expre. sion (4 .

Let H be a Hilbert space corresponding to H{(€2 or “.=\"2) for respective
problems and let H* be the dual space of H.

For the analysis of time-dependent problems, *he Bo hner spaces W(0,T)
prove useful:

W(0,T) = {v e L*(0,T; H) : &;. < L“(0,T; H*)} .

It is a Hilbert space with norm

T
o[l 0,7) = /O {I0eol7 + e} dt+Ho(T)lI72q)
and continuously embeds into C°(0,T; L~ (0)).

Furthermore, let (-,-) denc e the pairing between H and H*, or H 375 and
H*"% where appropriate.
3. Elliptic and parab.lic .~vi tional inequalities

In this section we i itrou "ce a large class of elliptic and parabolic variational
inequalities associat . vith the fractional Laplacian.

3.1. Variational ‘neq. “lity formulation

Let a(-,-) b the bilinear form associated with the fractional Laplacian, and
K C H, be aclo. 1 ccavex subset. We then consider the following problems:

Problem '.1. Fi. du € K with f € H* such that
a(u,v —u) > (f,v —u),forallv e K.

Give~ 7: 7. — R convex and lower semi-continuous, we further consider:

Pro.le'a o.2. Findu € H, with f € H* such that

a(u,v —u) + j(v) — j(u) > (f,v —u),for allv € H.




The friction functionals js and ji from (2) are of particular inter .. Exis-
tence and uniqueness to both Problems 3.1 and 3.2 can be found ir 145. Theo-
rem 2.1], [37, Theorems 2.1, 2.2].

Also for time-dependent variational inequalities, K denotes a r one ~ ~tv closed
convex subset of H. We define Wg(0,7) = {v € W(0,T) : v(v, = K,a.e.int €
(0,T)}. For a given initial condition up € K we obtain the _.oblewn.

Problem 3.3. Find u € Wk (0,T) with f € L*>(0,T; H*) and u( J) = ug such
that

T T
/ (Oru, v —u) + a(u,v —u)dt > / (fyv—wu) for =M o e Wg(0,T).
0 0

Furthermore, let j(-) be convex, lower semi-co.. inucas and integrable for
all v e Wg(0,7).

Problem 3.4. Findu € W(0,T) with f € L*(0, ™ H*), u(0) = ug, and j(ug) <
oo such that

T T T
/ (Oru, v—u)+a(u, v—u) dt—i—/ j)= o Nde > / (f,v—u)dt forall v € W(0,T).
0 0 0

Existence and uniqueness of solutic ~s to Problems 3.3 and 3.4 follows from
[28, Ch.1 Section (5.2)] and [13, Ch.2 Section (2.1)]. In later sections we provide
a unified treatment of the abor ¢ pichlems, both in the time-independent and
time-dependent case.

3.2. Strong formulations

For the a posterior’ ~rror estimates derived later in this work, the strong
formulation of Problemns A—_ proves relevant. Problems A and B correspond
to the weak formule 101 in Problem 3.1, and we refer to [56] for a discussion of
their strong formu.. *ic 1s:

Problem I (st ong form of Problem A). Find u such that
(=AYu>f inQ

u=0 inQ° (5)
Wz (W= )(AFu-f)=0 Q.

Proble m II ( trong form of Problem B). Find u such that

(=AYu>f inQ
u=0 inQ° (6)
u>g, (u—g)o(u)=0 onl.

Here (=A)*u — f = o(u)dg defines a unique function o(u) on r.




We now consider the strong formulation of the friction problems ~ ud D,
corresponding to the weak formulation in Problem 3.2. They read:

Problem III (strong form of Problem C). Find u such that

(=A)Yu< f in .2
u=20 in..“ (7)
[(=A)Yu— f| < F, u((A)’u—f)+ Flu=0 inSC

Problem IV (strong form of Problem D). Find u sur.. chat

(=AYu<f inQ
u=0 int"~ (8)
lo(u)| < F, uo(u) + Flu|= 0 =7,

Here (—A)*u — f = o(u)dx defines a unique , ‘nction o(u) on r.

Lemma 3.5. a) If u is a sufficiently sn.ww. ~'ution to Problem C, then u
satisfies Problem III. Conversely, a solutior. .o Problem III is also a solution
to Problem C.

b) If u is a sufficiently smooth solution to Problem D, then u satisfies Problem
1V. Conversely, a solution to Problen. 'V us also a solution to Problem D.

Proof. a) We use the formulati~~ of Problem C as a variational inequality,
i.e. Problem 3.2. Substituting { = v - w into Problem 3.2 for any £ € Hj(2),
we find

alu, ) +j(u+&) —j(u) = (f,8) -

Let £ € C°(Q2) such that ¢ var shes on the set C = {x € S : u(z) = 0}.
Replacing ¢ with —¢ w . ~btain

w,6) = j(u =€) +34(u) < (f,6).

For |£| < |u| from the ‘efinition of j we see that

ju) =5 (Glu+&) +ju—9E) .

N

It follows t at
a(u,§) = (f,€),

or (—2)%u = j in Q\C. Furthermore, for arbitrary ¢ we have from the definition
of j ana *he * 1angle inequality:

a(u,§) +3(§) — (f,€) > 0.

Since F > 0, using this inequality with £ and —¢& we conclude

la(u, &) — (,6)] < j(€) = /S Flel.




As this holds for all &, the first asserted inequality in S follows. Fl.. lly, to
deduce the complementarity condition in S, we use £ = £u to obta’a

a(u,u) +j(u) = (f,u) = 0.

Therefore
/ u((—A)*u — f) + Flu| dz = 0.
C

As the integrand is non-negative, it vanishes almost everyw. ere. T iis concludes
the first part fo the assertion.

We now show that a solution of the strong Prc-lem JTT ,atisfies the weak
formulation. To do so, multiply the first equation of 1 2blem III with a test
function v € H3(€2) and integrate over 2:

/v(—A)Su dz > /J”H le. 9)
Q Ja
Using

a(u,v) — (f,v) —/C/r—A,Su—f)v d, (10)

we see that

a(u,v—u)=(f,v—u)+jv)—j(u) = /ﬂ((—A)Su—f)(U—U)+f(|U|—\U|) dz = 1.

/ (11)
It remains to show that the righy “and side is nonnegative. If |(—A)*u— f| < F
in a point x, then by the ¢ atart condition u(z) = 0. Thus,

I= /C (~A)u— (o - u)+ o] - u) dz = /C (~A)u— f)(v) + Flo| dz

> / C)(=AYu— flo] + Flo| de
C
> 0.

If |(=A)*u— f| = F in 2, then there exists p1 > 0 such that u = —p((—A) u—f).
Therefore,

= [ =AY u— Pt Flol +ul(-A)u— 12— pFI(-A)u — flde

~
v o

> / = =A)*u — fllv| 4+ Flv|dz

We con 'ude that u satisfies Problem 3.2.
b) The corresponding proof for the frictional contact Problem IV is analogous
to part a), with the additional key observation:




Lemma 3.6. Assume A : H*(2) — C is continuous and A(¢) = A(Y) w. ~never
1

¢l = Yl|g. Then there exists a unique, continuous X : HOE_S(F) — C <v h that
Alp) = A(Eyp),

EERPS
where E : Hy 2(T) — H*(Q) is any extension operator-

Proof. As a composition of continuous maps, A\(p) = Al F¢p, '~“.es a continu-

1o~
ous functional X\ on Hy ().

Concerning uniqueness, if By, By : Hy *(T) — H*(s.) are " vo extension oper-
ators, (E19)|z = (Eap)|z = ¢. By assumption on A, w. conclude A(E1¢) =
1

(T) — C. O

iy
A(Eyp), so that A o B} = A o Ey defines a uniq.~ A : 7"

J

-S

From the Lemma one obtains that the dic wuuon (—A)*u— f is supported

~ 1.~
on I'. In order to belong to H S(I‘), it o<t be p.oportional to dg. O

4. Discretization

For simplicity of notation, we as: .-~ th. t  has a polygonal boundary. Let
Th be a family of shape-regular trianguic“ions of 2 and V;, C H§(2), s € (0,1),
the associated space of continuons piecewise linear functions on 7, vanishing
at the boundary. Furthermorr, let V'Y c HS (©2) be the space of continuous
piecewise linear functions on ‘;, var shing on IC. Let My be the space of
piecewise constant functior s or Ty. We denote the set of nodes of T, by Pp
(including the boundary nc ') ar 1 the nodal basis of V}, (resp. Vgc) by {¢i}.
Let S; be the support o’ the pie. :wise linear hat function associated to node 1.

Let K} be the di- -ate counterpart of K. That is, for Problems A and B,
K, - KO(Q))h = {Uh €V :tvp > xp a.€.in Q}, (12)

and
y rc ~
Koy o (5(Q)n = {von €V, toplg > gpae.on T (13)

The set K}, is i onempty, closed and convex. To simplify the presentation,
we assume & ~onf,rming discretization K C K. In the case of the obstacle
probler . this holds if x € Vj, while for the thin obstacle problem this holds
if gp ic the re triction to I' of a function in Vj. The appropriate spaces of
restricted ...ction on I' are denoted by Vj, or M. See [59] for the adaptations
nece. sar / 1o nonconforming discretizations.

For th. time discretization we consider a decomposition of the time interval
I = (0,71 into subintervals I = [tx—1,t;) with time step 7. The associated
space of piecewise polynomial functions of degree ¢ = 0,1 is denoted by T,.
We define W;,-(0,7) =V, ® T, and Mpy,(0,7) = My ® T,. For the adaptive
computations, also local time steps are considered. We denote these discrete




local-in-time spaces by WM(Q,T), respectively MHT(O,T). Similar’y ‘o the
time-independent case, let W} _(0,7) and MY, (0,7 be the spaces ~f ¢ .screte
functions vanishing on I'C.

The discrete elliptic problems associated to the two class:s o' v. ~*ational
inequalities 3.1 and 3.2 are:

Problem 4.1. Find uy, € Ky, such that for all v, € Ky,

a(un, vy —up) > (f,vp — up).

Problem 4.2. Find vy € V;, such that for all vy, € Vy,,

a(up, v — up) + j(vp) — jlun) > (f;vn = up).

For the discrete parabolic problem we introdu. ~ the .pace-time bilinear form
Bpa(:,-) given by
M

BDG(U,U):Z/I B o) {u,v)dt. (14)
k=1""1k

Similarly as in the elliptic case, the discrcte | ~rabolic obstacle problem associ-
ated with Problem 3.3 is given by:

Problem 4.3. Find up, € Ky, such that jor all vy, € Ky,

M

[
BDG(uhT; Uhr — Uy, )+ ‘:<[uh7] ! s (Uh‘r - uh7)+>
k=1

M
ZZ/(fvth_uhT>dt'
k=17 1k

Here v} = lim,_. . «(t" +s) and [v]™ = v} —v™. As the obstacle is assumed
to be independent Hf ti ae, the convex subset K}, is defined in a similar man-
ner as K. The disc. tization of parabolic friction problems associated with
Problem 4.4 rer ds:

Problem 4.4 Fy, 7. € Wy (0,T) such that for all vy, € Wy (0,T),

M M
Bpe(unr-vp, =1 .7) + Z/ J(vnr) = 3 (une) dt + > (une)* " (0nr — unr) 4)
=11k k=1

M

> / <favh7'_uh7'>dt'

k=17 1k

We onclude the section with a variant of [54, Lemma 2.7] adapted to frac-
tional operators. It establishes the coercivity of the bilinear form Bpg(-,-) in
combination with the jump terms. Note that the proof in [54] uses only the
coercivity of the bilinear form a(-,-) and therefore applies to both local and
nonlocal problems, in the appropriate function spaces.

10




Lemma 4.5. Let Bpg(-,-) be defined as in (14). Let vy, € Wy, (0,T,. Then,

M
BDG(UhTa UhT) + Z<[Uh7']kila UZ;_D >
k=1
M—-1

. 1
ollvnr [Farian + 5lvhe s Nz 5 2 lonrl "z + 5 vie- 2o
k=1

5. Elliptic problems

In this section we discuss the error analysis of ellipt ~ v .riat onal inequalities
introduced in Section 3. We address a priori and « noste _ri error estimates
for such problems both for the variational inequality anu a mixed formulation.
Combined with known regularity results the a pric * esti nates allow us to de-
duce convergence rates for the specific problems 1._‘roduced in Section 1.

5.1. A priori error estimates for variational in. ~ualities

We first discuss a priori error estima <> . - fractional elliptic variational
inequalities corresponding to contact proble - s in the domain. Corresponding
results for the thin problems can be deriv ~C ~na.sgously. Observe an analogue of
Falk’s lemma for elliptic variational inequa.’ties [32], as adapted to Problem 3.1:

Lemma 5.1. Let u € K and up € Ky he solutions of Problem 3.1 and 4.1,
respectively. Then,

lu = unllFy S inf {1 = =A)%u [, — vl|u}
veEK

+ inf {ll = (=A)ull gl = vnlli + [lu— vl
h h

Accounting for j(-). 1 simila: result holds for Problem 3.2.

Lemma 5.2. Let u ¢ H an. up € Vy, be solutions of Problem 8.2 and 4.2,
respectively. Let j(-, be 1 proper, conver, l.s.c. functional on H. Then,

[ = =A% ge|lun —vllg + j(un) —j(v)}
+U;Lf,‘{'if — (=A)*ul| g

lu—unly S inf ¢
veE {

w—vpll +7(u) = j(on) + lu—opl3}-

Remark 5. . If eq ality holds in the variational inequality, the residual f —
(—A)%u vanu hes - ad we recover Cea’s lemma. In the general case, f — (—A)%u
does nc . vanich and the convergence rate reduces by a factor 2. Since we assume
that K, C K, V, C H, we have the internal approximation of the variational
inecnalitic., Jous we can choose v = uj, and so the first infimum in Lemma 5.1
and “.er wa 5.2 vanishes.

We riefly discuss explicit convergence rates for the elliptic problems. Under
the assumption that u € Hg(Q) for some ¢ > s, we can use standard interpo-
lation argument to establish a convergence rate of discrete solution. Note that
for the obstacle problem as defined in Problem A, K, = {v € H§(Q) : v > x}
and Ko, = {vp, € Vi 1o > x}-

11




Lemma 5.4. Let f € L>(Q) NV}, and x € V. Let u € K, and up, _ <5, be
solutions of Problem 3.1, 4.1. Then,

lu—unllmg) < Ch 2 ([ul gy, (15)
for0<s<1<4.

Remark 5.5. Provided that f € H(Q2) for some r > —s and @Q ¢ C*, the
solution u € H{(2) of the unconstrained problem

a(u?v) = <f,”U>, v e HS(Q)7

belongs to

H*»t  s4r<
CAS Hs-i—%—a s+1 >
, ?

NF DN

This implies that for f € L?*(Q), we may « ._.ci wue solution u to have up
to s + 3 derivatives in L*(©2). We conclude ti.m the estimate in (15) that
lu — unllay@) < O(h'/*=¢). The smoo. e . ¢ the solution is limited by
the behavior near the Dirichlet boundary ¢ ., where u(z) ~ d(z,0). This
behaviour has been exploited in [2] who s"¢ mad .hat the solution admits 14+s—¢
derivatives in an appropriate weighted Sob ~lev space. For further discussion of
the expected regularity of solutions o. “ariaivional inequalities, see [13], as well

as [11, 12] for refined estimates in the case of the nonlocal obstacle problem.

5.2. A posteriori error estime e for vc riational inequalities

In this section we discus, a pos.-.iori error estimates of elliptic variational
inequalities in Problems 2.1 a'.d 3 2. We provide a careful analysis of Prob-
lems A and C with conte >t 1. “*he .nterior of the domain €2, so that correspond-
ing bounds for the thin . ntact Problems B and D readily follow. For simplicity,
we consider data f, x € Vj, .. the finite element space; for the modifications to
general f, x see [49 oYy
Consider Problem * V/e define the Lagrange multiplier o € H* as

(g,0) = (f,v) — a(u,v), Yv € H. (16)

Let o5, € Vp Lo the « screte Lagrange multiplier defined by (op,, vn) = (f, vp) —
a(up,vp) fcr vy € 7. Also let 1, = f — (—A)°up,. Then the following result
holds:

Lemn a 5.6 | Dbstacle problem). Let u, uy be solutions of Problem 3.1 and
4.1, resp. ~tiv .y, associated with Problem A. Assume that f € Vy, and x € Vy,.
ThL "y

le = unlligs ) + lo = onllzr—c () S llrn = onllz-s () = (onsun — x)-
Proof. By definition of ¢ and o}, the following equality holds

a(u - Uh,U) + <U - O'h,U> = <f,’U> - a(uh7v> - <0-hav> = <Th7v> - <O-hvv>' (17)
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Choosing v = u — uy, in (17), we obtain

o= w3y < 5 = onl ey + g 10— ) — (o — o — .
We note that for any w € H§()
(o0 — op,w) = a(up, — u,w) + (rp, — op,w",
which leads to estimate

[|u— Uh||12t15(9) + 1o = onllzr-s) Sllrn = onllF—s (@) — (7 = Chow—up). (18)

To determine a computable bound for the second term, .~ the obstacle problem
here, we note that (o, u — up) > 0. In addition,

(on,u —up) = (op,u—Xx) — (Oh, - —X)

< —(Ohsun — A,
The result follows by combining the above st ua.es. O

Remark 5.7. The thin obstacle problern. . s .ito the same framework. Here,
the convex set K C Hz(2) is replaced by

Ky(Q) ={veH:(Q) : g > gae onT} (19)

Estimate (18) then holds verb: cim, if he second term on the right hand side is
taken on I'. Note that (o,ul~— ) = and u|g — g > 0 almost everywhere on
f, so that

(on — o, s - uplg) < (o, g — unlz)- (20)

This implies:
Lemma 5.8 (Signc.in. problem). Let u, up be solutions of Problems 3.1 and

4.1, respectively, . ~oc’ated with Problem B. Assume that f € Vy, and g € Vy,.
Then,

2

lJu— Uh”%fgn(h, + 1= Uh||12nrs(g) S llrn — Uh||H_s+%(l:) — (on, g — un|g)-

For the nterio™ friction problem, let o be defined as in Equation (16) and
let oy t . ve the discrete counterpart of o.

Lemme. 5.9 /.nterior friction problem). Let u,uy, be solutions of Problems 3.2
anc | 2 respectively, associated with Problem C. Assume that f € Vy. Then,

Ju — U,L”%qg(g) + [lo — Uh||12Lrs(Q) Slrn = Uh||?qfs(g) + [|(lonl = F)ﬂ@rs(g)

+ ((Jonl = F) 7, lunl) — (on, un) + (|onl; [unl)-

13




Proof. As in the proof of Lemma 5.6 we obtain the following estimat ..
l|u— Uh||%{g(9) + o = onllz-s) S llre = onllF-s ) = (0 = onou — 1w, (21)

In order to estimate the last term of the right hand side, we x oit ti.e fact
that (o, u) = (F, [ul) and (o, up) < (F, |unl),

(0 —on,up —u) < —(F, |ul) + (on, u) + (F, [un|) — (on, ur,
< A(Jon] = F)*, Jul) + (F, lunl) — (on, un)

< A((lon| = F)", [u —unl) +((|lon] = F, + #, junl) — (on, un)
<|l(lonl = F) Nla—s@llv = unllgs@) © lon = F) 7, lunl)
— {on, un) + {lonl, [ual)-
(22)
The result follows by combining the estimates abov. Ol

Similarly, we have the following result for tu. friction problem:

Lemma 5.10 (Friction problem). Let u,« e solutions of Problem 3.2 and
4.2, respectively, associated with Problc . D. .‘ssume that f € Vy. Then,

2
H+3(T)

2
Hs+5 (D)
+ ol = F) 7 lunlgl) = (ons unls) + (lonl, [ualg))-

lw = unllZre ) + o= onll “lrw = opl|}s iy + I (onl = F)

Remark 5.11. In the absence . conta t, the a posteriori estimate reduces to a
standard residual error estimate < ir |3], since o, oy, vanish.

Remark 5.12. In line with .he iterature on integral equations, e.g. [39, 49], in
this article we find reliable » ostr riori estimates for the error of the numerical
solution. The estimates are found to be efficient in numerical experiments, but
even for boundary elcmeny methods only partial theoretical results for their
efficiency are availal .c 39], Chapters 10 and 12.

5.8. Mized form-latio.

It proves v efu! to ‘mpose the constraints on the displacement only indi-
rectly. To do so, we ceformulate the variational inequality as an equivalent
mixed syste.n in -vhich the stress o enters as a Lagrange multiplier. We de-
note it in 1nis con ext by A = f — (—A)°u to emphasize its role. Physically,
it corresm~nas ' che contact forces and indicates the contact area within the
compu ationa. domain, see also [5, 14]. We focus mainly on the mixed formu-
lations .~r preslems with contact in the whole domain, thin problems follow in
a s ~ilar way.

Let +(-,-) be the bilinear form associated with the fractional Laplacian and
let b(u,v) be a continuous bilinear form given by b(\,v) = (f,v) — a(u,v). Let
A be closed convex subset of H*. For f € H* and w € H, we consider the
mixed formulation:
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Problem 5.13 (Mixed formulation). Find (u,\) € H x A such that
a) a(u,v) +b(A,v) = (f,v) p
b) b(lu’ - Aau) < <:u - A7w>7

for all (v,pn) € H x A.

Theorem 5.14. Let f € H*, x € Hj(?), g € Hs*%(l:), s:Hy Q) =R and
Jp + H(Q) = R be convex lower semi-continuous function.s defied in (2).
Suppose that A and w in Problem 5.13 is given by:

() ANo={pe H?*(Q): Yve HiQ), v<0, v >0 w=x,
(i) Ay = {pe H2*(T): Yo e H*2(T"), v <0, (uv) >0}, w=g,
(ii0) Ay = {p € H*(Q) : Vv € Hy(Q), (. S'T‘ N}, w=0
(i) Ag = {p e H35(T): Yo e H2(1 1=~ <(F,|v])}, w=0.

Then the variational inequality formulatic - “» Provlem 8.1, respectively 3.2, is
equivalent to Problem 5.13 for Problems A- D

Let Ay be closed convex subset of 1, 'i‘he discrete mixed formulation
reads as follows:

Problem 5.15 (Discrete mixed formulat.on). Find (up, Ag) € Vi, X Ay such
that

{(a) a(un, vy, + b A, vp) = (f, o) (24)

(0) b( i - Am.up) < (pg — Ag, w),
holds for all (v, pr) € /n X Ap
Remark 5.16. For problems - -D the corresponding Ay and w in Problem 5.15
are given by:
(1) o1 ={pg € My : pg <0}, w=x,

i) Pog = {pm € My : pg <0}, w =g,
(Zlb: Arg = {,LLH € My : |,LLH| < ]:}, w =0,

(v) Ay = {um € My : |pn| < F}, w=0.
For compi teness, we recall the proof of Theorem 5.14 for obstacle (i) and

interio1 frictio . (7i7) problems. The proof for Signorini (i7) and friction (iv)
prohlems 1s similar.

Proof r (i). First note that the variational inequality is equivalent to: Find
u € K such that for all v € K

(25)




To see a), we set v = 2u, respectively v = 0, in the variational ineque .,

a(u,u) > (f,u) , resp. a(u,u) < (f,u) , (26)

which shows a). Part b) follows by adding (26) to the variatioral 1. ~uality.
Conversely, the variational inequality follows by subtracting (Zoa) = m (25b).

Further observe that v € H3(Q2) and A € H™%(Q2) satisfy \2?}) if and only
if

u € K and b(\,u) = (x, A). (27)

Indeed, (27) implies (23b). Conversely, if (23b) holds. ~ve ...; choose p = 0
and p = 2\ to obtain (27).
We now show the equivalence of (25) and (23):
(25) = (23): If we set A = f — (—A)%u we have by (=7h): (f,v) — a(u,v) <0
for all v € H§(2) and therefore A € A,. The first 'ine in ( 23) holds trivially.

By (25a) we have that b(A,u) = (A, x) and fu.*her.. ~ ¢, there exists 4 € K
such that b(u, @) = (i, x). Also, 2u — 4 € K and so [*»m (25) we get,
a(”vaiu):«f?ﬁ*“\‘ (28)

Substituting v = @ — u into (23a) gives us
b\, u—u)=b\,v, —(,x)=0. (29)
As u € K and by (27) we conclude ... ‘2:) holds.
(23) = (25): Now let (u, \) € H3(Q2) x ... be the solution to (23). By (27), we
know that v € K. Furthermore, b (23a) and (27) we have
a(u,v—u) = (f,v—u)=b(A,v -u) = (,v—u)+QA, x)=b(A,v) = (f,v—u). (30)
O
Proof of (iii). We begin by s. ~wi 1g that (3.2) = (5.13). From the variational
formulation in Problen ? 2 we observe that we seek u € H(€2) such that
a(u,u) +js(u) = (f,u), (31)
G(U,,’U) +]S(v) > <f7 U), (32)
for all v € H§("¢). We lefine p € As to be a Lagrange multiplier given by
js(v) =sup,e, b .,v)
The first line 0. ‘7.13) hold immediately. In order to show that (23b) holds
we notice t'at cor bining (23a) with (31) gives
Js(u) = b(\ u). (33)
(5.13) > (3.2)
Now let (+ 2 € H§(€) x Ar be the solution to (5.13). By (5.13a) we know that
a(u,v —u) = (f,v —u) — b\, v—u)

= (f,v—u) — b\ v)+ b\ u) (34)
= {fiv—u) = b(Av) + js(u)
> (f,v—u) —js(v) + js(u),

where we used the definition of j(v). The result follows. O
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Note that we allow for possibly different meshes for the displacem ... v and
the Lagrange multiplier .

As typical for mixed problems, this is crucial in order to assurr the “screte
inf-sup condition:

Lemma 5.17 (Discrete inf-sup condition). There exist consto its C,[5 0 such
that for H > Ch

5 b(pm, vn
Blluslli- < sup 2t 0n)

, Vo € My, (35)
v EVY ||’Uh||H

In practice, for our choice of V;,, Mg a constant C' = ©. is s ifficient. See, for
example, [41] for details.

5.4. A priori error estimates for mized formulatic <

In this section, we present a priori error estin. tes tor the elliptic problem
with contact in the domain; results for thin : __l ... iollow almost verbatim.

Lemma 5.18. Let (u,\), (up,Ag) be s-tions of Problems 5.13 and 5.15,
respectively. Suppose that Ay C A. Then

=l Sl = onlfy 1 e+ A= Nl
+b()\_/“’ '\ - /X_Mva%
for all (vp, pr) € Vi, X Ag.
Proof. Using the coercivity of .he bili ear form af(-,-), (23a) and (5.15a),
allu —upl|3 < alu—up,u- up) =« u,uw) + alun, up) — alu, up) — a(up, w)
<a(u,v) b0 v = by u) + (f,u—v) + (= A w) + (= Ap,w)
+a(up, 1) +b(Arn s vn) — 0w, up) + (f,un — vn) — 2a(u, up)
=alup —u,vp  n) +b(Ag — N\, v —u) — by — A\, up — u)
=b(r = mou) = b(pr — A u) + (pr — A w) + (p— Ag,w).
By boundedness >f a «.~1 b and using Young’s inequality
allu —upllf < Srella —unllyy + Cr/ellu = opllf + Cofellu — val3
+ Cac||A = Au3ge + Cocllu — unl|fy + Co/el|X — |-
— = Ay u) = b(pm — A w) + (pa — A w) + (= Ag, w).
Choosi'.g ¢ > 0 sufficiently small, the result follows by combining the terms
lu—u, 11%. O
Th w.  ~ 5.19. Let (u,\), (up, Ag) be solutions of Problems 5.13 and 5.15,
respec ‘" vely. Suppose that Ay C A. Then
lu—unllfr Sllw —onllE + 1A =l + 11X = Al
IA=Anllae S llw—unllg + 1A — plla-

for all (vp, pr) € Vi, X Ag.
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The theorem adapts the classical error analysis for mixed formuv’.. ons of
variational inequalities for second-order elliptic operators [15, 16]. O tim .l con-
vergence rates depend on the regularity of solutions for the differert va.. tional
inequalities. This regularity analysis is well understood for obstacle . blems,
see Remark 5.5.

Proof. For the first estimate we use Lemma 5.18. For the seconu ~art, we use
the discrete inf-sup condition

- b — A, v
Bl — puatllge < sup DU = AH )
vn€V), vl m
On the other hand, from (23a) and (5.15a)
b(pr — Am,vn) = b(pm,vn) — b(Ag,vp)
=b(pm,vn) + alup,vn)  (f,on)

(
=b(pm,vn) +alup .,  w{w,vn) — b\ vp)
=b(pa — X\op) +alup,  u,vp)
<c(IXN=pullas |7 = anllg) l|valla-

Together with the inf-sup condition we -¢ <ludz
g — prlla ST o + lu— g

The assertion follows from the triangle inequality. O

5.5. A posteriori error estimc es for 1 ized formulations

In this section, we preseat a w i’.ed approach to derive a posteriori error
estimates for elliptic conts ¢t r.oblems. The contact condition only enters in
the estimate for b(Ag — Y, u  wup' below.

Theorem 5.20. Let “u,." (up,Amg) be solutions of Problems 5.13 and 5.15,
respectively. Then

lu —wunlF = = Xllzre S llrn = Aull e+ 0Aa — A w — up).
Proof. From th . cor rcivity and the definitions of A, respectively A

lu— uh||?q§(p; Sagt o up,u—up) = a(u—up,u— o) + alu — up, vy, — up,)
=a u—up,u—vy) —b(A— Ag,vp —up)
= fyu—wp) — alup,u—ovp) — b\ u—vp) — b(A— g, vp — up)
= (rp,u —vp) — b A, uw — vp) +b(Ag — A\, u — up)
Sl = Al llu — onllg + 0(Ag — A u — up,).

The st'nate for u follows from Young’s inequality. For A\, we note

b()\ - )\H, ’U) = b(/\ — /\H,’U — 'Uh) — a(u — uh,vh)
- <f,7J—’Uh>—CL(Uh,’U—’Uh)—b(AH,U—Uh)—f—a(Uh—U,U)
= (Th,v — vp) — b(Ag, v — vp) + a(up — u,v)

Sllrn = Aullallv — villg + v — upl| gl[v] &
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for all vy,.
Choosing v, = 0 we obtain

b(A = A, v) S ([|rn — Aml

He + [ —un|g)|v] g
The assertion follows from the inf-sup condition. O]

The following lemma provides computable estimates f.c the tetm b(Ag —
A, u — up) in case of Problems A-D.

Lemma 5.21. Let (u, ), (up,Ag) be solutions of T roblems 5.13 and 5.15,
respectively, associated with Problems A-D. Suppose *h-, Ap C A. Then, for
the respective problems,

(2) b(Ag — A u —up) <b(Ag, x — up),
(7)) b(Ag — Ay u — up) <b(Ag,g9 —up),
(id3) b((Ag = A u —un) <[[(IMm| = F) o5y — unllmgcsy = b((1Au| = F) 7, funl)
+o([Aul, Junl) 2 mup),
() b = A u—up) <N(Aal = F) llnjome wllu = wnll ooy — b1t = F) 7 lunl)
+ (| g, [un), = Ag,up).

for Problems A-D, respectively.

Proof. (i) In the case of the obst ... “roblem, we use the fact that b(A\, u—up) >
0 and the constraint u — y >/ to obt.in

b(Ag — A\ u- up =0 g, u—up) — b\, u—up)
< b()\HaX—Uh)

(7i) In the case of t' . Signormi problem, we notice that b(A\,u — g) = 0 and
b(Am,u—g) < 0. c(he :stimate follows directly as in the case of the obstacle
problem 1.

(73) In the case of the interior friction, we notice that b(A\,u) = j(u) and
b\, up) < j(up, “« obtiin the computable estimate

bAg — Nv —up) = b(Ag,u) — (Mg, up) — b\, up) + b(\, w)

(Am,uw) — b(AE, un) + j(up) — j(u)

(un) = b(Am, un) + (| Ae| = F) T, [ul)

(un) = b(Am, un) + ([ Am| = F)T, [u — upl)

+0((|Au| = F)F, unl)

=b(([Au| = F)" Ju—unl) = b(hg, un) + b(|Au ], [unl)
= b(([Au| = F)7, lunl)

<|[(IAm| = F) [z llw = unllmg sy — oA, un) + b(|Am |, [unl)
= b((|Ae| = F)~, |un).

b
<j
<j
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We conclude by using Young’s inequality for the first term.

(iv) In the case of the friction problem, we proceed as in the case of i .terior
friction. The only difference is in the estimate of the duality pairi~e in he last
line of (5.5). O

Note that in the absence of constraints, the a posteriori r ror estunate re-
duces to a standard residual error estimate as in [3]. In order .~ be able to
compute the negative Sobolev norm of order —s on the risht ha. d side of the
estimate we can employ localization arguments as in [22, 49]. " he following
result provides a computable estimate of the negative » o.ms.

Lemma 5.22. Let R € L?*()) which satisfies (R, ¢;) = o for illi € Py,. Then

IR S S IR,
1€PR\Ch,

where h; := diam(S;) and Cy, is the contact 1 .vo.

This estimate goes back to [22, Thee . - 4 1. in the absence of contact.
For contact problems such estimates are con 7 only used away from the contact
area, see for example [6].

Note, however, that for sufficient. = 1. o> ) < s < 1 the residue r — Ay does
not lie in L2(2), but only in H=5(Q) for ~ome ¢ > 0. [49] extends the above
arguments to rp — Ag € LP, wit" * < p < oco. For In our setting, this leads to
an a posteriori error estimate .s in T1 2orem 5.20:

2s+d(1—2)
lu = wnllfps @) + I = Au ey S D h PN = A= i + Ami) il s,
iEPh\Ch

+ b()\H —\u— uh),

J. s; giPi
fsi ®i
Remark 5.23. Tt 2 imp. ~it constants in the error estimates depend on s through
the continuity 7 ad r vercivity of the bilinear form, the trace theorem for Sobolev
spaces, and prop. <ies of the triangulation as in [22]. In particular, they remain

bounded for s — 17

where g; =

fuor t e interior nodes ¢ € Pp, and g; = 0 otherwise.

6. Par-olic problems

In vhis sec ion we discuss the time-dependent counterparts to the elliptic
vari~tional inequalities. The time dependence introduces additional difficulties
in th> 2 ialysis.

6.1. A priori error estimate for variational inequalities

We begin by the extension of Falk’s lemma for parabolic Problems 3.3 and
3.4. We present the proof only for Problem 3.4. The proof for Problem 3.3
holds verbatim, omitting terms related to j(-).
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Lemma 6.1. Let u € Wg(0,T) and up, € Kpr be solutions of Pr .. m 3.3
and 4.3, respectively. Let v € Wi (0,T) and vy, € Kp NC(0,T; H Tl en,

M-1

k X M
l[u— uhT”%Q(O,T;H) +[1(u — Uhf)(iHQm(Q) + E [[w — unr] ”%Q(Q‘ o (U — apr)” H2L2(Q)
k=1

S f{llf = Au = Ol 20,15 llunr = vliz20, 7

+ inf  {[J(u— Uhr)yniz(g) + If — Au = Ol 0,751y ¥ — Vel L2 0,1 H)
Vhr €EKpr

+ [|0¢ (u — UhT)H%?(O,T;H*) + Jlu— UhTH%?(O,T;H g

Lemma 6.2. Let u € W(0,7T) and upr € Wy (0,T) - solz *"uns of Problem 3.4
and 4.4, respectively. Let v € W(0,T) and vpr € Wy (0,2 NC(0,T; H). Then,

M-1

k M
Il = wnr 207y + 100 = une) G2y + Y~ M= 1) + (= wne) Y[ F2q)
k=1

M
S ;££{||f — Au — Ol 207,01« ~r - VllL20,mm) + Z/I Juns) — j(v)dt}
k=1 Ik

+ it = o)V [+ Au = Bl 2o o

U — Vnr || L2 0,71
thEKhT ( )

M
+ 100w = o) 220,71y + 1w = Onr 220, + Z/} J(u) = j(vnr) dt}.
k=1""k
Proof. Adding together the cou. muov, and discrete problems gives us

M
Bpe(u,w)+Bpa(unmu 7) S (e F 7 up A

k=1

T
< / (0o —vpe) + (f, unr — v) dt +Bpg(u, v) + Bpa(Unr, Vnr)
0

A

_|_Z: [j(u)—j(th)dt+/ j(uhr)_j(v)dt

k=" Ik Ik
7
¥ - -
+ L<[uh7]k lvvh‘ri B+ (uo, (upr — Um)%-
k=1

Subtras ¢ing t"e mixed terms Bpg(u, upr)+Bpa(upr, u)—|—ZkM:1<[uhT]k’1, u’j__1>

and us. g the act that the jump terms of the continuous problem are zero,
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k1>

BDG(U — Upr, U — uhT) - <[u - uhT]k_lv U — Uhr

||M§

ol

1
T
(fsu—vne) + (f,unr —v)dt =B, ~( o, u — vpr) — Bpa(u, upr — v)

IA
17

+ /j — j(vnr dt+/ Jlun ) —j()dt
k
M
+ <[u—uh7]k_l,vh —uﬁ_ Y Bpr (4 — tpr, u — Upy).

k=1
Due to the coercivity of the left hand side by Lem.. = 4.5

M-1
l[u— Uhf”?ﬁ(o,T;H) + [[(u — uhﬁ’)g-”%?(()) + Z % — uhT]kH%?(Q) +[[(u — “hT)—M||2L2(Q)
1

S = Au = Bpull 2011 (lw = s 200 + e — vll200,1:m))

+Z/ _.7 UhT)dt+ / ]\thT —j(’l))dt
M

+ Z/ (=t + upr, Op(r = vpr)) + alt — upryu — vpr) dt — > ((u— upe)®, [u = v, ]F).
=171k

k=1
We can choose v, € C(0,7 H) a..? 0

M—1
= unelBagorraany + 10— une) s 2oy + 30 Mt = uneFl 22y + 10— w3y

Sf—Au QtUHL?(O,T;H*) (||U - Uhr||L2(0,T;H) + [lunr — U||L2(0,T;H))

+ ||U =, Nz om0 (v — vpr) [ L2 0,755y + 10— Vnr |l L2 0,7:8))

+Z/ ) = o) et [ ) = o) e,

k
and applyi: g Cauchy-Schwarz yields the result. O

Remark Z.3. 1. order to obtain explicit convergence rates for the discrete so-
lution we wou d like to know the regularity of the solutions. In the case of
the unc. ~str»'ned problem, we know that if f = 0 and ug € H3(2), then the
solt ...~ » & W(0,T) of the parabolic problem

T T
/ (Opu,v) + a(u,v)dt = / (f,v)dt, ve LQ(O,T;HS(Q)), (37)
0 0

satisfies u € L%(0,T; H§() N H*+(Q)), where £ = min{1/2 — ¢, s}. We refer
to [13] details related to the classical cases.
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The regularity theory of the variational inequalities discussed here is ! ... devel-
oped than for the local elliptic case of the Laplacian. This in partic’ 1ar - pplies
to the thin obstacle and friction problems, and even for the stand~rd p. -abolic
obstacle problem regularity is only understood under strong hvnotu.-es [20].
See [12, 56] for regularity results in the elliptic case and [26] fc. th > ~hallenges
of optimal a priori estimates for the classical Signorini proble..

6.2. A posteriori error estimate for variational inequalitic ;

In this section we discuss a posteriori error estimates fo. the r .rabolic vari-
ational inequalities in Problems 3.3 and 3.4. As befo ¢, we assume that f as
well as the constraint belongs to the finite element sp. ¢
Since a posteriori estimates require the precise forw. “latic~ of the problem to
determine a fully computable bound, we restrict ourselve ' to Problems A-D.
We begin by discussing the parabolic obstacle probi. m. W2 define the Lagrange
multiplier o for the parabolic problem in the follov. ‘ng tashion as in the elliptic
case,

(o,v) = (f,v) — a(u,v) — (D, v), /€ L*0,T; H). (38)

Furthermore, we set the residual r,, of ‘he parabolic problem in a similar
fashion as for the elliptic problems,

Thr = f — (_A)s'h“r — Opupr, (39)
and we define o3, € Wj,(0,T) to be the liscrete counterpart of o given by
(Ohrs Vhr) = (fsVnr) — a(up s Vhr ) — (Otinr, Vhr)y Yonr € Wi (0,T).  (40)

We will restrict ourselves to *he .. <v ;sion of the piecewise constant discretiza-
tion in time. However, gen' rali- ation of the arguments follows directly. To this
end we consider a piecewisc ' 1ear mterpolant # in time, defined by

; tr —t
w =+ T ), (41)
Tk
for all t € (tx_1,t;' Tl s allows us to carry out similar analysis as in the case

of elliptic variationai = -equalities. We avoid unnecessary repetition of the argu-
ments here and pres >nt tne estimates directly.

Theorem ».4 (Obstacle problem). Let u,upn, be solutions of Problems 3.3
and 4.3, re. mective J, associated to the parabolic version of obstacle problem A.
Assume *" at j _ Wy (0,T) and x € Vy,. Then the following computable abstract
error ¢ stimate holds

T
(v “"'-’U')H%Z(Q) +/0 lJu— Um”%{g(m + [[0(u — in)”%rs(ﬂ) + o= UhTH%I*S(Q) dt
T
S llu = UhT)(O)H%?(Q) + l[@nr — Uh'f“%{S(Q) + lIrar — UhT||12LI—S(Q) dt
0 0

T
- A <Oh'r? Uhr — X) dt.
(42)
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Theorem 6.5 (Signorini problem). Let u, up, be solutions of problem .. Prob-
lems 8.8 and 4.8, respectively, associated to the parabolic version ¢ Sir norini
problem B. Assume that f € Wp,.(0,T) and g € Vy. Then the fc'lows,. > com-
putable abstract error estimate holds

T
1(w = une)(T) 1720 +/ lu = unr s, ) + 10 (u = un) - + llo = onel|? dt
0 r / H

—H(E)
2 T 2 2
S Hw = unr ) (0)[[72(q) +/ [tnr = unrllgs ) + IThr = Onrllr—s (o) dt
0 r

T
_/0 <0h77uh7 _g> dt.
(43)

Theorem 6.6 (Interior friction problem). Let w, ‘~. e solutions of Prob-
lems 3.4 and 4.4, respectively, associated to the . ~rabolic version of interior
friction problem C. Assume that f € Wp,-(0,7 .. 1uen the following computable
abstract error estimate holds

T
[ (uw — Uhr)(T)H%%Q) +/0 [Ju — Uhr”%{g o (e — uhT)H?'—[*S(Q) + o — Uhr”%rs(g) dt

.
S llu = Uhr)(O)H%?(Q) + 73 N — Uhr||%{5(s2) + lIrar — Uhr||%rs(9) dt

T
+ /0 I(lonl = F) 02 —cqy + ((onl = F) 7, lunl) — (on, un) + {|onl, [ual) dt .
(44)

Theorem 6.7 (Friction p»oble n). Let u, up, be solutions of Problems 3.4 and
4.4, respectively, asssocictew ' th  parabolic version of friction problem D. As-

sume that f € Wp,(0,T  Then we following computable abstract error estimate
holds

T
2 2 2 2
(w0 = unr ) (D)7, + / llt = wnrllzs ) + 10 (u = wne)lgg-o0) + llo = UhTIIH_H%(f) dt
T
S = O+ [ e = el o0+ e = sy
[ _
+ ] H(|<7h\—f)+\|2,5+%(f)+<(|0h\—f) Nunlgl) = {on, unlg) + (lonl, [unlz]) dt.

(45)

6.3. M wed for nulation of the parabolic problems

“milarly as for the elliptic problem, it proves to be useful to impose the
cons. a’ at condition indirectly. Thus we reformulate the variational inequality
into a .~ixed formulation. The Lagrange multipliers A provide a measure to
what extend is the equality violated. Note that both Problems 3.3 and 3.4
are covered by this reformulation. We present results for parabolic version of
Problems A-D.
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Let f € H* and w € H. Let a(-,-) be the bilinear form associ... ! with
the fractional Laplacian and let b(u,v) be a continuous bilinear fc m ¢ efined
analogously as for the elliptic problems. We define the continuous ana .“screte
mixed formulation in the following way:

Problem 6.8. Find (u,\) € W(0,T) x A such that,

{ fOT Ou,v) + a(u,v) + b\, v)dt = fOT (f, \dt,

46
) ST b(p— A, w)dt < T = At (46)

for all v € W(0,T) and p € A.

Theorem 6.9. Let f € H*, x € Hj(?), g € Hs_%(f), ‘s H5(Q) — R and
Jp e H%(Q) — R be a convex lower semi-continvous | nc’.onals defined in (2).

Suppose that A and w in Problem 6.8 is given by:

(i) Ap = {1 € W*(0,T) : Yo € W(0,T), v <0, \, >>Oa.e.t€(0,T)}, w =y,
(i1) Ay = {pu € L*(0,T; Hi_s( )):Yve L 0. H (I‘)), v <0, (p,v) >0, ae. te (0,7}, w=g,
(iii) Ap = {p € W*(0,T) : Yo € W(0,T), |, v, < (F,|v|) ae. t € (0,T)}, w=0
(1v) A~ = {p e L*0,T; H’*S(F)) 210, T Hs*%(f)), (u,vy < (F,|v]), a.e. t € (0,7)}, w=0.
Then the variational inequality formulation in Problem 3.3, respectively 3.4 is
equivalent to Problem 6.8.

In our case, discretizatior in ."me i, done by discontinuous Galerkin of order
q = 0 as in the case for vari (tio” al inequalities. However, the analysis holds for
an arbitrary ¢ with mino: ~d’astr.ents. For extensions of ¢ to higher degree,
see [52].
Find (u;,A\;) € W,(0..") . KOT such that:

M
Z/ 8tu'r;fUT W(U/ 7UT)+b()‘77UT)dt+Z<[U’T]k_17 - 1+ Z/ f’vT
I k=1 I

(47)

M
Z/b — M7, Ur dt<2/ ,u’7'7u7' dt
Iy,

k=1
(48)

for all - € W. (0,T) and p, € KOT, where KOT is ~the time discrete counterpart
of piecew..  _onstant approximations in time of A,.

Eve. tho .., one can consider the continuous parabolic problem pointwise, dis-
cretize on in time by discontinuous elements introduces additional jump terms
which inuply that the semidiscrete formulation cannot be treated pointwise.
However, we can focus on one time step only:

[ @rir o)+ atury o) b vt (b = [ (fon)a
Iy,

Iy,
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Note that as before, we can use the definition of Bpg(-,) to and .. *e the
semi-discrete and discrete problem in the mixed formulation:

Problem 6.10. Find (up, A\g) € Wp(0,T) X Ay such that,
T T
Bpa(un,vn) +/ b(Aw,vp) dt = / (f;vn) dt, (49)
0 0
T T
/ b()\H — /J,H,uh)dt < / <)\H — [, ',’wh>d1 (50)
0 0

for the fully discrete problem for all vy, € Wy (0,T) ar 1 . € Ag.

Problem 6.11 (Discrete mixed formulation). Find \ -, npr) € Wp,(0,T) X
Ag, such that,

M M M
Bpa (e, vne) + Y / b(Apr, vpr) b+ (T 17 by = 3 / (f, vnr) dt,
k=1"1r k=1 k=1"1r
(51)

M r M
Zj Mg, — ,UH'r;uhT)dt < Z/ <)\H7— — ,uHT,th>dt,
=11k =11k
(52)
for the fully discrete problem for all vy, € Wy (0,T) and pg, € A

Remark 6.12. For problems A O the ¢ rresponding Agr and w in Problem 6.11
are given by:

(i

(ii

KOHT = {MFT - ;AIH, cpgr < 0ae.te (O,T)}, w =X,
Asiir ={ o - € M}IT cpupr <0ae. te (0,7}, w=g,

(Z’LZ) Argr = [‘I’HT € L&HT : |MH7-| < Fae.te (O,T)}, w =0,
(iv) Aggy. = Lagr € MYy, |ups| < Fae t € (0,T)}, w=0.

6.4. A priori e tim tes for mized formulations
We turn our atte. “ior to the parabolic mixed problem. In order to avoid un-
necessary 1 petiti- n, we denote A,, As, Ay, Ag by A as well as their respective

semi-discre. » and  iscrete counterparts by Ag, 1~\T, and A H+. The results are
presente & Jor prublems with the constraint imposed in the domain only. The
argum nts for ‘hin problems follow directly.

Note the" star dard DG theory applies and we can introduce the following result.
See .. —ample [58].

Lemm. ~ 6.13. Let (up, A\gy), (upr, Aggr) be solutions to Problems 6.10 and 6.11,
respecitvely. Then

T M M
(T =t ooy | et S 302 [ 10funlfrated [ W= et
k=1 k k=1""k
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Proof. Let u(t,-) be an interpolant in time of degree ¢ of uy(t,-) suck . at
ﬁ(tka ) - uh(tka ')) v k:

/ (a(t,-) — un(t, '))tg dt =0, for ¢ <gq—2.
Iy,

By standard arguments for all ¢ € I,
- 2¢—1 .
i) = (e ) gy < O™ [ ofunl e, (53)
k

Writing up, — upr = (up, — @) + (4 — upr) = €1 + ez, we note “hat

M
2g—1 il
ler]22i0) < €3 7 / 10Fun |, At (54)
k=1 k

Therefore, we only need to establish a bound . es. By modified Galerkin
orthogonality for suitable v,

/ (Drea, v)+a(ez, v)+bA=Ar, v) dt+([ea]" * ) = —/ (Brer,v)+aler, v) dt —([e]F7L, vF 1),
I I
Since for all v € W;,.(0,7),

/(atel,v)dt+;m’ Ry o,
Iy,

the equation (55) becomes

/ (8rea, v) + aleg, v) +b(d — Ay ) b +([ea) 1, 0F 1) = / a(er,v)dt.
Iy Iy,

Furthermore, note that
. k—1,+ k k—1,+ k—1,+ k—1 _k—1+
2/1 Oy ez, ea) dt+2([es)” ' ey ) = leSlIF2q) — ey T ITagq) +2les 2y — 2(es ey )
k

k k—
2 ||62H%2(Q) — [le3 1||2L2(Q)~
Thus,
e ey —lh "2 +2 [ alen,en) -+ A ea)dt <2 [ aler,ea)dt,
k k

and by iter vting tt -ough the time intervals,

- M
lled" 117 (Q)+2:/l a(ez, e2) dt < ||68||%2(Q)+22/I la(er, e2)[+b(Arr—Am, e2) dt.
k=0""k

1 =071k

Usi 'y . ~wrivity and continuity of bilinear forms

M
M
e ooy + 3 [ llealfat
k=0" 1k
M
S 1By + Y [ lleall + lleally + e = Ay + llealBe.
k=0""k
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Thus,

T T T
e ooy + [ lealat S [ llealfpats [ = e

The conclusion follows from the triangle inequality and estim .te (,4). Ol

Lemma 6.14. Let (u,\) and (up, A\gr) be solutions of Prewems 6.c and 6.10,
respectively. Then,

1w = un)(T)[F2(0y + 1w = wnll72 0.7 mm)
S 10w = w720, 70+) + 1w = Dl 207 1)

+ A= )\H”QL?(O,T;H*) + A= MH||7;2(0, 7 H*)
T T
- / b — A\u) — (g — - ") au —/ b — Ay u) — (u— A, w) dt,
0 0

for all (vp, pr) € Wy(0,T) x Ag, where Ny is u.~ corresponding semidiscrete
space related to Problems A-D.

Proof. By coercivity of the bilinear fori» 2ng. , ),
T
= wn2ag00um) S B — upyu — ) + /0 BN — gty — up) dt
T
—/ b Ag,w —up)dt
0
T
= Bpg(v —v ,,u —vp) +/ b\ — A, u — vp) dt
0
o

- b(A — Am,u — up) dt
/0

T
SBD;(u—uh,u—vh)—i—/ b(A — Apr,u —vp,) dt
0
T T
b Ay de— [ b - ) de
0
e T
—r/ <u—)\H,w>dt+/ (ug — A\, w) dt
0 0
T
:Bpg(u—uh,u—vh)+/ b(A — Agr,u — vp) dt
0
T T
+/ b(,uH—)\,u—uh)dt—/ b — Mg, w) dt
0 0

T T T
—/ b(,uH—)\,u)dt—l—/ (0 — A, w) dt+/ (ug — \ w) dt,
0 0 0

where we have used the constraint on b(-,-). Then integration by parts in time
for the bilinear form Bpg(-,-) yields the result. O
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Remark 6.15. Let U be a fully discrete solution of degree ¢ in time. T".c. there
exists a piecewise polynomial function &« € W(0,T') of degree ¢+ 1 < 1ch hat it
interpolates U at the local points,

U =TU(t]), forall j=1,...,q+ 1. (56)
Furthermore, imposing continuity gives
U(tr—1) = U, (57)
Thus U is uniquely defined as

q+1

t— 1K o
Ulr, = ch (Tk 1) Ulty, (58)
7=0

where £; are Lagrange polynomials. Then from ~tegration by parts in time,
observe that (47) is equivalent to

;/jk@u, VY 4 a(U, V) +b(l v = — ;/qu, Vi, (59)

where V is a piecewise polynomial funct. . ~f degree ¢ in time.

Lemma 6.16. Let (u,\), (upr, Agr, he scwutions of Problems 6.8 and 6.11,
respectively. Under the assumption that u.2 discrete inf-sup condition holds,

IN=Aerr e rmey S 1A= 2o, oy Hlu=tune o 2,0 H 10 (w=unr) 20,7,

for all g, € /N\HT.

Proof. By Remark 6.15 "ve . msicer the bilinear form pointwise in time using
interpolant U. Then,

b(prr — Airy V-, = b(prr, vhr) — b((Amr, Vnr)
= b(pEr, Vhr) + (O, vpr) + a(tunre, vpr) — (f, Vnr)
= Mpumgr — Nvpr) + 00U — uw), vpr) + a(upr — u, vpy)
= (lpre = Al + 104U — wne )| 1
0 (u — wne)l e + lw — unellm)

Ve 1 -

Using stand ard ay proximation properties, the discrete inf-sup condition and
integrat® .. in vuue yields the desired result. O

6.5. A osterisri analysis of mized formulation

... ‘lerlv ag in the case of the elliptic mixed problem, we begin by estimating
the e. ~rr of the approximate and exact solution in the energy norm. We begin
by poin.‘ng out an estimate for the bilinear form from [48].

Lemma 6.17. Let a(-,-) be a continuous and coercive bilinear form. Then,

« C
a(u —v,w—v) 2 (llw = ol]* + llw — v[?) — o llu = wl|®.




Proof. Since a(-,-) is coercive
0<alu—v,u—v)+alw—v,w—0o)
=a(u—v,2w—u—v)+a(w—v,2u —v—w)+ 2a(u —w,u—w,
=4da(u —v,w—v) —a(u—v,u—v)—alw—v,wW—v)+20u— " Uu—w)
<da(u —v,w—v) — allu —v|]* = allv —w|* + 2C|lu — w]||-
where we used the coercivity and continuity of the bilinea form. O

Theorem 6.18. Let (u, \), (upr, Agr) be solutions of "obic.... 6.8 and 6.11,
respectively. Furthermore, let U be interpolant of up, def .ew in Remark 6.15.
Let rpr = f — O — (—A)*up,. Then,

M
1w —=U)(T) 72 () + Z/I 105w — U) + (A = Ap Mgz + lu— U + Ju — upe || dt
k=1""1k
M
S =) Olsgey + - | b =N u=ya
k=17 k

e - Mune — U dt.

M
+ Z ||Th7' - )\HT
=11k

Proof. We note that for all v € H,
(rh,v) —b(AEr,v) = (O(vu — U, + a(u — up,v) + b(A — Agr,v). (60)

By choosing v = u — U we o»tain

1d
§a||u - U||%2(Q) +alu—w, u—A)={ry,—Agr,u—U) +bAgr — N\, u—U).
Using the estimate frc a ».~ama 6.17, we obtain

1d N

Sl = U2+ (Ju = vl + o — o)

el

< —iu—wlf} + (rh = Agrw = U + by — A u—U).

Additionally, nsinug 6) and continuity of the bilinear pairs gives
1w =)+ A= X7 S llrn = Arre | Fe + llu— une |-
Combir g these estimates and integrating in time yields the result. O

Remarn 6.19. We note that the last term is not yet computable. For a specific
pro' 'm_ we use different estimates dependent on the precise formulation of
the pmoblem. As an example of treatment of such term see [6] for contact
problewn s. Noting that the integration in time over time does not introduce
any additional issues we can treat the b(-,-) terms is similar as in the case of
the elliptic problems and only then integrate in time. Therefore, in order to
avoid repetition, we refer the reader to Lemma 5.21 and only state the resulting
computable error estimates for the b(,-) term.
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Lemma 6.20. Let (u,)), (upr, Agr) be solutions of Problems 6.8 .." 6.11,
respectively, associated with problem A-D. Suppose that A, C A Th n, for
the respective problems,

M M
i) Z/ b(AHT—)\,u—L{)dtgz:/ b(Agr, x —U) dt
k=1"1k =11k
M M
(i4) Z/ b(/\HT—)\,u—Z/{)dt§Z/ b(Agr, g —U) d.
k=11 k=11

M
(111) Z/ b(Arrr — Au—U)dt <[[(1A-| = F) 2o, -s0opllu = Ull2omim3(5)

M
_Z b((D\H7: _'7)_a|u|)+b(|>‘HT|a|u|)_b(/\HTy
k=171
M
iv) Z/j b(Agr — MNu—U)dt <||(|Ags| —F) " ,2(07T;H1/275(f))ﬂu — UHLQ(O’T;HS,UQ(I:))
k

k=1

M
- ,{ O [Amr| = F) 71U + 0(|Asi |, [U[) — b(Amr,
k=1 1k

for the parabolic version of problems A 7. respectively.

Remark 6.21. As the discrete ¢ usv.2int Ay, is imposed on a coarser mesh, in
order to simplify the impleme ‘tation, it would be useful to be able to impose
M- on the same mesh as th . solu.*» wup,. To this end one could try to attack
this problem using stabiliz .tior techniques as discussed for example in [9].

7. Algorithmic aspe_ -~

In this section v . ddress the implementation of the bilinear form a(-,-)
associated with tb fra tional Laplacian, an Uzawa algorithm for the solution
of the variationa’ ineq. ~lity, as well as adaptive mesh refinement procedures.
In the nodal bz sis £ p;} of V), the stiffness matrix K = (K;) is given by

Ky = ) Ly [ SN 60,

Noting "uat interactions in Q x Q¢ and Q¢ x Q are symmetric,

mons [ B SONGE —0i g,
i " QxQ |

T — y|n+25

z)
2 dy dx
*%Sféﬂwm»-w”s

The first integral is computed using a composite graded quadrature as standard
in boundary element methods [53, Chapter 5]. This method splits the integral
into singular and regular parts. It converts the integral over two elements into
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an integral over |0, 1]4 and resolves the singular part with an appropr’.. grad-
ing. The singular part can be computed explicitly, and for the regu ar y irt we
employ numerical quadrature. The second integral can be efficient'v co. ~nuted
by numerical quadrature after transforming it into polar coordinate. For a
discussion of the quadrature see [1].

In order to solve problems associated to the mixed formulati. ~ .f variational
inequalities, we use an Uzawa algorithm similar to [34]. Let 7, be he orthog-
onal projection onto Agy. In practice we choose H = 2h stabil red methods
with H = h will be the content of future work.

Algorithm A (Uzawa). Inputs: Choose \% € Ap.
1. Forn >0 find uy € V}, such that

a(ug, va) +b(Ag, vn) = . vp

for all vy, € Vp,.
2. For appropriately chosen p > 0 set

AL = Py(Mfy + 2 Bujl — g))

3. Repeat 1. and 2. until convergence -“rw..vion is satisfied.
Output: Solution (uf™, NIt1).
Note that for the time-depende~ ' -roblems, f involves information from the
previous time step.

Because the bilinear form ¢ is coercive with coercivity constant «, a stan-
dard argument shows tha. Ve U awa algorithm converges for 0 < p < 2a.
See, for example, Lemm 1 22 in " 6]. The optimal choice for the parameter p is

ﬁ, where A ¢, -, n correspond to the largest, respectively smallest

eigenvalues of BA~'Z" and this value for p is used in the numerical experi-
ments below.

The adaptir ¢ al orithm follows the established sequence of steps:
SOL & — ESTIMATE — MARK — REFINE.

The pre. ise alg orithm for time-independent problems is given as follows:

Algor'chm 1 (Adaptive algorithm 1). Inputs: Spatial meshes Ty, and Ty,
refinem mt par ymeter 6 € (0,1), tolerance ¢ > 0, data f.

ou oo problem 5.15, for (up, A\gr) on T X Tgr.

Compute error indicators n(A) in each triangle A € T.
Find nmaz = maxa n(A).

Stop if Y, n(A;) <e.

Mark all A with n(A;) > 0nmaz-

Refine each marked triangle to obtain new mesh Tp.

A ANl
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7. Repeat until convergence criterion is satisfied.
Output: Solution (up, A\fr).

Here, we define the local error indicators n(A) for all elements . sing the
right hand side of the a posteriori estimate of Theorem 5.20. Y.e ( nnroximate
the dual norm ||pug|| -« by the scaled L?-norm H%||ug||p2 ¢ we.l as |lvp| g
by h™%||vp||r2 for a > 0, as standard for boundary element m™ethe '< [6]:

W(A)Z = Z h?SH(Th - )\H - Fh + S\H)(bZH%Q(SZ) + b( \H - u— uh) .
SiNA#Y
1€Cp,

J. s; rhoi
fsi ¢z
J. s; AH O
fsi bi
bilinear form b is estimated using Lemma 5.21 for “he given problem. All inte-

grals are evaluated using a numerical Gauss-~ .o uare quadrature.

~ otherwise. Simi-

Here, 7, = for the interior nodes 7 € Py, ai.' 7y —
s T'h hs h

larly, A\ = for the interior nodes i € P,, ~nd A\; = 0 otherwise. The

An algorithm for time-dependent prob. 2., © ziven by:

Algorithm C (Adaptive algorithm 2) Tnpu.=: Space-time meshes Sy, = T, X
Uk Ik and S = Tu x Uy Ik, refinement »a, meter 6 € (0,1), tolerance € > 0,
data f,ug.

1. Solve the problem 6.11, for (upr, An.) on Sp X Sg.

Compute error indicators =~ "\ in each space-time prism A € Sp,.

Find nmaz = maxa W(A)

Stop if Yin(Ay) < e

Mark all A with n(A ) > Mmaz-

Refine each marked s, ~« >~tir .e prism to obtain new mesh Sy, keeping ;5
fized.

7. Repeat until con erg. ~ce criterion is satisfied.

SRRl

Output: Solution (v 7. Hr)-

The error indica. 3 (A) are evaluated analogous to the time-independent
case, using the " 1ght haud side of Theorem 6.18 and Lemma 6.20 to estimate
the bilinear fo. m b for “ ne given problem:

Iva
n(A)? = 'y (t Th|rhe — A — e + ArellT2(s,) + by 2l — wiZes,)
SiNe “o =1
1ECh

M
H| (= U)O) s,y + D Tk bAbr = Ayu = U)) :
k=1

Remari. 7.1. Special attention has to be paid to evaluation of (—A)®uy, which
is a part of the residual r;,. Pointwise values can be computed at the quadrature
points of an appropriate quadrature rule, see [3]. Evaluation of the negative
Sobolev norm in the a posteriori estimates is done by localization of the norm
and extraction of powers of h see [22, 49].
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8. Numerical results

This section illustrates the a posteriori error estimates from The. m 5.20
and 6.18 and shows the efficiency of the resulting adaptive mesh . “unen.ents
from Algorithms B and C.

8.1. Time-independent problems

Before doing so, we consider as a reference the fraction. 1 Lap) .ce equation.

(—A)u= finQ. (61)
u=0inQC. (62)

Its weak formulation reads:
Find u € H§(2) such that

a(u,v)—/ffvdm, (63)

for all v € H§(2).

Example 1. We consider the fractional Tapiace equation (61) in Q = B1(0)
with s = 0.5 and f = 1. The exact s ™. s given by u(z) = (1 — |z]?)5. We
compare the solution to the Galerkin solu.’on to (63) by piecewise linear finite
elements on uniform, graded, a . -daptively refined meshes to the exact solu-
tion. Figure 1 shows the nume ‘ical so. ition on a 2-graded mesh. Figure 2 plots
the error in the H*(Q2) norry fo, *he different meshes in terms of the degrees
of freedom. The rate of cc wer jence in terms of degrees of freedom is —0.252
for uniform meshes, —0.5." .or “-graded meshes, and —0.510 for adaptively
generated meshes. This correspe.ads to a convergence rate of 0.504 (uniform),
1.08 (2-graded), respe tive., 1.02 (adaptive), in terms of the mesh size h. For
the uniform and gro . ' meshes this is in agreement with the theoretically pre-
dicted rates of 0.5 wuni orm) and 1.0 (2-graded), respectively. For the adaptive
algorithm it agre=s w. " the rates observed for integral operators in stationary
and time-depen .ent problems [2, 22, 35].

We now ecomsiac - - elliptic obstacle problem:

Example .. We ¢ nsider the mized formulation of the fractional obstacle Prob-
lem 5.18 “» 8¢ 51(0) with s = 0.5, f =1 and obstacle x depicted in Figure 3.
We co wpare o e Galerkin solution to (5.15) by piecewise linear finite elements
on uniy vm, ¢ aded, and adaptively refined meshes with a benchmark solution
on ~~ adaptively generated mesh with 237182 degrees of freedom. Figures 4
and . s.ow the numerical solutions on a uniform and on an adaptively refined
mesh, 1 *spectively. Note that due to the strong boundary singularity of the so-
lution the adaptive refinement is particularly strong near the boundary, as well
as near the free boundary. This observation underlines the recent analysis of
the obstacle problem in [12]. Figure 7 shows the error in the H*() norm for
the different meshes in terms of the degrees of freedom. The error indicators
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Figure 1: Solution uj, of the fractional I ~nlace ¢ *uation with s = 0.5 on graded meshes.
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Fig ce 2: Error in the energy norm for the fractional Laplace equation with s = 0.5.
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Figure 3: Obstacle x for the elliptic and _ wavouc obstacle problem.

capture the slope of the error in the adaptive vr sceaure, indicating the efficiency
and reliability of the a posteriori erroi ~<tim. tes. The rate of convergence in
terms of degrees of freedom is —0.245 for ~mn.~rm meshes, —0.498 for 2-graded
meshes, and —0.363 for adaptively ...~ d meshes. This corresponds to a
convergence rate of 0.490 (uniform), 0.9." (2-graded) in terms of the mesh size
h. We note that the graded mesk~- double the convergence rate of the uniform
meshes, as has been recently di cussea ‘n [12] for the obstacle problem. Figure 6
depicts the 1, 8, 8 and 15th mes. <reo ed by the adaptive algorithm. They show
strong refinement near the jourdarwcs, as well as refinement near the contact
boundary.

Remark 8.1. Algebraic .''v graded meshes are known to lead to quasioptimal
convergence rates for the be ndary singularities near the Dirichlet boundary.
However, for large g aa. 1g parameter their accuracy for integral equations is of-
ten limited by floav. ~g *,0int errors, and related works consider 2-graded meshes
[2]. Furthermorr, graac ' meshes do not refine near the free boundary, which
becomes releve it fc .- thr absolute size of the error as in Figures 11 and 13, even
if not for the con. +ge 1ce rate.

On the otk :r har 1, the flexibility of adaptive meshes in complex geometries
proves usel 'l in ay plications. Adaptively generated meshes moreover resolve
space-tir  inno...ogeneities and singularities of solutions, as seen in Figures 11
and 13 Even hough adaptive meshes are locally quasi-uniform, the associated
converg. nce r- ¢es can be slower than for the anisotropic graded meshes, which
inv: © ~ arbitrarily thin triangles near the boundary. A heuristic explanation
for ti» ubstantially higher rates of anisotropic graded meshes can be found in
[22].

Example 3. We consider the mized formulation of the fractional friction prob-

lem (5.13) in Q = B1(0), with s = 0.6 and f = 1. We compare the Galerkin
solution to (5.15) by piecewise linear finite elements on uniform, graded, and
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Figure 4: Solution up of Exan ~'e 2 on u.iform mesh.
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Figure 6: Adaptively refined meshes for Example 2 after 0, 2, 7, 14 refinements.
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Figure 7: Error in the energy norm for the variational inc ality in Example 2.
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Figure 8: Solution uy (left) ar * A; (rig’ ¢) of Example 3 on a mesh with 142719 degrees of
freedom.

adaptively refined m *es witn a benchmark solution on an adaptively gener-
ated mesh with 228 .40 .egrees of freedom. Figure 8 displays the solution of the
friction problem. No. that the Lagrange multiplier is discontinuous in places
where u change sig .. Figure 9 shows the error in the H*(Q) norm for different
meshes in term. o the degrees of freedom. The rate of convergence in terms of
degrees of fr coom 1. —0.220 for uniform meshes, —0.454 for 2-graded meshes,
and —0.42€ for adc vtively generated meshes. This corresponds to a convergence
rate of 0.44u ‘uni’yrm), 0.908 (2-graded) in terms of the mesh size h.

8.2. Dy amic contact problems

u o '™ to keep 75y fixed, we choose the time step 7 =~ h?® for uniform
meshe * 7 ~ 0.5h2  for graded meshes, and local time steps 7 ~ h?* for

adaptive 'y generated meshes. We first consider a parabolic obstacle problem:

Example 4. We consider the mized formulation of the fractional obstacle prob-
lem (6.8) in Q = B1(0), with s = 0.5, f = 0, and two different initial conditions
ug =1, a9 = 2. WesetT =1, and the obstacle x is defined as in Example 2 and
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Figure 9: Error in the energy norm for the variational ineque ity in Example 3.

depicted in Figure 3. We compare the Galerkin <ol ~n to (6.11) by piecewise
linear finite elements on uniform, graded ana . 7aptively refined meshes with a
benchmark solution on an adaptively gene ~*~d mesh with 29894663 degrees of
freedom. Figure 10 displays the solution of ‘hs obstacle problem at time T =1
on an adaptively refined mesh. Figure 1 ~how. the error in the H*(2) norm for
different meshes in terms of the degrees o, frec lom. Again error indicators cap-
ture the slope of the error in the adw, wve = cedure. The rate of convergence in
terms of degrees of freedom is —0.173 for ~miform meshes, —0.325 for 2-graded
meshes, and —0.319 for adapti»-":' generated meshes. This corresponds to a
convergence rate of 0.519 (uni’yrm), L 975 (2-graded) in terms of the mesh size
h. Figure 12 depicts the slices av * = C, 0.4, 0.8, 1 of the meshes 3, 8,15 created
by the adaptive algorithm. They show strong refinement near the boundaries,
as well as refinement near ‘he con act boundary. Figure 11 shows the error in-
dicators of the adaptive algoriu. . in time for several iterations with the initial
condition 4y = 2. WFhie [~ the initial condition ug = 1 the contact with the
obstacle is present fr-— time t = 0, for initial condition ugy the solution first
touches the obstacl . at ime t =~ 0.5. The error increases rapidly at the time of
first contact with the ‘bstacle. After several iterations the adaptive algorithm
equilibrates the :rro - in space and time by refinements of space-time mesh, as
shown in Figu,. 1 .

Like for the el ‘otic problems, we note that the convergence closely mirrors
the theoret. -al con ergence rates [12].

We finally onsider a parabolic interior friction problem:

Ex~mvle o. We consider the mized formulation of the interior fractional fric-
tion ~rcolem (6.8) in Q = By(0), with s = 0.6, f =0, ug = (|z| — 1)(Jz| — 0.6),
T =1, nd F =0.1 in the whole domain Q. We compare the Galerkin solution
to (6.11) by piecewise linear finite elements on uniform, graded and adaptively
refined meshes with a benchmark solution on an adaptively generated mesh with
29366872 degrees of freedom. Figure 14 shows the numerical solution of the
problem at times t = 0,0.2,0.4,0.8. Figure 15 shows the error in the H*(2)
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Figure 10: Solution up, of the parabolic obstacle pre’ 'em from Example 4 at T = 1.
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Figure 11: Error indicators of ~da tivel refined meshes in time with the initial condition
given by .

norm for different v -hes in terms of the degrees of freedom. The error in-
dicators capture tkz sl pe of the error in the adaptive procedure. The rate
of convergence in te, 's of degrees of freedom is —0.156 for uniform meshes,
—0.322 for 2-gr .ded mesnes, and —0.323 for adaptively generated meshes. This
corresponds to . « nve’ jence rate of 0.499 (uniform), 1.030 (2-graded) in terms
of the mesh ..e h. Tae free boundary, where X\ is discontinuous, moves out of
the domair as tim evolves.

9. Co (clusio 1s

M Mativated by the recent interest in dynamic contact and friction problems
for n n!)cal differential equations in finance, image processing, mechanics and
the scie ces, the article provides a systematic error analysis of finite element ap-
proximations and space-time adaptive mesh refinements. The analysis of these
time-dependent free boundary problems builds on ideas from time-independent
boundary element methods [39], dynamic contact and space-time adaptive tech-
niques for parabolic problems.

40




(a) (b) (©)

Figure 12: Adaptively refined meshes for Exam. le 4 after 3,8,15 refinements at ¢ =
0,0.4,0.8,1, from bottom to top, respectively.

Key results of this article include ~ priuci and a posteriori error estimates
and space-time adaptive numerical experients for a mixed formulation, which
directly computes the contact fo' ces . < a Lagrange multiplier. For discontinuous
Galerkin methods in time, a: inf-suy condition in space is sufficient for the
error analysis and guarante’ 3 con. ~rzence. The analysis is complemented by
corresponding results for t'.e fc :muvlation as a variational inequality, as well as
the time-independent no=loc - ell’ptic problem, complement the results.

Our numerical expe 'ments 1iustrate the efficiency of the space-time adap-
tive procedure for mocel pro-lems in 2d. The adaptive method converges at the
rate known for alge' (a ~ally 2-graded meshes and at twice the rate known for
quasiuniform mesl »s. " nlike graded meshes, the adaptively generated meshes
are easily applied to co.. nlex geometries and are known to resolve the space-time
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Figure 13: Error in the energy norm for the variational inequality in Example 4.
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Figure 14: Solution (upr,Am-) of the interior friction voble. .rom Example 5 at times

t =0,0.2,0.4,0.8 on a mesh with 139905 degrees of freedom.
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Figure 15: Error in t'.e energ, .orm for the friction problem from Example 5.

inhomogeneities ink _re. t in dynamic contact. While strongly graded meshes
theoretically recov. ~ or ¢imal convergence rates for the time-independent prob-
lem, adaptive me ;hes a. less susceptible to the floating point errors encountered
for integral opr . atc s or strongly graded meshes.

Correspondin,, ves’ (ts for nonlocal elliptic problems complement the numer-
ical experir ents.

While t e artic 2 analyzes the fractional Laplace operator as a model oper-
ator, the ~na.,, * extends to variational inequalities for more general nonlocal
elliptic operav s [49].

The gpace-time adaptive methods developed in this paper will be of interest
beyo. d variational inequalities. They will be of use, in particular, for the non-
linear s_stems of fractional diffusion equations arising in applications [30, 31].

Much recent interest has been on the stabilization and Nitsche methods for
static and dynamic contact, for example [6, 19, 23]. This will be addressed in
future work and, in particular, will allow to circumvent the inf-sup condition
on the spatial discretization.
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In a different direction as mentioned in Remark 6.3 the regulari’, “heory

and resulting optimal a priori estimates remain to be developed beye «d o' stacle
problems.
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