159 research outputs found

    Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases

    Get PDF
    Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability

    Mining Frequent Itemsets for Evolving Database Involving Insertion

    Get PDF
    Mining frequent itemsets is one of the popular task in data mining. There are many applications like location-based services, sensor monitoring systems, and data integration in which the content of transaction is uncertain in nature. This initiates the requirements of uncertain data mining. The frequent itemsets mining in uncertain transaction databases semantically and computationally differs from techniques applied to standard certain databases. The goal of proposed model is to deal with the problem of extracting frequent itemsets from evolving databases using Possible World Semantics (PWS). As evolving databases contains exponential number of possible worlds mining process can be modeled as Poisson Binomial Distribution (PBD). In this proposed work apriori-based PFI mining algorithm and approximate incremental mining algorithm are developed. An approximate incremental mining algorithm can efficiently and accurately discover frequent itemsets. Also, focus is on the issue of maintaining mining results for uncertain databases. DOI: 10.17762/ijritcc2321-8169.150615

    Deep Learning for Link Prediction in Dynamic Networks using Weak Estimators

    Full text link
    Link prediction is the task of evaluating the probability that an edge exists in a network, and it has useful applications in many domains. Traditional approaches rely on measuring the similarity between two nodes in a static context. Recent research has focused on extending link prediction to a dynamic setting, predicting the creation and destruction of links in networks that evolve over time. Though a difficult task, the employment of deep learning techniques have shown to make notable improvements to the accuracy of predictions. To this end, we propose the novel application of weak estimators in addition to the utilization of traditional similarity metrics to inexpensively build an effective feature vector for a deep neural network. Weak estimators have been used in a variety of machine learning algorithms to improve model accuracy, owing to their capacity to estimate changing probabilities in dynamic systems. Experiments indicate that our approach results in increased prediction accuracy on several real-world dynamic networks

    Advanced machine learning algorithms for discrete datasets

    Get PDF

    Scaling associative classification for very large datasets

    Get PDF
    Supervised learning algorithms are nowadays successfully scaling up to datasets that are very large in volume, leveraging the potential of in-memory cluster-computing Big Data frameworks. Still, massive datasets with a number of large-domain categorical features are a difficult challenge for any classifier. Most off-the-shelf solutions cannot cope with this problem. In this work we introduce DAC, a Distributed Associative Classifier. DAC exploits ensemble learning to distribute the training of an associative classifier among parallel workers and improve the final quality of the model. Furthermore, it adopts several novel techniques to reach high scalability without sacrificing quality, among which a preventive pruning of classification rules in the extraction phase based on Gini impurity. We ran experiments on Apache Spark, on a real large-scale dataset with more than 4 billion records and 800 million distinct categories. The results showed that DAC improves on a state-of-the-art solution in both prediction quality and execution time. Since the generated model is human-readable, it can not only classify new records, but also allow understanding both the logic behind the prediction and the properties of the model, becoming a useful aid for decision makers

    Similarity processing in multi-observation data

    Get PDF
    Many real-world application domains such as sensor-monitoring systems for environmental research or medical diagnostic systems are dealing with data that is represented by multiple observations. In contrast to single-observation data, where each object is assigned to exactly one occurrence, multi-observation data is based on several occurrences that are subject to two key properties: temporal variability and uncertainty. When defining similarity between data objects, these properties play a significant role. In general, methods designed for single-observation data hardly apply for multi-observation data, as they are either not supported by the data models or do not provide sufficiently efficient or effective solutions. Prominent directions incorporating the key properties are the fields of time series, where data is created by temporally successive observations, and uncertain data, where observations are mutually exclusive. This thesis provides research contributions for similarity processing - similarity search and data mining - on time series and uncertain data. The first part of this thesis focuses on similarity processing in time series databases. A variety of similarity measures have recently been proposed that support similarity processing w.r.t. various aspects. In particular, this part deals with time series that consist of periodic occurrences of patterns. Examining an application scenario from the medical domain, a solution for activity recognition is presented. Finally, the extraction of feature vectors allows the application of spatial index structures, which support the acceleration of search and mining tasks resulting in a significant efficiency gain. As feature vectors are potentially of high dimensionality, this part introduces indexing approaches for the high-dimensional space for the full-dimensional case as well as for arbitrary subspaces. The second part of this thesis focuses on similarity processing in probabilistic databases. The presence of uncertainty is inherent in many applications dealing with data collected by sensing devices. Often, the collected information is noisy or incomplete due to measurement or transmission errors. Furthermore, data may be rendered uncertain due to privacy-preserving issues with the presence of confidential information. This creates a number of challenges in terms of effectively and efficiently querying and mining uncertain data. Existing work in this field either neglects the presence of dependencies or provides only approximate results while applying methods designed for certain data. Other approaches dealing with uncertain data are not able to provide efficient solutions. This part presents query processing approaches that outperform existing solutions of probabilistic similarity ranking. This part finally leads to the application of the introduced techniques to data mining tasks, such as the prominent problem of probabilistic frequent itemset mining.Viele Anwendungsgebiete, wie beispielsweise die Umweltforschung oder die medizinische Diagnostik, nutzen Systeme der Sensorüberwachung. Solche Systeme müssen oftmals in der Lage sein, mit Daten umzugehen, welche durch mehrere Beobachtungen repräsentiert werden. Im Gegensatz zu Daten mit nur einer Beobachtung (Single-Observation Data) basieren Daten aus mehreren Beobachtungen (Multi-Observation Data) auf einer Vielzahl von Beobachtungen, welche zwei Schlüsseleigenschaften unterliegen: Zeitliche Veränderlichkeit und Datenunsicherheit. Im Bereich der Ähnlichkeitssuche und im Data Mining spielen diese Eigenschaften eine wichtige Rolle. Gängige Lösungen in diesen Bereichen, die für Single-Observation Data entwickelt wurden, sind in der Regel für den Umgang mit mehreren Beobachtungen pro Objekt nicht anwendbar. Der Grund dafür liegt darin, dass diese Ansätze entweder nicht mit den Datenmodellen vereinbar sind oder keine Lösungen anbieten, die den aktuellen Ansprüchen an Lösungsqualität oder Effizienz genügen. Bekannte Forschungsrichtungen, die sich mit Multi-Observation Data und deren Schlüsseleigenschaften beschäftigen, sind die Analyse von Zeitreihen und die Ähnlichkeitssuche in probabilistischen Datenbanken. Während erstere Richtung eine zeitliche Ordnung der Beobachtungen eines Objekts voraussetzt, basieren unsichere Datenobjekte auf Beobachtungen, die sich gegenseitig bedingen oder ausschließen. Diese Dissertation umfasst aktuelle Forschungsbeiträge aus den beiden genannten Bereichen, wobei Methoden zur Ähnlichkeitssuche und zur Anwendung im Data Mining vorgestellt werden. Der erste Teil dieser Arbeit beschäftigt sich mit Ähnlichkeitssuche und Data Mining in Zeitreihendatenbanken. Insbesondere werden Zeitreihen betrachtet, welche aus periodisch auftretenden Mustern bestehen. Im Kontext eines medizinischen Anwendungsszenarios wird ein Ansatz zur Aktivitätserkennung vorgestellt. Dieser erlaubt mittels Merkmalsextraktion eine effiziente Speicherung und Analyse mit Hilfe von räumlichen Indexstrukturen. Für den Fall hochdimensionaler Merkmalsvektoren stellt dieser Teil zwei Indexierungsmethoden zur Beschleunigung von ähnlichkeitsanfragen vor. Die erste Methode berücksichtigt alle Attribute der Merkmalsvektoren, während die zweite Methode eine Projektion der Anfrage auf eine benutzerdefinierten Unterraum des Vektorraums erlaubt. Im zweiten Teil dieser Arbeit wird die Ähnlichkeitssuche im Kontext probabilistischer Datenbanken behandelt. Daten aus Sensormessungen besitzen häufig Eigenschaften, die einer gewissen Unsicherheit unterliegen. Aufgrund von Mess- oder übertragungsfehlern sind gemessene Werte oftmals unvollständig oder mit Rauschen behaftet. In diversen Szenarien, wie beispielsweise mit persönlichen oder medizinisch vertraulichen Daten, können Daten auch nachträglich von Hand verrauscht werden, so dass eine genaue Rekonstruktion der ursprünglichen Informationen nicht möglich ist. Diese Gegebenheiten stellen Anfragetechniken und Methoden des Data Mining vor einige Herausforderungen. In bestehenden Forschungsarbeiten aus dem Bereich der unsicheren Datenbanken werden diverse Probleme oftmals nicht beachtet. Entweder wird die Präsenz von Abhängigkeiten ignoriert, oder es werden lediglich approximative Lösungen angeboten, welche die Anwendung von Methoden für sichere Daten erlaubt. Andere Ansätze berechnen genaue Lösungen, liefern die Antworten aber nicht in annehmbarer Laufzeit zurück. Dieser Teil der Arbeit präsentiert effiziente Methoden zur Beantwortung von Ähnlichkeitsanfragen, welche die Ergebnisse absteigend nach ihrer Relevanz, also eine Rangliste der Ergebnisse, zurückliefern. Die angewandten Techniken werden schließlich auf Problemstellungen im probabilistischen Data Mining übertragen, um beispielsweise das Problem des Frequent Itemset Mining unter Berücksichtigung des vollen Gehalts an Unsicherheitsinformation zu lösen

    Sequential pattern mining with uncertain data

    Get PDF
    In recent years, a number of emerging applications, such as sensor monitoring systems, RFID networks and location based services, have led to the proliferation of uncertain data. However, traditional data mining algorithms are usually inapplicable in uncertain data because of its probabilistic nature. Uncertainty has to be carefully handled; otherwise, it might significantly downgrade the quality of underlying data mining applications. Therefore, we extend traditional data mining algorithms into their uncertain versions so that they still can produce accurate results. In particular, we use a motivating example of sequential pattern mining to illustrate how to incorporate uncertain information in the process of data mining. We use possible world semantics to interpret two typical types of uncertainty: the tuple-level existential uncertainty and the attribute-level temporal uncertainty. In an uncertain database, it is probabilistic that a pattern is frequent or not; thus, we define the concept of probabilistic frequent sequential patterns. And various algorithms are designed to mine probabilistic frequent patterns efficiently in uncertain databases. We also implement our algorithms on distributed computing platforms, such as MapReduce and Spark, so that they can be applied in large scale databases. Our work also includes uncertainty computation in supervised machine learning algorithms. We develop an artificial neural network to classify numeric uncertain data; and a Naive Bayesian classifier is designed for classifying categorical uncertain data streams. We also propose a discretization algorithm to pre-process numerical uncertain data, since many classifiers work with categoric data only. And experimental results in both synthetic and real-world uncertain datasets demonstrate that our methods are effective and efficient

    Mining Association Rules Events over Data Streams

    Get PDF
    Data streams have gained considerable attention in data analysis and data mining communities because of the emergence of a new classes of applications, such as monitoring, supply chain execution, sensor networks, oilfield and pipeline operations, financial marketing and health data industries. Telecommunication advancements have provided us with easy access to stream data produced by various applications. Data in streams differ from static data stored in data warehouses or database. Data streams are continuous, arrive at high-speeds and change through time. Traditional data mining algorithms assume presence of data in conventional storage means where data mining is performed centrally with the luxury of accessing the data multiple times, using powerful processors, providing offline output with no time constraints. Such algorithms are not suitable for dynamic data streams. Stream data needs to be mined promptly as it might not be feasible to store such volume of data. In addition, streams reflect live status of the environment generating it, so prompt analysis may provide early detection of faults, delays, performance measurements, trend analysis and other diagnostics. This thesis focuses on developing a data stream association rule mining algorithm among co-occurring events. The proposed algorithm mines association rules over data streams incrementally in a centralized setting. We are interested in association rules that meet a provided minimum confidence threshold and have a lift value greater than 1. We refer to such association rules as strong rules. Experiments on several datasets demonstrate that the proposed algorithms is efficient and effective in extracting association rules from data streams, thus having a faster processing time and better memory management

    Doctor of Philosophy

    Get PDF
    dissertationWith the growing national dissemination of the electronic health record (EHR), there are expectations that the public will benefit from biomedical research and discovery enabled by electronic health data. Clinical data are needed for many diseases and conditions to meet the demands of rapidly advancing genomic and proteomic research. Many biomedical research advancements require rapid access to clinical data as well as broad population coverage. A fundamental issue in the secondary use of clinical data for scientific research is the identification of study cohorts of individuals with a disease or medical condition of interest. The problem addressed in this work is the need for generalized, efficient methods to identify cohorts in the EHR for use in biomedical research. To approach this problem, an associative classification framework was designed with the goal of accurate and rapid identification of cases for biomedical research: (1) a set of exemplars for a given medical condition are presented to the framework, (2) a predictive rule set comprised of EHR attributes is generated by the framework, and (3) the rule set is applied to the EHR to identify additional patients that may have the specified condition. iv Based on this functionality, the approach was termed the ‘cohort amplification' framework. The development and evaluation of the cohort amplification framework are the subject of this dissertation. An overview of the framework design is presented. Improvements to some standard associative classification methods are described and validated. A qualitative evaluation of predictive rules to identify diabetes cases and a study of the accuracy of identification of asthma cases in the EHR using frameworkgenerated prediction rules are reported. The framework demonstrated accurate and reliable rules to identify diabetes and asthma cases in the EHR and contributed to methods for identification of biomedical research cohorts
    corecore