3,952 research outputs found

    Processing acoustic change and novelty in newborn infants

    Get PDF
    Research on event-related potential (ERP) correlates of auditory deviance-detection in newborns provided inconsistent results; temporal and topographic ERP characteristics differed widely across studies and individual infants. Robust and reliable ERP responses were, however, obtained to sounds (termed ‘novel’ sounds), which cover a wide range of frequencies and widely differ from the context provided by a repeating sound [Kushnerenko et al., (2002) NeuroReport, 13, 1843–1848]. The question we investigated here is whether this effect can be attributed to novelty per se or to acoustic characteristics of the ‘novel’ sounds, such as their wide frequency spectrum and high signal energy compared with the repeated tones. We also asked how sensitivity to these stimulus aspects changes with development. Twelve newborns and 11 adults were tested in four different oddball conditions, each including a ‘standard’ sound presented with the probability of 0.8 and two types of infrequent ‘deviant’ sounds (0.1 probability, each). Deviants were (i) ‘novel’ sounds (diverse environmental noises); (ii) white-noise segments, or harmonic tones of (iii) a higher pitch, or (iv) higher intensity. In newborns, white-noise deviants elicited the largest response in all latency ranges, whereas in adults, this phenomenon was not found. Thus, newborns appear to be especially sensitive to sounds having a wide frequency spectrum. On the other hand, the pattern of results found for the late discriminative ERP response indicates that newborns may also be able to detect novelty in acoustic stimulation, although with a longer latency than adults, as shown by the ERP response. Results are discussed in terms of developmental refinement of the initially broadly tuned neonate auditory system

    Association of postpartum maternal mood with infant speech perception at 2 and 6.5 months of age

    Get PDF
    Importance: Language development builds on speech perception, with early disruptions increasing the risk for later language difficulties. Although a major postpartum depressive episode is associated with language development, this association has not been investigated among infants of mothers experiencing a depressed mood at subclinical levels after birth, even though such a mood is frequently present in the first weeks after birth. Understanding whether subclinical depressed maternal mood after birth is associated with early language development is important given opportunities of coping strategies for subclinical depressed mood.Objective: To examine whether depressed maternal mood at subclinical levels 2 months after birth is associated with infant speech perception trajectories from ages 2 to 6.5 months.Design, setting, and participants: In this longitudinal cohort study conducted between January 1, 2018, and October 31, 2019, 46 healthy, monolingual German mother-infant dyads were tested. The sample was recruited from the infants database of the Max Planck Institute for Human Cognitive and Brain Sciences. Initial statistical analysis was performed between January 1 and March 31, 2021; the moderation analysis (results reported herein) was conducted between July 1 and July 31, 2022.Exposures: Mothers reported postpartum mood via the German version of the Edinburgh Postnatal Depression Scale (higher scores indicated higher levels of depressed mood, with a cutoff of 13 points indicating a high probability of clinical depression) when their infants were 2 months old.Main outcomes and measures: Electrophysiological correlates of infant speech perception (mismatch response to speech stimuli) were tested when the infants were aged 2 months (initial assessment) and 6.5 months (follow-up).Results: A total of 46 mothers (mean [SD] age, 32.1 [3.8] years) and their 2-month-old children (mean [SD] age, 9.6 [1.2] weeks; 23 girls and 23 boys) participated at the initial assessment, and 36 mothers (mean [SD] age, 32.2 [4.1] years) and their then 6.5-month-old children (mean [SD] age, 28.4 [1.5 weeks; 18 girls and 18 boys) participated at follow-up. Moderation analyses revealed that more depressed maternal subclinical postpartum mood (mean [SD] Edinburgh Postnatal Depression Scale score, 4.8 [3.6]) was associated with weaker longitudinal changes of infants' electrophysiological brain responses to syllable pitch speech information from ages 2 to 6.5 months (coefficient: 0.68; 95% CI, 0.03-1.33; P = .04).Conclusions and relevance: The results of this cohort study suggest that infant speech perception trajectories are correlated with subclinical depressed mood in postpartum mothers. This finding lays the groundwork for future research on early support for caregivers experiencing depressed mood to have a positive association with children's language development

    Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention

    Get PDF
    Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined

    Longitudinal trajectories of electrophysiological mismatch responses in infant speech discrimination differ across speech features

    Get PDF
    Infants rapidly advance in their speech perception, electrophysiologically reflected in the transition from an immature, positive-going to an adult-like, negative-going mismatch response (MMR) to auditory deviancy. Although the MMR is a common tool to study speech perception development, it is not yet completely understood how different speech contrasts affect the MMR’s characteristics across development. Thus, a systematic longitudinal investigation of the MMR’s maturation depending on speech contrast is necessary. We here longitudinally explored the maturation of the infant MMR to four critical speech contrasts: consonant, vowel, vowel-length, and pitch. MMRs were obtained when infants (n = 58) were 2, 6 and 10 months old. To evaluate the maturational trajectory of MMRs, we applied second-order latent growth curve models. Results showed positive-going MMR amplitudes to all speech contrasts across all assessment points that decreased over time towards an adult-like negativity. Notably, the developmental trajectories of speech contrasts differed, implying that infant speech perception matures with different rates and trajectories throughout the first year, depending on the studied auditory feature. Our results suggest that stimulus-dependent maturational trajectories need to be considered when drawing conclusions about infant speech perception development reflected by the infant MMR

    Infants segment words from songs - an EEG study

    No full text
    Children’s songs are omnipresent and highly attractive stimuli in infants’ input. Previous work suggests that infants process linguistic–phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children’s songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech

    Separating acoustic deviance from novelty during the first year of life:A review of event-related potential evidence

    Get PDF
    Orienting to salient events in the environment is a first step in the development of attention in young infants. Electrophysiological studies have indicated that in newborns and young infants, sounds with widely distributed spectral energy, such as noise and various environmental sounds, as well as sounds widely deviating from their context elicit an event-related potential (ERP) similar to the adult P3a response. We discuss how the maturation of event-related potentials parallels the process of the development of passive auditory attention during the first year of life. Behavioral studies have indicated that the neonatal orientation to high-energy stimuli gradually changes to attending to genuine novelty and other significant events by approximately 9 months of age. In accordance with these changes, in newborns, the ERP response to large acoustic deviance is dramatically larger than that to small and moderate deviations. This ERP difference, however, rapidly decreases within first months of life and the differentiation of the ERP response to genuine novelty from that to spectrally rich but repeatedly presented sounds commences during the same period. The relative decrease of the response amplitudes elicited by high-energy stimuli may reflect development of an inhibitory brain network suppressing the processing of uninformative stimuli. Based on data obtained from healthy full-term and pre-term infants as well as from infants at risk for various developmental problems, we suggest that the electrophysiological indices of the processing of acoustic and contextual deviance may be indicative of the functioning of auditory attention, a crucial prerequisite of learning and language development

    Detecting violations of temporal regularities in waking and sleeping two-month-old infants

    Get PDF
    Correctly processing rapid sequences of sounds is essential for developmental milestones, such as language acquisition. We investigated the sensitivity of two-month-old infants to violations of a temporal regularity, by recording event-related brain potentials (ERP) in an auditory oddball paradigm from 36 waking and 40 sleeping infants. Standard tones were presented at a regular 300 ms inter-stimulus interval (ISI). One deviant, otherwise identical to the standard, was preceded by a 100 ms ISI. Two other deviants, presented with the standard ISI, differed from the standard in their spectral makeup. We found significant differences between ERP responses elicited by the standard and each of the deviant sounds. The results suggest that the ability to extract both temporal and spectral regularities from a sound sequence is already functional within the first few months of life. The scalp distribution of all three deviant-stimulus responses was influenced by the infants‟ state of alertness

    Audio-visual speech perception: a developmental ERP investigation

    Get PDF
    Being able to see a talking face confers a considerable advantage for speech perception in adulthood. However, behavioural data currently suggest that children fail to make full use of these available visual speech cues until age 8 or 9. This is particularly surprising given the potential utility of multiple informational cues during language learning. We therefore explored this at the neural level. The event-related potential (ERP) technique has been used to assess the mechanisms of audio-visual speech perception in adults, with visual cues reliably modulating auditory ERP responses to speech. Previous work has shown congruence-dependent shortening of auditory N1/P2 latency and congruence-independent attenuation of amplitude in the presence of auditory and visual speech signals, compared to auditory alone. The aim of this study was to chart the development of these well-established modulatory effects over mid-to-late childhood. Experiment 1 employed an adult sample to validate a child-friendly stimulus set and paradigm by replicating previously observed effects of N1/P2 amplitude and latency modulation by visual speech cues; it also revealed greater attenuation of component amplitude given incongruent audio-visual stimuli, pointing to a new interpretation of the amplitude modulation effect. Experiment 2 used the same paradigm to map cross-sectional developmental change in these ERP responses between 6 and 11 years of age. The effect of amplitude modulation by visual cues emerged over development, while the effect of latency modulation was stable over the child sample. These data suggest that auditory ERP modulation by visual speech represents separable underlying cognitive processes, some of which show earlier maturation than others over the course of development

    Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age

    Get PDF
    Objective: Auditory change-detection responses provide information on sound discrimination and memory skills in infants. We examined both the automatic change-detection process and the processing of emotional information content in speech in preterm infants in comparison to full-term infants at term age. Methods: Preterm (n = 21) and full-term infants' (n = 20) event-related potentials (ERP) were recorded at term age. A challenging multi-feature mismatch negativity (MMN) paradigm with phonetic deviants and rare emotional speech sounds (happy, sad, angry), and a simple one-deviant oddball paradigm with pure tones were used. Results: Positive mismatch responses (MMR) were found to the emotional sounds and some of the phonetic deviants in preterm and full-term infants in the multi-feature MMN paradigm. Additionally, late positive MMRs to the phonetic deviants were elicited in the preterm group. However, no group differences to speech-sound changes were discovered. In the oddball paradigm, preterm infants had positive MMRs to the deviant change in all latency windows. Responses to non-speech sounds were larger in preterm infants in the second latency window, as well as in the first latency window at the left hemisphere electrodes (F3, C3). Conclusions: No significant group-level differences were discovered in the neural processing of speech sounds between preterm and full-term infants at term age. Change-detection of non-speech sounds, however, may be enhanced in preterm infants at term age. Significance: Auditory processing of speech sounds in healthy preterm infants showed similarities to full-term infants at term age. Large individual variations within the groups may reflect some underlying differences that call for further studies.Peer reviewe
    corecore