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Abstract 

Although the problem of tire modeling and analysis has been a subject of 
continuing concern for the tire industry, to date no simple and general tire model 
exists for predicting the response of the tire under various loading conditions. 
Much of the recent progress in finite element technology has not been exploited for 
tire modeling and analysis. The present paper focuses on this issue. Specifically, 
the paper reviews some of the recent advances in finite element technology which 
have high potential for application to tire modeling problems. It also identifies 
the analysis and modeling needs for tires. 

The topics covered include: 1) reduction methods for large-scale nonlinear 
analysis, with particular emphasis on treatment of combined loads, displacement- 
dependent and nonconservative loadings; 2) development of simple and efficient 
mixed finite element models for shell analysis, identification of equivalent mised 
and purely displacement models, and determination of the advantages of using 
mixed models; and 3) effective computational models for large-rotation nonlinear 
problems, based on a total Lagrangian description of the deformation. 
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INTRODUCTION 

The problem of tire modeling and analysis has long been an area of major con- 
cern to the tire and aircraft industries. A hierarchy of models varying in the 
degree of sophistication has 'been proposed. Some of these models are listed in 
Fig. 1 and are sketched in Fig. 2. For a detailed description of the models see 
Ref. 1. The models are grouped into six groups as follows: 

The first group consists of the early tire models which are characterized by 
their simplicity. Among these models are the nting, beam, and king an c&L!&Lc (WL 
V~ACO&ZM%) &oundtiati . These models were used by Clark and co-workers (Ref. 2). 
Their major drawbacks are: 1) they require extensive experiments to evaluate 
the equivalent properties, and 2) their accuracy and range of validity are not 
known in advance. 

The second group consists of the cahd-ne&uotrk mad&, which are sometimes 
referred to as nting ana.tgh.ih, wherein the inflation pressure is assumed to be 
carried exclusively by the cords (see Ref. 3). These models have the drawback of 
neglecting both the bending in the tire and the stiffening effect of the rubber. 

The third group of models are the membmne mod&, which are based on the use 
of a linear or nonlinear momentless theory of shells (Refs. 4, 5 and 6). Their 
major drawback is that they cannot handle discontinuities in loading, geometry or 
material properties. 

The fourth group is the &Uo-c&mev&anaJ? axinymmeaY& model2 (Ref. 7), which 
are limited to axisymmetric loadings. 

The fifth group is the Xhhee-dimetiian& catinuum made&. Two approaches 
have been proposed for the analysis of these models. The first approach is based 
on using semi-analytic techniques to reduce the dimensionality of the problem 
(e.g. , Fourier expansions in the circumferential direction). The second approach 
is based on using three-dimensional isoparametric solid elements. 

The sixth group of models includes a variety of &#a-dimenhional? a%in and ;thick 
hh&k! mad& (see, for example. Refs. 8 and 9). Thin shell models neglect trans- 
verse shear deformation, and their use for modeling tires is therefore 
questionable. Anisotropy results in increasing the size of the analysis model, 
and consequently many investigators neglect its effects by using an orthotropic 
model. 

The present paper focuses on the use of two-dimensional thick shell models. 
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DIFFERENT TIRE YODELS 

NOT KNOWN IN ADVANCE 

' COMPUTATIONALLY EXPENSIVE 

(THIN AND THICK) NISOTROPY CAN BE 

Figure 1 

Ebltk ring CORD-NETWORK 
udrmnkn -la 

RING ON VISCOELASTIC FOUNDATION 

‘7 -- 2 TWO-DIMENSIONAL SHELL MDEL 

Figure 2 



TIRE CONFIGURATION AND COMPONENTS 

Typical configurations and components of modern tires are shown in Fig. 3 (see 
Ref. 10). Commercially successful tires are now built as a series of layers of 
flexible high-modulus cords encased in a low-modulus rubber or rubber-like material. 
Hence, a laminated (or layered) model is needed. 

CORD-PLY ARRANGEMENT 

STEEL BELTED RADIAL TIRE BIAS-PLY TIRE 

Figure 3 
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TIRE LOADS 

The three types of loads applied to the tire and their major characteristics 
are listed in Fig. 4. The three load types are: 

1) 1n@M,&~n phfLMuhe, which is axisymmetric but is displacement dependent 

2) Mechanic&! Loach which include centrifugal force, impact loading, contact 
forces, and frictional forces; except for the centrifugal force, which is axisym- 
metric (and displacement dependent), all the other loads are symmetric 

3) Thmat Loa&, which arise due to various manufacturing and operating 
conditions, such as unequal expansion and contraction of rubber and cord, 
hysteretic heating, sliding of the tread on a rough surface, and cord shrinking 
after molding 

LOADS 

l INFLATION PRESSURE 

' MECHANICAL LOADS 
l CENTRIFUGAL FORCE 

' IMPACT LOADING 

' CONTACT FORCES 
' FRICTIONAL FORCES 

l THERMAL LOADS 
l UNEQUAL EXPANSION AND 

CONTRACTION OF RUBBER 
AND CHORD 

' HYSTERETIC HEATING 

' CHORD SHRINKING AFTER 
MOLDING 

CHARACTERISTICS 

' AXISYMMETRIC BUT DISPLACEMENT- 
DEPENDENT 

0 AXISYMMETRIC BUT DISPLACEMENT- 
DEPENDENT 

0 ASYMMETRIC 

0 ASYMMETRIC 

Figure 4 
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CHARACTERISTICS OF EFFECTIVE SHELL ELEMENTS 
FOR ANALYZING TIRES 

The characteristics of an effective shell finite element model for analyzing 
tires are listed in Fig. 5. The shell element is developed using either a con- 
sistent two-dimensional shell theory or a three-dimensional continuum theory with 
proper interpolation functions in the thickness direction. The elements obtained by 
using the latter approach are referred to as degenu&e Ah&Y &men-&. If a two- 
dimensional shell theory is used, the elements need to be deep and curved and must 
account for each of the following effects: 

1) Laminated construction and anisotropic material behavior 

2) Variation in geometry (e.g., curvature and thickness) as well as of other 
lamination parameters 

3) Transverse shear deformation 

4) Large rotations 

5) Pressure stiffness (for displacement-dependent loadings such as inflation 
pressure) 

6) Thermoviscoelastic material response 

. BASED ON EITHER 

l CONSISTENT TWO-DIMENSIONAL SHELL THEORY, OR 

l THREE-DIMENSIONAL CONTINUUM THEORY WITH PROPER INTERPOLATION FUNCTIONS 
IN THE THICKNESS DIRECTION (DEGENERATE SHELL ELEMENTS) 

l DEEP, CURVED ELEMENTS 

l INCLUDE EFFECTS OF: 

l LAMINATED CONSTRUCTION AND ANISOTROPIC MATERIAL BEHAVIOR 

l VARIATION IN GEOMETRY (E,G,, CURVATURE AND THICKNESS), LAMINATION PARAMETERS 

l TRANSVERSE SHEAR DEFORMATION 

l LARGE ROTATIONS 

l PRESSURE STIFFNESS (FOR DISPLACEMENT-DEPENDENT LOADING; E-G,, INFLATION 
PRESSURE) 

l THERMOVISCOELASTIC MATERIAL RESPONSE 

Figure 5 
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OBJECTIVES AND SCOPE 

The objectives of this paper are listed in Fig. 6. They are: 

1) To review some recent developments in finite element technology which are 
applicable to the analysis and modeling of tires 

2) To identify some of the analysis and modeling needs for tires 

The paper is divided into four parts. The first part deals with new develop- 
ments in reduction methods for nonlinear problems. These include computational 
procedures for handling combined, displacement-dependent, and nonconservative 
loads. The second part of the paper deals with mixed finite element models for 
tires in which the fundamental unknowns consist of both force and displacement 
parameters. The equivalence of some of these models with some of the purely 
displacement models is discussed. I 

The third part of the paper deals with large-rotation nonlinear problems. Two 
formulations are presented; namely, a mixed formulation and a penalty formulation. 
Both formulations are based on the total Lagrangian description of the deformation. 
The fourth and last part of the paper deals with analysis and modeling needs for 
tires. 

OBJECTIVES 

o REVIEW SOME RECENT DEVELOPMENTS IN FINITE ELEMENT TECHNOLOGY WHICH ARE 

APPLICABLE TO ANALYSIS AND MODELING OF TIRES 

o IDENTIFY ANALYSIS AND MODELING NEEDS FOR TIRES 

SCOPE 

o REDUCTION METHODS FOR NONLINEAR PROBLEMS 

o COMBINED LOADING PROBLEMS 

a DISPLACEMENT-DEPENDENT AND NONCONSERVATIVE LOADING PROBLEMS 
o DYNAMIC PROBLEMS 

a MIXED FINITE ELEMENT MODELS 

o EFFICIENT AND ACCURATE MIXED MODELS 
l EQUIVALENT CLASSES OF MIXED MODELS AND REDUCED/SELECTIVE INTEGRATION 

DISPLACEMENT MODELS 
o MERITS OF MIXED MODELS OVFR EQUIVALENT DISPLACEMENT MODELS 

o LARGE-ROTATION NONLINEAR PROBLEMS 
o MIXED FORMULATION 

o PENALTY FORMULATION 

Figure 6 
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REDUCTION METHODS FOR NONLINEAR TIRE PROBLEMS 

The first topic considered in this paper is reduction methods for nonlinear 
analysis. The basic features of reduction methods are outlined in Fig. 7. They 
are techniques for reducing the number of degrees of freedom through the trans- 
formation shown in the figure. The vector 1x1 represents the original displacement 
degrees of freedom. The vector c$) refers to amplitudes of displacement modes and 
[P] is a transformation matrix whose columns represent a priori chosen global 
displacement modes. 

As is to be expected, the effectiveness of reduction methods depends to a great 
extent on the proper selection of the displacement modes. In a number of studies 
it was shown that an effective choice of the displacement modes includes the various- 
order derivatives of the displacement vector with respect to the load parameter (see 
Refs. 11 and 12). These vectors are genwed by uning fhe rjitite element model 06 

the tie. a2x The recursion formulas for evaluating the derivatives {gl, (71, . . . 
ap 

are obtained by successive differentiation of the original finite element equations. 
The left-hand sides of the recursion formulas are the same (see Ref. 12). Therefore, 
only one ma-t&x ,$actotization Ls heqtied ,$oh ;the genendtion 06 al2 Rhe globat 
apphOXit?ItiOn Ve~&ti. Several numerical experiments have demonstrated the effect- 
iveness of this choice (see Refs. 12 and 13). 

DEFINITION: ARETECHNIQUES FOR REDUCING THENUMBER OF D.O.F. 
THROUGH THE TRANSFORMATION 

Ixt" 1 = 

(Xl = 

[ri = 
1SI = 

rriw r 1 

. . r<<n 

ORIGINAL D.O.F. IN THE FINITE ELEMENT 
MODEL 

MATRIX OF GLOBAL DISPIACEMENT MODES 

REDUCED D.O.F. -AMPLITUDES OF DISPLACEMENT 
MODES 

JUSTIFICATION: FOR MANY TIRE PROBLEMS TM LARGE NUMBER OF 
D.O.F. IX/ IS DICTAED BY THE COMPLEX TOPOLOGY 
OF THE TIRE (DISCONTINUITIES IN LEOWIRY, 
LAMINATION, ETC.) RATHER THAN BY EXAClED 
COMPIEXIW OF BEHAVIOR 

SELECTION OF GLOBAL DISPLACEMENT MODES : 

P = LOAD PARAMETER 

l COLUMNS OF[rl GENERATED BY USING THE ORIGINAL FINITE ELEMENT 
MODEL OF THE TIRE 

l THEIR GENERATION REQUIRES ONLY ONE ’ LARGE MATRIX’ FACTORIZATION 
l NUMERICAL EXPERIMENTS HAVE DEMONSTRATED THEIR EFFECTIVENESS 

Figure 7 



- 

BASIC EQUATIONS USED IN REDUCTION METHODS 
FOR NONLINEAR TIRE PROBLEMS 

The basic equations used in the reduction methods for geometrically nonlinear 
tire problems are given in Fig. 8. It is worth noting that the original displace- 
ment unknowns IX) can be on the order of thousands whereas the reduced unknowns ($1 
are typically 20 or Sess. This is true regardless of the complexity of the structure 
and/or loading. The details of the computational procedure for tracing the load- 
deflection paths in geometrically nonlinear static analysis are given in Refs. 
and 12. 

ACTUAL (LARGE) PROBLEM REDUCED (SMALL) PROBLEM 

FUNDAMENTAL 
IX t = INDIVIDUAL 

UNKNOWNS 
D I SPlACEMENTS 

-[j-oF JypLEFENT 

MODES 

0 THOUSANDS OF UNKNOWNS l TWENTY OR LESS 

GOVERN I NG CKliXI + 1G CXIf- plPt = 0 Chqt + ihjlf-~$1 = 0 
EQUATIONS - 1000 EQUATIONS - 20 EQUATIONS 

0 GENERATION OF Crl 

l REPEATED SOLUTION OF .MARCHlNG WITH SMALL 
HOW TO TRACE LOAD- L4RGE SYSTEMS OF SYSTEM OF EQUATIONS 

DEFLECT I ON PATH SIMULTANEOUS NONLINEAR 
ALGEBRAIC EQUATIONS 

. ERROR SENS,NG AND 

CONTROL (UPDATING [r] 
WHENEVER NEEDED 1 L 

cil = rriTCK3m , G($,l =crlT(G(X)I . Gr = [riTjpt 

Figure 8 
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APPLICATION OF REDUCTION METHODS TO GEOMETRICALLY NONLINEAR 
ANALYSIS OF A TIRE SUBJECTED TO UNIFORM INTERNAL PRESSURE 

As a simple application of reduction methods to the geometrically nonlinear 
analysis of tires, consider the laminated anisotropic elliptic toroidal shell 
shown in Fig. 9. Due to axial symmetry, only one meridian was modeled using 
four-noded elements with cubic Lagrangian interpolation functions for all the 
displacement and rotation degrees of freedom. The high accuracy of the total 
strain energy obtained by using six basis vectors is demonstrated in Fig. 9. 

PROPERTIES OF INDIVIDUAL LAYERS 

EL = 75xlO3!xi a = 2.45 in, 

ET = 1.2 x 103 PSI b = 7.7 ln. 

G LT = 450 I)si c = 4.0 in. 

G TT = 270 PSi h = d.42 In. 

+ = 0,4 e = 0.5 

CORD ORIENTATION + 45/-45/+45/-45.m.. 

NL = 10 

400 

300 

200 

1 
100 

/ 

Q r,--+.Ldx 106 
5.0 15.0 20.0 

TOTAL STRAIN ENERGY U 

Figure 9 
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TREATMENT OF COMBINED LOADS 

The basic equations and the computational procedure used in applying reduction 
methods to the analysis of tires subjected to combined loads are highlighted in 
Figs. 10 and 11. For simplicity, only two independent loads are considered. 

First, the original finite element equations are given. The external loading 
is normalized with respect to two independent load parameters pl and ~2. The basis 
reduction is done as before, via the transformation shown in Fig. 10. Then the 
Rayleigh-Ritz technique is used to approximate the original set of finite element 
equations by a reduced system of equations in the new unknown parameters ($1. The 
number of these equations is considerably less than that of the original equations. 

As previously noted, the crux of reduction methods is the proper selection of 
the transformation matrix [r]. In the case of combined loading, the columns of the 
matrix [r] are selected to be the various-order derivatives of the displacement 
vector {Xl with respect to the two independent parameters pl and p2. 

To trace the different nonlinear paths, corresponding to different combinations 
of the independent load parameters, the basis vectors are evaluated for the unloaded 
structure (pl=pz=O), and the corresponding reduced equations are generated. The 
different nonlinear paths of the tire are obtained by fixing one of the load para- 
meters, varying the other, and repeating the process with different values of the 
first load parameter. This is all done using the ~WW ati 06 &educed equa;ti~rz?l. 
The total cost of the analysis, to a first approximation, is little more than the 
cost of one linear solution of the original, full system of finite element equations, 
The procedure is described in detail in Ref. 14. 

As a by-product of this technique, a considerable reduction can be made in the 
size of the analysis model used in studying the nonlinear response of tires sub- 
jected to asymmetric loading. This can be accomplished by decomposing the loading 
into symmetric and antisymmetric components and treating each as an independent 
loading. 
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REDDCTIOW METHODS FOR WOWLIWEAR PROBLEMS 
TREATMENT Of COMBINED LOADS 

GOVERNING FINITE ELEMENT EQUATIONS 

[KlfXl + {G(X)) - pl{P(')l - p,IP(*)} ='O 

[Kl = LINEAR GLOBAL STIFFNESS MATRIX 

{Xl = VECTOR OF NODAL DISPLACEMENTS 

{G(X)) = VECTOR OF NONLINEAR TERMS 

{F(l)), fF(*)j = NORMALIZED LOAD VECTORS 

Pl' p2 = INDEPENDENT LOAD PARAMETERS 

BASIS REDUCTION 

REDUCED SYSTEM OF EQUATIONS 

ri1 I$1 + Ii($) I - plIP) 1 - q*w I = 0 

Figure 10 

TREATNEWT OF COMBINED LOADS 
SELECTION OF BASIS VECTORS 

COMPUTATIONAL PROCEDURE 

l EVALUATE BASIS VECTORS AT p1 = p2 = 0 (UNLOADED TIRE) AND GENERATE 
REDUCED EQUATIONS 

. TRACE DIFFERENT EQUILIBRIUM PATH BY FIXING ONE OF THE LOAD 
PARAMETERS AND VARYING THE OTHER (USING THE SAME SET OF 
REDUCED EQUATIONS) 

I X 

NOTE: THIS APPROACH CAN BE USED TO REDUCE THE SIZE 
OF ANALYSIS MODELS FOR THE CASE OF IJNSYMMETRIC LOADINGS. 

Figure 11 

12 



TREATMENT OF MISPLACEMENT-DEPENDENT 
AND NONCONSERVATIVE LOADING 

The basic equations used in applying reduction methods to the nonlinear analysis 
of tires subjected to displacement-dependent loading are given in Fig. 12. 

First, the governing finite element equations for the total Lagrangian formu- 
lation are shown. The only new term in these equations is the pressure stiffness 
matrix which represents the follower-load effect and is unsymmetric for noncon- 
servative loadings. The basis reduction is done and the reduced equations are 
obtained in the manner outlined previously. The following two important facts are 
to be noted: 

1. The basis vectors are evaluated for the unloaded structure. Hence, the 
pressure stiffness matrix does not enter into the left-hand side and ok&y ;the finem 
nymmtic glob& a;tifJ&tia mutaix nee& Xo be decompobid. 

2. Since the reduced equations are small in number (on the order of ten or 
less) no symmetrization is needed in the case of nonconservative loadings. 

GOVERNING FINITE ELEMENT EQUATIONS ~I__ 

FOR A TOTAL LAGRANGIAN FORMULATION 

[ Ml - pd')l] IX) + {G(X)) - pfP) = 0 

[,(')I = PRESSURE STIFFNESS MATRIX (UNSYMMETRIC FOR 
NONCONSERVATIVE LOADING) 

BASIS REDUCTION 

REDUCED SYSTEM OF EQUATIONS - 

I Gl - P[K(P)$$l + Ir;($,> - pIPI = 0 

NOTES: 

. BASIS VECTORS ARE EVALUATED AT P = 0. THEREFORE, ONLY THE SYMMETRIC WI 
MATRIX NEEDS TO BE DECOMPOSED, 

. REDUCED EQUATIONS ARE SMALL IN NUMBER t-101, THEREFORE, NO SYMMETRIZATION 
IS NEEDED. 

Figure 12 
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APPLICATION OF REDUCTION METHODS TO THE BIFURCATION BUCKLING 
ANALYSIS OF A RING SUBJECTED TO HYDROSTATIC PRESSURE 

As a simple application of reduction methods to structures subjected to dis- 
placement-dependent loadings, consider the circular ring subjected to hydrostatic 
pressure shown in Fig. 13. 

Doubly-symmetric buckling modes are considered; hence, only one quadrant of the 
ring was analyzed using higher-order shear-flexible elements with a total of 59 non- 
zero degrees of freedom. The lowest three buckling loads obtained using three, 
four and five vectors are listed in Fig. 13. The lowest buckling load obtained by 
using four vectors agrees, to five significant digits, with that obtained using the 
full system of equations. With five vectors, the error in the third buckling load 
is less than 3%. 

NUMBER OF PoR3 
BASIS 

EIGENVALUES 6 =El 

VECTORS 
$1 ii2 ?3 

3 2.9998 15.1888 

4 2.9997 14.9964 36.5126 

5 2.9997 14.9957 35.9668 

FULL SYSTEM 
(59 D.O.F.) 2.9997 14.9947 34.9751 

Figure 13 
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REDUCTION METHODS FOR NONLINEAR DYNAMIC PROBLEMS 

The application of reduction methods to transient tire problem is highlighted 
in Fig. 14. First, the governing semi-discrete finite element equations are given 
for the case of no damping. Then the key elements for an effective reduction 
method are listed (see Ref. 13). They include: 

1) The proper selection of basis vectors (the columns of the matrix [p]> 

2) Characterization of nonlinear dynamic response by means of one or few 
scalars 

3) Sensing and controlling the error in the reduced system of equations 

GOVERNING SEMI- DISCRETEFINITE ELEMENTEQUATIOfG 

KEY ELEMENTS FOR EFFECTIVE REDUCTIONMflHOD -- .- 

.PROPER SELECTIOWFBASIS MCTORS 

Nln 1 = KJn,r{$\41. r<< n 

.CHARAC;ERIZATION OF NONLINEAR DYNAMIC RESPONSE BY 
MEANS OF ONE OR FEW SCALARS 

l SENSING AND CONTROLLING THE ERROR INTHEREDIJCED 
SYSTEM OF EQUATIONS 

Figure 14 
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SELECTION OF BASIS VECTORS FOR THE CASE OF STEP LOADING 

A particular choice of basis vectors which was found to work well for the case 
of step loading is shown in Fig. 15. The vectors consist of a few eigenvectors of 
the linear problem and a few eigenvectors of the steady-state (static) nonlinear 

aG. 
problem. The matrix [,, --"I is obtained by using the steady-state (static) nonlinear 

3 
solution. Reduction methods can be used to reduce the computational effort required 
for generating the steady-state nonlinear solution. 

P(t) 

t 

BASIS VECTORS CONSISTOF: 

.FEW EIGENVECTORS OF LINEAR PROBLEM 

[KI (Xi = hlM1 (X) 
I w 

TIME t 

.FEW EIGENVECTORS OF STEADY-STATE (STAT IUNONL 

6G. [ [II [Kl + d ix\ = hIMl!Xi 
i 

INEAR PROBLEM 

Figure 15 
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APPLICATION TO CLAMPED SHALLOW SPHERICAL CAP SUBJECTED 
TO A CONCBNTRATED LOAD AT THE APEX 

As a simple application of reduction methods to nonlinear dynamic prbblems, 
consider the clamped spherical cap subjected to a concentrated load which has a step 
variation in time (see Fig. 16). The displacement time history obtained using the 
full system of finite element equations, the reduced system with ten linear vibra- 
tion modes, and the reduced system with the proposed set of modes are shown in 
F&16. The ban&t uec.tam (tigenmada 1 wem noA: updccted Jthtraughaut the andyis&. 
As can be seen from Fig. 16, the proposed set of basis vectors predicts qualitatively 
the correct response. The phase shift was almost eliminated by increasing the 
number of basis vectors to 14. 

P 177.93 

t . 

, 
‘\ 
\I V I 

R = 12.09 x lo-* m 

h = 4.003 x 10s4m 

f = 2.182 x 10 
-3 

m 

a o = 10.90 

W 
c 

f 

- FULL SYSTEM 

1.65 

BASIS 'JtCTORSWERE NOT -r\ UPDATtu. 0 100 200 300 400 500 
TIME (MICROSECONDS) 

Figure 16 
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MIXED FINITE ELEMENT MODELS FOR TIRES 

The second topic considered in this paper is mixed finite element models for 
tires. The basic features of the mixed models are outlined in Fig. 17. The finite 
element models include the effects of both laminated anisotropic construction and 
transverse shear deformation, and allow the geometric and material properties to 
vary within individual elements. The fundamental unknowns consist of the eight 
stress resultants and the five generalized displacements. The stress resultants 
are discontinuous at element interfaces, and therefore can be eliminated on the 
element level. 

l TIRE MODELED USING LAMINATED ANISOTROPIC, SHEAR-FLEXIBLE, DEEP SHELL 
ELEMENTS WITH VARIABLE GEOMETRIC AND MATERIAL PROPERTIES 

l FUNDAMENTAL UNKNOWNS ARE: 

STRESS RESULTANTS N CrB ' M af3 J Qa 

GENERALIZED DISPLACEMENTS u, I w I facr 

. STRESS RESULTANTS ARE DISCONTINIJOUS AT ELEMENT INTERFACES - ELIMINATED 
ON ELEMENT LEVEL 

Q2 Q= Ql 

N1l 
.N22 

NpN21 ' 

w 

& “1 
"2 

@2 4F 9 

Figure 17 
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MATHEMATICAL FORMULATION FOR THE MIXED MODEL 

The mathematical formulation for the two-field mixed model is based on the use 
of a moderate-rotation nonlinear shell theory in conjunction with the Hellinger- 
Reissner mixed variational principle. The basic features of this formulation are 
outlined in Fig. 18. Different approximation functions are used for each of the 
stress-resultant fields and the generalized displacement field. The governing finite 
element equations for individual elements can be partitioned as shown in Fig. 18. 
The vector Iti} is quadratic in CX) and the vector CGI is bilinear in IHI and 1x1. 

For mixed models with discontinuous stress resultants at element interfaces, 
the stress resultants can be eliminated on the element level and the governing finite 
element equations reduce to cubic equations in 1x1 (see Ref. 15). 

APPROXIMATION FUNCTIONS 
STRESS RESULTANTS 

= CfiliHt , 

DISPLACEMENTS 
U a I 1 W = Gvllxt I 

Coa J 

(HI= VECTOR OF STRESS 
RESULTANT PARAMETERS 

IX]= VECTOR OF NODAL 
DISPLACEMENTS 

Q2 

@ 

Ql 

N1l N12 N21 
N22 

WHERE I/M(X)/ AND{G(H.X)j ARE VECTORS OF NONLINEAR TERMS 
(QUADRATIC AND BILINEAR IN jH}AND{X/). 
DISCONTINUOUS STRESS RESULTANTS AT ELEMENT INTERFACES I__-_-.--__-- -~.- 

(HI = [Fl-' [Sl{Xi + [F&(X)/ 
AND GOVERNING FINITE ELEMENT EQUATIONS REDUCETO 

[SITCFl-l [SllXI + It?(X)/ = (PI 
WHERE {G(X)) = VECTOR OF NONLINEAR TERMS (CUBIC IN {Xi,. 

Figure 18 
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REDUCED/SELECTIVE INTEGRATION DISPLACEMENT MODELS 

In recent years a class of displacement models with a performance comparable 
to that of the mixed model has been developed. These are referred to as reduced/ 
selective integration displacement models (see, for example, Refs. 15 and 16). 
The major features of these models are outlined in Fig. 19. The governing finite 
element equations for the individual elements are cubic in IX). The definitions 
of full, reduced, and selective integration are given in Fig. 19. If an nxn Gauss- 
Legendre formula is used to integrate the linear stiffness matrix [K] exactly for 
parallelogram elements, then in full integration nxn quadrature points are used. 
In reduced integration (n-1)x (n-l) quadrature points are used, and in selective 
integration nxn quadrature points are used for some terms of [K] and (n-1)x (n-l) 
points for other terms. 

GOVERNING FINITE ELEMENT EQUATIONS FOR INDIVIDUAL ELEMENTS 

CKl(Xj + (G(X)1 = (PI 

Ml = VECTOR OF NODAL DISPLACEMENTS 

{G(X)/ = VECTOR OF NONLINEAR TERMS (CUBIC IN {Xl, 

FULL (NORMAL), REDUCED AND SELECTIVE INTEGRATION 

l IF nxn GAUSS-LEGENDRE FORMULA IS USED TO lN7EGRAlE[KIEXACTLY 
FOR RECTANGULAR (OR PARALLELOGRAM) ELEMENTS 

l K4U (NORMAL)IN7EGM7l7N USES nxn QUADRATURE POINTS 

l REDUCED /NTEG~nON USES (n-1) x (n-1) QUADRATURE POINTS 

l SELECTIM INTEGMf7ON USES nxn POINTS FOR SOME TERMS AND 
(n-1) x (n-1) POINTS FOR OTHER TERMS OF[Kl 

Figure 19 
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EQUIVALENT FINITE ELEMENT MODELS 

The equivalence between finite element models is defined in Fig. 20. Finite 
elements are equivalent if their individual governing equations, when expressed in 
terms of a common set of nodal variables and/or parameters, are identical (see 
Ref. 16). It is important to note that the other parameters not contained in the 
common set are local to the individual elements. For nearly equivalent models, 
the finite element equations are almost identical. 

DEFINITION OF EQUIVALENCE 

' TWO FINITE ELEMENT MODELS ARE EQUIVALENT IF 

FINITE: ELEMENT EQUATIONS, WHEN EXPRESSED IN 

SET OF NODAL VARIABLES AND/OR PARAMETERS, 

THEIR GOVERNING 

TERMS OF A COMMON 

ARE IDENTICAL. 

THE OTHER NODAL VARIABLES AND/OR PARAMETERS NOT CONTAINED 

IN THE COMMON SET MUST BE LOCAL TO THE INDIVIDUAL ELEMENTS 

(I.E., DO NOT AFFECT THE ASSEMBLY PROCESS). 

' NEARLY EQUIVALENT MODELS ARE ONES FOR WHICH THE GOVERNING 

FINITE ELEMENT EQUATIONS ARE ALMOST IDENTICAL. 

Figure 20 
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EQUIVALENT MIXED AND DISPLACEMENT MODELS 

The governing finite element equations of both mixed and displacement models 
are shown in Fig. 21 and the mathematical requirements for the equivalence of the 
two models are listed. The table given in Fig. 21 lists examples of equivalent 
quadrilateral (in planform) mixed and displacement models. The following can be 
noted: 

1) Equivalent mixed and displacement models have the same number of displace- 
ment nodes, use the same approximation functions for the generalized displacements, 
and use the same number of numerical quadrature points. 

2) The symbol (F) refers to full integration and (R) refers to reduced 
integration. 

3) If the geometric and material characteristics within the individual 
elements are constants, the number of quadrature points listed in the table 
generates exact integrals for the mixed models and only approximate integrals 
for the displacement models. 

LQUIVALENCE 

MIXED MODEL WITH DISCONTINUOUS 
STRESS RESULTANTS 

DISPLACEMENT MODEL 

FINITE ELEMENTEQUATIONS 

[slTF3-’ [Sl{X] +iBcx,t = ipt [KIIX} + (G(X)j= (PI 

El’ d~S1 f [Kl 

I (G(x)t 4 {G(X)1 I 

NEAR EQUIVALENCE = IS REPLACED BY = 

EXAMPLES OF EQUIVALENT QUADRILATERAL ELEMENTS 

NUMBER OF NUMBER OF STRESS 
D'SPLACEMENT Q"%i?RE RESULTANT PARAMETERS NODES 

4 2x 2 (F) 4 1 (RI 1 s 

9 3x 3 (F) 9 
2x 2 (R) 4 

16 4x4 IF) 16 * 
3 x 3 (RI 9 

Figure 21 
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NONLINEAR RESPONSE OF CIRCULAR TOROIDAL SHELL 
SUBJECTED TO UNIFORM EXTERNAL PRESSURE 

To assess the accuracy of the mixed models with discontinuous stress resultants 
at interelement boundaries, the nonlinear response of the circular toroidal shell 
shown in Fig. 22 is analyzed using these models. The solutions obtained using six 
and eight finite elements with nine displacement nodes and four stress nodes are 
compared with the converged solution in Fig. 22. 

E = 1 x lo7 PSI 

P = 100 PSI 

a = 15, in, 
b = 10. in, 

w 

CONVERGED SOLUTION 
0 6 M9-4 
-I- 8 M9-4 

MIXED MODEL 

d 

01 3 

Figure 22 
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CLAMPED CYLINDRICAL SHELLS SUBJECTED 
TO UNIFORM PRESSURE LOADING 

To assess the accuracy of the different displacement and mixed models, the 
large-deflection nonlinear response of the clamped cylindrical panel shown in 
Fig. 23 is analyzed using these models. The solutions obtained using a 4x4 grid 
of four-noded quadrilateral elements are shown in Fig. 23. The solutions obtained 
using a 2x2 grid of nine-noded quadrilateral elements are shown in Fig. 24. 

As is to be expected, the full-integration four-noded displacement model is too 
stiff. The full-integration nine-noded displacement model (with the same total 
number of degrees of freedom), though less stiff than the four-noded model, over- 
estimates the stiffness, particularly at higher loads. The mixed model with dis- 
continuous stress resultants is more accurate than the mixed models with continuous 
stress resultants developed in Refs. 17 and 18. 

ACCURACYOFFOUR -NODEDQUADRILATERALELEMENTS 
4x4GRlD 

PO -CONVERGED SOLUTION 

8 = 0.1 rad 
E = 3.10275 x lo9 N/m2 
u = 0.3 1. 
ALLEDGES ARECLAMPED 

hJ1 = u2 = w = o1 = Q2 = 0) 

0 DISPLACEMENT. FULL INTEG. 
A MIXED. DISCONTINUOUS STRE 
+ MIXED. CONTINUOUS STRESS 

A- 

25 

I I I IX 10-3 
0 -1.0 -2.0 -3. 0 -4.0 

wclR 

ss 

Figure 23 
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CLAMPED CYLINDRICAL PANEL 

ACCURACY OF NINE - NODED QUADRILATERAL ELEMENTS 
Zx2GRlD 

- CONVERGED SOLUTION 

7.00 

5.25 

1.75 

0 

l DISPLACEMENT, FULL INTEG. l DISPLACEMENT, FULL INTEG. 
A MIXED, DISCONTINUOUS STRESS A MIXED, DISCONTINUOUS STRESS 

-4+ -4+ MIXED, CONTINUOUS STRESS MIXED, CONTINUOUS STRESS 

- 1ortINEAR SOLUTION-o* 

, 
I I I I x 10 -3 

-1.0 -2.0 -3. 0 -4.0 

Figure 24 
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USE OF REDUCTION METHODS IN CONJUNCTION 
WITH MIXED MODELS 

The use of reduction methods in conjunction with mixed models is outlined in 
Fig. 25. First, the governing finite element equations for the individual elements 
are given. Then, the vectors of fundamental unknowns (stress resultants and 
displacements) are expressed as linear combinations of a small number of vectors. 
The basis reduction and reduced system of equations are obtained in the manner 
outlined previously. It is important to note that Zhe treducecf ecgtiati a.he 
quatic LPI Zthe mduced unhnowti I+ I. 

GOVERNING FINITE ELEMENT EQUATIONS FOR INDIVIDUAL ELEMENTS 

BASIS REDUCTION 

= 1:1, [ rH I {%.l ’ r c-c n 

, rx n , r 

WHERE 

f4’} = VECTOR OF UNDETERMINED COEFFICIENTS 

p = LOAD PARAMETER 

REDUCED SYSTEM OF EQUATIONS 

WHERE 

P 

k 
a 

X 

61 = c 
elements 

-[rH]TIF][rHI + trHITrsl [TX1 + [rxiTtsiT[rHi 

61 = c 
elements 

[rHITwwl + [ryITIG(~,~)l 

{$I = VECTOR OF UNDETERMINED COEFFICIENTS OR PARAMETERS 

Figure 25 
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USE OF REDUCTION METHODS IN CONJUNCTION 
WITH DISPLACEMENT MODELS 

The use of reduction methods in conjunction with displacement models, which are 
equivalent to the proposed mixed models, is outlined in Fig. 26. Note that the re- 
sulting reduced system of equations is cubic in the reduced unknowns (4). The 
implication of this is that even .L,$ the mixed model and athe di6p.tucement mod& a,te 
eqtivutent thein &educed nym%n~ tie no;t equivdeti. 

GOj/ERN!NG FINITE ELEMENT EQlJATl.QNS FOR INDIVIDUAL ELEMENTS 

CKI ix) + (G(X)/ = p{P) 
BASIS REDUCTION 

@I = VECTOR OF UNDETERMINED CbEFFlClENTS 
OR PARAMETERS 

P = LOAD PARAMETER 
REDUCED SYSTEM OF EQUATIONS 

KIW + mo )I = p {F] 
WHERE [it3 = [r X]T qr x] 

= VECTOR OF NONLINEAR TERMS (CUBIC IN (0)) 

NOR MN IF MIXED MODE1 AND DISPLACEMENT MODEL ARE EOUlVALEN7: 
WEIR REDUCED SYSTEMS ARE NOT EOUUALENTI 

Figure 26 
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ACCURACY OF REDUCTION METHOD - MIXED AND DISPLACZMENT MODELS 

The nonlinear solutions obtained using the reduction method in conjunction 
with the equivalent mixed and reduced-integration displacement models are compared 
in Fig. 27 for the case of a clamped cylindrical shell subjected to uniform pressure 
loading. Seven basis vectors were generated for the unloaded shell. The variations 
of the strain energy with the loading, as predicted by the reduction method 
mixed and displacement models, are shown in Fig. 27. The high accuracy of the 
predictions of the mixed model is clearly seen in this figure. 

FULL SYSTEM (672 D.O.F.) 

A MIXED 

+ DISPLACEMENT,) 7 BASIS 
REDUCED 
INTEGRATION j VECToRS 

PO x 10 -4 + 
7.00- 

Figure 27 
EH4 
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ADVANTAGES OF MIXED MODELS OVER 
EQUIVALENT DISPLACEMENT MODELS 

The advantages of mixed models over the equivalent displacement models are 
listed in Fig. 28. These include: 

1) Shpfici;cy 06 ~ohmf.duaXon. Only quadratic and bilinear terms appear in 
the governing finite element equations. By contrast, the governing equations of 
the displacement model include cubic terms. 

2) If the geometric and material characteristics are constants within each 
element, then moM 06 Xhe~integ~a& can be. eva.tu.a&d exactly for the mixed elements 
(even when the element has curved faces and edges). 

3) The mixed models are b&a atied doh tie uLth hedution m&ho& in non- 
linear problems, in the sense that: 

a) The basis vectors are simpler to generate. 

b) The mixed models lead to higher accuracy of the solutions obtained by 
the reduced system. This is especially true for stress resultants. 

. SIMPLICITY OF FORMULATION (ONLY QUADRATIC AND BILINEAR TERMS 
APPEAR INGOVERNING FINITE ELEMENT EQUATIONS) 

. MOST OF THE INTEGRALS CAN BE EVALUATED EXACTLY (EVENFOR ELEMENTS 
WITH CURVED FACES AND EDGES) 

l BETl-ER SUITED FOR USE WITH REDUCTIONMETHODS 

l BASIS VECTORS ARE SIMPLER TO GENERATE 

l BEl-lER APPROXIMATION PROPERTIES (HIGHERACklRACY OF 
REDUCED SYSTEM, ESPECIALLY FOR STRESS RESULTANTS) 

Figure 28 
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L%GE ROTATION NONLINEAR PROBLEMS 

The third topic considered in this paper is the large rotation nonlinear 
problems. The basic features of two effective computational models are outlined 
in Fig. 29. In both models a X0&& Laghungian description of the deformation is 
used. Consequently, the strain-displacement relations contain tigonomtic 
&.mc;tioti 06 Xhe. ho&lation componeti. 

The first computational model is a two-field mixed model with discontinuous 
stress-resultant fields at interelement boundaries. The second model is based on 
the use of the penalty method for handling the trigonometric functions, thereby 
simplifying the analysis. 

FORMULATION 

l TOTAL LAGRANGIAN DESCRIPTION OF DEFORMATION 

. STRAIN - DISPLACEMENT RELATIONS CONTAIN TRIGONOMETRIC FUNCTIONS 
OF ROTATION COMPONENTS 

FINITE ELEMENT MODELING 

' MIXED MODELS WITH DISCONTINUOUS STRESS RESULTANTS 

' PENALTY METHOD FOR HANDLING TRIGONOMETRIC FUNCTIONS 

Figure 29 
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ELASTICA PROBLEM - FORMULATION 

As an application of the proposed computational models, consider the elastica 
problem shown in Fig. 30. In the mixed formulation, the Hellinger-Reissner two- 
field mixed variational principle is used. Transverse shear deformation, though 
small, is included to simplify the formulation. The extensional strain E and the 
transverse shear strain y are trigonometric functions of the rotation 4. 

The penalty formulation, on the other hand, is based on the Euler-Bernoulli 
type beam theory with both the extensional and transverse shearing strains neglected. 
The axial and transverse displacements u and w are incorporated into the functional 
through the use of constraints and penalty numbers. 

MIXED FORMULATION 

71 = /t(N E + M K + Q y) 

-$ (&+g+& ds 

El Y INCLUDE TRIGONOMETRIC FUNCTIONS OF 4 

N, M, Q ARE DISCONTINUOUS AT INTERELEMENT BOUNDARIES 

PENALTY FORMULATION 

+A -z--” 
U 

71 = j[$EI($$2 + X 1 (ds dw - sin@J2 + 

WHERE X1, h2 ARE PENALTY NUMBERS 

x2 (2 - 1 + COS@)~] ds 

THE RESULTING STIFFNESS MATRIX IS POSITIVE DEFINITE. 

Figure 30 
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ELASTICA PROBLEM - NUMERICAL RESULTS 

The displacements, rotations and total strain energy obtained by using FOWL 
;two-noded e&men& and &IO fthnee-noded eRemev& are depicted in Figs. 31 and 32. 
Also, the deformed configurations of the beam for various values of the transverse 
load P are shown in Fig. 31. Both exact-integration displacement models (DE models) 
and mixed models with discontinuous forces (MD models) are used. As to be expected, 
the displacement models are too stiff. This is particularly true for the two-noded 
elements. By contrast, the predictions of the mixed models are highly accurate. 

LARGE-ROTATlOW ELASTICA PROBLEM 

I 
EXACT SOLUTION 

0 4DE2 
DISPLACENENT MODELS 

0 2 DE3 I 

+ 4 MD2-1 MIXED MODELS 
A 2 RD3-2 

4 L *P 
10.0 

r 
0’ 

U/L W/L 
0 

t 

DEFORMED CONFIGURATIONS 

w 

1 
PL2 5.0 - 
EI 

2.5 

0 0.25 0.5 

u/L, W/L 

w/L 
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.I! ) 

-L--' 

EXACT SOLUTION 
o 4DE 2 

0 2DE 3 I 
DISPLACEMENT MODELS 

+ 4 HD2-1 
A 2 VD3-2 

MIXED MODELS 

10,o 0 

0 l+ 

7.5 

a 0.4 0.8 1.2 1.6 
4 IN RADIANS 

10.0 

0 

0 
7.5 

0 

: 

0 

g 5,o 

0 

0 

0 

0 

0 

0 4,5 9.0 13.5 18.0 
!L 
EI 

Figure 32 
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ANALYSIS AND MODELING NEEDS FOR TIRES 

The fourth part of the paper deals with future analysis and modeling needs for 
tires. The overall goal is to develop a general tire analysis capability which 
includes (see Fig. 33): 

1) Accurate representation of the tire configuration and construction 

2) Reliable material characterization including thermo-viscoelastic response 

3) Capability for predicting the stresses and deformations due to footprint 
loading; this also includes the prediction of the contact area 

Since there is a certain degree of uncertainty in the accuracy of the various 
elements of the tire model, considerable work should be directed towards assessing 
the sensitivity of the tire response to various modeling details such as material 
characteristics, surface inaccuracies, and variations in the tire design variables. 
The result of such sensitivity study would allow the identification of the minimum 
degree of sophistication of the model required to achieve a prescibed level of 
accuracy. 

There is also a need for identifying failure mechanisms and developing a 
verifiable failure analysis capability for tires. Use can be made of the consider- 
able experience gained in damage tolerance design concepts for fibrous composite 
structures. 

' GENERAL TIRE ANALYSIS CAPABILITY 

l ACCURATE REPRESENTATION OF TIRE CONFIGURATION AND CONSTRUCTION 

l RELIABLE MATERIAL CHARACTERIZATION INCLUDING THERMO-VISCOELASTIC RESPONSE 

' PREDICTION OF STRESSES AND DEFORMATIONS DUE TO FOOTPRINT LOADING 
(CONTACT AREA, STRESSES AND SLIP) 

' SENSITIVITY ANALYSIS 4ENSITIVITY OF RESPONSE TO: 

l MATERIAL CHARACTERISTICS 

' SURFACE INACCURACIES 

' VARIATIONS IN DESIGN VARIABLES (REQUIRED FOR EVALUATION OF STRUCTURAL 
CONCEPTS AND FOR OPTIMIZATION> 

' MODELING DETAILS (IN ORDER TO DEVELOP SIMPLE TIRE MODELS> 

' FAILURE MECHANISMS AND FAILURE ANALYSIS OF TIRES 

' DAMAGE TOLERANCE 

Figure 33 
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SUMMARY 

In summary, four topics are covered in this paper; namely, recent advances in 
reduction methods for nonlinear problems, mixed models for tires, computational 
models for large-rotation nonlinear problems, and analysis and modeling needs for 
tires. (See Fig. 34.) 

Reduction methods have proven to be very effective for the nonlinear static 
analysis of structures subjected to either combined loads or .displacement-. 
dependent loads. However, more work is needed to realize their full potential for 
nonlinear dynamic and time-dependent problems. 

Mixed shell models with discontinuous stress resultants at element interfaces 
have high potential for nonlinear analysis of tires. These models can be easily 
incorporated into existing general-purpose finite element programs based on the 
displacement formulation. 

Two computational models are presented for the large-rotation nonlinear 
problems. Both models use a total Lagrangian description of the deformation. 
The first model uses a mixed formulation, and the second model uses a penalty 
formulation. Both models appear to have high potential. 

As far as analysis and modeling needs are concerned, three areas have been 
identified. As is to be expected, the modeling and analysis of tires will be strongly 
impacted by new advances in materials technology, computer hardware, software, 
integrated analysis, and CAD/CAM systems. 

' REDUCTION METHODS 
' VERIFIED FOR STATIC NONLINEAR PROBLEMS INCLUDING CASES OF COMBINED 

LOADS AND DISPLACEMENT-DEPENDENT LOADS 

' FURTHER DEVELOPMENT NEEDED FOR NONLINEAR DYNAMIC PROBLEMS 

. MIXED MODELS WITH DISCONTINUOUS STRESS RESULTANTS 
. HAVE HIGH POTENTIAL FOR ANALYZING TIRES 

' CAN BE EASILY INCORPORATED INTO EXISTING GENERAL-PURPOSE FINITE ELEMENT 
PROGRAMS 

' LARGE ROTATION NONLINEAR PROBLEMS 
. BOTH MIXED AND PENALTY FORMULATIONS PROVIDE EFFECTIVE ANALYSIS 

TECHNIQUES 

' ANALYSIS AND MODELING NEEDS 
. GENERAL ANALYSIS CAPABILITY FOR TIRES 

. SENSITIVITY ANALYSIS 

. FAILURE MECHANISMS AND FAILURE ANALYSIS 

Figure 34 
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