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1. Introduction and motivation

Ever since the early 1980s the increasing growth of new technologies and applications has been shifting scientific
interest on power electronics. In such wide-range industrial context, the necessity to develop devices with a high
power dissipation per unit volume has justified the need of advanced cooling systems capable to prevent excessive
temperature increase and consequent device failure. Conventional cooling procedures exploit convection heat transfer
between a fluid in motion and a bounding surface at different temperatures. Typical examples are water-cooled and air-
cooled systems, widely used in power electronics applications. A different approach to cooling is represented by the
two-phase thermosiphon device whose functioning principle is schematically illustrated in Fig. 1 and whose structure
is shown in Fig. 2(a).

This kind of device consists of an evaporator, attached to the device requiring cooling, and a condenser made up of
a stack of fins among which air is allowed to flow. The evaporator and the condenser are connected by a pipe in which a
mixture of liquid and vapor phases is flowing. The heat generated by an electronic device in contact with the evaporator
is collected by means of an evaporating fluid. The vapor phase fluid, rising in the pipe, passes through the condenser
where it returns to the liquid phase. As no pumps are needed to move the refrigerant fluid from the evaporator to the
condenser, the resulting thermodynamical efficiency of two-phase cooling systems is remarkably superior to that of
water-cooled or air-cooled systems (see [3]). In order to deepen our understanding of the mechanisms that determine
the performance of a two-phase thermosiphon cooler device and to facilitate the further optimization of its design,
in the present research we focus on the study of the condenser subsystem (see Fig. 2(b)), for which we develop a
multiscale mathematical model that is implemented in a numerical simulation code. As computational efficiency is a
stringent requirement in industrial design and optimization procedures, model complexity is suitably reduced through
the adoption of physically sound consistent assumptions that allow us to end up with a system of nonlinearly coupled
2D PDEs for the air and panel temperatures, and 1D equations within the network of pipes distributed in each fin for
the refrigerant fluid flow.

Another important constraint is represented by the ability of the computational method to reproduce on the discrete
level important physical features characterizing the problem at hand, such as mass and flux conservation, and its
robustness in the presence of dominating convective flow regimes. These requirements are here satisfied by the
introduction of a stabilized mixed finite element scheme on quadrilateral grids that automatically provides the desired
inter-element flux conservation and upwinding through the use of suitable quadrature rules for the mass flux matrix
and convection term. The resulting discrete method has also an immediate interpretation in terms of finite volume
formulation which allows a compact implementation of the scheme that highly improves the overall efficiency of the
computer-aided design procedure.

A final issue of critical importance in the development of a reliable computational tool for use in industrial design
is model calibration and validation. Model calibration is properly addressed by supplying the parameter setting in
the equation system with suitable empirical correlations, that are functional relations between two or more physical
variables, usually obtained by means of a series of experimental tests. In common engineering practice, correlations
are widely used because they allow to account for complex physical phenomena in a simple and synthetic manner,
albeit their applicability is clearly restricted to a specific admissible range of parameter values. Model validation is
carried out through extensive numerical simulations of the two-phase condenser under realistic working conditions.

An outline of the article is as follows. Section 2.1 describes the two-dimensional model for heat convection in air
and heat diffusion in the panel whose derivation from the corresponding full 3D model is outlined in the Appendix.
The simplified geometrical representation of the coolant-filled channel and the system of 1D equations describing the
flow within it are dealt with in Section 2.2. Section 3 discusses the decoupled iterative algorithm used to solve the
complete model while Sections 4 and 5 are devoted to the discussion of the discretization techniques adopted to treat
each differential subsystems arising from system linearization. Finally, in Section 6 simulation results are presented
and discussed and in Section 7 conclusions are drawn and possible future research directions are addressed.

2. Mathematical models

In this section we describe the mathematical model on which our numerical simulation tool for the condenser is
based. The equations for heat convection in air and heat diffusion in the panel wall are presented in Section 2.1, while
the model for the two-phase flow in the channel is in Section 2.2.



Fig. 1. Schematic representation of the working principle of a thermosiphon cooler.

(a) Cooling system assembly. (b) Details of the condenser and symmetry plane.

Fig. 2. Two-phase cooling system based on the thermosiphon principle [1,2].

2.1. 2D model for the panel wall and air flow

The model for heat diffusion and convection is based on the following set of simplifying assumptions:

(H1) the geometry of the channel embedded into each panel of the condenser is the same;
(H2) air flow is in steady-state conditions;
(H3) air flow conditions in between each pair of condenser fins are identical;
(H4) air flow velocity va is everywhere parallel to the fin plates and its magnitude varies only in the orthogonal

direction;
(H5) air density ρa is constant;



Fig. 3. Computational domain for the two-dimensional heat flow problem.

(H6) the thickness of each panel is negligible compared to its size in any other direction;
(H7) the thickness of the air layer separating two panels in the condenser is negligible compared to the panel size in

any other direction.

Under the assumptions above, symmetry considerations lead to define the simplified computational domain
Ω := (0,W )× (0, H) ⊂ R2 illustrated in Fig. 3 and corresponding to a cut of the 3D geometry along the symmetry
plane represented in Fig. 2(b), in such a way that the air temperature Ta and panel temperature Tw satisfy in Ω the
following equations which express conservation of energy:

∇ · (−ka∇Ta + ρacpvaTa)+haw(Ta − Tw) = 0, (1a)

∇ · (−kw∇Tw)+ h∗
aw(Tw − Ta)+ h∗

wc(Tw − Tc) = 0, (1b)

complemented by the boundary conditions:

Ta = Ta
in y = 0, (1c)

−ka∇Ta · n = 0 y = H, (1d)

(−ka∇Ta + ρacpvaTa) · n = 0 x = 0, x = W, (1e)

−kw∇Tw · n = 0 y = 0, y = H, x = 0, x = W. (1f)

The unknown functions Ta = Ta(x, y) and Tw = Tw(x, y) are the air and wall temperature respectively, cp is the
air specific heat capacity at constant pressure and ka and kw are the thermal conductivities of air and panel material
(e.g., aluminum), respectively. The function Tc = Tc(x, y) represents the temperature of the cooling two-phase fluid in
the channel network and is assumed to be a given datum in the solution of the equation system (1). The parametershaw
and h∗

aw are the heat transfer coefficient haw between air and condenser wall divided by suitably defined characteristic
lengths λ1a and λ1w, respectively. Precisely, λ1a is related to the variation of ka in the direction between air and
condenser wall while λ1w is related to the variation of kw in the thickness of the condenser wall. The quantity h∗

wc is
the heat exchange coefficient hwc between the fluid and the panel wall divided by λ1w. The vector fieldva is the air
flow velocity va multiplied by the factor λ2a/λ1a where λ2a is another characteristic length related to the formation of
the thermal boundary layer at the interface between air and panel. The quantities W and H are the size of the panel in
the x and y directions, respectively, and n is the outward unit vector along the external surface of Ω . It is important to
notice that the physical properties of air, namely ka and cp, as well as the panel material properties, e.g. kw, and, when
simulations are carried out in the natural convection regime, also the magnitude of the air velocityva , depend on the
temperatures Ta and Tw, hence problem (1) is nonlinear. In particular, in the case of natural convection,va depends
on the average air temperature ⟨Ta⟩ and on T in

a through the following expression derived from [4]

va =
ρa g S2 β (⟨Ta⟩ − T in

a )

12 µa

where g is the magnitude of the gravitational acceleration, β is the air expansion coefficient, S is the distance between
two panels and µa is the air dynamic viscosity. The heat exchange coefficient haw, and therefore haw and h∗

aw, are



Fig. 4. Example of channel network geometry and notation.

also allowed to depend on the air temperature and velocity, in particular through the correlations given in [4] in
the natural convection regime and through the Chilton–Colburn correlation for the forced convection regime (see,
e.g., [5, p. 395]). The detailed derivation of (1) from the corresponding 3D model is illustrated for convenience in the
Appendix.

2.2. Model for the channel subsystem

The model for the two-phase flow in the pipes embedded in the condenser is based on the following set of simpli-
fying assumptions:

(H8) the two-phase flow in the pipeline is in steady-state conditions;
(H9) the flow velocity is axially directed along the pipeline;

(H10) the liquid and vapor phases move with the same velocity and are in thermal equilibrium with each other over
each cross-sectional area of the flow;

(H11) the two-phase flow properties are uniform over each cross-sectional area;
(H12) the specific kinetic and potential energies of the fluid are negligible with respect to its specific enthalpy;
(H13) the cross-sectional area of the pipe in the direction orthogonal to fluid flow is the same everywhere;
(H14) the pipe geometry may include any number of bifurcations, but there are only one inlet and one outlet pipe

connecting the condenser to the evaporator.

Hypotheses (H8)–(H11) comprise the basis for the application of the so called homogeneous flow model for analyzing
one-dimensional multiphase flows. In such a model the two-phase flow is treated as a single-phase flow having average
fluid properties, which depend upon temperature and mixture quality (see, e.g., [6, Chapter 9], or [7, Chapter 3]).
Although the liquid and vapor phases are not always traveling at the same velocity, the assumption of having a
homogeneous flow is a common practice in many engineering applications, and provides a solid first approximation
of the void fraction prediction limiting the complexity of the model. As an example, many bubbly or mist flows,
where the difference in velocity between the entrained phase and the continuous phase is almost negligible can, to a
first approximation, be considered to be homogeneous.

Assumption (H12) is reasonable for the pipe dimensions and flow mass and velocities we are interested in and is
often made in other models for cooling devices working in the same conditions (e.g., [8]).

Assumptions (H13) and (H14) about the geometry of the pipeline are taken mainly for the sake of presentation
clarity as they greatly simplify the notation of the flow equations and boundary/coupling conditions, but the
modifications required to relax those assumptions are actually quite straightforward. Before we describe the model
equations for the two-phase coolant flow, the introduction of some notation for the flow domain geometry is in order.

The channel embedded in each panel, where the two-phase coolant flows, is modeled as a pipeline network [9–12],
i.e., a set of a number M of 1D straight pipe segments σ j ⊂ Ω , j = 1, . . . ,M . Such segments are joined at a set of
N vertices xi ∈ Ω , i = 1, . . . , N and each is parametrized by a (scalar) local coordinate s j such that 0 ≤ s j ≤ L j ,
L j being the length of σ j (see Fig. 4).

For each junction xi , we denote by I −

i ⊆ {1, . . . , N }, the set of those indices j for which xi is the first endpoint
of the segment σ j , i.e., j ∈ I −

i ⇔ x(s j )|s j =0 = xi , where x is the (vector) Cartesian coordinate. Similarly, we
define I +

i ⊆ {1, . . . , N }, to be the set of those indices j for which xi is the second endpoint of the segment σ j , i.e.,
j ∈ I +

i ⇔ x(s j )|s j =L j = xi . We assume each parametrization to be uniform, i.e., j ∈ I −
m ∩ I +

n ⇔ x(s j ) = xm +d j s j ,
where d j = (xn −xm)/L j is the unit vector defining the direction of σ j . Furthermore, we introduce the two additional



vertices x0 and xN+1 representing the inlet and the outlet of the channel and we assume that they are connected to the
first node of the first pipe and second node of the last pipe, respectively, so that we have I −

0 ≡ {1}, I +

0 ≡ ∅, I −

N+1 ≡ ∅
and I +

N+1 ≡ {M}. Finally, we denote by |Σ j | the cross-sectional area of each network segment and, according to
(H13), we assume |Σ j | = |Σ |, j ∈ 1, . . . ,M .

Using the notation defined above and the assumptions (H8)–(H13), the conservation of mass, momentum and
energy within each pipe σ j may be expressed by the following system of 1D equations:

∂s j G j = 0, (2a)

∂s j

G2
j

ρ j
= −∂s j p j + f j + ρ j g · d j , (2b)

∂s j


G j H j


= hwc


Tw − Tc, j


. (2c)

The quantities G j , ρ j , p j , f j ,H j and Tc, j are momentum, density, pressure, frictional forces, specific enthalpy and
temperature of the two-phase fluid in each segment σ j , respectively, while g is the vector denoting the gravitational
acceleration. A fully detailed derivation of system (2) is given, e.g., in [7, Chapter 3]. System (2) is the (stationary) ex-
tension to the case of a pipeline network with bifurcations of the model for the simulation of cooling devices proposed
and numerically investigated in [8].

In view of numerical discretization, it is convenient to rewrite Eqs. (2a)–(2b) as:
∂s j G j = 0
∂s jϕ j = R j G j + ρ j g · d j

(3)

where ϕ j = G2
j/ρ j + p j denotes the total dynamical pressure and R j = f j/G j denotes the pipe hydraulic resistance

per unit length. Similarly, Eq. (2c), upon introducing the symbol W j denoting the enthalpy flux, can be rewritten as:
∂s j W j = hwc(Tw − Tc, j )

W j = G j H j .
(4)

To close system (2), we need:

1. a set of coupling conditions at the N junctions xi , i = 1, . . . , N ;
2. a set of boundary conditions at the inlet and outlet sections;
3. a set of constitutive relations.

All of these relations will be defined in the subsections below.

2.2.1. Coupling conditions
At each of the junction nodes xi we impose the following coupling conditions, ∀i ∈ {1, . . . , N }, ∀ j ∈ I −

i , ∀k ∈

I +

i :

ϕ j |s j =0 = ϕk |sk=Lk, (5a)

H j |s j =0 = Hk |sk=Lk, (5b)
j

−G j |s j =0 +


k

Gk |sk=Lk = 0, (5c)


j

−W j |s j =0 +


k

Wk |sk=Lk = 0. (5d)

These conditions express continuity of total dynamical pressure and enthalpy and conservation of mass and enthalpy
fluxes at the junctions.

2.2.2. Boundary conditions
At the inlet x0 and outlet xN+1 we apply the following boundary conditions:

ϕ1|s1=0 = pinlet, (6a)



H1|s1=0 = Hinlet, (6b)

G1|s1=0 = G M |sM =L M = G tot, (6c)

where pinlet,Hinlet and G tot are given data.

2.2.3. Constitutive relations
In order to introduce the constitutive relations for the homogeneous two-phase fluid, let us denote by

dV j (s j ) = |Σ | ds j

the infinitesimal volume of a trait of the pipeline segment σ j contained between the cross-sections of curvilinear
coordinates s j and s j + ds j . Let dVV, j (s j ) and dVL , j (s j ) denote the part of such volume occupied by the vapor and
liquid phase respectively. As a consequence of assumptions (H10)–(H11), the fluid vapor mixture contained in dV j
may be assumed to be in saturation, therefore the densities and enthalpies over the flow cross-section at s j of each
phase, as well as the mixture pressure, may be expressed as functions of temperature, i.e.:

ρV, j = ρV (Tc, j )

ρL , j = ρL(Tc, j )

HV, j = HV (Tc, j )

HL , j = HL(Tc, j )

µV, j = µV, j (Tc, j )

µL , j = µL , j (Tc, j )

hwc,V = hwc,V (Tc, j )

hwc,L = hwc,L(Tc, j )

p j = p(Tc, j ).

(7a)

Standard reference correlations expressing the temperature dependencies of the properties listed in (7a) are given
in the literature for relevant coolant fluids. We use in particular those presented in [13] for the R245fa fluid and
those of [14] for R134a, as computed via the National Institute of Standards and Technology standard reference data
program REFPROP [15]. We define the vapor quality x j := x (s j ) as the ratio

x j :=
ρV, j dVV, j

ρV, j dVV, j + ρL , j dVL , j
. (7b)

The two-phase density may be defined as

ρ j :=
ρV, j dVV, j + ρL , j dVL , j

dVV, j + dVL , j
. (7c)

Using (7b) and (7c) one easily gets

ρ j =
ρV (Tc, j )ρL(Tc, j )

(1 − x j )ρV (Tc, j )+ x jρL(Tc, j )
, (7d)

which relates the two-phase density to the temperature and void fraction. Similarly the two-phase specific enthalpy is
given by

H j = (1 − x j )HL(Tc, j )+ x j HV (Tc, j ), (7e)

while the two-phase dynamic viscosity is

µ j = x jµV + (1 − x j )µL .

All the single-phase quantities depend implicitly on the temperature Tc, j of the two-phase fluid in the j th segment σ j ,
hence system (7) is nonlinear.



Fig. 5. Schematic representation of the staggered iteration algorithm.

After analyzing the review of the most recent correlation of the heat transfer coefficient hwc for condensation
inside tubes [16,17], we have decided to consider the Shah correlation [18], valid for film condensation pattern, in the
following modified version proposed in [19, Chapter 4]

hwc|σ j = hwc,L

(1 − x j )
0.8

+
3.8x0.76

j


1 − x j

0.04

p0.38
r

+ xθj hwc,V

where pr is the reduced pressure, i.e. the ratio between the fluid pressure and the pressure at the critical point, hwc,L
and hwc,V are the heat transfer coefficients assuming a single phase flowing in the pipe, and θ is a weighting coefficient
to modulate the contribution of the vapor phase to the homogenized heat transfer coefficient. To model the frictional
forces f j we used the following relation based on the Blasius equation [20, Chapter 13]

f j =
2C f G2

j

ρ j D

where D is the hydraulic diameter of the pipe, C f is the frictional coefficient

C f =
0.079

Re j
1/4 ,

and the Reynolds number Re j is

Re j =
|G j |D

µ j
.

3. Iterative algorithms

The staggered algorithm used for the coupling of the different subsystems is depicted in the flow-chart of Fig. 5.
The procedure consists of a nested fixed-point iteration composed of: (1) an outer iteration loop to solve the 2D

air/panel subsystem; and (2) an inner iteration loop to solve the non-linear problems within each subsystem. In more
detail, the outer iteration proceeds as follows:



1. Given Tc andhaw, compute a new value for Ta and Tw by solving system (1).
2. Determine the value of Tw at each node of the channel network.
3. Solve system (2) to update the quantities G,H, p describing the state of the fluid flow in the channel and, as a

by-product, compute the fluid temperature Tc and the vapor quality.
4. Go back to step 1.

Inner iteration loops are required to solve the non-linear heat flow equations at step 1 and for solving the nonlinear
coupled system for the two phase flow at step 3. For the former we employ a monolithic quasi-Newton algorithm,
while for the latter we further decouple the equations and proceed as follows:

3.1. Solve subsystem (2a)–(2b) to update G and p.
3.2. Solve subsystem (2c) to update H.
3.3. Determine the density, temperature and vapor quality using system (7).
3.4. Go back to step 3.1.

4. Dual mixed-finite volume discretization of the 2D subproblems

In this section we describe the dual mixed-finite volume (MFV) method used for the numerical approximation of
the air/panel physical model, presented in Section 2.1. The choice of the dual-mixed finite element method is due
to the fact that, in its lowest order form, it preserves flux continuity across interelement boundaries with a piecewise
constant discontinuous approximation of the scalar unknown that makes it structurally similar to standard finite volume
schemes. A sound theoretical foundation (see [21,22] for an introduction and analysis), confirmed by the included
computational experiments, is a final motivation for selecting the MFV approach in the discretization of the model
system (1).

4.1. Dual mixed finite element approximation

Consistently with Section 2.1, we assume that the computational domain Ω is a rectangular open bounded set of
R2 and denote by Γ := ∂Ω and n the domain boundary and its outward unit normal vector, respectively. Then, we
consider the following advection–diffusion–reaction model problem in mixed form:
find u : Ω → R and J : Ω → R2 such that:

aJ + ∇u − aβu = 0 in Ω , (8a)

∇ · J + γ u = f in Ω , (8b)

u = 0 on Γ . (8c)

In (8a), a := α−1 is the inverse diffusion coefficient, α being a strictly positive quantity which for ease of presentation
and with no loss of generality is assumed constant in the present section. Furthermore the convective field β is a given
constant vector, while f ∈ L2(Ω) and γ ∈ L∞(Ω) are given functions, with γ (x) > 0. We also let J := −α∇u + βu
be the flux associated with u, and we assume that (see [23,24])

∥β∥L∞(Ω)

4α inf
Ω
(γ )

< 1. (9)

Eq. (1a) is a special case of (8) upon setting u := Ta, α := ka,β := ρacpva, γ := haw and f := hawTw, with Tw
a known function, while Eq. (1b) is a special case of (8) upon setting u := Tw, α := kw,β := 0, γ := h∗

aw + h∗
wc

and f := h∗
awTa + h∗

wcTc, with Ta and Tc known functions. Homogeneous Dirichlet boundary conditions for u
are assumed only for ease of presentation, because mixed and/or Neumann conditions can be easily handled by the
proposed scheme (see [25,26]).

In view of the numerical approximation of (8), we introduce a regular decomposition Th of Ω into Nel rectangles K
of area |K | and center of gravity xG,K , and we denote by Eh the set of edges of Th and by Ned the number of total edges
of the mesh. We also let E in

h denote the set of internal edges of Eh . Let Pk1,k2 be the space of polynomials of degree
less than or equal to k1 with respect to x and less than or equal to k2 with respect to y. Let k ≥ 0; for each K ∈ Th we
denote by RT[k](K ) := Pk+1,k(K )× Pk,k+1(K ) the kth order Raviart–Thomas (RT) mixed finite element space [27]



and by Qk(K ) = Pk,k(K ). We introduce the functional spaces V ≡ Hdiv(Ω) =

v : v ∈ [L2(Ω)]2, ∇ · v ∈ L2(Ω)


and Q ≡ L2(Ω), and their corresponding finite dimensional approximations:

Vh =

vh ∈ V : vh |K ∈ RT[0](K ) ∀K ∈ Th


,

Qh = {qh ∈ Q : qh |K ∈ Q0(K ) ∀K ∈ Th} .

Functions in Vh are linear along each coordinate direction and discontinuous over Th but have continuous normal
component across each edge e ∈ E in

h . Functions in Qh are piecewise constant and discontinuous over Th .
To reflect the different nature of the degrees of freedom of functions in Vh and Qh , we introduce two different

adjacency structures.
For each (oriented) edge e ∈ E in

h , we indicate by |e| the length of e, and we denote by K +
e and K −

e the pair of mesh
elements such that e = ∂K +

e ∩ ∂K −
e . We also denote by n+

e the unit normal vector on e pointing from K +
e to K −

e and
define n−

e = −n+
e as the unit normal vector to e pointing from K −

e to K +
e . In the case where e ∈ ∂Ω , we set n+

e := n.
We indicate by de the distance between xG,K +

e
and xG,K −

e
. In the case where e ∈ Γ , de is the distance between xG,K +

e
and the midpoint of edge e.

For each element K ∈ Th , we denote by e(l), l = 1, . . . , 4, the label number of edge el , and by Kl the mesh
element neighbor of K with respect to edge el , whenever el does not belong to Γ . For any function wh ∈ Qh , we
introduce the two following operators associated with each edge of E in

h

[[wh ]]e := wK +
e n+

e + wK −
e n−

e , {wh}e :=
1
2
(wK +

e + wK −
e ),

where for each K ∈ Th , wK is the constant value of wh over K . The operator [[wh ]]e is the jump of wh across e
while {wh}l is the average of wh across e. The previous definitions apply also in the case where e ∈ ∂Ω by setting
wK −

e := 0. Finally, let v, w be any pair of vectors in (L2(Ω))2, and v, w be any function pair in L2(Ω). We set
A(v, w) :=


Ω a v · w, B(v, v) := −


Ω v∇ · v,C(v, v) := −


Ω vβ · v and (v, w) :=


Ω v w.

Then, the dual mixed finite element approximation of (8) over quadrilateral grids reads: find uh ∈ Qh and Jh ∈ Vh
such that, for all τ h ∈ Vh and for all qh ∈ Qh , we have:

A(Jh, τ h)+ B(uh, τ h)+ C(uh, τ h) = 0 (10a)

B(qh, Jh)− (qh, γ uh) = −(qh, f ). (10b)

Eq. (10a) is the discretized form of the constitutive law (8a), while Eq. (10b) is the discretized form of the conservation
law (8b). The finite element pair Qh ×Vh satisfies the inf–sup compatibility condition, so that problem (10), under the
coerciveness assumption (9), admits a unique solution and optimal error estimates can be proved for the pair (uh, Jh)

in the appropriate graph norm (see [27,21,24]). The DM formulation can be written in matrix form as
A (BT

+ C)
B D

 
j
u


=


0Ned

f


(11)

where A ∈ RNed×Ned is the flux mass matrix, B ∈ RNel×Ned, C ∈ RNed×Nel, D ∈ RNel×Nel, while u ∈ RNel×1,
j ∈ RNed×1 is the unknown vector pair, and 0Ned is the column null vector of size Ned. The reaction matrix D is
diagonal, while the flux mass matrix A is symmetric and positive definite and has at most three nonzero entries for
each row. Two computational difficulties are associated with the solution of the DM problem (10). The first difficulty
is that the linear algebraic system (11) is in saddle-point form and has a considerably larger size than a standard
displacement-based method of comparable order. The second difficulty is that, even in the particular case where β is
equal to zero, it is not possible to ensure that the stiffness matrix acting on the sole variable u (obtained upon block
Gaussian elimination) is an M-matrix for every value of γ (see [28] in the case of triangular RT elements). This
implies that the discrete maximum principle (DMP) can be satisfied by the DM method only if the mesh size h is
sufficiently small, and this constraint may become even more stringent if convection is present in the model.

4.2. The stabilized dual mixed finite volume approximation

To overcome the above mentioned difficulties, we introduce a (strongly consistent) modification of the DM method
that extends to the case of quadrilateral grids the approach for triangular grids proposed and analyzed in [25,26]. The



introduced modifications consist of: (1) replacing the bilinear form A(Jh, τ h) with the approximate bilinear form
Ah(Jh, τ h) obtained by using the trapezoidal quadrature formula; (2) replacing the bilinear form C(uh, τ h) with
Ch(uh, τ h) := C({uh}, τ h); (3) adding to the left-hand side of (10a) the stabilization term

S(uh, τ h) := −


e∈E in

h

ϱe(Pee)


e
[[uh ]]e ·τ h τ h ∈ Vh, (12)

where Pee := (|β · ne| de)/(2α) is the local Pèclet number associated with edge e and ϱe : e ∈ Eh → R+ is a
stabilization function equivalent to adding, for each edge of Eh , an artificial diffusion to the original problem.

To realize the importance of stabilization against possible dominance of the advective term, we estimate the local
Pèclet number in the case of the air temperature problem (8). Noting that in computations the mass density ρa varies
between 1 and 1.2 kg m−3, the air specific heat capacity cp is almost equal to 1000 J kg−1 K1, the module of the
air velocity |va | varies between 0.1 and 10 m s−1 and the air thermal conductivity ka varies between 0.025 and
0.03 W m−1 K1, we get

1667de ≤ Pee ≤ 240000de.

To prevent the occurrence of spurious oscillations in the computed solution uh we need to ensure that Pee < 1,
which amounts to requiring the mesh size h to be less than 4 µm. This constraint is extremely demanding in terms of
computational resources, so that we introduce the following stabilized DM formulation:
find uh ∈ Qh and Jh ∈ Vh such that, for all τ h ∈ Vh and for all qh ∈ Qh , we have:

Ah(Jh, τ h)+ B(uh, τ h)+ Ch(uh, τ h)+ S(uh, τ h) = 0 (13a)

B(qh, Jh)− (qh, γ uh) = −(qh, f ). (13b)

The stabilized DM formulation (13) can be written in matrix form asA (BT
+C)

B D

 
j
u


=


0Ned

f


(14)

where A ∈ RNed×Ned is a diagonalized flux mass matrix while C ∈ RNed×Nel is a stabilized advective flux matrix.
The significant advantage of introducing the modifications (1)–(3) with respect to the standard DM approach is

that, for each element K ∈ Th , the flux of Jh across the edge e(l), l = 1, . . . , 4 (the degree of freedom of Jh), can be
expressed explicitly as a function of the sole degrees of freedom uK and uKl as

je(l)(u
K , uK

l ) =


−α(1 + ϱe(Pee(l)))


uKl − uK

de(l)


+ β · ne(l)


uK

+ uKl

2


|el |. (15)

Replacing the above expression into the discrete conservation law (13b), we end up with the stabilized dual mixed-
finite volume (MFV) approximation of the model problem (8)

4
l=1

je(l)(u
K , uKl )+ uK γ K |K | = f K |K | ∀K ∈ Th,

uKl = 0 el ∈ Γ ,

(16)

where γ K and f K are the mean values of γ and f on K , respectively. The above proposed stabilized MFV method is
the extension to rectangular elements of the formulation for triangular grids introduced and analyzed in [25,26]. For
a similar use of numerical quadrature aimed to construct a finite volume variant of the DM method, we refer to [29]
in the case of the advection–diffusion–reaction model problem and to [30] for the approximate solution of the Stokes
problem in fluid-dynamics.

The MFV method (16) can be written in matrix form as

Ku = g (17)



where, for K = 1, . . . , Nel, the entries of the stiffness matrix and of the load vector are:

KK ,K =

4
l=1


α(1 + ϱe(Pee(l)))

dl
+

β · ne(l)

2


|el | + γ K |K |

KK ,Kl =


−
α(1 + ϱe(Pee(l)))

dl
+

β · ne(l)

2


|el |

gK = f K |K |.

(18)

Matrix K is sparse and has at most five nonzero entries for each row, in the typical format of lowest-order finite volume
methods. Proceeding along the same lines as in [25], we can prove the following result.

Proposition 1. Let the edge artificial viscosity ϱe(Pee) be chosen in such a way that

ϱe(Pee) ≥ Pee − 1 ∀e ∈ Eh . (19)

Then, K is an irreducible diagonally dominant M-matrix with respect to its columns [31].

As a consequence of Proposition 1, the MFV scheme (13) satisfies the DMP irrespective of the local convective term
and mesh size. This lends the scheme a property of robustness which is a significant benefit in industrial computations
like those considered in the present article. The simplest choice that allows to satisfy (19) is the upwind stabilization

ϱl(Pee) = Pee ∀e ∈ Eh . (20)

Another, more elaborate, choice is the so called Scharfetter–Gummel (SG) stabilization

ϱl(Pee) = Pee − 1 + B(2Pee) ∀e ∈ Eh, (21)

where B(x) := x/(ex
− 1) is the inverse of the Bernoulli function. This latter choice is also known as exponential

fitting [32,33]. The two above stabilizations tend to the same limit as the Pèclet number increases. However, their
behavior is quite different as the mesh size h decreases, because (20) introduces an artificial diffusion of O(h) as
h → 0 while (21) introduces an artificial diffusion of O(h2) as h → 0. For this reason, the SG stabilized MFV
formulation is preferable as far as accuracy is concerned, and is the one implemented in the simulations reported in
Section 6.

4.3. Numerical validation of the MFV discretization

In this section, we perform a numerical validation of the stabilized MFV method (13) applied to the solution of the
model problem (8) with Ω = (0, 1)× (0, 1).

In a first case study, we verify the convergence rate of the scheme when β = [0, 1]
T , γ = 1 and f is com-

puted in such a way that the exact solution is u(x, y) = cos x sin y. As for the diffusion coefficient, we choose
α = {1, 10−1, 10−2, 10−3, 10−4

}, in order to analyze both dominating diffusive and convective regimes. Computa-
tions are performed on increasingly refined grids of N × N square elements of dimension varying from N = 4 to
N = 64. Fig. 6 shows the discrete maximum norm of the discretization error

∥u − uh∥∞,h := max
K∈Th

|u(xG,K )− uK
|

as a function of α and of the mesh size h = 1/N . Results indicate that for low values of the Pèclet number Pe,
corresponding for example to α = 1, the SG method has a convergence order of O(h2), that decreases to O(h) for
dominating convection regimes, as for α = 10−4. On the other hand, the estimated convergence error of the upwind
method is never better than O(h) for every value of α.

In a second case study, we validate the robustness and accuracy of the SG stabilization in the solution of the two
numerical examples considered in [34] where α = 10−6, γ = 0 and h = 2−6. In the first example, f = 1 and
β = [−y, x]

T . The scope of this computation is to verify the accuracy and stability of the method in managing a
boundary layer without introducing spurious oscillations. In the second example, f = 0 and β = ∇ψ , ψ being the



(a) Upwind stabilization. (b) SG stabilization.

Fig. 6. Logarithmic plot of the maximum norm of the discretization error as a function of h and α.

potential function defined as

ψ =

0 0 ≤ d + x < 0.55,
2(d − 0.55) 0.55 ≤ d + x < 0.65,
0.2 0.65 ≤ d + x,

where d = (x2
+ y2)1/2. Mixed Dirichlet–Robin conditions are enforced on the boundary Γ in such a way that the

solution exhibits two interior layers, one of which is very sharp. For graphical purposes, the computed values of uh
have been interpolated through a nodally continuous function. Results reported in Fig. 7 are in excellent agreement
with those of [34] and demonstrate the robustness of the stabilized MFV method with respect to dominating convective
terms and its ability in capturing sharp boundary and interior layers without introducing any spurious oscillation in
accordance with Proposition 1.

5. Primal mixed discretization of the 1D fluid equations

In this section we focus on the description of the Primal Mixed (PM) finite element scheme for the discretization of
the two-phase fluid equations (2). The choice of the primal-mixed finite element method is due to the fact that, in its
lowest order form, it enforces a weak flux continuity across interelement boundaries with a piecewise linear continuous
approximation of the scalar unknown that makes it structurally similar to standard displacement-based finite element
schemes. A sound theoretical foundation (see [35] for an introduction and analysis), confirmed by the included
computational experiments, is another important motivation for selecting the PM approach in the discretization of
(2). Finally, it is worth noting that while the use of PM methods is well established in the numerical solution of
elliptic boundary value problems, it is not so common for the treatment of problems with a markedly advective
character like those considered in this section and thus makes the PM method an attractive scheme for the finite
element approximation of the model system (2).

5.1. Primal mixed finite element approximation

In the following, we consider one pipe only and drop the subscript denoting the pipe being considered. We start
by noting that both (3) and (4) are special instances of the following boundary value problem to be solved in the 1D
domain σ = (0, L):

∂s J = f (22a)

−ε∂su + βu = J + g (22b)

u(0) = u(L) = 0 (22c)



(a) Boundary layer example.

(b) Interior layer example.

Fig. 7. Surface plot of the numerical solution of two problems with sharp boundary and interior layers.

where f, β and g are given data, and ε is a non-negative diffusion coefficient. We recover (3) by setting J = −G, u =

ϕ, ε = R−1, g = −R−1ρg · d, f = 0 and β = 0, while we recover (4) by setting J = W, u = H, ε = 0, g = 0, f =

hwc(Tw − Tc) and β = G.

Remark 1 (Purely Advective Character of the Two-Phase Fluid Model). From the mathematical point of view, the
model problem (22) represents an advective–diffusive model in conservation form quite similar to that introduced
in Section 4 for the description of the air/panel physical model. In the present case, however, there is an important
difference because the two-phase fluid equations (2) have a purely advective character so that the introduction of a
diffusive term in the model system (22) must be regarded as a stabilization term for the corresponding numerical
discretization of Eqs. (2). For this reason, throughout the section, we always assume ε to be strictly positive.

Remark 2 (Extension to Pipeline Geometry). The advective–diffusive model (22) is here solved in the interval
σ = (0, L) only for ease of presentation of the Primal Mixed Finite Element Method approximation. The incorporation



of the coupling conditions (5) at each junction node of the pipeline network is straightforward with the adopted
discretization scheme and is discussed in detail in the remainder of the section.

Let ε be a positive bounded function and set a := ε−1. Then, the advective–diffusive problem (22) can be written
in mixed form as:
find u : σ → R and J : σ → R such that:

a J + ∂su − aβu + ag = 0 in σ, (23a)

∂s J = f in σ, (23b)

u(0) = u(L) = 0. (23c)

We assume that

∂s(aβ) ≥ 0 a.e. in σ. (24)

In view of the numerical approximation of (23) we introduce a partition Th of σ into N intervals Ki of length
hi , i = 1 . . . N , by means of N + 1 nodes s j , j = 0 . . . N , s0 = 0, sN = L . We also introduce the following
function spaces defined on Th :

Vh =


vh ∈ C0(σ ) : vh |Ki ∈ P1(K )∀K ∈ Th, vh(0) = vh(L) = 0


Qh =


ph ∈ L2(σ ) : ph |Ki ∈ P0(K )∀K ∈ Th


.

Functions in Vh are piecewise linear continuous over σ and vanish at the boundary ∂σ while functions in Qh are
piecewise constant over σ . Nodal continuity of functions in Vh ensures the automatic satisfaction of the coupling
conditions (5a) and (5b).

The PM finite element approximation of (23) reads:
find uh ∈ Vh and Jh ∈ Qh such that:

A(Jh, qh)+ B(uh, qh)+ C(uh, qh) = −(ag, qh) ∀qh ∈ Qh (25a)

B(vh, Jh) = −(vh, f ) ∀vh ∈ Vh, (25b)

where

A(Jh, qh) :=


σ

a Jh qh ds,

B(vh, Jh) :=


σ

Jh ∂svh ds,

C(uh, qh) := −


σ

a β uh qh ds

and (·, ·) denotes the scalar product in L2(σ ). It can be checked that under the coercivity assumption (24), problem
(25) is uniquely solvable.

The PM system (25) can be written in matrix form as
A (BT

+ C)
B 0

 
j
u


=


g
f


(26)

where A ∈ RN×N is the flux mass matrix, B ∈ R(N−1)×N and C ∈ RN×(N−1), while u ∈ R(N−1)×1, j ∈ RN×1 is the
unknown vector pair, and 0 ∈ R(N−1)×(N−1) is the null square matrix of size N − 1. Compared with the dual mixed
system (11), the PM formulation (26) has a considerable advantage because matrix A is diagonal, each diagonal entry
Akk corresponding to the element Kk in the grid, k = 1, . . . , N . Assuming that ε, β and g are constant over each
element Ki , the first equation of (25) can be solved for the flux Jh over each mesh element

Jk = −εk
uk − uk−1

hk
+ βk

uk−1 + uk

2
− gk ∀i = k, . . . , N . (27)



Taking vh equal to the “hat” function ϕi , equal to 1 at every internal node si and zero at every other node, i =

1, . . . , N − 1, we end up with the following system of nodal conservation laws:

Ji+1 − Ji = fi


hi + hi+1

2


i = 1, . . . , N − 1. (28)

The above equation expresses the fact that at each internal node of the partition the output flux Ji+1 is equal to the
sum of the input flux Ji plus the nodal production term Pi := fi (hi + hi+1)/2, in strong analogy with the classical
Kirchhoff law for the current in an electric circuit. In particular, if f = 0, we get strong flux conservation at the node
si , i = 1, . . . , N − 1, which corresponds to enforcing in strong form the coupling conditions (5c) and (5d).

Substituting (27) into (28) we end up with the linear algebraic system in the sole variable uh

MU = F (29)

where U ∈ R(N−1)×1 is the vector of nodal dofs for uh,F ∈ R(N−1)×1 is the right-hand side and M ∈ R(N−1)×(N−1)

is the stiffness matrix whose entries are given by:

Mi j =



−
εi

hi
−
βi+1

2
j = i − 1

εi

hi
+
εi+1

hi+1
+
βi+1

2
−
βi

2
j = i

−
εi+1

hi+1
+
βi+1

2
j = i + 1.

As in the case of the dual mixed method of Section 4.1, the matrix M turns out to be an M-matrix only if the mesh
size h is sufficiently small. To avoid this inconvenience, we define the local Pèclet number

Pei :=
|βi |hi

2εi
i = 1, . . . , N

and modify the PM finite element scheme by simply replacing in the first equation of (25) the term a = ε−1 with

ah |Ki := (εi (1 + Pei ))
−1

=


εi +

|βi |hi

2

−1

i = 1, . . . , N .

This amounts to adding a stabilizing artificial diffusion term of upwind type (cf. (20)) into the method and transforms
system (29) into the stabilized PM scheme

MstabU = F (30)

where the entries of the stiffness matrix Mstab of the stabilized PM method now read:

Mstab
i j =


−
εi

hi
− β+

i j = i − 1

εi

hi
+
εi+1

hi+1
+ β+

i+1 − β−

i j = i

−
εi+1

hi+1
+ β−

i+1 j = i + 1

having set:

β+
:=
β + |β|

2
(≥0)

β−
:=
β − |β|

2
(≤0).

By inspection on the expressions of Mstab
i j we have the following result.

Proposition 2. The stiffness matrix Mstab is an irreducible diagonally dominant M-matrix with respect to its columns.



Fig. 8. Test case on a three-segment network. Solid lines denote the exact solution while dotted lines denote the numerical solution computed by
the upwind stabilized PM method.

As in the case of the MFV scheme, Proposition 2 implies that the upwind stabilized PM finite element scheme sat-
isfies the DMP. Moreover, the upwind PM method is at most first-order accurate with respect to the discretization
parameter h.

Remark 3 (Stabilization Method). In the case of problem (4) the SG stabilization (21) cannot be used because ε = 0.
Therefore, to ensure a consistent treatment that is applicable in both hyperbolic and advective–diffusive regimes, the
artificial diffusion term of upwind type (20) is added in the numerical examples of Sections 5.2 and 6.

5.2. Numerical validation of the PM discretization

In this section, we perform a numerical validation of the stabilized PM method (30) applied to the solution of the
model problem (22) on the test network geometry depicted in Fig. 8.

In the first test case we study a diffusion-dominated flow while in the second test case the flow is in the advection-
dominated regime. For both cases we let β|σ 1 = 3, β|σ 2 = 2, β|σ 3 = 1 and f = g = 0. For the first test case, whose
exact solution is shown in black in Fig. 8, we let ε = 1 on all network segments, while for the second test, whose
exact solution is shown in red in Fig. 8, we let ε = 1/50. It is easily verified that the exact solution of both tests can
be expressed as:

u(s)|σ i = u(0)|σ i

e(β|σ i L i )/ε − e(β|σ i s)/ε

e(β|σ i L i )/ε − 1
+ u(L i )|σ i

e(β|σ i s)/ε
− 1

e(β|σ i L i )/ε − 1
(31a)



(a) ∥u − uh∥V . (b) ∥J − Jh∥Q .

Fig. 9. Logarithmic plot of the discretization error as a function of h in the case ε = 1.

J (s)|σ i = β|σ i

u(0)|σ i e
(β|σ i L i )/ε − u(L i )|σ i

e(β|σ i L i )/ε − 1
(31b)

for i = 1, 2, 3, where L1 = L2 = L3 = 1, u(0)|σ 1 = 1, u(L1)|σ 1 = u(0)|σ 2 = u(0)|σ 3 = ω and u(L2)|σ 2 =

u(L3)|σ 3 = 0. The value ω of the solution u at the junction node x1 is determined from the flux continuity condition

J |σ 1 = J |σ 2 + J |σ 3 ,

that yields

ω =

ε
L1

B


−β|σ1 L1
ϵ


u(0)|σ 1 +

ε
L2

B

β|σ2 L2
ϵ


u(L2)|σ 2 +

ε
L3

B

β|σ3 L3

ϵ


u(L3)|σ 3

ε
L1

B

β|σ1 L1
ϵ


+

ε
L2

B


−β|σ2 L2
ϵ


+

ε
L3

B


−β|σ3 L3

ϵ


where B is the inverse of the Bernoulli function introduced in Section 4.2.

Fig. 9 shows the logarithmic plots of the discretization errors ∥u − uh∥V and ∥J − Jh∥Q as a function of the
discretization parameter h in the diffusive-dominated regime. The scheme turns out to have a first-order accuracy.
This result confirms the validity of the error analysis carried out in [35] in the case of a purely diffusive problem also
in the case of an advective–diffusive model.

Fig. 10 shows the logarithmic plots of the discretization errors ∥u − uh∥V and ∥J − Jh∥Q as a function of the
discretization parameter h in the advective-dominated regime. The scheme is still first-order accurate with respect
to h in the computation of the primal variable u despite the fact that the magnitude of the computed error is higher
than in the diffusion-dominated regime. The reported error curve for the flux variable J is dominated by the effect of
round-off, in accordance with the fact that in the advective-dominated regime the flow is almost hyperbolic and the
computed flux Jh is a very good approximation of the exact flux J .

We conclude the validation analysis of the upwind stabilized PM method by considering again Fig. 8 which shows
the numerical solution of the benchmark problem (denoted by black and red dotted curves) computed with a grid
spacing h = 1/16 and superposed to the exact solution (31a). It is to be noted that in the advective-dominated regime
(ε = 1/50) the numerical solution almost coincides with the exact one in the first branch of the network σ1 because
there the problem is almost hyperbolic and the input datum u(0) = 1 is transported by the fluid velocity. We also note
that in the other two branches of the network, σ2 and σ3, even though the chosen stepsize is not sufficiently small to
fully resolve the boundary layer at the outlets, the PM upwind method provides a solution which is monotone and free
of spurious oscillations in accordance with Proposition 2. A more considerable error occurs in the computed solution
when the problem is diffusion-dominated (ε = 1) in accordance with the fact that the PM is only first-order accurate.



(a) ∥u − uh∥V . (b) ∥J − Jh∥Q .

Fig. 10. Logarithmic plot of the discretization error as a function of h in the case ε = 1/50.

Table 1
Model parameters.

Parameter Value Units

S 0.05 m
λ1 = λ2 0.025 m
T in

a 298.15 K
|Vin

a | 1 m s−1

W 0.45 m
H 0.2 m
T0 358.15 K
Gtot 5.8 kg m−2 s−1

hwc 3 W m−2 K−1

haw 1.1 W m−2 K−1

6. Simulation results

In this section we perform a thorough validation of the computational model illustrated in the previous sections. The
simulations are representative of realistic geometries of advanced cooling systems for power electronics. In particular
aluminum condenser panels, as part of a two-phase thermosiphon loop, are simulated in natural convection operation
mode. In Section 6.1 we analyze the impact of channel geometry and topology on the cooling performance, while in
Section 6.2 we compare the model predictions with the measured data reported in [2] and based on the experimental
campaign and methodology illustrated in [1].

6.1. Comparison of different channel geometries

In this section we use our simulation code to estimate the impact of different pipe geometries on the cooling
properties of the system. With this aim, we consider three test cases where panel size and material, input power, air
velocity and temperature are the same, but with different channel paths.

The developed code represents a strong tool in the design of complex channel geometries allowing the researchers
to optimize the topology of complex systems.

The simulation data are summarized in Table 1.
The total mass of coolant flowing through the panel per unit time is given by the user as an input datum of the

simulation and is equal to G tot multiplied by the value of the pipe cross-sectional area. The coolant is assumed to be
in full vapor state at the inlet of the system.



(a) Device A.

(b) Device B.

(c) Device C.

Fig. 11. Comparison of mass flow rate magnitude for the three devices geometries.

The geometry of the three devices is compared in Fig. 11, with the color scale representing the absolute value of
the mass flow rate in each channel segment.

The structure of a condenser panel is based on a series of parallel channels. A good flow distribution is a mandatory
element for an optimal design, allowing the designer to maximally exploit the system and therefore increasing the
maximum power density of the cooling device. Case “a” and case “b” indicate a better distribution of mass flow over
the parallelized channels compared to case “c”. Starting from case “a” and “b”, we see that the flow distribution is a
function of the flow-path resistance: the higher the flow-path resistances, the lower is the flow rate. For case “a”, the
flow rate is higher in the lower channels, closer to the inlet, and slightly decreases toward the top part of the panel. The
configuration “b” is a possible design solution to overcome the pressure drop unbalance that may occur among the
channels, and to guarantee a more uniform distribution over the entire surface due to equal inlet–outlet channel-flow-
path length. Unfortunately, this effect is not present and a distribution of the mass flow rate similar to that in case “a”
is obtained. Case “c” is studied to take advantage of the channel orientation and the positive effect of the gravitational
field in the condensation process.

While the effect of gravity due to channel orientation helps reducing the pressure losses across the system, the
short channels close to the flow inlet act as short circuit path, allowing high mass flow rates of vapor directly from
inlet to outlet. This has the clear disadvantage that high flow rates of vapor cannot condense efficiently over a short
distance. The described mass flow rate distribution has a strong effect on the local vapor quality, as depicted in
Fig. 12. Generally, for a channel of fixed length, high flow rates correspond to a high vapor quality at the discharge.



(a) Device A.

(b) Device B.

(c) Device C.

Fig. 12. Comparison of vapor quality for the three devices geometries.

This phenomenon is particularly evident in case “c”, where the lower sub-channel with the higher flow rate does not
provide a good condensation due to its short length. The designer should seek for a balanced distribution of the vapor
qualities at the discharge of each channel in order to exploit best the heat transfer area.

Fig. 13 shows the value of the panel temperature for the three different geometries. Results indicate an almost
constant temperature distribution. This is the characteristic of a two-phase system where the condensation heat transfer
coefficients are orders of magnitude higher than those of the air side.

Fig. 14 shows the distribution of the air temperature for the three different geometries. This plot is a visual
representation of the total heat released by the panel to the ambient and contributing to the sensible heating of the
air stream, and provides the designer a clear and precious information on the “goodness” of the thermal performance
of the cooling device. Considering the original boundary condition of a fixed inlet mass flow rate of vapor, a higher
air temperature difference indicates a higher amount of transferred heat. While case “a” and case “b” are comparable,
case “c” shows a lower air temperature at the discharge of the panel, clearly indicating a lower heat transfer to the air.
This is well supported by the mass flow rate distribution and vapor quality plots. We also can notice that in Fig. 14
the air temperature differences are smaller in case “c” compared to “a” and “b”. This is probably to be ascribed to the
fact that a mass flux is enforced as boundary condition in the simulation model (mass flow rate of vapor per unit area)
and not power.



(a) Device A.

(b) Device B.

(c) Device C.

Fig. 13. Comparison of panel temperature for the three device geometries.

Fig. 15 shows the spatial distribution of the so called two phase density or bulk density for the three different device
geometries. This quantity represents a weighted density between liquid and vapor densities, the weighting factor being
the vapor quality. This means that the bulk density is the sum of the vapor and liquid densities multiplied by the vapor
quality (vapor phase fraction) and its complement (liquid phase fraction), respectively. As a result, portions of the
channels with higher bulk densities represent a fluid in a state with a higher content of liquid phase. To interpret
Fig. 15 we can directly refer to Fig. 12, so that high flow rates imply a high vapor quality at the discharge and
relatively low two phase densities. As discussed for Fig. 12, this latter phenomenon is particularly evident in case “c”
where the lower sub-channel with the higher flow rate does not provide a good condensation due to its short length
and low vapor densities occur. As for the vapor quality, the design should seek for a balanced distribution of the two
phase densities at the discharge of each channel in order to exploit at the best the heat transfer area and in order to
have a balanced distribution of the liquid and vapor phases across the condensing panel.

6.2. Comparison with measured data

In this section we carry out a set of simulation runs to validate the performance of the computational model
on realistic geometries and fluid-dynamical data. The experimental campaign and test set-up used for the validation
follows closely what is presented in [1,2]. As described in [2], the investigated cooling system is a thermosiphon device
constituted of: an evaporator body, a vapor riser, a condenser (stack of roll-bonded panels) and a liquid downcomer.
The evaporator can accommodate two ABB HighpakTM power semiconductor modules. Once the modules are in



(a) Device A.

(b) Device B.

(c) Device C.

Fig. 14. Comparison of air temperature for the three device geometries.

operation the evaporator collects the heat transferred by means of an evaporating fluid. The evaporator is designed in
such a way that at its discharge the liquid is separated from the vapor. The liquid is brought back to the evaporator
inlet while the vapor travels toward the condenser through the vapor riser. At the inlet of the condenser a vapor
distributor feeds the stack of aluminum panels, equally distributing the mass flow among them. The panels are so-
called roll-bonded panels, constituted of two aluminum sheets bounded together over almost the entire surface. Where
this bounding is not present, a channel is generated, allowing the passage of the two-phase flow. The heat is rejected to
the ambient by means of natural convection, the vapor is brought back to liquid conditions. Finally, the liquid is driven
back to the evaporator inlet by gravity. The same aluminum panels and stack geometrical layout as presented in [2]
are the subject of the investigation. The condenser is a stack of 13 panels 500 mm wide and 250 mm high, 1.2 mm
thick, and equally spaced with a pitch of 18 mm. Each panel contains 11 horizontal flow channels of a nominal length
of 390 mm. The flow channel is formed on both sides of the panel with isosceles trapezoidal sections, the base and the
height measuring 10 mm and 2.1 mm, respectively. The vapor and liquid phases are distributed to and collected from
the panels by means of collectors of 19 and 16 mm internal diameter, respectively. Detailed drawings are available
in [2], while a detailed description of the experimental measurement techniques is presented in [1]. The experimental
conditions are summarized in Table 2.

Fig. 16 presents the computed panel temperature corresponding to a power inflow of 1500 W, air inlet temperature
of 25 ◦C and natural convection operation. It is observed that the panel is almost isothermal. This is the characteristic
of the investigated system. A condensing fluid in the panel channels is characterized by high heat transfer coefficients,



(a) Device A.

(b) Device B.

(c) Device C.

Fig. 15. Comparison of the density of the two phase fluid for the three device geometries.

Table 2
Experimental conditions.

Fluid R245fa
Refrigerant charge 2 kg
Filling ratio 0.5
Heat load 200–1600 W
Ambient temperature 298.15 K
Air cooling regime Natural convection

orders of magnitude higher than heat transfer coefficients typical of natural convection in air. The heat transfer
conditions as well as the nature of the panel, sufficient thickness, small distance between channels and relatively high
thermal conductivity of the aluminum result in an almost constant panel temperature. An almost constant temperature
of the condenser panel is what we are looking for from an application point of view. It allows to overcome a common
drawback of a standard heat-sink based system, where the metallic fin does not behave as a perfect fin (constant
temperature) but has a temperature gradient from base to tip, resulting in a limited efficiency. Having an almost
constant temperature results in an efficiency of the fin close to unity. The panel border is the coldest part. The low
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Fig. 16. Computed panel temperature for a total dissipated power of 1500 W.
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Fig. 17. Computed air temperature for a total dissipated power of 1500 W.

temperature in this region is due to boundary effects. While the rest of the panel has an almost constant temperature,
we can still identify a hotter region in the lower part of the panel compared to the top part.

Fig. 17 depicts the air temperature between two panels. The values are averaged in the direction perpendicular to
the panel surface. The temperature pattern is the characteristic of the transfer of sensible heat from panel to air in
natural-convection operation. The large temperature difference between inlet and outlet of the condenser panel results
from the small air velocity typical of natural convection. The maximum allowed temperature difference between inlet
and outlet is usually a design parameter, and the designer of the device tries to optimize the system in order to match
this value. A higher allowed temperature difference makes it possible to shrink the size of the device. On the other
hand, when required, a decrease of the maximum temperature difference can be obtained by increasing the number of
panels or the panel area. Since the panel temperature decreases from bottom to top, while the air temperature increases
in that direction, the temperature difference between air and panel is largest at the panel bottom. This means that the
heat flux from panel to air is maximum at the panel bottom.

The mass flow rate distribution among the panel channels plays an important role in the behavior of the condenser.
During operation, the two-phase fluid tends to flow in the horizontal channels suitably paralleled. Considering the fact
that the flow path through the panel and hence the flow resistance is smallest for the bottom channel, a decrease in
mass flow rate from bottom to top is expected. A certain inhomogeneity in mass flow rate must therefore always be
accounted for in the type of parallel connection of channels. Due to the higher mass flow rate, and consequently higher
velocity in the bottom channel, a lower fluid residence time per channel length results. Consequently, it is expected
that a longer channel length is needed to complete condensation.

This is indeed observed in the simulation results in Fig. 18, showing the local vapor quality in the channels. For the
bottom channel, a longer distance from the channel inlet is needed for the vapor quality to decay to a certain value.
Consequently, the vapor quality at the channel end, i.e. at the left in the figure, is highest for the bottom channel and
lowest for the top channel. Furthermore, from the energy balance, it is clear that the condensation of the highest mass
flow rate in the bottom channel requires the largest heat flow rate from channel to air. Since all channels have the
same surface area, one expects the heat flux to be highest for the bottom channel and lowest for the top channel. This
closely agrees with the observation of maximum temperature difference between panel and air at the bottom and the
corresponding maximum heat flux between panel and air in this region.

The designer may try to minimize the observed differences in performance between the condenser channels
by optimizing the channel design. For example, one may try to achieve the same vapor quality at the end of all
condenser channels. Complete condensation and hence low vapor quality is fundamental to guarantee a safe and



Fig. 18. Computed refrigerant vapor quality for a total dissipated power of 1500 W.

Fig. 19. Average panel temperature (computed vs. measured) as a function of the total dissipated power.

reliable operation of the device, since a re-wetting of the evaporator surface is mandatory. It is exactly this kind
of optimization tasks for which the present mathematical model is beneficial, as it provides insight in the detailed
performance and behavior of the cooling device.

Fig. 19 shows a plot of the mean temperature of the panel as a function of the dissipated power. While the computed
temperature distribution describes in great detail the operation of the device, the mean panel temperature is a synthetic
parameter for the designer to validate in an immediate manner the predictive capabilities of the code. Agreement of
numerical results of Fig. 19 with experimental data is striking and indicates that, although based on many simplifying
assumptions, our model does have very good predictive accuracy.

7. Conclusions and future work

In this article we have proposed and numerically implemented a multiscale thermo-fluid mathematical model for
the description of a condenser component of a novel two-phase thermosiphon cooling system presented in [1,2]. The
condenser consists of a set of roll-bonded vertically mounted fins among which air flows by either natural or forced
convection and plays an important role in the industrial design of advanced power electronics systems.

The mathematical model is developed with the aim of deepening the understanding of the various thermo-fluid
mechanisms that determine the performance of the condenser in view of a further optimization of the cooling device.
The adopted approach is based on a multiscale formulation meant to reduce as much as possible the complexity
required by a fully three-dimensional (3D) simulation code while maintaining reasonable predictive accuracy.

More specifically, the flow of the two-phase coolant within the condenser fins is modeled as a 1D network of pipes,
while heat diffusion in the fins and its convective transport in the air slab are modeled as 2D processes. The resulting
mathematical problem consists of a system of nonlinearly coupled PDEs in conservation form that are characterized
by a mixed parabolic–hyperbolic character with possible presence of strongly advective dominating terms. A fixed
point iterative map is used to reduce the computational effort to the successive solution of a sequence of decoupled
linear stationary boundary value problems in the 1D channel pipe network and in the 2D air domain, respectively.

For the numerical approximation of the above differential problems a Primal Mixed Finite Element discretization
method with upwind stabilization is used for the 1D coolant flow while a Dual Mixed-Finite Volume scheme with
Exponential Fitting stabilization is used for 2D heat diffusion and convection.

Extensive numerical tests are carried out to validate the stability and accuracy of the proposed schemes on several
benchmark problems whose solution is characterized by the presence of steep interior and boundary layers. The



obtained results confirm the good accuracy of the proposed formulation and its ability in satisfying a discrete
maximum principle. This latter property confers robustness to the simulation tool and makes it suitable for heavy
duty use in industrial applications.

The solver is then thoroughly applied to the numerical study and parametric characterization of a two-phase coolant
system with realistic industrial geometry. The output of the simulations provides a complete map of the principal
thermal and fluid dynamical variables of the problem (air temperature, coolant fluid pressure and vapor quality)
that are extensively used by the project engineer to quantitatively design a novel device structure. Two groups of
simulations are performed for the validation of the computational algorithm. In a first set of runs, the code is used to
analyze the impact of channel geometry on the distribution of mass flow rate, vapor quality and panel temperature.
In a second set of runs, the simulated average panel temperature of a given realistic cooler geometry is compared
with available experimental data. Despite the several simplifying model assumptions introduced in the condenser
mathematical description, the obtained results turn out to be in very good agreement with measures thus providing a
sound indication of model reliability.

Even if applied to a problem arising in a specific area of thermo-fluid dynamical industrial applications, the
multiscale modeling approach proposed in the present work can be used to study problems arising in other scientific
contexts. For example, the computational model to couple 2D heat convection–diffusion and 1D flow in a pipeline
network shares a close resemblance with the mathematical and numerical treatment of flow and mass transport in
biological tissues that has been recently investigated in [36–38] and references cited therein. This interesting similarity
might be profitably used to apply to these latter novel bio-technological applications solution methods that in this
article are proved to enjoy properties of accuracy, stability and conservation.

Further research activity will be devoted to the:

• topological optimization of the channels layout;
• integration of the condenser model in a complete thermosiphon loop simulation tool including evaporator body and

connections;
• analysis of the existence of a fixed point of the iterative map and its possible uniqueness.
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Appendix. Dimensionality reduction of the heat convection–diffusion equations

In this section we illustrate the model reduction procedure that allows to derive under the assumptions (H1)–(H7)
of Section 2.1 the simplified 2D model (1) from the corresponding 3-dimensional equations for heat convection
and diffusion in the condenser walls and in the air between two plate walls. In order to describe the dimensionality
reduction procedure, we start from the following model problem set in the 3D computational domain Ω depicted in
Fig. A.20:

∇ · (−k∇u + ρcvu) = 0 in Ω
u = uin on Σin

−k∇u · n = 0 on Σout

(−k∇u + ρcvu) · n = h (u − uw) on Σw
(−k∇u + ρcvu) · n = 0 on Σlat.

(A.1)

We notice that the model problem (A.1) may describe either the forced heat convection between two fins or the heat
diffusion in one fin wall. Referring to Fig. A.20, in the latter case, we have Σin = Σout = ∅, v = 0 and Σlat = ∪

4
i=1 Σi ,

while in the former case we have Σin = Σ1,Σout = Σ3 and Σlat = Σ2 ∪ Σ4. The contact walls Σw, located at z = 0
and z = S respectively, represent the boundaries where heat exchange occurs. According to assumption (H4), the



Fig. A.20. Three-dimensional domain for the heat convection–diffusion model problem.

convection velocity v is directed along the x axis, so that it can be expressed as

v(z) = V B(z) (A.2)

where V is a constant vector directed along the x axis and B(z) is a dimensionless scalar shape function accounting
for the velocity boundary layer in the z direction.

The unknown function u = u(x, y, z) represents a temperature (either air temperature or wall temperature), ρ is
the density of the medium contained in the domain Ω , c is the specific heat capacity of the medium and k is its thermal
conductivity.

Temperature is fixed at the inlet surface Σin to a given value uin. On the contact surfaces Σw the outflow heat
flux is proportional to the difference between temperature u and the wall temperature uw, through the heat transfer
coefficient h. n is the outward unit vector along the external surface of the domain.

According to assumptions (H1) and (H3), the conditions at the upper and the lower contact surface Σw are
symmetric. Therefore, we can define an adiabatic plane at z = S/2 which allows us to consider only the portion
of space between the adiabatic surface and one of the two contacts Σw, for example that located at z = 0.

We start our dimensionality reduction procedure by assuming the following ansatz for the unknown u

u(x, y, z) = U (x, y) Z(z), (A.3)

where U = U (x, y) expresses temperature variation in the xy plane, while Z = Z(z) is a dimensionless shape
function accounting for temperature variation between the contact surface and the adiabatic plane located at z = S/2.
The separated variable form of temperature distribution (A.3) agrees well with assumptions (H6) and (H7) according
to which a mild variation of temperature between two neighboring contact surfaces is to be expected. The next step
consists in examining the dependence of problem coefficients on the unknown u. The heat capacity c can be taken
as a constant [39]. The same holds for the density ρ (cf. assumption (H5)). As far as the thermal conductivity k, the
following power law can be used [39]

k(x, y, z) = k0


u(x, y, z)

u0

β
= k0


U (x, y)Z(z)

u0

β
(A.4)

where k0, u0 and β are suitable constants.
Integration of the balance equation in the vertical direction and the use of (A.2)–(A.4) yield

λ1∇xy ·


−k0


U

u0

β
∇xyU


+ λ2∇xy · (ρcVU )+ I = 0 (A.5)

where

λ1 :=

 S/2

0
Zβ+1(z) dz, λ2 :=

 S/2

0
Z(z) B(z) dz (A.6)



and

I :=

 S/2

0
∂z (−k∂zu) dz,

while ∇xy(·) is the gradient operator with respect to the directions x and y only, The quantity λ1 modulates the
variation of thermal conductivity in the z direction while the quantity λ2 is related to the shape of the thermal boundary
layer arising at the interface between air and panel. Using Gauss theorem to treat the quantity I we get

I =

−k∂zu

S/2
0 = − (−k∂zu|z=0)

because −k∂zu|z=S/2 = 0 under the assumption of adiabatic surface, so that we can rewrite condition (A.1)4 as

h (u|z=0 − uw) = (−k∇u + ρcuv) · n|Σw
= −k∇u · n|Σw

= − (−k∂zu|z=0) = I.

Therefore, upon rescaling the shape function Z in such a way that Z(0) = 1, Eq. (A.5) becomes

λ1∇xy ·

−kxy∇xyU


+ λ2∇xy · (ρcVU )+ h (U − uw) = 0

where we have defined the heat conductivity in the xy plane (contact surface)

kxy := k0


U (x, y)

u0

β
= k0


U (x, y)Z(0)

u0

β
= k(x, y, 0).

To end up with a 2D reduced model for heat convection and diffusion, we need specify the exponent β. At low
pressures we typically have β = 0.9 [39] so that k is approximately a linear function of temperature. This latter
quantity is used as a fitting parameter in the numerical simulations reported in Section 6. Thus, omitting the subscript
xy in the notation, and writing u instead of U , the reduced 2D version of (A.1) reads:

∇ · (−k∇u + ρcvu)+h(u − uw) = 0 (x, y) ∈ Ω ,
u = uin x = 0,
−k∇u · n = 0 x = W,
(−k∇u + ρcvu) · n = 0 y = 0, y = H,

(A.7)

where Ω := (0,W ) × (0, H),h := h/λ1,λ := λ2/λ1 andv := λV. Notice that the two heat balance equations
(1a) and (1b) are special instances of (A.7) upon setting u = Ta, k = ka, ρ = ρa, c = cp,v = va,h = haw
and uw = Tw in the case of the air temperature model, and u = Tw, k = kw,v = 0,h = h∗

aw + h∗
wc, and

uw = (h∗
awTa + h∗

wcTc)/(h∗
aw + h∗

wc) in the case of the panel temperature model, respectively.
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