
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

3-2016

Sequential pattern mining with uncertain data
Jiaqi Ge
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Ge, Jiaqi, "Sequential pattern mining with uncertain data" (2016). Open Access Dissertations. 650.
https://docs.lib.purdue.edu/open_access_dissertations/650

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/127583016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/650?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Jiaqi Ge

Sequential Pattern Mining with Uncertain Data

Doctor of Philosophy

Yuni Xia Christopher Clifton

Chair

Sunil Prabhakar

 Co-chair

Snehasis Mukhopadhyay

Jennifer Neville

Yuni Xia

Sunil Prabhakar 03/13/2016

SEQUENTIAL PATTERN MINING WITH UNCERTAIN DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jiaqi Ge

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2016

Purdue University

West Lafayette, Indiana

ii

To my beloved wife J. Shi

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Uncertain Databases . 2
1.2 Semantics . 4
1.3 Challenges . 5

2 SEQUENTIAL PATTERN MINING IN DATABASES WITH TEMPORAL
UNCERTAINTY . 8
2.1 Introduction . 8
2.2 Related Works . 11

2.2.1 Traditional Sequential Pattern Mining 11
2.2.2 Uncertain Sequential Pattern Mining 13

2.3 Problem Statement . 14
2.3.1 Temporally Uncertain Model 14
2.3.2 Temporal Possible World Semantics 16
2.3.3 Uncertain SPM Problem . 18

2.4 Uncertain Sequential Pattern Mining Algorithm 19
2.4.1 SPM Framework . 19
2.4.2 Approximate Frequentness Probability 20
2.4.3 Support Probabilities in Uncertain Sequences 22
2.4.4 Uncertain Database Projection 25
2.4.5 USPM Algorithm . 27

2.5 Management of Temporal Uncertainty 29
2.5.1 Analysis of Base Cases . 29
2.5.2 Recursion for Pdf-Modeled Uncertainty Management 32
2.5.3 Recursion for Pmf-Modeled Uncertainty Management 34
2.5.4 Integration with SPM Framework 37
2.5.5 Pruning . 38

2.6 Evaluation . 39
2.6.1 Scalability Evaluation . 40
2.6.2 Approximation Evaluation 43
2.6.3 Mining Sequential Patterns in Stock Datasets 45

iv

Page
2.7 Conclusion . 47

3 SEQUENTIAL PATTERN MINING IN DATABASES WITH EXISTEN-
TIAL UNCERTAINTY . 48
3.1 Introduction . 48
3.2 Related Works . 49
3.3 Problem Definition . 50

3.3.1 Data Model of Existential Uncertainty 50
3.3.2 Uncertain SPM Problem . 51

3.4 Uncertain Sequential Pattern Mining with Iterative MapReduce . . 52
3.4.1 Approximation of Frequentness Probability 52
3.4.2 Support Probability . 52
3.4.3 Vertical Data Structure . 54
3.4.4 Uncertain SPM in Iterative MapReduce 55

3.5 Evaluation . 58
3.5.1 Synthetic Dataset Generation 59
3.5.2 Scalability . 59
3.5.3 Mining Customer Behavior Patterns from Amazon Reviews . 61

3.6 Conclusions . 63

4 DISTRIBUTED UNCERTAIN SEQUENTIAL PATTERN MINING . . . 64
4.1 Introduction . 64

4.1.1 Problem Statement . 65
4.1.2 Contribution . 66

4.2 Related Works . 67
4.3 Uncertain SPM Framework in Spark 68
4.4 A Distributed Dynamic Programming Approach 70

4.4.1 Dynamic Programming in Support Probability Computation 70
4.4.2 Distribute Dynamic Programming Schema 71
4.4.3 Memory-Efficient Distributed SPM Algorithm 73

4.5 Evaluation . 76
4.5.1 Scalability . 76

4.6 Conclusions . 81

5 UNCERTAIN NEURAL NETWORK CLASSIFIER 82
5.1 Introduction . 82
5.2 Uncertain Perceptron . 83
5.3 Uncertain Multilayer Perceptron Neural Network 86
5.4 Experimental Results . 90

5.4.1 Experiments on Accuracy 90
5.4.2 Experiments on Efficiency 91

5.5 Conclusion . 92

v

Page

6 A NAÏVE BAYESIAN CLASSIFIER IN CATEGORICAL UNCERTAIN
STREAMS . 94
6.1 Introduction . 94
6.2 Related Works . 96
6.3 Problem Statement . 97
6.4 Näıve Bayesian Classifiers in Uncertain Streams 99

6.4.1 A Distance Based Approach 99
6.4.2 A Density Based Approach 101

6.5 Experiments . 104
6.5.1 Setup . 104
6.5.2 Results . 108

6.6 Conclusion . 112

7 DISCRETIZATION IN UNCERTAIN DATABASES 113
7.1 Introduction . 113
7.2 Related Works . 114
7.3 Problem Statement . 115
7.4 UCAIM Algorithm . 117

7.4.1 Cardinality Count For Uncertain Data 117
7.4.2 Quanta Matrix for Uncertain Data 118
7.4.3 Uncertain Class-Attribute Interdependent Discretization . . 119
7.4.4 Uncertain Discretization Algorithm 124

7.5 Experimental Results . 124
7.5.1 Setup . 124
7.5.2 Results . 127

7.6 Conclusion . 127

8 Summary . 130

REFERENCES . 131

VITA . 138

vi

LIST OF TABLES

Table Page

1.1 An example of event database with tuple-level uncertainty 4

1.2 An example of event database with attribute-level uncertainty 4

2.1 Precisions and recalls of approximation 44

5.1 An example of uncertain dataset . 83

5.2 Experimental results of applying UNN and AVG classifiers to five uncer-
tain datasets . 91

6.1 An example of a categorical uncertain data stream 97

6.2 An example of a kernel table . 103

6.3 Datasets used in experiments . 108

6.4 Classification accuracies in uncertain data streams 110

7.1 An example of uncertain dataset . 116

7.2 Quanta matrix and discretization scheme 118

7.3 An example of uncertain dataset . 120

7.4 Quanta matrix for the original uncertain dataset 122

7.5 Quanta matrix for splitting datasets 122

7.6 Properties of experimental datasets . 126

7.7 Average classification accuracies with different discretization algorithms
under different uncertain levels . 127

7.8 Accuracies of the uncertain Näıve Bayesian classifier with different dis-
cretization algorithms . 129

vii

LIST OF FIGURES

Figure Page

2.1 Example of database projection in PrefixSpan 12

2.2 Examples of uncertain sequence databases in logging systems 15

2.3 Examples of possible worlds of the temporal uncertain database 16

2.4 An example of computing support probability 24

2.5 An example of projecting an uncertain sequence 28

2.6 An example of computing the probability of satisfying gap constraints . 31

2.7 An example of dividing the range of Tn 33

2.8 Scalability comparison in synthetic uncertain datasets 41

2.9 Effect of parameters in mining synthetic uncertain datasets 42

2.10 Compare the running time of approximate USPM algorithms 45

2.11 Mined p-FSPs in the stock dataset . 46

3.1 An example of uncertain database . 50

3.2 Possible worlds table . 50

3.3 An example of constructing the vertical data structure 55

3.4 Iterative MapReduce framework for uncertain sequential pattern mining 56

3.5 Scalability of IMRSPM-A algorithm . 60

3.6 Effect of user-define parameters in efficiency 62

3.7 Effect of user-define parameters in number of patterns 62

4.1 An example of uncertain sequence databases 65

4.2 A framework of uncertain SPM in Spark 69

4.3 An example of dynamic programming process 71

4.4 Computing support probabilities in the prefix-tree 75

4.5 Scalability of DSP with τs = 2% . 77

4.6 Scalability of DSP with τs = 1% . 78

viii

Figure Page

4.7 Scalability of DSP with τs = 0.5% . 79

4.8 Number of p-FSPs with different τs and α settings 80

5.1 Geometric representation of uncertain perceptron 84

5.2 Structure of uncertain perceptron . 86

5.3 Multilayer neural network structure . 87

5.4 An example to show the improvement of classification accuracy 87

5.5 Prediction accuracy comparison of UNN and AVG 90

5.6 Compare the training time of UNN-O, UNN-M and AVG 92

5.7 Compare the number of training epochs of UNN-O, UNN-M and AVG 92

6.1 Mapping vector valued pdfs into Euclidean points 98

6.2 Comparing prediction accuracy under different uncertain levels in four
data streams . 109

6.3 Size of kernel tables in classifying LED data stream 112

7.1 Classification accuracies with different discretization algorithms under dif-
ferent uncertain levels . 128

ix

ABSTRACT

Ge, Jiaqi Ph.D., Purdue University, May 2016. Sequential Pattern Mining with
Uncertain Data. Major Professor: Yuni Xia.

In recent years, a number of emerging applications, such as sensor monitoring

systems, RFID networks and location based services, have led to the proliferation of

uncertain data. However, traditional data mining algorithms are usually inapplicable

in uncertain data because of its probabilistic nature. Uncertainty has to be carefully

handled; otherwise, it might significantly downgrade the quality of underlying data

mining applications.

Therefore, we extend traditional data mining algorithms into their uncertain ver-

sions so that they still can produce accurate results. In particular, we use a motivat-

ing example of sequential pattern mining to illustrate how to incorporate uncertain

information in the process of data mining. We use possible world semantics to in-

terpret two typical types of uncertainty: the tuple-level existential uncertainty and

the attribute-level temporal uncertainty. In an uncertain database, it is probabilistic

that a pattern is frequent or not; thus, we define the concept of probabilistic frequent

sequential patterns. And various algorithms are designed to mine probabilistic fre-

quent patterns efficiently in uncertain databases. We also implement our algorithms

on distributed computing platforms, such as MapReduce and Spark, so that they can

be applied in large scale databases.

Our work also includes uncertainty computation in supervised machine learning

algorithms. We develop an artificial neural network to classify numeric uncertain

data; and a Näıve Bayesian classifier is designed for classifying categorical uncertain

data streams. We also propose a discretization algorithm to pre-process numerical

uncertain data, since many classifiers work with categoric data only. And experimen-

x

tal results in both synthetic and real-world uncertain datasets demonstrate that our

methods are effective and efficient.

1

1 INTRODUCTION

In recent years, many new applications such as sensor networks, RFID networks and

location-based service, continouesly produce a large volume of data. Available data

in these real-world applications are usually inaccurate or imprecise. Data uncertainty

may be caused by reality limitations such as measurement precision limitation, sam-

pling discrepancy, or other errors. And it might also be inherent in nature because

data are vaguely specified in some applications. Examples of uncertain data sources

are listed as follows:

• Uncertainty may be from limitations of devices. For example, sensor networks

produce noisy data because of sensors’ limited precision; the indistinctness be-

tween number ‘1’ and letter ‘l’ may introduce uncertainty in OCR systems; an

RFID antenna can only detect a tag with a certain probability within its work-

ing range. And uncertainty from reality limitation usually can be known from

device specifications.

• Statistic models output a large amount of uncertain data. For example, senti-

ment analysis estimates users’ uncertain attitudes towards various products [1];

in structured information extraction, uncertainty comes from rules of extract-

ing patterns from unstructured data [2–4]. This type of uncertainty can be

estimated from underlying algorithms.

• Uncertainty might be a result of data aggregation. In wireless sensor networks,

instead of sending out every record, a sensor often aggregates all the data points

within a time period to a probability distribution and then transfers the distri-

bution via network, to reduce bandwidth consumption.

2

• Data uncertainty arises because of granularity mismatch. For instance, when

an event is measured in one granularity and is recorded in a system with a finer

granularity, we are not able to know exactly when a particular event happens. [5]

• Uncertainty is generated to protect privacy and confidentiality. In monitoring

data, precise information is usually not released if there is a potential to identify

individuals. In such cases, uncertainty is introduced to original data points in

the form of probability distributions. Recent privacy models [6] are built to be

friendly to uncertain data mining techniques.

The explosion of uncertain data creates a need of uncertain data mining applica-

tions. Directly applying traditional data mining techniques requires uncertain data to

be summarized into atomic values; however, differences between summarized values

and the actual values may affect the quality of underlying data mining applications.

In order to obtain accurate results from uncertain data, we need to incorporate uncer-

tain information in data mining algorithms so that the output of these methods can

be closer to the results obtained as if actual data were used in the mining process [7].

And first of all, we need a model to represent uncertain data.

1.1 Uncertain Databases

Uncertain data modeling is well studied in literature [8,9]. Here we adopt a general

model, which is called uncertain database, to represent different types of uncertainty.

In uncertain databases, uncertain information is modeled by a probabilistic space

whose possible outcomes are all the traditional certain instances. Given a probability

space (Ω,F ,P[]), Ω is the set of outcomes and the σ-field of events F consists of

all subsets of Ω. Its equivalent formulation is represented by pairs (Ω, p), where the

outcome probability assignment p : Ω → [0, 1] satisfies
∑

ω∈Ω p(ω) = 1. [10] And then

we have P[A] =
∑

ω∈A p(ω). We also adopt the definition of probabilistic databases

in [10] to define uncertain databases as follows:

3

Definition 1.1 An uncertain database is a probability space whose outcomes are pos-

sible certain database instances consistent with a given schema.

To interpret an uncertain database, we apply the possible world model. An un-

certain database generates possible worlds, each of which is a conventional database

instance. However, directly expanding an uncertain database D is usually infeasible

in data mining applications because the number of possible instances can be expo-

nential to |D|. Therefore, the natural solution is to use a variety of simplified models

which can be easily used for data mining purposes [11].

Assumptions of independence are often applied to simplify uncertain data mod-

els. There are two typical independence assumptions: (1) Independent tuple existence.

The presence or absence of a tuple in the database is probabilistically independent

with other tuples. (2) Independent attribute value. The value of a probabilistic at-

tribute in a data instance is independent with the values of other attributes. With

these two independence assumptions, we define the following types of data uncer-

tainty:

• Tuple-level uncertainty. In an uncertain database, the presence of a tuple is

probabilistic and can be modeled by an existential probability. Therefore, the

tuple-level uncertainty is also called existential uncertainty. Considering the

assumption of independent tuple existence, we assume that the presences of

difference tuples are probabilistically independent.

• Attribute-level uncertainty. In this case, a number of tuples and their modeling

are already determined. The value of an individual attribute in each tuple is

probabilistic and can be modeled by probability distribution functions. Under

attribute-level independence assumption, the selection of a possible value for

one attribute has no influence with that of other attributes.

Table 1.1 shows an example of event databases with tuple-level uncertainty. The

uncertain presence of each event e is modeled by an existential probability P (e) ∈
(0, 1]. For example, the probability that the event e2 = {2, 3} is present in the

4

Table 1.1.
An example of event database with tuple-level uncertainty

Event Probability

1 {1} 1.0

2 {2, 3} 0.8

3 {3, 4} 0.6

Table 1.2.
An example of event database with attribute-level uncertainty

Event Time

1 {1} 2 : 0.4, 3 : 0.6

2 {2, 3} 6 : 1.0

3 {3, 4} 8 : 0.3, 9 : 0.7

database is P (e2) = 0.8. And the presence of different events in Table 1.1 are assumed

to be mutually independent. In Table 1.2, it shows an example of event databases with

attribute-level uncertainty. The uncertain occurring time of each event is represented

by a probability mass function here. For example, the event e1 = {1} occurs at time

t = 2 with probability 0.4, and the probability that e1 happens at time t = 3 is 0.6.

1.2 Semantics

Most uncertain data mining applications require computation over a large number

of probabilities. And the following two semantics are widely used in solving uncertain

data mining problems:

• Intensional semantics. It enumerates all the possible worlds of an uncertain

database with considering the dependencies between instances and attributes.

5

Data mining applications are then able to be applied to each of these possible

worlds. This approach always yields correct results, though its evaluation time

complexity is exponential.

• Extensional semantics. This is a heuristic approach that attempts to approx-

imate the result of data mining applications in uncertain databases without

enumerating the entire possible world table. This approach represent uncer-

tainty as a generalized value of a probability distribution function (pdf) and try

to evaluate the uncertainty of a given expression based on these pdfs.

Though intentional semantics can always yield the correct results, a lot of data

mining applications have NP-complete complexity under intensional semantics [12].

Meanwhile, extensional semantics is mostly useful for evaluating simple expressions.

Consider the uncertain sequence in Table 1.1. The aim is to compute the probability

that both e2 and e3 are present in the database. In intensional semantics, it requires to

explicitly compute the joint probability P (e2, e3), which depends on the correlations

among the events. However, with the assumption of tuple independence, an efficient

extensional approach would directly compute P (e2, e3) as P (e2) ∗ P (e3) = 0.48.

While the extensional semantics provides an efficient heuristic, it need to be care-

fully designed to approximate the correct results. In sum, an uncertain data model

should have the advantages in representing the probabilistic intrinsic of uncertain

data and meanwhile reducing the complexity of data mining algorithms.

1.3 Challenges

The emerging uncertain data mining applications can abstract reasonable and

valuable knowledge by mining large volumes of uncertain data to find the “diamonds

in the dirt”. [13] Since data values are no longer atomically represented in uncertain

databases, in order to directly apply traditional data mining algorithms, uncertain

data have to be summarized into atomic values in pre-processing steps. For example,

in moving-object tracking application, the location of an object is usually summa-

6

rized by its last recorded location. Unfortunately, discrepancy in the summarized

values and the actual values could seriously affect the performances of data mining

algorithms. [14] In order obtain an accurate understanding of uncertain data, we incor-

porate the two types of data uncertainty (tuple-level and attribute-level uncertainty)

in data mining applications so that we can reduce the influence of noises. However,

this process is not straight forward. And efficiency and scalability challenges arise in

solving uncertain data mining problems.

The computational complexity of mining uncertain data is much higher than that

in traditional datasets. Uncertain data are oftern represented by pdfs, which contain

much more information than atomic values. Even basic operations become complex

in computation. For example, the aggregation operator sum in traditional database

can be done in linear time; however, in an uncertain database D, the computational

complexity of sum is exponential to |D|, since we need to enumerate a large number

of possible worlds to compute the probability distribution of the aggretation of many

uncertain attribute values. Therefore, efficiency turns out to be the most critical issue

in designing uncertain data mining algorithms.

Meanwhile, in order to reduce the influence of noise and obtain more useful infor-

mation, uncertain data mining methods are usually applied to large scale databases

so that they can discover precise knowledge from noisy data. And many recent real

world applications, such as sensor networks and online shopping websites, generate a

large amount of data (also known as big data), and these create an emerging need of

mining large scale uncertain databases. Thus, scalability becomes another challenge

in developing uncertain data mining algorithms.

In this dissertation, we aim to mine precise results from uncertain databases by

conquering these challenges. We use motivating examples of sequential pattern min-

ing, classification and discretization to illustrate how uncertainty can be incorporated

in various types of data mining applications. The dissertation is organized as fol-

lows. In Chapter 2, we propose a sequential pattern mining algorithm in sequence

databases with attribute-level temporal uncertainty. In Chapter 3, we develop an

7

iterative MapReduce algorithm to mine gap-constraint frequent sequential patterns

in large scale sequences databases with tuple-level existential uncertainty. In order to

further improve the efficiency and scalability, a dynamic programming approach of

mining sequential patterns is designed and extended to distributed computing plat-

form Spark in chapter 4. An artificial neural network classifier for uncertain data

(UNN) is proposed in Chapter 5; a Näıve Bayesian classifier is designed in Chapter 6

for classifying categorical uncertain streams. We design a discretization algorithm to

pre-process numerical uncertain data in chapter 7. The summary is in Chapter 8.

8

2 SEQUENTIAL PATTERN MINING IN DATABASES WITH TEMPORAL

UNCERTAINTY

2.1 Introduction

Sequential pattern mining (SPM) is an important data mining application which

provides inter-transactional analysis for timestamped data. SPM is often applied to

discover patterns in sequence databases which are widely used to model shopping

sequences, medical syndromes and treatments, natural disasters, stock markets, and

so on. For example, supermarkets collect customer purchase histories and use SPM

methods to reveal customer purchasing patterns, which can be informally represented

as: if a customer buys an item A, he/she will buy another item B within a certain

time period. Most of the existing work fundamentally relies on an assumption that

event occurrences are either in a total order [15–20] or in a strict partial order [21–25]

based on precise event occurring time. However, this assumption fails in many real

world applications because event time can be inaccurate or even unknown for a variety

of reasons:

• The exact time of an event is often unknown. For instance, Yahoo! finance

collects the highest and lowest prices of stocks every day, from which we can

detect an event such as “price grows more than 8% in one day”. However, the

exact time of this event is unknown because the system does not record when

the stocks are traded at the highest or lowest prices. And this type of event is

usually assumed to occur equally likely at any time during the day.

• Temporal uncertainty arises because of granularity mismatch.

Example 2.1 In a GPS monitoring system, a handheld GPS device Ga may

update its position every 10 minutes; while a GPS Gb mounted on a fast-moving

9

vehicle might report the position every 5 seconds. Then, an event ea reported

by Ga can occur anywhere in a 10-minute period (e.g. 09:00:00 ∼ 09:10:00),

and an event eb reported by Gb occurs randomly within a 5-second period (e.g.

09:01:00 ∼ 09:01:05).

It is difficult to determine whether ea occurs before or after eb, because the tem-

poral relationship between two events defined in different granularities becomes

uncertain and cannot be modeled by either a total or partial order.

• Temporal uncertainty is added to protect privacy and confidentiality. Precise

time information in monitoring data is often not released if there is a potential

to identify individuals. Obfuscation techniques deliberately degrade temporal

information, using uncertainty to protect privacy.

In traditional temporal databases, valid-time indeterminacy is modeled by a se-

quence of consecutive chronons as t0, t1, . . . , tN , where a chronon is the smallest time

unit in the system [26]. However, this model becomes inefficient when data are col-

lected under different time scales. In Example 2.1, if the chronon is set to be a second,

the uncertain time of an event reported by the on-vehicle device GB may be repre-

sented by five consecutive timestamps (e.g. t1, t2, . . . , t5) with equal probabilities;

while the timestamp of an event reported by the handheld device GA is represented

by a sequence of hundreds of timestamps (e.g. t1, . . . , t600), which is neither efficient

nor convenient.

Instead of relying on chronons, we propose our temporally uncertain model to

efficiently represent uncertain event times by random variables. If the timestamp of

an event equally likely occurs at any point in a time period, it is reasonable to model

it by a uniform probability density function (pdf). Furthermore, for any arbitrary

shaped pdf, we approximate it by discrete probability mass functions (pmf) using

sampling and histogramming techniques.

In temporally uncertain sequence databases, it is much more difficult to identify

frequent sequential patterns because orders of events are uncertain. We adopt possible

10

world semantics from probabilistic databases [27–29] to interpret our uncertain model

by a set of certain databases. However, the number of certain databases derived from

a temporally uncertain database is infinite because we use continues pdf to represent

data uncertainty in our model. Besides, aggregating probabilities associated with

possible worlds requires the computation of multivariable integration, which brings

efficiency and scalability challenges to the uncertain SPM problem.

Another challenge comes from integrating gap constraints into SPM process. A

gap constraint requires the pattern appears frequently in the database such that the

time difference between every two adjacent events must be longer or shorter than a

given gap. [30] Incorporating gap constraints (e.g. minimum-gap and maximum-gap)

in SPM can help to mine user-interested patterns; however, it makes the management

of temporal uncertainty more complicated. For example, suppose event A occurs

equally likely in the range of [1, 5] and event B occurs within [6, 10], then it is certain

that B occurs after A; however, after applying minimal-gap (gl = 2) and maximal-gap

(gh = 5), it becomes complicated to check whether B occurs after A with satisfying

gap-constraints or not. And we will propose a solution of this problem in section 2.5.

In this chapter, we address the SPM problem in temporally uncertain databases.

And the major contributions are summarized as follows:

(1) Besides representing temporal uncertainty by uniformly distributed random vari-

ables, we also use a discrete probability mass function (pmf) to approximate the dis-

tribution of any arbitrary shaped uncertainty and propose a general solution based

on this model. This approximation is proved to be effective and efficient, according

to the experimental results.

(2) We develop a novel approach to compute temporal uncertainty during the SPM

process which efficiently calculate multivariable pdfs/pmfs for uncertain timestamps.

(3) We incorporate gap constraints to mine user-interested sequential patterns with

user-specified thresholds.

(4) We develop new pruning techniques to speed up the computation.

(5) We conduct extensive experiments on both synthetic and real datasets to test and

11

prove the efficiency and scalability of the proposed algorithms. We also apply our

method on a real world stock market dataset and analyze the results via visualization

techniques.

2.2 Related Works

2.2.1 Traditional Sequential Pattern Mining

Sequential pattern mining problem in traditional deterministic databases has at-

tracted a lot of attention. There have been many algorithms on efficient sequential

pattern mining and its applications [31–38]. In general, sequential pattern mining

algorithms can be categorized into three classes: (1) Apriori-like algorithm with hori-

zontal data format, e.g. GSP [32]; (2) Apriori-like algorithm with vertical data format,

like SPADE [33]; (3) Projection-based pattern growth algorithm, like PrefixSpan [35].

PrefixSpan is proved to be more efficient than other Apriori-like algorithms such

as GSP due to its prefix-projection technique. Here we briefly review the framework

of PrefixSpan, which is related to our proposed algorithms. We first present the

following definitions.

Definition 2.2.1 A sequential pattern s = 〈s1, s2, . . . , sn〉 is a temporally ordered

sequence of itemsets, where si ∈ s is called an element of s.

Definition 2.2.2 A sequential pattern α = 〈a1, a2, . . . , an〉 is a sub-sequence of a

sequence β = 〈b1, . . . , bm〉, denoted by α � β, if there exist n integers 1 ≤ k1 < · · · <
kn ≤ m such that ai ⊆ bki.

For example, 〈(a)(b)〉 is a sub-sequence of 〈(ab)(bc)〉. Without loss of generality, items

in an element are assumed to be ordered alphabetically.

Definition 2.2.3 A sequential pattern α = 〈a1, . . . , am〉 is a prefix of a sequence

β = 〈b1, . . . , bn〉 (m ≤ n) if (1) ai = bi, ∀i ∈ [1,m− 1]; (2) am ⊆ bm and all items in

bm − am are alphabetically larger than those in am.

12

D D|<A> D|<(A)(B)>

A B

(a) (b) (c)

Figure 2.1. Example of database projection in PrefixSpan

For example, both 〈(a)〉 and 〈(ab)(b)〉 are prefixes of 〈(ab)(bc)〉. And for ease of

presentation, we denote αβ to be a sequence resulted from appending sequence β to

α.

Definition 2.2.4 Given a pattern α and a sequence s, the α-projected sequence s|α
is defined to be the suffix γ of s such that s = βγ with β being the minimal prefix of

s satisfying α � β. And the α-projected database D|α is defined to be a collection of

projected sequences {sα|s ∈ D ∧ sα = φ}.

Consider the sequence database D shown in Figure 2.1(a). The 〈A〉-projected
database D|〈A〉, shown in Figure 2.1(b), is built by projecting item A from each

sequence. For example, 〈(B)(C)(B)(A)〉 is the suffix after removing prefix 〈A〉 from
sequence s1. Notice that (B) means that the last element in the prefix, which is

A here, together with item B, form one element (AB). And we add the notation

ahead to distinguish it from a regular item B. Suppose B is a frequent item in

D|〈A〉, then PrefixSpan recursively constructs 〈(A)(B)〉-projected database, as shown

in Figure 2.1(c). For example, the projected sequence s1|〈(A)(B)〉 = 〈A〉 is generated

by projecting prefix (A)(B) from s1. PrefixSpan adopts a depth-first strategy to

find frequent sequential patterns with growing lengths and it stops until all frequent

patterns are found.

13

2.2.2 Uncertain Sequential Pattern Mining

Interval-based SPM. An event that do not occur at a time point but last for a

period of time can be modeled by a time interval which represents the duration of

the event. In [21], Allen et al. introduce thirteen temporal relationships between two

time intervals, and many algorithms have been designed to mine Allen’s relations from

data with interval-based timestamps [22–24]. However, events in these algorithms still

have precise timestamps and are usually imposed to have a strict partial order. In

contrast, our work deals with events that occur at a time point but with uncertain

timestamps. When a partial order is pre-defined, some possible orders of events are

not allowed, which will cause the loss of information.

SPM with existential uncertainty. Muzammal and Raman proposed an SPM al-

gorithm in probabilistic database using the expected support as the measurement of

pattern frequentness [17]. Zhao et al. measure pattern frequentness in possible world

semantics and propose a pattern-growth uncertain SPM algorithm [15,16]. Sun et al

use approximation with probabilistic guarantee to improve the efficiency of mining

uncertain frequent itemsets [19]. Dynamic programming is used to mine frequent se-

rial episodes in an uncertain sequence [39] and probabilistic spatial-temporal frequent

sequential patterns [40]. All these methods are designed for dealing with existential

uncertainty in databases with accurate timestamps.

Indeterminate temporal database. Dyreson and Snodgrass introduced indetermi-

nate semantics which models valid-time indeterminacy by a set of consecutive times-

tamps with equal probabilities [26]. Zhang et al. proposed a pattern recognition

algorithm in temporal uncertain streams [41], and pattern queries in temporal uncer-

tain sequences is studied in [25]. Our work distinguishes from the above in that we

use random variables to represent uncertain timestamps. A random variable is more

flexible and efficient in modeling data collected from different scales. Meanwhile, the

above work focused on matching patterns in one sequence, while our work addresses

mining patterns from a large number of sequences. In [20], Sun et al. introduce one

14

type of uncertain event into Apriori-like sequential pattern discovery with only con-

sidering the total order of events; however, every event in our model is uncertain and

we do not assume any total or partial orders of events. In addition to our preliminary

work [42], we extend the model of temporal uncertainty from uniform distributions

to any arbitrary shaped distributions and propose a general solution based on this

model; we develop new pruning techniques to help improve efficiency; we also ap-

ply our algorithm to a real stock dataset and analyze the results via visualization

techniques.

2.3 Problem Statement

2.3.1 Temporally Uncertain Model

The temporal uncertain model applied in this chapter is based on temporally

uncertain events.

Definition 2.3.1 A temporally uncertain event is an event whose occurance time is

uncertain and can be represented by a random variable.

Definition 2.3.2 An uncertain sequence is a list of temporally uncertain events. An

uncertain sequence database is a collection of uncertain sequences.

We represent a temporally uncertain event by e = 〈sid, eid, T, I〉, where sid is the

sequence-id, eid is the event-id and I is an itemset that describes the content of event

e. T is a random variable representing the uncertain event time of e. And in this

paper, we consider the following two models of temporal uncertainty :

(1) T is modeled by a uniform probability density function(pdf) over a range, denoted

by T ∼ U [t−, t+]; (2) T is modeled by a discrete probability mass function (pmf),

denoted by {T |t1 : p1, · · · , tn : pn}, where pi is the probability that T = ti.

We denote an event with sid = i and eid = j by eij and denote its uncertain

event time by Tij. Figure 2.2 shows two examples of temporally uncertain databases

in a logging system which monitors a large number of distributed computers. In

15

(a) uncertain time modeled by uniform pdf

(b) uncertain time modeled by discrete pmf

Figure 2.2. Examples of uncertain sequence databases in logging systems

Figure 2.2(a), each sequence is a list of events that are detected by a server. Suppose

a server pings its clients periodically to test connections. For example, the event

e11 = {Client A: Connection lost} is detected because the server can connect the

client at time 50 but fails to reach it at time 60. The time of occurrence of e11 is

equally likely to be at anywhere between 50 and 60 and is modeled by the uniform

distribution T11 ∼ U(50, 60). For simplicity’s sake, we write U [t−, t+] as [t−, t+] in

Figure 2.2(a).

Figure 2.2(b) records sequences of actions in a cluster of distributed computers.

The exact time of these actions is unknown because of the network latency. For

example, suppose the network latency δt is a Gaussian noise δt ∼ N(−4, 1), then

the occurrence time of event e11, which is recorded at time 105, is T11 = 105 + δt.

However, in real applications, it is very expensive and sometimes infeasible to obtain

the exact distribution of an arbitrary shaped noise. It is more practical to approximate

the underlying continues distribution by a discrete pmf based on sampling and/or

16

50 60 70
>…>

160 170 180 190

>…>
e11 e12 e21 e22 e23

>…>
e11 e12 e21 e22 e23

Timeline

W1

W2
…

(a) possible worlds of uncertain database in Figure 2.2(a)

30 40
>…>

100 110

>…> e11 e12e21 e13

>…>
e21 e22 e23

Timeline

W1

W2

e22 e23

e11 e12 e13

120 130

…

(b) possible worlds of uncertain database in Fig 2.2(b)

Figure 2.3. Examples of possible worlds of the temporal uncertain database

histogramming methods. For example, the pmf of T11 is approximated by {100 :

0.2, 101 : 0.5, 102 : 0.3} in Figure 2.2(b).

A sequential pattern s = 〈s1, . . . , sn〉 is a sequence of itemsets, where si is called

an element of s. For example, a sequence of actions 〈(buffer-overflow)(ssh)(ftp)〉 in

Figure 2.2(b) is a sequential pattern which corresponds to a web-based attack followed

by copying data from the host computer to remote destination via ftp.

2.3.2 Temporal Possible World Semantics

An uncertain database D is interpreted by a set of possible worlds under possible

world semantics. A temporal possible world is a certain sequence database with

point-value timestamps drawn from the pdfs/pmfs of uncertain timestamps.

17

Pdf-Modeled Uncertainty. A sequence database with pdf-modeled uncertain

timestamps derives an infinite number of possible worlds. Figure 2.3(a) shows two

example possible worlds that are instantiated from the uncertain database in Figure

2.2(a). In Figure 2.3(a), each event time is certain and is drawn from the correspond-

ing uniform distribution. E.g., the event time t11 = 50 in w1 is instantiated from

T11 ∼ U(50, 60) in Figure 2.2(a).

The pdf of a possible word w is fD(w) = f(d̂1, d̂2, . . . , d̂n), where d̂i ∈ w is a

certain sequence instantiated from the uncertain sequence di. It is widely assumed

that uncertain sequences are mutually independent, which is known as the tuple-

level independence [28, 43] in probabilistic databases. Event times are also assumed

to be independent [15, 29, 44, 45], which can be justified by the fact that events are

usually observed independently in real applications. With these assumptions, the

computation of fD(w) can be simplified, as shown in Equation (2.1).

fD(w) =

|D|∏
i=1

f(di = d̂i) =

|D|∏
i=1

|di|∏
j=1

fTij
(t) (2.1)

Here |D| is the number of sequences in D, |di| is the number of events in sequence

di. fTij
(t) is the pdf of Tij ∼ U(t−, t+), as shown in Equation (2.2).

fTij
(t) =

⎧⎪⎨
⎪⎩

1
t+−t− , t ∈ [t−, t+]

0 , otherwise

(2.2)

Pmf-Modeled Uncertainty. A sequence database with discrete temporal un-

certainty is interpreted by a finite set of possible words. Figure 2.3(b) shows two

possible world examples derived from the example in Figure 2.2(b). In the possible

world w1, the event time t11 = 101 is instantiated from the discrete pdf {T11|101 :

0.2, 102 : 0.5, 103 : 0.3} in Figure 2.2(b). With the independence assumptions, we can

compute the probability mass function (pmf) of w in Equation (2.3).

fD(w) =

|w|∏
i=1

P (di = d̂i) =

|w|∏
i=1

|di|∏
j=1

fTij
(t) (2.3)

where fTij
(t) = P (Tij = t) is the probability that Tij equals to t.

18

2.3.3 Uncertain SPM Problem

In traditional certain database, a sequential pattern s is supported by a sequence

d, denoted by s � d, if and only if it satisfies: (1) there is an occurrence of s in d; (2)

this occurrence satisfies gap constraints.

A sequential pattern s = 〈s1, . . . , sn〉 occurs in a sequence d = 〈e1, . . . , em〉 if and
only if s is a subsequence of d. Therefore, there exist n integers 1 ≤ k1 < · · · < kn ≤ m

which have si ⊆ eki , and the ordered set of events o = 〈ek1 , · · · , ekn〉 is an occurrence

of s in d. For example, let d = 〈(a)(b)(cd)(ef)〉 and s = 〈(a)(b)(c)〉, then s � d and

o = {(a), (b), (cd)} is an occurrence of s in d.

A pattern occurrence satisfies gap constraints if the occurrence times of its ad-

jacent events are longer or shorter than a given gap [30]. Given the minimum gap

gl and the maximum gap gh, an occurrence o satisfies the constraints if and only if

gl ≤ Tki+1
− Tki ≤ gh for ∀i ∈ [1, n), where Tki is the timestamp of eki .

The support of a pattern s, denoted by sup(s), is the number of sequences that

support it. And s is frequent in a deterministic database if and only if sup(s) ≥ τs,

where τs is the user-defined minimum threshold. However, the frequentness of s in an

uncertain database D is probabilistic. And we define probabilistic frequent sequential

pattern as follows:

Definition 2.3.3 A sequential pattern s is a probabilistic frequent pattern (p-FSP)

if and only if its probability of being frequent is at least τp, denoted by P
(
sup(s) ≥

τs) ≥ τp.

Here τp is the user-defined minimum confidence in the frequentness of a sequential

pattern. And P (sup(s) ≥ τs) is the accumulation of existential probabilities of possi-

ble worlds in which s is frequent. Depending on the model of temporal uncertainty,

it can be computed by Equation (2.4a) if temporal uncertainty is pdf-modeled or

Equation (2.4b) if discrete pmf is adopted.

19

P (sup(s) ≥ τs) =

∫

sup(s|w)≥τs

fD(w)dw (2.4a)

P (sup(s) ≥ τs) =
∑

sup(s|w)≥τs

fD(w) (2.4b)

Here sup(s|w) ≥ τs indicates that s is a frequent pattern in a possible world w. And

the SPM problem in temporal uncertain databases is defined as follows:

Given thresholds τs, τp and gap constraints gl, gh, return all p-FSPs in temporally

uncertain database D.

However, directly expanding all possible worlds of D is usually infeasible in prac-

tice, because the number of possible worlds can be infinite. And our goal is to

efficiently discover p-FSPs without enumerating all possible worlds.

2.4 Uncertain Sequential Pattern Mining Algorithm

In this section, we propose our uncertain sequential pattern mining (USPM) al-

gorithms in temporally uncertain databases.

2.4.1 SPM Framework

Here we first define two types of pattern extension as follows:

Definition 2.4.1 An item-extended pattern s is a sequential pattern which is gen-

erated by appending an item i to the last element of another pattern s′, denoted by

s = s′ ∪ {i}.

Definition 2.4.2 A sequence-extended pattern s is a sequential pattern generated

by appending an itemset {i} to another pattern s′ as its last element, denoted by

s = s′ + {i}.

E.g., given s′ = 〈(a)(b)(c)〉 and an item d, s1 = 〈(a)(b)(cd)〉 is an item-extended

pattern of s; while s2 = 〈(a)(b)(c)(d)〉 is a sequence-extended pattern.

20

The anti-monotonicity property of p-FSPs in Lemma 4.1 allows us to prune a

sequential pattern if it is extended from a pattern that is not a p-FSP.

Lemma 2.1 If s is extended from s′ and s is a p-FSP, then s′ is also a p-FSP.

Proof In a possible world w, if s is frequent in w, s′ is also frequent because s′ � s.

Thus, P (sup(s′) ≥ τs) ≥ P (sup(s) ≥ τs). Since s is a p-FSP, we have P (sup(s′) ≥
τs) ≥ P (sup(s) ≥ τs) ≥ τp. Therefore, s

′ is a p-FSP.

In Algorithm 1, we extend the PrefixSpan framework to temporally uncertain

databases and adopt a depth-first strategy to search p-FSPs. Suppose s is a p-

FSP and D|s is the s-projected database. For each item i in D|s, we generate a

sequence-extended pattern s′ = s + {i}; while for each item i, we item-extend s

to generate s′ = s ∪ {i}. Thereafter, we use a project function to build the s′-

projected database D|s′ . Then, a freqProb function is applied to D|s′ to compute the

frequentness probability of s′. If s′ is a p-FSP, we add it to L and call a recursive

function to continue search frequent patterns by D|s′ . Here L is a set of all p-FSPs.

The detailed design of project and freqProb functions are described in the following

sections.

2.4.2 Approximate Frequentness Probability

In an uncertain database D, the probabilistic support sup(s) can be represented

by a random variable. Since sequences are assumed to be mutually independent,

sup(s) is the sum of n independent random variables, as shown in Equation (2.5),

sup(s) =
n∑

i=1

sup(s|di) (2.5)

where di ∈ D is an uncertain sequence. sup(s|di) ∼ B(1, pi) is a Bernoulli random

representing the probabilistic support of s in di, where pi = P (s � di) is so called the

support probability of s in di. We will discuss its computation in section 2.4.3.

21

Algorithm 2.1: USPM

Input: s: a p-FSP, D|s: s-projected uncertain database

τs: minimal support, τp: minimal frequentness probability

Output: L: a set of p-FSPs

L ← φ

foreach item i ∈ D|s do
s′ ← extend s by item i

D|s′ ← project(i, D|s) // build s′-projected database

P (sup(s′) ≥ τs) ← freqProb(i, D|s′) // compute frequentness

probability of s′

if P (sup(s′) ≥ τs) ≥ τp then

L ← L ∪ {s′}
L ← L ∪ USPM(s′, D|s′ , τs, τp)

end

end

return L

As the sum of n independent but non-identical Bernoulli trials, sup(s) follows

a Poisson-Binomial distribution. The Fast Fourier Transform (FFT) technique is

adopted to compute the pmf of sup(s) in O(nlogn) time. [15] In order to further

improve the efficiency, we use Gaussian distribution to approximate the underlying

Poisson-Binomial distribution. This type of approximation has also been used in

frequent patterns mining problems [16,19].

Lemma 2.2 Let pi = P (s � di), then the overall support sup(s) in a large uncertain

database converges in distribution to a Gaussian random variable, shown as follows:

sup(s) =
n∑

i=1

sup(s|di) n→∞−−−→ N(
n∑

i=1

pi,
n∑

i=1

pi(1− pi))

Proof The variance of sup(s) is σ2 =
∑n

i=1 σ
2
i , where σ

2
i = (1− pi)pi is the variance

of Bernoulli random variable sup(s|di). Therefore, we have σ2 → ∞ when n → ∞,

which satisfies the Lindeberg’s condition of the central limit theorem.

22

Let μ =
∑n

i=1 pi and σ2 =
∑n

i=1 pi(1− pi), then we can compute the approximate

frequentness probability of s by Equation (2.6), in linear time.

P (sup(s) ≥ τs) = 1− P (sup(s) ≤ (τs − 1)) = 1− Φ(
τs − 1− μ

σ
) (2.6)

And s is a p-FSP if it has P (sup(s) ≥ τs) ≥ τp.

2.4.3 Support Probabilities in Uncertain Sequences

In this section, we discuss the computation of support probability P (s � d) in

a temporally uncertain sequence. As previously mentioned, directly expanding all

possible sequences is infeasible in practice. Therefore, here we propose a new approach

to compute the support probability without enumerating all possible worlds. We first

define the minimum possible occurrence (mpo) as follows.

Definition 2.4.3 Given an uncertain sequence d = {e1, . . . , em} and a sequential

pattern s = 〈s1, . . . , sn〉 (n ≤ m), a minimum possible occurrence (mpo) of s in d is

an ordered size-n subset 〈ek1 , . . . , ekn〉 of d which have si ⊆ eki.

Notice that we use si ⊆ eki to represent si ⊆ eki .I, for simplicity’s sake. In the

following example, we use itemsets to represent uncertain events. Suppose d =

{(a)(ab)(abc)(cd)} and s = 〈(a)(b)〉, then 〈(a)(ab)〉, 〈(a)(abc)〉, 〈(ab)(abc)〉 and

〈(abc)(ab)〉 are four mpos of s in d; while 〈(a)(ab)(abc)〉 is not a mpo. Two properties

of mpo are presented as follows.

Lemma 2.3 If there are no mpo of s in d, P (s � d) = 0

Proof If no mpos of s are found in d, there is no possible world d̂ of d having s � d̂.

Therefore, there does not exist any possible world which support s, and this prove

that P (s � d) = 0.

Lemma 2.4 If s is not potentially supported by any mpo of s in d, P (s � d) = 0.

23

Proof Let O = {o1, . . . , on} be a set of all mpos of s in d. Suppose P (s � d|s �
o1, . . . , s � on) > 0, then there must exist a possible world d̂ that contains an occur-

rence oi of s. Thus, P (s � oi) = P (d = d̂) > 0, which contrasts with s � oi, ∀oi ∈ O.

This proves the correctness of the Lemma.

Let O = {o1, . . . , on} be n mpos of s in d. If O = φ, P (s � d) = 0, according

to Lemma 2.3; otherwise, we compute the support probability P (s � d) in Equation

(2.7), referring to the law of total probability.

P (s � d) =P (s � d|s � o1)P (s � o1) + P (s � d|s � o1)P (s � o1)

=P (s � o1) + P (s � d|s � o1)(1− P (s � o1))
(2.7)

where P (s � d|s � oi) = 1 by definition. We continue to decompose the probability

P (s � d|s � ok, . . . , s � o1) until obtaining Equation (2.8):

P (s � d) = P (s � o1) +
n∑

i=2

(P (s � oi)
i−1∏
j=1

P (s � oj))

+P (s � d|s � o1, . . . , s � on)
n∏

i=1

P (s � oi)

(2.8)

According to Lemma 4.3, P (s � d|s � o1, . . . , s � on) = 0. Then Equation (2.8)

can be shorten as:

P (s � d) = P (s � o1) +
n∑

i=2

(
P (s � oi) ∗

i−1∏
j=1

P (s � oj)
)

=
n∑

i=1

P (s � oi) ∗ Ai

(2.9)

where we use an auxiliary variable Ai, as shown in Equation (2.10), to track the

product of P (s � o1), . . . , P (s � o(i−1)). Then the amortized time complexity of

Equation (2.9) is O(n).

Ai =

⎧⎪⎨
⎪⎩
1 , if i = 1

Ai−1 ∗ P (s � o(i−1)) , if i ≥ 2

(2.10)

24

(a) uncertain sequence d (b) possible worlds d̂

Figure 2.4. An example of computing support probability

Figure 2.4 is an example to demonstrate the process of computing P (s � d) by

mpos. Let gl = 1 and gh = 3. Given s = 〈(a)(b)(c)〉, we first compute P (s � d) = 0.7

by enumerating all possible worlds of d as shown in Figure 2.4(b).

Next we compute P (s � d) without enumerating the possible worlds table. First,

we find two mpos of s, which are o1 = 〈e1, e2〉 and o2 = 〈e1, e3〉. Then, we compute

P (s � o1) = 0.4 and P (s � o2) = 0.5. Finally, P (s � d) is computed as P (s � d) =

P (s � o1) + P (s � o2) ∗ P (s � o1) = 0.4 + 0.5 ∗ 0.6 = 0.7, which is consistent with

the result of expanding all possible worlds.

Function freqProb is used to compute frequentness probabilities from projected

databases. Let d|s be a projected sequence in D|s. A is the auxiliary variable defined

in Equation (2.10). Suppose os is a mpo of s in d and d|os is the os-projected sequence,

then P (s � os) is the probability that s is supported by os and we will discuss its

computation in the next sections. Referring to Equation (2.9), we iterate project

sequences w.r.t. all mpos of s to compute the support probability P (s � d).

The probabilistic support of s in an uncertain sequence di is modeled by a Bernoulli

random variable Xi ∼ B(1, pi), where pi = P (s � di). As the sum of a large number

of random variables, the overall support sup(s) is approximated by the Gaussian

distribution N (μ, σ2). Here μ and σ2 are the sum of the means and variances of

these Bernoulli random variables. And then, Equation (2.6) is applied to compute

the approximate frequentness probability P (sup(s) ≥ τs).

25

Function freqProb(D|s)
Input: D|s: an uncertain projected database

Output: P (sup(s) ≥ τs)

μ ← 0, σ2 ← 0

foreach d|s ∈ D|s do
A ← 1

p ← 0 // p is the support probability P (s � d)

foreach d|os ∈ d|s do
compute P (s � os)

p ← p+ P (s � os) ∗ A
A ← A ∗ P (s � os)

end

μ ← μ+ p

σ2 ← σ2 + p ∗ (1− p)

end

P (sup(s) ≥ τs) ← 1− Φ(τs−1−μ
σ

)

return P (sup(s) ≥ τs)

2.4.4 Uncertain Database Projection

Different from the traditional PrefixSpan method, we project temporally uncertain

databases using mpos. First of all, we have the following definitions.

Definition 2.4.4 Suppose all the items in an element are listed alphabetically. Given

a mpo os = 〈ek1 , . . . , ekn〉 of a pattern s in sequence d, a sequence α =
〈
e′k1 , . . . , e

′
kn

〉
is defined to be an uncertain prefix of d w.r.t. pattern s, if and only if: (1) e′ki = eki

for i ≤ (n− 1); (2) e′kn ⊆ ekn; (3) all the items in (ekn − e′kn) are alphabetically after

those in e′kn.

Definition 2.4.5 The os-projected sequence d|os is defined to be the suffix β of d

such that d = αβ with α being the prefix of d w.r.t. s derived from os.

26

Consider the following example where we use only items to represent uncertain

events. Let d = {(ab), (cd), (e)} and s = 〈(a)(c)〉, then o = 〈(ab)(cd)〉 is a mpo of

s in d, and 〈(ab)(c)〉 is an uncertain prefix derived from o. d|o = {(d)(e)} is the o-

projected sequence in d, where d indicates that the last element of the prefix, which

is c here, together with d, form one element (cd).

Definition 2.4.6 Suppose O = {o1, . . . , on} is a set of all possible mpos of s in d,

then a s-projected uncertain sequence d|s is defined to be a set of all oi-projected

sequences, denoted by d|s = {d|o1 , . . . , d|on}. And the s-projected uncertain database

is a collection of all s-projected sequences, denoted by D|s = {d1|s, . . . , dn|s}.

Considering gap-constraints (e.g. gl = l and gh = h), if an event in d|os is not able
to support any extension of s together with os, we can prune it according to Lemma

2.5.

Lemma 2.5 Given a pattern s and an uncertain sequence d. Given a mpo o =

〈ek1 , . . . , ekn〉, an uncertain event ei in d|os can be pruned if P (Ti ≥ Tkn + gl) = 0.

Proof If P (Ti ≥ Tkn +gl) = 0, we have P (Tk1 , . . . , Tkn , Ti) = 0, which indicates that

ei does not contribute to support any extension of s. Therefore, it can be pruned.

Here P (Ti ≥ Tkn + gl) = 0 is equivalent to max(Ti) < min(Tkn) + gl, where max(Ti)

is the maximum possible value of Ti and min(Tkn) is the minimum value of Tkn .

Function project shows the details of our uncertain project function. Here D|s is

the s-projected database and i is an item in D|s. s′ is a pattern extended from s

with item i, and we build its projected database D|s′ from D|s. We first search the

occurrences of i in each os-projected sequence d|os . Suppose an event e contains one

of the occurrences, then it corresponds to a mpo os′ of s
′ in d. And we can build

an os′-projected sequence by these two operations: (1) remove any items which is

alphabetically smaller than or equal to i in e; (2) remove any event ek with max(Tk) <

min(T) + gl, where Tk is the event time of ek and T is the time of event e.

27

Function project(i, D|s)
Input: D|s: an uncertain projected database;

i: an item, gl: minimal gap-constraint

Output: D|s′
foreach d|s ∈ D|s do

d|s′ ← φ

foreach d|os ∈ d|s do
foreach e ∈ d|os ∧ i ∈ e // search the occurrences of item i

do

build d|os′
compute Pt(·|os′) from Pt(·|os) and e.T and save it in d|os′
add d|os′ to d|s′

end

end

end

return d|s′

Figure 2.5 shows an example of projecting an uncertain sequence. Here we set gl =

1 and gh = 5. The uncertain sequence d is shown in Figure 2.5(a). In Figure 2.5(b),

it illustrates the 〈a〉-projected uncertain sequence of d. o11 = 〈e1〉 and o12 = 〈e3〉 are
two mpos of pattern 〈a〉; d|o11 and d|o12 are the two projected sequences w.r.t. o11 and

o12. Notice that the event e1 in d|o2 can be eliminated because P (T3 ≥ T1 + 1) = 0,

referring to Lemma 2.5.

2.4.5 USPM Algorithm

We can avoid generating candidate patterns that are not likely to be p-FSPs,

according to the Lemma below.

28

(c) d|〈ab〉

(a) d

(b) d|〈a〉

EID T I

1 1:1.0 (a)
2 3:0.4, 8:0.6 (be)
3 4:0.5, 9:0.5 (ac)

4 5:0.7 8:0.3 (d)
EID T I

2 3:0.4, 8:0.6 (_e)

4 5:0.7, 8:0.3 (d)

EID T I

1 1:1.0 (a)
2 3:0.4, 8:0.6 (be)
3 4:0.5, 9:0.5 (_c)

4 5:0.7 8:0.3 (d)

o12 = 〈e3〉

EID T I

2 3:0.4, 8:0.6 (be)
3 4:0.5, 9:0.5 (ac)

4 5:0.7 8:0.3 (d)

o11 = 〈e1〉

Pt(·|o11) = {1 : 1.0}

d|o11

d|o12

EID T I

2 3:0.4, 8:0.6 (_e)
3 4:0.5, 9:0.5 (ac)

4 5:0.7, 8:0.3 (d)

d|o21

Pt(·|o21) = {3 : 0.4}

o21 = 〈e1e2〉

d|o22 o22 = 〈e3e2〉

Pt(·|o22) = {8 : 0.3}

Pt(·|o12) = {4 : 0.5, 9 : 0.5}

Figure 2.5. An example of projecting an uncertain sequence

Lemma 2.6 Let D|s be the projected database of a pattern s. If an item i is not

probabilistic frequent in D|s, either s′ = s ∪ {i} or s′ = s+ {i} is not a p-FSP.

Proof Suppose w is a possible of D|s, then for each sequence d̂ ∈ w, s′ � d̂ implies

that 〈i〉 � d. Thus, s′ is frequent in w implies that i is also frequent in w. Since

P (sup(s′) ≥ τs) ≤ P (sup(i) ≥ τs) < τp, this proves that s
′ is not a p-FSP.

We set s = φ and D|s = D initially. Recall from the framework shown in Algo-

rithm 1, we can mine a set L of all p-FSPs in the following steps:

STEP 1: Find a set of all probabilistic frequent items I = {i1, i2, ..., in} in D|s.
This process is fast because it does not involve temporal uncertainty management.

STEP 2: For a frequent item i ∈ I, generate a candidate pattern s′ from s and i.

Note that s′ is item-extend such as s′ = s ∪ {i}, if item i is represented by i in D|s;
otherwise, we sequence-extend s to generate s′ = s+ {i}.
STEP 3: Call function project(i, D|s) to build the s′-projected database D|s′ .
STEP 4: Call function freqProb(D|s′) to compute P (sup(s′) ≥ τs).

STEP 5: If s′ is not a p-FSP, remove i from I and go to step (2); otherwise, save s

to L and call USPM(s′, D|s′) recursively to search all frequent patterns in D|s′ .

29

2.5 Management of Temporal Uncertainty

In this section, we discuss the computation of the probability P (s � os). Let

os = 〈ek1 , . . . , ekn〉 be a mpo of a pattern s in an uncertain sequence d, where eki ∈ d

is an uncertain event. Here we represent the probability of os satisfying gap-constrains

by Pt(os). Therefore, we have P (s � os) = Pt(os) by definition.

We set gap-constraints as gl = l and gh = h. Let Tki be the uncertain time of

event eki . Then, a brute force approach of computing Pt(os) is to directly decompose

it by the chain rule, as shown in Equation (2.11) and (2.12).

Pt(os) =

∫
· · ·

∫

l≤ti−ti−1≤h

f(Tk1 = t1, . . . , Tkn = tn)dt1 · · · dtn

=

∫
· · ·

∫

l≤ti−ti−1≤h

f(tn|t1 · · · tn−1) ∗ · · · ∗ f(t2|t1)f(t1)dt1 · · · dtn
(2.11)

Pt(os) =
∑

l≤ti+1−ti≤h

P (Tk1 = t1, . . . , Tkn = tn)

=
∑

· · ·
∑

l≤ti+1−ti≤h

P (tn|t1, t2, . . . , tn−1) ∗ · · · ∗ P (t2|t1) ∗ P (t1)
(2.12)

However, the complexity of this approach is exponential to the number of uncertain

timestamps, so it is usually too complex to be used in practice. In this section, we

propose a recursive approach to compute Pt(os) efficiently.

2.5.1 Analysis of Base Cases

In this section, we discuss the computation of the probability that two uniformly

distributed uncertain timestamps satisfy gap-constraints such as gl = l and gh = h.

Given X ∼ U(x−, x+) and Y ∼ U(y−, y+), the probability that X and Y satisfy gap

30

constraints (e.g. l ≤ Y − X ≤ h) is denoted by P (〈XY 〉). And P (〈XY 〉) can be

computed by:

P (〈XY 〉) =
∫ ∫

l≤Y−X≤h

1

(x+ − x−)(y+ − y−)
dxdy

=

∫ min(y+,x++h)

max(y−,x−+l)

∫ min(x+,y−l)

max(x−,y−h)

1

(x+ − x−)(y+ − y−)
dxdy

=
1

S
∗
∫ min(y+,x++h)

max(y−,x−+l)

min(x+, y − l)−max(x−, y − h)dy

(2.13)

where S = (x+ − x−)(y+ − y−) is a constant. Let f(y) = min(x+, y−l)−max(x−, y−
h), then the value of f(y) is interpreted into the following four deterministic cases:

f(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+ + h− y , max(a2, a3) ≤ y ≤ a4

x+ − x− , a3 ≤ y ≤ a2

h− l , a2 ≤ y ≤ a3

y − l − x− , a1 ≤ y ≤ min(a2, a3)

(2.14)

where

a1 = min(y+,max(y−, x− + l)), a2 = min(y+,max(y−, x− + h))

a3 = min(y+,max(y−, x+ + l)), a4 = min(y+,max(y−, x+ + h))

Let b1 = a1, b2 = min(a2, a3), b3 = max(a2, a3) and b4 = a4, then we have

b1 ≤ b2 ≤ b3 ≤ b4. Equation (2.13) can be written as the sum of integrations in three

disjoint sub-partitions [b1, b2], [b2, b3] and [b3, b4], as shown in Equation (2.15).

P (〈XY 〉) =
3∑

k=1

P (〈XY 〉 |y ∈ [bk, bk+1]) ∗ P (y ∈ [bk, bk+1])

= P (〈XYk〉) ∗ P (Yk)

(2.15)

where we denote Yk = {Y |y ∈ [bk, bk+1]}, and P (Yk) is computed:

P (Yk) =

∫ bk+1

bk

1

y+ − y−
dy =

bk+1 − bk
y+ − y−

(2.16)

Since P (〈XYk〉) corresponds to a deterministic case, it can be computed by Equa-

tion (2.17).

31

Y=
X+
lY=

X+
h

A1

A2

A3

(b1 − l)(b1 − h) x− x+
b1

b2

b3

b4

L1

L2

L3

L4

Y1

Y2

Y3

X

Figure 2.6. An example of computing the probability of satisfying gap constraints

Pt(〈XY1〉) = A1

S1

=

∫ min(a2,a3)

a1
(y − l − x−)dy

S1

Pt(〈XY2〉) = A2

S2

=

⎧⎪⎨
⎪⎩

1
S2

∫ a2
a3

(x+ − x−)dy , if a2 ≥ a3

1
S2

∫ a3
a2

(h− l)dy , if a2 < a3

Pt(〈XY3〉) = A3

S3

=

∫ a4
max(a2,a3)

(x+ + h− y)dy

S3

(2.17)

In order to derive a general formula, we use a geographic approach to compute

P (〈XYk〉). Figure 2.6 shows an example of the geographic representations. Here, the

gap-constraints gl = l and gh = h corresponds to two straight lines Y = X + l and

Y = X + h. Sk is the area of the rectangle within X ∈ [x−, x+] and Y ∈ [bk, bk+1];

Ak is the area of a trapezoid between two boundary lines within Sk. Thereafter, we

can compute the probability P (〈XYk〉) by Equation (2.18).

P (〈XYk〉) = Ak

Sk

=

∫ bk+1

bk
f(y)dy

Sk

=
(1/2) ∗ (Lk+1 + Lk) ∗ (bk+1 − bk)

(bk+1 − bk) ∗ (x+ − x−)

=
Lk+1 + Lk

2 ∗ (x+ − x−)

(2.18)

32

Here Lk are base lines lengths of the trapezoids. As Lk is the length of the line which

is between two endpoints (bk − l, bk) (bk − h, bk) and satisfies the constraints, it can

be computed by:

Lk = min(bk − l, x+)−max(bk − h, x−).

For example, to compute A1 in Figure 2.6, we first compute L1 = (b1 − l) − x−

and L2 = (b2− l)− (b2−h) = (l−h). Then A1 is equal to (L1+L2)∗ (b2− b1)/2. And

we can compute P (〈XY1〉 = A1/S1, where S1 = (x+ − x−) ∗ (b2 − b1). After we use

the same approach to compute P (〈XY2〉 and P (〈XY3〉, the probability of P (〈XY 〉)
can be computed by Equation (2.15).

2.5.2 Recursion for Pdf-Modeled Uncertainty Management

Given n pdf-modeled uncertain timestamps Ti ∼ U [t−i , t
+
i], We propose a recursive

approach to compute the probability that T1, . . . , Tn satisfy gap-constraints, denoted

by P (〈T1, . . . , Tn〉).

Definition 2.5.1 Suppose [a, b] ⊆ [t−n , t
+
n] and T ∼ U [a, b], then we define Pn(T) to

be the probability that Tn = T and T1, . . . , Tn−1, Tn satisfies gap-constraints, denoted

as Pn(T) = P (〈T1, . . . , Tn−1, Tn〉 ∧ Tn = T).

Suppose the range of Tn is divided into p disjoint sub-partitions as [t−n , t
+
n] = ∪p

i=1[t
i
n, t

i+1
n]

and T i
n ∼ U [tin, t

i+1
n], then P (〈T1 · · ·Tn〉) can be computed by the sum of Pn(T

i
n), as

shown in Equation(2.19) , according to the the law of total probability.

P (〈T1, . . . , Tn〉) =
p∑

i=1

P (
〈
T1, . . . , T

i
n

〉
) ∗ P (Tn = T i

n) =

p∑
i=1

Pn(T
i
n) (2.19)

where we denote P (〈T1, . . . , Tn〉 |Tn = T i
n) by P (〈T1, . . . , T

i
n〉), for the purpose of

simpilicity.

In order to derive all deterministic cases between Tn−1 and Tn, we use sub-

partitions of Tn−1 to divide the range of Tn. Suppose the range of Tn−1 consists

33

Tn-1

Tn

t4n−1t3n−1t2n−1t1n−1

t1n

t2n

t3n

t4n

t5n

t6n

Y=
X+
l

Y=
X+
h

e11

e21

e22

e12

e13

e23 e24

e14

Figure 2.7. An example of dividing the range of Tn

of q disjoint sub-partitions such as [t−n−1, t
+
n−1] = ∪q

j=1[t
j
n−1, t

j+1
n−1], then each endpoint

x = tjn−1 can generate two boundary points:

e1j = (x,min(t+n ,max(x+ l, t−n))), e
2
j = (x,min(t+n ,max(x+ h, t−n)))

Figure 2.7 shows an example of dividing the range of Tn based on the three disjoint

sub-partitions of Tn−1. Here {e11, e21, · · · , e14, e24} are eight boundary points derived

from tjn−1 (for j ∈ [1, 4]). The Tn-axis projections of these boundary points are

t1n < · · · < t6n, which divide the range of Tn into five sub-partitions.

In general, we assume that {tin|i ∈ [1, p+1]} are an ordered set of endpoints in Tn,

then the range of Tn is divided into p sub-partitions such as [t−n , t
+
n] = ∪p

i=1[t
i
n, t

i+1
n].

Therefore, we can compute P (
〈
T j
n−1T

i
n

〉
) by Equation (2.18), referring to Lemma 2.7.

Lemma 2.7 Given T j
n−1 ∼ U [tjn−1, t

j+1
n−1] and T i

n ∼ U [tin, t
i+1
n],

〈
T j
n−1T

i
n

〉
corresponds

to a deterministic case.

Proof Suppose the range of Tn is split into three sub-partitions such as [t−n , t
+
n] =

∪3
i=1[bi, bi+1]. As tin and ti+1

n are two consecutive points that further split [bk, bk+1],

we have bk ≤ tin < ti+1
n ≤ bk+1. Thus,

〈
T j
n−1T

i
n

〉
is a deterministic case because

[tin, t
i+1
n] ⊆ [b2, b3].

34

Here we design a divide-and-conquer algorithm to compute Pn(T
i
n). The com-

putation of Pn(T
i
n) is divided into sub-problems of computing the probabilities that

Tn = T i
n, Tn−1 = T j

n−1 and T1, · · · , Tn satisfy gap-constraints, for j = 1, . . . , q. These

probabilities are then combined together by the law of total probability, as shown in

Equation (2.20).

Pn(T
i
n) =

∑
j

P (
〈
T1, . . . , T

j
n−1, T

i
n

〉
) ∗ P (Tn−1 = T j

n−1) ∗ P (Tn = T i
n) (2.20)

Since the gap-constraints only regulate relationships between adjacent times-

tamps, we have:

P (
〈
T1, · · · , T j

n−1, T
i
n)
〉
= P (

〈
T1, . . . , T

j
n−1

〉
) ∗ P (

〈
T j
n−1, T

i
n

〉
)

And then, Equation (2.20) can be written as a recursive function:

Pn(T
i
n) =

∑
j

P (
〈
T1, . . . , T

j
n−1

〉
) ∗ P (

〈
T j
n−1, T

i
n

〉
) ∗ P (T j

n−1) ∗ P (T i
n)

=
∑
j

Pn−1(T
j
n−1) ∗ P (

〈
T j
n−1, T

i
n

〉
) ∗ P (T i

n)
(2.21)

Algorithm 2.2 summarizes the computation of Pn(T
i
n) for n uniformly distributed

uncertain timestamps T1, . . . , Tn. In the base case of n = 2, we compute P2(T
j
2) from

T1 and T2 by Equation (2.16) and (2.18). If n > 2, it first computes Pn−1(T
j
n−1)

recursively, for j ∈ [1, p]. Suppose the range of Tn is divided into q sub-partitions

by the splits of Tn−1. Let T i
n be a random variable associated with ith sub-partition

of Tn, then P (
〈
T j
n−1T

i
n

〉
) can be computed in constant time. Thereafter, Equation

(2.21) is used to compute Pn(T
i
n). Algorithm 2.2 returns a set of values of Pn(T

i
n) (for

i = 1, . . . , q), from which we can compute P (〈T1, . . . , Tn〉) =
∑

i Pn(T
i
n).

2.5.3 Recursion for Pmf-Modeled Uncertainty Management

We denote the pmf of a discrete uncertain timestamp Ti by fTi
= P (T = tki),

where tki is one of the possible values of Ti. Here we first define Pn(t) for pmf-modeled

uncertain timestamps.

35

Algorithm 2.2: UTimeProb

Input: {Ti|Ti ∼ U [t−i , t
+
i], i ∈ [1, n]}

Output: {Pn(T
i
n)|i ∈ [1, p]}

if n = 2 then

compute P2(T
j
2) by Equation (2.16) and (2.18)

return {P2(T
j
2)|j ∈ [1, 3]}

end

{Pn−1(T
j
n−1)|j ∈ [1, q]} = UTimeProb(T1, . . . , Tn−1)

divide [t−n , t
+
n] into p disjoint sub-partitions, obtain T i

n ∼ U [tin, t
i+1
n] ⊆ [t−n , t

+
n],

∀i ∈ [1, p]

for i ← 1 : p do

P (Tn = T i
n) ← (ti+1

n − tin)/(t
+
n − t−n)

Pn(T
i
n) ← 0

for j ← 1 : q do

Pn(T
i
n) ← Pn(T

i
n) + Pn−1(T

j
n−1) ∗ P (

〈
T j
n−1T

i
n

〉
) ∗ P (Tn = T i

n)

end

end

return {Pn(T
i
n)|i ∈ [1, p]}

Definition 2.5.2 Let t be a possible value of Tn, then Pn(t) is defined to be the

probability that Tn = t and T1, . . . , Tn−1, Tn satisfies gap-constraints, such as Pn(t) =

P (〈T1, . . . , Tn−1, Tn〉 ∧ Tn = t).

Suppose Tn has p possible values such as t1n, · · · , tpn, then P (〈T1, . . . , Tn〉) is the

sum of Pn(t
i
n) (∀i ∈ [1, p]), as shown in Equation (2.22), according to the law of total

probability.

P (〈T1, . . . , Tn〉) =
∑
i

P (〈T1, . . . , Tn〉 |Tn = tin) ∗ P (Tn = tin)

=
∑
i

P (〈T1, . . . , Tn〉 ∧ Tn = tin) =
∑
i

Pn(t
i
n)

(2.22)

36

We first compute the probability P (〈T1T2〉) that two uncertain timestamps T1 and

T2 satisfy gap-constraints. Suppose fT1(t
j
1) = P (T1 = tj1) and fT2(t

i
2) = P (T2 = ti2), for

j ∈ [1, p] and i ∈ [1, q]. Then, P (〈T1T2〉 can be computed from the joint distribution

of (X, Y), as shown in Equation (2.23).

P (〈T1T2〉) =
∑
i

P2(t
i
2) =

∑
i

∑
j

δ(tj1, t
i
2) ∗ P (T1 = tj1) ∗ P (T2 = ti2) (2.23)

where the value of δ(xj, yi) depends on if xj and yi satisfy gap-constraints or not. Let

gl = l and gh = h, then δ(xj, yi) is computed by Equation (2.24).

δ(xj, yi) = P (〈xj, yi〉) =

⎧⎪⎨
⎪⎩
1 , if l ≤ yi − xj ≤ h

0 , otherwise

(2.24)

The key idea of recursive approach is to first split the computation of Pn(t
i
n) into

sub-problems of computing Pn−1(t
j
n), and then combine them by the law of total

probability, as shown in Equation (2.25).

Pn(t
i
n) =

q∑
j=1

P (
〈
T1, . . . , T

j
n−1, T

i
n

〉
) ∗ P (Tn−1 = tjn−1) ∗ P (Tn = tin) (2.25)

Since gap-constraints only apply to adjacent timestamps, T1, . . . , Tn satisfy gap-

constrains, if both 〈T1, . . . , Tn−1〉 and 〈Tn−1Tn〉 satisfy constraints. Therefore, Equa-

tion (2.25) can be written as the following recursive function:

Pn(t
i
n) =

q∑
j=1

P (
〈
tjn−1, t

i
n

〉
) ∗ P (〈T1, . . . , Tn−1〉) ∗ P (tjn−1) ∗ P (tin)

=

q∑
j=1

δ(tjn−1, t
i
n) ∗ Pn−1(t

j
n−1) ∗ P (tin)

(2.26)

Algorithm 2.3 summarizes the computation of the probability that n pmf-modeled

uncertain times T1, . . . , Tn satisfy gap-constraints. In the base case of n = 2, it

is straightforward to compute the values of P2(t
i
n) from the pmf of T1 and Tn by

Equation (2.23). If n > 2, we first call a recursive function to compute the values

of Pn−1(t
j
n1
) (j = 1, . . . , q), then we combine the output of these sub-problems using

Equation (2.26). Algorithm 2.3 returns a set of values of Pn(t
i
n), from which we can

37

Algorithm 2.3: DTimeProb

Input: {Ti|i ∈ [1, n]}, fTi
= P (Ti = tki)

Output: {Pn(t
i
n)|i ∈ [1, p]}

if n = 2 then

compute P2(t
i
n) by Equation (2.23)

end

{Pn−1(t
j
n−1)|j ∈ [1, q]} = DTimeProb(T1, . . . , Tn−1)

for i ← 1 : p do

Pn(t
i
n) ← 0

for j ← 1 : q do

Pn(t
i
n) += Pn−1(t

j
n−1) ∗ δ(tjn−1, t

i
n) ∗ P (Tn = tin)

end

end

return {Pn(t
i
n)|i ∈ [1, p]}

compute P (〈T1, . . . , Tn〉 =
∑

i Pn(t
i
n). The complexity of Algorithm 2.3 is O(n ∗m),

where m is the average number of possible values for an uncertain timestamp.

2.5.4 Integration with SPM Framework

Now we integrates our temporal uncertainty management into sequence project

process, which is shown in Function project. The computational complexity of Al-

gorithm 2.2 and 2.3 can be reduced if we save and reuse the values of Pn−1(T
i
n−1) or

Pn−1(t
i
n−1). For simplicity of notation, we define Pt(·|os) to be a general representation

of the values of either Pn−1(T
i
n−1) or Pn−1(t

i
n−1) as follows:

Definition 2.5.3 If temporal uncertainty is modeled by uniform probability density

function, we have Pt(·|os) = {Pn(T
1
n), . . . , Pn(T

p
n)}; while if temporal uncertainty is

pmf-modeled, we have Pt(·|os) = {Pn(t
1
n), . . . , Pn(t

p
n)} instead.

38

The value of Pt(·|os) is saved and associated with os-projected sequence d|os . Here
we reuse it to avoid redundant computation in mining sequential patterns. Let i be

a item in d|os and s′ is a pattern extend from s with i. If s′ = s ∪ {i}, we have

Pt(·|os′) = Pt(·|os) because os′ = os; if s
′ = s + {i}, we can compute the value of

Pt(·|os′) directly from Pt(·|os) and T without calling the recursive functions.

In the running example of Figure 2.5, o12 is a mpo of s = 〈a〉 in d and o22 is a

mpo of s′ = 〈ab〉. d|o22 is projected from d|o12 , since the event e2 in d|o12 contains an

occurrence of item b. Given gl = 1 and gh = 5, we we can compute Pt(·|o22) = {8 : 0.3}
from the saved value Pt(·|o12) = {4 : 0.5, 9 : 0.5} and T2 = {3 : 0.4, 8 : 0.6} in d|o12 by

Equation (2.26).

2.5.5 Pruning

We discuss pruning techniques used in computing frequentness probabilities in

this section. Suppose Xi ∼ B(1, pi) are n Bernoulli random variables, where pi =

P (s � di) > 0 is the non-zero support probability of pattern s in an uncertain

sequence di. Let S = sup(s) here, then the overall support S is the sum of Xi such as

S = X1+ · · ·+Xn. And the expected value of S is denoted by E(S). Lemma 2.8 and

2.9 below describe how to prune s without computing its frequentness probability.

Lemma 2.8 (Count Pruning) Suppose there are n uncertain sequences which have

P (s � d) > 0 then s can be pruned, if n < τs.

Proof Because S = X1 + · · · +Xn and X ∈ {0, 1}, we have S ≤ n. If n < τs, then

S < τs and s is not likely to be a p-FSP.

The count pruning technique has also been used in mining uncertain frequent itemsets

in [19].

Lemma 2.9 (Hoeffding’s inequality pruning) Let t =
√

n∗ln(1/τp)
2

, then s can be

pruned if E(S) + t < τs.

39

Proof Since X1, . . . , Xn are independent random variables bounded by the interval

[0, 1], S = X1+ · · ·+Xn satisfies Hoeffding’s inequality : P (S−E[S] ≥ t) ≤ exp(−2t2

n
).

Here let t =
√

n∗ln(1/τp)
2

, then we have P (S ≥ E(S) + t) ≤ τp. if E(S) + t < τs,

P (sup(s) ≥ τs) < P (E(S) + t) ≤ τp.

Beside pruning in computing frequentness probabilities, Lemma 2.10 describes a

pruning technique based on gap-constraints (e.g. gl = l and gh = h) to speed up

uncertainty management.

Lemma 2.10 (Gap pruning) Suppose a1 ≤ T1 ≤ b1 and a2 ≤ T2 ≤ b2, then

P (〈T1, T2〉) = 0 if b2 < a1 + l or a2 > b1 + h.

Proof The possible range of T , which satisfies gl ≤ T − T1 ≤ gh, is [a1 + l, b1 + h].

Given a2 ≤ T2 ≤ b2, we have P (〈T1T2〉) = 0, if b2 < a1 + l or a2 > b1 + h.

We apply gap-pruning in two places: (1) it helps to compute the base case of two two

uncertain timestamps satisfying constraints, as in Equation either (2.15) or (2.23);

(2) it speeds up the computation of Pt(·|os′) in the project function. In an uncertain

sequence d, suppose the minimal and maximal timestamps of Pt(·|os) are a1 and b1.

Let a2 ≤ T ≤ b2 be the time of uncertain event e that contains an occurrence of item

i. Therefore, if b2 < a1 + l or a2 > b1 + h, we do not need to compute the values of

Pt(·|os′) because we have P (·|os′) = 0. Here s′ = s+ {i} is a sequence-extension of s

with item i.

2.6 Evaluation

We employ the IBM market-basket data generator [46] to generate synthetic

datasets using the following parameters:

C : number of sequences;

T : average number of transactions/itemsets per data-sequence;

L: average number of items per transaction/itemset per data-sequence;

40

I : number of different items.

To add uniform pdf modeled uncertainty, we replace each point-value timestamp

t by a uniformly distributed random variable T ∼ [(1− r) ∗ t, (1 + r) ∗ t], where r is

randomly drawn from (0, 1). We name the generated synthetic dataset by parameters.

E.g., the dataset named T4L10I1C10 indicates that T = 4, L = 10, I = 1 ∗ 1000 and

C = 10 ∗ 1000.
Recall from Section 2.5 that the brute force method to compute the probability of

an occurrence satisfying gap constraints is to compute Equation (2.11) or Equation

(2.12) using chain rule. This method is implemented and abbreviated as bf. And our

USPM algorithm is abbreviated as uspm. In order to evaluate the effect of our pruning

techniques, the approximate algorithm with count pruning techniques is named uspm-

c; we apply both count pruning and Hoeffding’s inequality pruning in our algorithm

and name it by usm-ch; and the algorithm with all three pruning techniques is so

called uspm-chg. All the experiments were done in a desktop with Intel(R) Core (TM)

Duo CPU @ 2.33GHz and 4GB memory.

2.6.1 Scalability Evaluation

In Figure 2.8, we compare the running time of BF, USPM, USPM-C, USPM-CH

and USPM-CHG on synthetic datasets with uniformly distributed temporal uncer-

tainty. We set τs = 0.5%, τp = 0.7, gl = 1, and gh = 10. And C = 10 000, T = 4,

I = 10 000 and L = 2 are the default parameters used to generate datasets. There-

after, we vary one of the parameters to test the performance in different scales. For

example, in Figure 2.8(a), C varies from 10 000 to 100 000; in Figure 2.8(b), T varies

from 10 to 30; in Figure 2.8(c), L varies from 4 to 10; and in Figure 2.8(c) I varies

from 500 to 50 000. Figure 2.8 shows the following phenomena:

(1) The running time of both BF and USPM increases with the increment of C,

T , L, as the increment of these parameters generates larger scale datasets.

41

0
50

10
0

15
0

C(*1000)

ru
nn

in
g

tim
e

(s
)

10 20 50 100

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(a) scale of C

0
20

0
40

0
60

0
80

0

T

ru
nn

in
g

tim
e

(s
)

10 15 20 30

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(b) scale of T

0
20

0
40

0
60

0
80

0
10

00

L

ru
nn

in
g

tim
e

(s
)

4 6 8 10

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(c) scale of L

0
50

10
0

15
0

I(*100)

ru
nn

in
g

tim
e

(s
)

5 10 30 50

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(d) scale of I

Figure 2.8. Scalability comparison in synthetic uncertain datasets

(2) The running time decreases slightly with the increment of I. When I is set to

a larger value, the number of mpos of a pattern in a sequence is fewer because there

are fewer repeated items in a sequence.

(3) Our algorithm USPM is significantly faster than BF under every setting of

parameters, which proves the effectiveness of our uncertainty computation approach.

42

0
10

0
20

0
30

0
40

0

τs × 0.001

ru
nn

in
g

tim
e

(s
)

5 3 2 1

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(a) effect of τs

0
50

10
0

15
0

20
0

τp × 0.1

ru
nn

in
g

tim
e

(s
)

5 6 7 8

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(b) effect of τp

10
20

30
40

50
60

70
80

gh

ru
nn

in
g

tim
e

(s
)

4 6 8 10

BF
USPM
USPM−C
USPM−CH
USOM−CHG

(c) effect of gh

0
10

20
30

40
50

60

gl

ru
nn

in
g

tim
e

(s
)

1 3 5 10

BF
USPM
USPM−C
USPM−CH
USPM−CHG

(d) effect of gl

Figure 2.9. Effect of parameters in mining synthetic uncertain datasets

(4) The USPM-CHG algorithm with all three pruning methods is about two times

faster than the original algorithm USPM, which proves the overall effectiveness of our

pruning techniques.

(5) Comparing the performance of USPM-C, USPM-CH and USPM-CHG, we can

see that the effect of gap-pruning is more significant than that of other two pruning

techniques. And gap-pruning becomes even more effective when T and L are larger.

43

Figure 2.10 compares the running time of BF, USPM, USPM-C, USPM-CH and

USPM-CHG with different parameters in the uncertain dataset T10L2I10C10. We

set the default values as τs = 0.2%, τp = 0.7, gl = 1, and gh = 10. In Figure 2.9(a),

τs decreases from 0.5% to 0.1%; in Figure 2.9(b), τp varies from 0.5 to 0.8; gh varies

from 4 to 10 in Figure 2.9(c); and gl varies from 1 to 10 in Figure 2.9(d). And we

observe the following phenomena in Figure 2.10:

(1) The running time of all five algorithms increases with the decrement of τs.

The smaller τs is, the more p-FSPare found. This explains why all the algorithms

take more time when τs is set to a smaller value.

(2) The performance of all the algorithms is relatively stable despite the variation

of τp. According to the Hoeffding’s inequality, the support of a sequential pattern is

bounded to its expected value as P (|S−E(S)| > t) < δ, where S = sup(s). Therefore,

the frequentness of a pattern is deterministic if its expected support is much smaller

or larger than τs. As the supports of patterns are evenly distributed in the datasets,

only a small number of patterns change from being not-frequent to being frequent

when we lower the value of tp.That is the reason why the running time of uncertain

SPM algorithms does not fluctuate significantly in Figure 2.9(b).

(3) The running time of all the algorithms decreases when we decrease gh or

increase gl. Meanwhile, gap pruning becomes more effective when gh becomes smaller

or gl becomes larger . This is because a smaller gap (gh − gl) indicates a more strict

constraint to sequential patterns.

2.6.2 Approximation Evaluation

In our model, we use a discrete pmf to approximate any arbitrary shaped pdf

of temporal uncertainty. In this section, we evaluate the effectiveness of this ap-

proximation. Let T ∼ U(t−, t+) be an uncertain timestamp modeled by a uniform

distribution. To generate a pmf to approximate T , we divide [t−, t+] into k equal-

width sub-partitions, and then T can be approximated by {T |t1 : p1, . . . , tk : pk}. Let

44

Table 2.1.
Precisions and recalls of approximation

τs(%)
USPM-k2 USPM-k4 USPM-k8

P R P R P R

0.1 0.81 0.74 0.94 0.92 1.00 0.97

0.3 0.88 0.81 0.94 0.95 0.99 0.99

0.5 0.92 0.94 0.98 0.99 1 0.98

0.7 1 0.99 1 0.99 1 0.99

[a, b] be the ith sub-partition, then we have ti = (a + b)/2 and pi = (b− a)/(tr − tl).

Here k is a parameter to control the approximate level.

In the uncertain dataset T10L4I10C100, we vary the value of τs to test the effec-

tiveness of approximation techniques. Table 2.1 shows the Precision(P) and Recall(R)

of approximate USPM algorithms, where USPM-kn represents the approximate al-

gorithm with k = n. The pmf approximation performs well, as we can see that both

the Precision and Recall of USPM-kn are close to 1 when k = 8. Note that when

τs = 0.7%, there are only 1-length p-FSPs mined in all algorithms. Therefore, the

value of k does not affect the outputs and that is why all uspm-kn have the same

performance in this case.

Figure 2.10 compares the running time of our approximate USPM algorithms

with different values of k. In Figure 2.10(a), we set τs = 0.5% and then compare

the efficiency of uspm, uspm-k2, uspm-k4 and uspm-k8 under different C scales; in

Figure 2.10(b), we set C = 100 000 and vary τs from 0.1% to 0.7%. The trade off

between accuracy and efficiency is that a larger value of k makes the approximation

more accurate, while the time cost increases significantly at the same time.

45

0
50

10
0

15
0

20
0

25
0

30
0

τs = 0.005

C × 1000

ru
nn

in
g

tim
e

(s
)

1 10 20 50 100

USPM
USPM−k2
USPM−k4
USPM−k8

(a) vary C

0
50

0
10

00
15

00

C = 1e+05

τs × 0.001

ru
nn

in
g

tim
e

(s
)

7 5 3 1

USPM
USPM−k2
USPM−k4
USPM−k8

(b) vary τs

Figure 2.10. Compare the running time of approximate USPM algorithms

2.6.3 Mining Sequential Patterns in Stock Datasets

We also apply our USPM algorithm to a real world stock market dataset. The

prices for 1025 stocks during 01-01-2008 to 03-20-2015 in Shanghai Stock Exchange

Center are extracted from Yahoo! Finance.

We define two types of events here. If the highest price of a stock A grows more

than 8% above its opening price in one day, we denote this event as 1A; if the lowest

price of A drops more than 8%, we denote this event as 0A, where 1 and 0 are two

flags to indicate the increase or decrease of prices.

However, as the original dataset records the daily lowest and highest prices without

their exact timestamps, the precise occurrence time of an event is unknown and

is modeled by a uniformly distributed random variable in the indicated day. For

example, if we observe the event 1A in 01-01-2009, then the event time of 1A is

assumed to be uniformly distributed in the trading time period of this day.

We group the data by weeks. All events within one week forms a sequence, and

this generates 373 uncertain sequences in total. We set τs = 2%, τp = 0.5, gl = 1

46

10 20 30

5

10

15

20

25

Antecedent (LHS)

C
on

se
qu

en
t (

R
H

S
)

0.6

0.7

0.8

0.9

1

probability

(a) matrix with 58 p-FSPs

0600090

0600093

0600249

0600277

0600283

0600365

0600378
0600532

0600617

0600667

1600109

1600111

1600348

1600359

1600371

1600506

1600620

1600640

1601699

1600549

1600540

1600846

1600158
1600408

(b) samples of 20 p-FSPs

Figure 2.11. Mined p-FSPs in the stock dataset

(hour) and gh = 48 (hour). The uspm algorithm costs about 28 seconds to find 1490

p-FSPs, which consists of 1432 frequent items and 58 two-length p-FSPs.

Figure 2.11(a) shows the frequentness probability distribution of two-length p-

FSPs using a matrix. A two-length sequential pattern can be represented by {A} =>

47

{B}, where {A} is an itemset in antecedent (LHS) and {B} is an itemset in consequent

(RHS). Each unit in Figure 2.11(a) represents a p-FSP, and the darkness of the unit

is determined by the frequentness probability of the pattern. We can see that there

is one item in RHS which connects to many item in LHS and most of p-FSPs have

moderate frequentness probability between 0.7 and 0.9.

Figure 2.11(b) uses a graph to show the connections between stocks by a sample

of 20 p-FSPs. Each connection is a p-FSP and is associated with a node. The size of

the node is larger and its color becomes darker if the frequentness probability of the

pattern is higher. This graph helps to reveal and understand the relations between

stocks.

We observe that the USPM algorithm finds some patterns which are consistent

with our knowledge. E.g., 〈(1600348)(1601699)〉 is such a pattern, where 600348 and

601699 are the stock code of two coal mining companies in the same province. How-

ever, some hidden patterns are also found. For example, a p-FSP 〈(0600365)(1600506)〉
indicates that when the price of 600365, a wine-making company decreases, it is often

followed by the price increase of 600506, which is a farming company.

2.7 Conclusion

In this chapter, we develop a sequential pattern mining algorithm in temporal

uncertain databases. Uncertain timestamps in our model are represented by either

partition-based uniform distribution functions or discrete probability mass functions.

In order to mine accurate results, we design a recursive approach to efficiently compute

temporal uncertainty and integrate it with the classic pattern-growth SPM algorithm

for mining uncertain databases. The experimental results on both synthetic and real

datasets prove that our algorithm is efficient and scalable.

48

3 SEQUENTIAL PATTERN MINING IN DATABASES WITH EXISTENTIAL

UNCERTAINTY

3.1 Introduction

Sequential pattern mining (SPM) is an important data mining that provides inter-

transactional analysis for timestamped data in sequence databases. In real applica-

tions, uncertainty is almost everywhere and it may cause probabilistic event existence

in sequence databases, as shown in the following example.

Example 3.1 In an employee tracking RFID network, the tag read by sensors are

modeled by a relation see(t, aId, tId), which denotes that the RFID tag tId is detected

by an antenna aId at time t. Since an RFID sensor can only identify a tag with a

certain probability within its working range, the PEEX system [47] outputs an un-

certain event such as meet(100, Alice, Bob, 0.4), which indicates that the event that

Alice and Bob meet at time 100 happens with probability 0.4.

Possible world semantics is widely used to interpret uncertain databases [15, 29];

however, it also brings efficiency and scalability challenges to uncertain SPM prob-

lems. Meanwhile, applications in the areas of biology, Internet and business informat-

ics encounter limitations due to large scale datasets. While MapReduce is a widely

used programming framework for processing big data in parallel, its basic framework

can not directly be used in SPM because it does not support the iterative computing

model which is required by most SPM algorithms.

In this chapter, we propose a sequential pattern mining algorithm in iterative

MapReduce for large scale uncertain databases. And the main contributions are

summarized as follows:

(1) We use possible world semantics to interpret uncertain sequence databases and

analyze the naturally correlated possible worlds.

49

(2) We design a vertical format of uncertain sequence databases in which we save and

reuse intermediate computational results to significantly reduces the time complexity.

(3) We design an iterative MapReduce framework to execute our uncertain algorithm

in parallel.

(4) Extensive experiments are conducted in both synthetic and real uncertain datasets,

which prove the efficiency and scalability of our algorithm.

3.2 Related Works

A lot of traditional database and data mining techniques have been extended to be

applied to uncertain data [43]. Muzammal and Raman propose the SPM algorithm in

probabilistic database using expected support to measure pattern frequentness, which

has weakness in mining high quality sequential patterns [17, 48]. Zhao et al. define

probabilistic frequent sequential patterns using possible world semantics and propose

their complimentary uncertain SPM algorithm UPrefixSpan [15,16]; however, it uses

the depth-first strategy to search frequent patterns and cannot be directly extended

to MapReduce framework. A dynamic programming approach of mining probabilis-

tic spatial-temporal frequent sequential patterns is introduced in [40]; Wan et al. [39]

propose a dynamic programming algorithm of mining frequent serial episodes within

an uncertain sequence. However, dynamic programming also cannot be directly ex-

tended to MapReduce.

Jeong et al. propose a MapReduce framework for mining sequential patterns

in DNA sequences with only four distinct items [49], in contrast to this paper where

unlimited number of items are allowed; Chen et al. extend the classic SPAM algorithm

to its MapReduce version SPAMC [50]. However, SPAMC relies on a global bitmap

and it is still not scalable enough for mining extremely large databases. Miliaraki et

al. propose a gap-constraint frequent sequence mining algorithm in MapReduce [51].

However, all these algorithms are applied in the context of deterministic data, while

our work aims to solve large scale uncertain SPM problems.

50

Figure 3.1. An example of
uncertain database

Figure 3.2. Possible worlds table

3.3 Problem Definition

3.3.1 Data Model of Existential Uncertainty

An uncertain database contains a collection of uncertain sequences. An uncertain

sequence is an ordered list of uncertain events. An uncertain event is represented by

e = 〈sid, eid, I, pe〉. Here sid is the sequence id and eid is the event id. 〈sid, eid〉
identifies a unique event. I is an itemset that describes event e, and pe is the existential

probability of event e. Figure 3.1 shows an example of an uncertain sequence database.

Here, for instance, the uncertain event e11 = 〈1, 1, {AB}, 0.8〉 indicates that the

itemset {AB} occurs in e11 with probability 0.8.

We use possible world semantics to interpret uncertain sequence databases. A

possible world is instantiated by generating every event according to its existential

probability. The number of possible worlds grows exponentially to the number of

sequences and events. It is widely assumed that uncertain sequences in the sequence

database are mutually independent, which is known as the tuple-level independence

[28,43] in probabilistic databases. Events are also assumed to be independent of each

other [15,29], which can be justified by the assumption that events are often observed

independently in real world applications. Therefore, we can compute the existential

probability of a possible world w in Equation (3.1).

51

Pe(w) =
∏

∀di∈w
{

∏
∀eij∈di

P (eij) ∗
∏

eij /∈di
(1− P (eij))} (3.1)

where di ∈ w is a sequence in w and eij ∈ di is an event in di. Here eij is instantiated

from the original database and P (eij) is its existential probability. Figure 3.2 is a

table which contains four possible worlds of the uncertain sequence database in Figure

3.1. Then, for example, we can compute the existential probability of possible world

w1 by P (w1) = (0.8 ∗ 0.2) ∗ (1 ∗ 0.8 ∗ 0.4) = 0.0512.

3.3.2 Uncertain SPM Problem

A sequential pattern α = 〈X1 · · ·Xn〉 is supported by a sequence β = 〈Y1 · · ·Ym〉,
denoted by α � β, if and only if there exists integers 1 ≤ k1 < · · · < kn ≤ m so that

Xi.I ⊆ Yki .I, ∀i ∈ [1, n]. In deterministic databases, a sequential pattern s is frequent

if and only if it satisfies sup(s) ≥ τs, where sup(s) is the total number of sequences

that support s and τs is the user-defined minimal threshold. In an uncertain database

D, the frequentness of s is probabilistic and it can be computed by Equation (3.2).

P (sup(s) ≥ τs) =
∑

∀w,sup(s|w)≥τs

P (w) (3.2)

Where w is a possible world in which s is frequent and P (w) is the existential prob-

ability of w. The uncertain sequential pattern mining problem is defined as follows:

Given a sequence database D with existential uncertainty, a minimal support threshold

τs and a minimal frequentness probability threshold τp, find every probabilistic frequent

sequential pattern s in D which has P (sup(s) ≥ τs) ≥ τp.

52

3.4 Uncertain Sequential Pattern Mining with Iterative MapReduce

3.4.1 Approximation of Frequentness Probability

Suppose D = {d1, . . . , dn} is an uncertain database and s is a sequential pattern.

Because d1, . . . , dn in D are mutually independent, the probabilistic support of s in

D, denoted by sup(s), can be computed by Equation (3.3).

sup(s) =
n∑

i=1

sup(s|di) (3.3)

Where sup(s|di) (i = 1, . . . , n) are Bernoulli random variables, whose success

probabilities are P (sup(s|di) = 1) = P (s � di). And we will discuss the computation

of P (s � di) in section 3.4.2.

We find that sup(s) is a Poisson-Binomial random variable, because it is the sum

of n independent but non-identical Bernoulli random variables. And sup(s) can be

modeled by its probability mass function (pmf), denoted by sup(s) = {sup(s)|0 :

p0, 1 : p1, . . . , n : pn}. Here n = |D| is the number of sequences in D.

According to central limit theorem, sup(s) converges to the Gaussian distribution

when n goes to infinity. Therefore, in the large scale database D, we can approximate

the distribution of sup(s) by Equation (4.1).

sup(s) =
n∑

i=1

Xi −→ N(
n∑

i=1

pi,
n∑

i=1

pi ∗ (1− pi)) (3.4)

Here we approximate sup(s) by the Gaussian distribution N (μ, σ2), and then the

approximated frequentness probability P (sup(s) ≥ τs) can be computed in linear

time.

3.4.2 Support Probability

The support probability P (s � d) is the probability that a sequential pattern s is

supported by an uncertain sequence d and it can be computed in (3.5) according to

possible world semantics.

53

P (s � d) =
∑

∀w,s�w

P (w) (3.5)

Where w is a possible world of d which supports s and p(w) is its existential

probability. However, suppose each item in a k-length pattern s has m multiple

occurrences in d in average, there are O(km) possible worlds that may support s

in the worst case. And directly enumerating all of them is usually too complex in

practice.

Therefore, we design an incremental approach to compute support probability

efficiently. Let l be the last item of sequential pattern s. In uncertain sequence d,

suppose there are q possible occurrences of l in events ek1 , . . . , ekq , then all the possible

worlds that may support s can be divided into q disjoint subsets (g1, . . . , gq) by the

most recent occurrence of item l.

Let P (gi) be the probability that the latest occurrence of item l (the last item of

s) is in eki , then it can be computed by Equation (3.6).

P (gi) = P (l ∈ eki) ∗
q∏

t=i+1

P (l /∈ ekt) (3.6)

The amortized cost of Equation (3.6) is O(1), when events are pre-sorted by their

eids. And the support probability P (s � d) can be computed in (3.7).

P (s � d) =

q∑
i=1

P (s � d|gi) ∗ P (gi) = P (s � d ∩ gi) (3.7)

For example, given d = 〈(B : 0.5)(C1 : 0.4)(C2 : 0.4)〉 and s = 〈BC〉, according
to possible world semantics, there are three possible worlds of d that may support s:

w1 = {BC1}, w2 = {BC2} and w3 = {BC1C2}, and we divide them into two disjoint

groups by the latest occurrence of item C in the possible worlds as g1 = {w1} and

g2 = {w2, w3}. We first compute P (g1) = 0.4 ∗ 0.6 = 0.24 and P (g2) = 0.4, then we

have P (s � d) = 0.5 ∗ 0.24 + 0.5 ∗ 0.4 = 0.22.

54

Suppose l is the last item of s, then s′ = s − {l} is a (k − 1)-length sequential

pattern. P (s � d|gi) in (3.7) can be computed by (3.8).

P (s � d|gi) =
p∑

j=1

P (s′ � d|gj) ∗ P (gj|gi) =
p∑

j=1

P (s′ � d ∩ gj) ∗ δ(gi, gj) (3.8)

Where gj (∀j ∈ [1, p]) are p disjoint subsets of possible worlds in which the latest

occurrence of the last item of s′ in the event ekj . And δ(gj, gi) = 1, if the last item of

s′ occurs before the last item of s; otherwise, δ(gj, gi) = 0.

By substituting (3.8) into (3.7), we can compute the support probability in (3.9).

P (s � d) =

q∑
i=1

p∑
j=1

P (s′ � d ∩ gj) ∗ P (gi) ∗ δ(gi, gj) (3.9)

Therefore, if we save and reuse the values of P (s′ � d∩gj), we can avoid repeated

computation which reduces the time complexity of support probability computation

from exponential to O(p ∗ q).

3.4.3 Vertical Data Structure

We develop a vertical data format Dk to save occurrences of k-length candidate

patterns. The schema of Dk is 〈sid, c, tid, Pc, Pi〉, where sid identifies an uncertain

sequence d, c is a candidate pattern and 〈tid, Pc, Pi〉 records an occurrence of c in

d. Suppose i is the last item of c and e is the event identified by (sid, tid), then

we have Pc = P (c � d ∩ gi), where gi is a subset of possible worlds in which the

latest occurrence of item i locates in event e. And Pi = P (i ∈ e) is the existential

probability of i in e.

We transform the original sequence database into its vertical format which is a set

of candidate occurrences. Figure 4.4 shows an example of constructing the vertical

data format Dk. Here D is the original database, and D1 is transformed from D.

For example, let s = 〈A〉, then we have two groups g1 and g2 of occurrences of s in

sequence d1. We compute Pc1(s) = 1 ∗ P (g1) = 0.3 ∗ 0.5 = 0.15 and Pc2(s) = 0.5

and save the results in D1. Thereafter, we can compute the support probabilities

55

D D1 D2

Figure 3.3. An example of constructing the vertical data structure

P (s � d1) = 0.65 and P (s � d2) = 0.4 from D1, which are used to calculate the

frequentness probability. In this example, if we set minsup = 1 and minprob = 0.5,

then 〈A〉 and 〈B〉 are two frequent patterns. 2-length candidates are generated by

self-joining 1-length frequent patterns, and their occurrences are saved in D2. For

example, let s′ = 〈AB〉, then P (s′ � d1) = 0.65 ∗ 0.4 = 0.26. Since there are two

occurrences of item B in d2, we first compute P (g1) = 0.8∗0.3 = 0.24 and P (g2) = 0.7,

then we have Pc1(s
′) = 0.4 ∗ 0.24 = 0.096 and Pc2(s

′) = 0.4 ∗ 0.7 = 0.28. Thereafter,

the support probability P (s′ � d2) = 0.376.

In our approach, we only refer to Dk in searching k-length frequent patterns.

And Dk is usually in a much smaller size than the original database because it only

contains occurrences of potential frequent candidate patterns.

3.4.4 Uncertain SPM in Iterative MapReduce

Our iterative MapReduce framework helps to traverse a huge sequence tree [36]

in searching frequent patterns in parallel. In each iteration, we start a MapReduce

job to search k-length frequent patterns on a cluster of computers.

Figure 4.2 shows our iterative MapReduce framework for uncertain SPM. In the

first iteration, the original database is split and input to mappers; in the kth (k > 1)

iteration, the input data of a mapper is a chunk of Dk−1. We modify the data split

56

Write to DFS

Iterative

Iterative

Write to DFS

Figure 3.4. Iterative MapReduce framework for uncertain sequential pattern mining

function in MapReduce to make sure that all occurrences in one sequence are input

to the same map function. A set of k-length candidate patterns are distributed to

mappers, which is denote by Ck.

(1) Mapper function: The mapper function is shown in Algorithm 3.1. It first con-

structs dk from dk−1 and Ck, where dk−1 ∈ Dk−1 contains occurrences of (k−1)-length

frequent patterns in one uncertain sequence. Given a candidate pattern c, the map-

per computes the support probability p = P (c � dk) using the newly updated data

structure and outputs a key-value pair 〈c, 〈μ, σ2〉〉 if p = P (c � d) > 0. Here μ = p

and σ2 = p ∗ (1 − p) are the mean and variance of the Bernoulli random variable

sup(c|dk). Thereafter, dk is written to distributed file system (DFS) to be used in the

next iteration.

(2) Combiner function: We design a combiner function in Algorithm 3.2 to help im-

prove the performance. Suppose a mapper function emits n key-value pairs 〈c, 〈μi, σ
2
i 〉〉

(i = 1, . . . , n) which are associated with the identical pattern c. As the value filed of

the mapper output is associative and commutative, they can be condensed to a sin-

57

Algorithm 3.1: Map(Key key, Value value, Context context)

dk−1 ← pase(value) /* dk−1 ∈ Dk−1 parsed from value */

Ck ← DistributedCache.file

dk ← construct from Ck and dk−1

foreach c ∈ Ck do

p ← P (c � dk) /* computed by summing Pc(c) in dk */

key ← c;

value ← 〈p, p ∗ (1− p)〉 /* composited value */

context.collect(key, value)

end

DFS.file f = new DFSFile(“Dk”);

f .append(d);

Algorithm 3.2: Combine(Key key, Iterable values, Context context)

μ ← 0, σ2 ← 0

foreach value ∈ values do
μ = μ+ value.μ

σ2 = σ2 + value.σ2

end

context.collect(key, 〈μ, σ2〉)

gle pair 〈c, 〈∑n
1 ui,

∑n
1 σ

2
i 〉〉. Then each mapper sends only one key-value pair to the

reducer for each candidate pattern, which dramatically reduce the total bandwidth

cost of data shuffling.

(3) Reducer function: Algorithm 3.3 shows the reducer function. The input key-

value pair of the reducer is in the form of 〈c, 〈μi, σ
2
i 〉〉, where μi =

∑
p and σ2

i =∑
p ∗ (1− p) are the partially aggregated mean and variance of the probabilistic

support of candidate c. The reducer function accumulates the overall mean and

variance of c in the entire uncertain database and uses the Gaussian distribution

58

Algorithm 3.3: Reduce(Key key, Iterable values, Context context)

c ← key

μ ← 0, σ2 ← 0

foreach value ∈ values do
μ = μ+ value.μ

σ2 = σ2 + value.σ2

end

sup(c) ∼ N(μ, σ2)

τs ← context.minsup, τp ← context.minprob

if P (sup(c) ≥ τs) ≥ τp then

DFS.file f = new DFSFile(“frequent pattern”);

f .append(c);

end

to approximate the distribution of overall support sup(c). Given minsup = τs and

minprob = τp, the reducer outputs the probabilistic frequent sequential patterns to

the file, if P (sup(c) ≥ τs) ≥ τp; otherwise, c is not probabilistic frequent and is

discarded by the reducer.

A MapReduce iteration is finished after all k-length probabilistic frequent sequen-

tial patterns are discovered and written to DFS files. After that, we self-join k-length

frequent patterns to generate (k+1)-length candidate patterns for the next iteration.

This process continues until all frequent patterns are discovered.

3.5 Evaluation

In this section, we implement our uncertain SPM algorithm in iterative MapRe-

duce, denoted by IMRSPM, and evaluate its performance using both synthetic and

real world datasets in a 10-node Hadoop cluster.

A näıve method directly enumerates possible worlds table without reusing previous

computational results. We implement this näıve approach in Iterative MapReduce as

59

baseline, which is denoted by BL here. We also compare our algorithm with the single-

machine uncertain sequential pattern mining algorithm, denoted by UPrefix [15, 16],

to show the benefit from parallel computing.

3.5.1 Synthetic Dataset Generation

The IBM market-basket data generator [46] uses the following parameters to gen-

erate sequence datasets in various scales: (1) C : number of customers; (2) T : average

number of transactions per sequence; (3) L: average number of items per transaction

per sequence; (4) I : number of different items.

We assume that an event existential probability follows normal distribution t ∼
N(μ, σ2), where μ is randomly drawn from range [0.7, 0.9] and σ is randomly drawn

from range [1/21, 1/12]. Then we draw a value from t and assign it to an event in the

original synthetic datasets as its existential probability. This approach has been used

in previous work [11] to generate synthetic uncertain datasets. We name a synthetic

uncertain dataset by its parameters. For example, a dataset T4L10I10C10 indicates

T = 4, L = 10, I = 10 ∗ 1000 and C = 10 ∗ 1000.

3.5.2 Scalability

In Figure 3.5, we evaluate the scalability of IMRSPM on synthetic datasets gener-

ated by different parameters. Here we set minsup = 0.2% and minprob = 0.7. Figure

6.2(a) shows the running time variations of IMRSPM when C varies from 10 000 to

10 000 000, where T = 4, L = 4, I = 10 000. Figure 6.2(b) shows the running time

variations of IMRSPM when T varies from 5 to 25, where C = 100 000, L = 4,

I = 10 000. Figure 6.2(c) shows the running time variations of IMRSPM when L

varies from 2 to 32, where C = 100 000, T = 4, I = 10 000. Figure 6.2(l) shows

the running time variations of IMRSPM when I varies from 2 000 to 32 000, where

C = 100 000, T = 4, L = 4.

60

10 100 1000 5000 10000

0.5

1

1.5

2

x 10
4

C (K)

ru
nn

in
g

tim
e(

s)

IMRSPM
BL
UPrefix

(a) scale of C

5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

T

ru
nn

in
g

tim
e(

s)

IMRSPM
BL
UPrefix

(b) scale of T

2 4 8 16 32
0

1000

2000

3000

4000

5000

6000

7000

8000

L

ru
nn

in
g

tim
e(

s)

IMRSPM
BL
UPrefix

(c) scale of L

2 4 8 16 32

1000

2000

3000

4000

5000

I (K)

ru
nn

in
g

tim
e(

s)

IMRSPM
BL
UPrefix

(d) scale of I

Figure 3.5. Scalability of IMRSPM-A algorithm

In Figure 3.5, we observe the following phenomenons:

(1) IMRSPM outperforms BL under every setting of the parameters, which proves the

effectiveness of our incremental temporal uncertainty management approach; mean-

while, IMRSPM is much more scalable than UPrefix, which demonstrates the advan-

tage of using iterative MapReduce framework.

(2) The running time increase with the increment of C, T , L, as increasing these pa-

rameters generates larger scale datasets. Furthermore, when T or L are set to larger

values, there are more repeated items in uncertain sequences. And our incremental

uncertainty management approach shows its effectiveness in improving the efficiency

especially in such cases.

61

(3) The running time slightly drops with the increment of I. When the value of I

grows, the number of repeated item in one sequence become less because items are

randomly selected from a fixed set of items.

3.5.3 Mining Customer Behavior Patterns from Amazon Reviews

We apply our IMRSPM algorithm in Amazon review dataset [52] to discover

customer behavior patterns. The Amazon review dataset includes 34 686 770 reviews

of 2 441 053 products from 6 643 669 customers between June 1995 to March 2013.

Each review is scored by an integer between 1 to 5, which indicates a user opinion

toward a product. However, this score is a lose measurement of subjective satisfaction.

Suppose a customer gives a score t to a product, then we believe that the probability

that this customer likes this product is p = t/5. An ordered list of user reviews is

regarded as an uncertain sequence. A probabilistic frequent sequential pattern 〈A,B〉
mined from this database can be explained as: if a customer likes product A, then it

is very likely that he/she will like product B in the future.

For example, given minsup = 0.005% and minprob = 0.7, we have discovered the

sequential pattern 〈B000TZ19TC → B000GL8UMI〉. Here B000TZ19TC is the Ama-

zon Standard Identification Number (ASIN) of the book Fahrenheit 451 published

in 1953. And this pattern reveals that users who now like product B000TZ19TC

may also like B000GL8UMI in the future, which is a newer edition of the same book

published in 1963. Meanwhile, we also discover other non-trivial patterns such as

〈B000MZWXNA → B000PBZH6Q〉, where B000MZWXNA is associated with the

book The Martian Way and ASIN B000PBZH6Q identifies the book Foundation.

Figure 3.6 and Figure 3.7 show the effect of user-defined parameters minsup and

minprob in Amazon dataset. We initially set minprob = 0.7 and minsup = 0.04%.

In Figure 3.6(a) and 3.7(a), we vary the value of minsup from 0.02% to 0.04%; while

minprob is varied from 0.5 to 0.8 in Figure 3.6(b) and 3.7(b). From Figure 3.6 and

Figure 3.7 , we observe that:

62

1 2 4 8
0

1000

2000

3000

4000

5000

minsup(*0.01%)

tim
e(

s)

shuffle
compute

(a) vary minsup

5 6 7 8

1000

2000

3000

4000

5000

6000

minprob(*0.1)

tim
e(

s)

shuffle
compute

(b) vary minprob

Figure 3.6. Effect of user-define parameters in efficiency

1 2 4 8
0

1

2

3

4

5
x 10

5

minsup(*0.01%)

of

 p
at

te
rn

s

(a) vary minsup

5 6 7 8

0.5

1

1.5

2

2.5

3x 10
5

minprob(*0.1)

of

 p
at

te
rn

s

(b) vary minprob

Figure 3.7. Effect of user-define parameters in number of patterns

(1) In Figure 3.6(a), the running time of IMRSPM decreases with the increment of

minsup; meanwhile, the effect of minsup to the computing time is more significantly

than that to the shuffling time. The reason is that fewer frequent patterns are mined

when minsup is larger, which can be proved by Figure 3.7(a).

(2) The performance remains relatively stable to the variation of minprob. The prob-

abilistic support of a sequential pattern is bounded to its expected value (Chernoff

63

bound). Thus, the frequentness of a large number of candidate patterns becomes

deterministic, and this explains why the running time and the number of frequent

patterns do not significantly fluctuate in Figure 3.6(b) and 3.7(b).

3.6 Conclusions

In this chapter, we develop a scalable sequential pattern mining algorithm with

iterative MapReduce in sequence databases with existential uncertainty. We adopt

possible worlds to interpret the uncertain database and design an incremental ap-

proach to track patterns’ frequentness probabilities. We extend the Apriori-like SPM

framework to MapReduce, and then integrate our uncertainty management technique

into the distributed platform and optimize the serialization cost by a new data struc-

ture. The experimental results on synthetic datasets demostrates that our approach

is efficient and scalable. And we also apply our method to discover customer behavior

patterns in Amazon review dataset, which contains millions of uncertain sequences.

64

4 DISTRIBUTED UNCERTAIN SEQUENTIAL PATTERN MINING

4.1 Introduction

Sequential pattern mining (SPM) is one of the most important applications in data

mining. It is widely used to analyze customer behaviors in market-basket databases.

For example, online shopping websites usually collect customer purchasing records in

databases where sequential patterns are mined to reveal buying habits of consumers.

However, in many real applications, events occurring in a sequence may be uncertain

for many reasons. For instance, data collected by sensors are inherently noisy; in

privacy protection applications, artificial noises are added deliberately; data modeling

techniques such as classification may also produce indeterministic results.

Example 4.1 Consider an online travel website. To increase sales, a large group

of customers are analyzed in order to discover sequential patterns of user-interested

products. These patterns are useful in intelligent marketing. For example, by provid-

ing a special hotel offer to a customer who books a late-night flight, the website is able

to encourage hotel purchases.

Figure 4.1(a) records user preferences to various travel products. For example, in

the session B, the customer is at first surely attracted by a rental car and then shows

interests in a hotel with a probability of 0.7. Here user preferrences are estimated

by posterior probabilities of Näıve Bayesian models which takes implicit feedback

(e.g. views, clicks, purchases, likes, shares etc.) into consideration. The website uses

a database that represents each visiting session as a single sequence, also shown in

Figure 4.1(b).

65

(a) uncertain sequence database (b) Possible worlds of SA

Figure 4.1. An example of uncertain sequence databases

4.1.1 Problem Statement

The uncertain model applied here is based on existential uncertain events, which

is also called sequence-level uncertainty in [15].

Definition 4.1.1 An uncertain event is an event e whose presence in a sequence d

is defined by an existential probability P (e ∈ d) ∈ (0, 1].

Definition 4.1.2 An uncertain sequence d is an ordered list of uncertain events. An

uncertain sequence database is a collection of uncertain sequences.

Definition 4.1.3 A sequential pattern s = 〈s1, . . . , sn〉 is an ordered list of itemsets

where the itemset si ∈ s is also called an element of s.

In traditional certain databases, a sequential pattern s = 〈s1, . . . , sn〉 is supported
by a sequence d = 〈e1, · · · , em〉, denoted by s � d, if there exists n integers 1 ≤ k1 <

. . . , kn ≤ m that have si ⊆ eki for i ∈ [1, n]. A sequential pattern is frequent if at

least τs sequences support it, where τs is a user-specified threshold. However, in an

uncertain database D, the support of a pattern s, denoted by sup(s), is uncertain.

We define probabilistic frequent sequential patterns (p-FSP) as follows:

Definition 4.1.4 (Probabilistic Frequent Sequential Pattern) A sequential pat-

tern s is a probabilistic frequent sequential pattern (p-FSP) if its probability of being

frequent is at least τp, denoted by P (sup(s) ≥ τs) ≥ τp.

66

Here τp is the user-defined minimum confidence in the frequentness of a sequential

pattern. We are now able to specify the uncertain SPM problem as: Given τs, τp,

find all p-FSPs in D.

In an uncertain database, sequences are often assumed to be mutually indepen-

dent, which is also known as the tuple-level independence [28, 43]. Therefore, the

overall support sup(s) in D is a sum of uncertain supports in every single sequence.

And the probabilistic support of s in an uncertain sequence di can be modeled by a

Bernoulli random variable Xi ∼ B(1, pi), where pi = P (s � di) is the probability that

di supports s.

When the size of D grows, we approximate the distribution of sup(s) by the

Gaussian distribution in Equation (4.1), according to the central limit theory.

sup(s)
|D|→∞−−−−→ N (|D|∑

i=1

μi,

|D|∑
i=1

σ2
i

)
(4.1)

Where μi = pi and σ2
i = pi ∗ (1− pi) are the mean and variance of Xi ∼ B(1, pi). We

are now able to compute the approximate frequentness probability of s by:

P (sup(s) ≥ τs) = 1− P
(
sup(s) ≤ τs − 1

)
= 1− Φ(

τs − 1− μ

σ
) (4.2)

With this approximation, s is a p-FSP if P (sup(s) ≥ τs) ≥ τp.

Now the key issue of uncertain SPM is the computation of support probabilities.

In this chapter, we focus on the problem of calculating support probabilities in large

scale databases and extracting all p-FSPs. Meanwhile, in order to mine highly scalable

databases, we extend the Apriori-like framework of uncertain SPM to the distributed

computing platform Spark [53], which allows us to load a large amount of data into

a cluster’s memory and query it repeatedly.

4.1.2 Contribution

In this chapter, we propose a Distributed Sequential Pattern (DSP) mining algo-

rithm in large scale uncertain databases. Our main contributions are summarized:

67

(1) We propose a SPM framework for mining large scale uncertain databases in Spark.

(2) We develop a distributed dynamic programming method to compute support prob-

abilities with linear time and space complexity.

(3) We design a new data structure by extending the prefix-tree to save intermediate

results space efficiently.

(4) Extensive experiments conducted in various scales shows that our algorithm is

orders of magnitude faster than both direct extension and existing works.

4.2 Related Works

Uncertain data mining has been an active area of research recently. Many tra-

ditional database and data mining techniques have been extended to be applied to

uncertain databases [43]. Muzammal et al. propose a solution of SPM in probabilis-

tic database [17] using the expected support to measure pattern frequentness. Zhao

et al. define probabilistic frequentness of sequential patterns under possible world

model and propose a pattern-growth uncertain SPM algorithm [15]. These two in-

terestingness criteria is studied in [54] from a complexity-theoretic perspective. In

order to improve the efficiency, approximation techniques are also explored to mine

large scale uncertain databases [16]. Li et al introduce a dynamic programming ap-

proach to mine sequential patterns in a specific spatial-temporal uncertain model [40].

Wan et al. [39] propose a dynamic programming algorithm of mining frequent serial

episodes within one uncertain sequence. However, all the above mentioned methods

can only be executed in a single machine and may have scalability issues in mining

large databases.

Chen et al. extend the classic SPAM algorithm to its MapReduce version SPAMC

[50]. Huang et al. propose a distributed progressive SPM algorithm in [55]. Miliaraki

et al. propose a gap-constraint frequent sequence mining algorithm in MapReduce

[51]. The classic SPM algorithm PrefixSpan [35] is extended to its Spark version [56].

However, these algorithms are applied in the context of deterministic data, while our

68

work aims to solve large scale uncertain SPM problems. An iterative MapReduce

implementation of uncertain SPM in [57] is relatively close to our work; however, it

has a quadratic complexity of support probability computation, and the time cost of

that in our algorithm is linear.

4.3 Uncertain SPM Framework in Spark

First of all, we define the following two types of sequential pattern extension.

Definition 4.3.1 (Item-extended Pattern) An item-extended pattern s is a se-

quential pattern generated by adding a new item i to the first element of another

sequential pattern s′, denoted by s = {i} ∪ s′.

Definition 4.3.2 (Sequence-extended Pattern) A sequence-extended pattern s

is a sequential pattern generated by adding a new itemset {i} to another sequential

pattern s′ as its first element, denoted by s = {i}+ s′.

For example, let s′ = 〈(b)(d)〉, then s1 = 〈(a, b)(d)〉 is an item-extended pattern of s′

and s2 = 〈(a)(b)(d)〉 is sequence-extended froms′.

Considering the Apriori property of p-FSPs in Lemma 4.1 [15, 16], we can prune

a pattern if it is extended from a pattern which is not a p-FSP.

Lemma 4.1 If s is extended from s′ and s is a p-FSP, then s′ is also a p-FSP.

Figure 4.2 shows the Apriori-like uncertain SPM framework in distributed comput-

ing platform Spark. An uncertain sequence database D = {d1, . . . , dn} is abstracted

by an RDD [53] in Spark. Uncertain sequences in the RDD are allocated to a cluster

of machines and can be processed in parallel.

Map. Amap function is used to compute support probabilities. A set of candidate

patterns are broadcasted to all the mappers. For each candidate pattern c, the map

function first computes the support probability pi = P (c � di) in the uncertain

sequence di, then it emits a key-value pair as 〈c, (μi, σ
2
i)〉, if pi > 0. The key field

69

sequence

sequence

sequence

RDD

…

Un
ce

rta
in

Se
qu

en
ce

Da

ta
ba

se

〈
c1, (μ, σ

2)
〉

〈
c1, (μ, σ

2)
〉

(k+1)-length
candidates

MAP

MAP

MAP

… 〈
c2, (μ, σ

2)
〉

〈
c1, (

∑
μ,

∑
σ2)

〉

〈
c2, (

∑
μ,

∑
σ2)

〉

shuffle REDUCE

REDUCE k-
le

ng
th

 p
-F

SP
s

self-joinbroadcast

Figure 4.2. A framework of uncertain SPM in Spark

here is the pattern c; the composite value field contains both mean μi and variance σ2
i

of the Bernoulli distributed probabilistic support Xi ∼ B(1, pi) of c in this sequence.

The key-value pairs are designed to be associative and commutative so that mappers

can aggregate them in local machines before shuffling to reducers, which saves a lot

of network bandwidth usage.

Reduce. Pairs with the same key are shuffled to one reducer. In a reduce function,

it computes the approximate frequentness probability for each candidate by Equation

(4.2). All candidates with P (sup(c) ≥ τs) ≥ τp are saved to a set of k-length p-FSPs,

denoted by Sk.

Self-join. we self-join all k-length p-FSPs in Sk to generate a set of (k+1)-length

candidate patterns in Ck+1. Let s1 and s2 be two p-FSPs in Sk. Suppose s′1 is the

pattern generated by removing the first item i in s1 and s′2 is the pattern generated

by removing the last item of s2. If s′1 = s′2, we join s1 and s2, denoted by s1 �� s2,

to generate a (k+1)-length candidate c according to the following rules: If s1 is

sequence-extended, c = {i}+ s2; if s1 is item-extended, c = {i}∪ s2. For example, let

s1 = 〈(a)(bc)〉, s2 = 〈(bc)(d)〉 and s3 = 〈(c)(de))〉, then s1 �� s2 = 〈(a)(bc)(d)〉; while
s2 �� s3 = 〈(bc)(de)〉.

Stop criterion. If either Sk or Ck+1 is empty, we terminate the mining process;

otherwise, Ck+1 is broadcasted to all map functions for the next iteration.

70

4.4 A Distributed Dynamic Programming Approach

4.4.1 Dynamic Programming in Support Probability Computation

We adopt a DP method to compute support probabilities. The key is to consider

it in terms of sub-problems. Here we first define Pi,j in Definition 4.4.1.

Definition 4.4.1 Pi,j = P (sni � dmj) is the probability that sni is supported by dmj ,

where sni = 〈si, . . . , sn〉 is a subsequence of a sequential pattern s and dmj = 〈ej, . . . , em〉
is a subsequence of an uncertain sequence d.

Therefore, P (s � d) = P1,1. The idea here is to split the problem of computing

Pi,j into sub-problems Pi,j+1 and Pi+1,j+1. And this can be achieved as follows: in

condition of si ⊆ ej, Pi,j is equal to the probability that sni+1 is supported by dmj+1;

if si ⊆ ej, Pi,j is equal to the probability that sni is supported by dmj+1. By splitting

the problem in this way we can use the recursion in Lemma 4.2 to compute Pi,j by

means of the paradigm of dynamic programming.

Lemma 4.2

Pi,j = P (si ⊆ ej) ∗ Pi+1,j+1 + P (si ⊆ ej) ∗ Pi,j+1 (4.3)

where P (si ⊆ ej) is the probability that si is contained in event ej. And P (si ⊆ ej) =

P (ej ∈ d), if si ⊆ ej; otherwise, P (si ⊆ ej) = 0.

Proof Referring to the law of total probability, we have:

Pi,j =P (sni � dmj |si ⊆ ej) ∗ P (si ⊆ ej) + P (sni � dmj |si ⊆ ej) ∗ P (si ⊆ ej)

where P (sni � dmj |si ⊆ ej) = Pi+1,j+1 is the probability that s′ = 〈si+1, . . . , sn〉 is

supported by sequence 〈ej+1, . . . , em〉. And similarly we have P (sni � dmj |si ⊆ ej) =

Pi,j+1 is the support probability of sni in dmj+1.

This dynamic schema is an adoption of the technique previously used in solving

uncertain SPM [17] and frequent episode mining problems [39]. Using this dynamic

71

P1,1 P1,2 P1,3 P1,5P1,4 0 0

1 1 1 11 1 1

P2,20 P2,3 P2,5P2,4 P2,6 0

s1

s2

ø
e1 e2 e3 e4 e5 e6 ø

X

Y

Figure 4.3. An example of dynamic programming process

programming scheme, we can compute the support probability by calculating the cells

depicted in Figure 4.3. In the matrix, each cell relates to a probability Pi,j, with i

marked on the x-axis and j marked on the y-axis. Referring to Lemma 4.2, we can

compute Pi,j from Pi,j+1 and Pi+1,j+1 which are cells to the right and lower right of

Pi,j. By definition, if s = φ, then P (s � d) = 1; meanwhile, P (s � d) = 0 if s = φ

and d = φ. Therefore, we iterate the cells from Pn+1,m+1 to P1,1 so that we finally

obtain P (s � d) = P1,1. The time complexity is O(n ∗m), as we only need to iterate

each cell once.

4.4.2 Distribute Dynamic Programming Schema

A straight forward extension of the dynamic programming approach in Spark

needs to build a n ∗ m matrix for every support probability computation, and this

might dramatically slow down the entire process because of expensive garbage col-

lection overhead in Spark. Here we refine the original DP schema to make it more

memory-efficient. First of all, we define Ps,j as follows.

Definition 4.4.2 Given a sequential pattern s and an uncertain sequence d, Ps,j

is defined to be the support probability P (s � dmj) where dmj = 〈ej, . . . , em〉 is a

subsequence of d = 〈e1, . . . , em〉.

72

The idea is that, in order to mine k-length p-FSPs, we save and reuse compu-

tational results in the (k-1)th iteration. Based on the extension type of sequential

pattern s, we have different dynamic programming schemas.

Sequence-extended. If s = {i}+ s′ is sequence-extended from another pattern

s′, then we can compute the values of Ps,j from Ps′,j+1 and P (s1 ⊆ ej) by Equation

(4.4), according to Lemma 4.2.

Ps,j = P (s1 ⊆ ej) ∗ Ps,j+1 + P (s1 ⊆ ej) ∗ Ps′,j+1 (4.4)

where s1 = {i} is the first element of s.

Item-extended. Let s = {i} ∪ s′, then s′1 is a strict subset of s1 and we have

P (s1 ⊆ ej) =

⎧⎪⎨
⎪⎩
P (s′1 ⊆ ej) if i ∈ ej

0 otherwise

(4.5)

Referring to Lemma (4.2), we can compute Ps,j by Equation (4.6).

Ps,j =

⎧⎪⎨
⎪⎩
Ps,j+1, if i ∈ ej

P (s1 ⊆ ej) ∗ Ps,j+1 + P (s′1 ⊆ ej) ∗ P (sn2 � dmj) otherwise

(4.6)

Note that sn2 = s′n2 = 〈s2, . . . , sn〉, then Ps′,j can be computed by:

Ps′,j = P (s′1 ⊆ ej) ∗ Ps′,j+1 + P (s′1 ⊆ ej) ∗ P (s′n2 � dmj)

= P (s′1 ⊆ ej) ∗ Ps′,j+1 + P (s′1 ⊆ ej) ∗ P (sn2 � dmj)
(4.7)

Therefore, we derive Equation (4.8) by substituting Equation (4.7) into Equation

(4.6).

Ps,j =

⎧⎪⎨
⎪⎩
Ps,j+1 if i ∈ ej

P (s1 ⊆ ej) ∗ (Ps,j+1 − Ps′,j+1) + Ps′,j otherwise

(4.8)

Now we are able to compute Ps,j from only the values of Ps′,j, Ps′,j+1 and P (s1 ⊆ ej).

Equation (4.4) and (4.8) constitute our distributed dynamic programming struc-

ture for computing support probabilities in parallel. And the time complexity is O(m)

where m = |d| is the number of events in d.

73

Algorithm 4.1: compute support probability from intermediate results

Input: L1: a list of n non-zero P (s′′1 ⊆ ei) values ordered by eid i

L2: a list of m non-zero Ps′,j values ordered by eid j

Ls ← φ, p ← (n− 1), q ← (m− 1)

Ps′,j+1 ← 0

while p ≥ 0 do

P (s1 ⊆ ei) = P (s′′ ⊆ ei) ← L1[p] // at event ei

Ps′,j ← L2[q] // at event ej

while j < i ∧ q ≥ 0 do

/* find the nearest event ej with non-zero value Ps′,j */

Ps′,i+1 = Ps′,j ← L2[q]

q ← q − 1

end

q ← q + 1

if L2[q − 1] = Ps′,i then Ps′,i ← L2[q − 1]

else Ps′,i ← L2[q]

compute Ps,i by Equation (4.4) or (4.8) and insert it to the head of Ls

p ← p− 1

end

return Ls

4.4.3 Memory-Efficient Distributed SPM Algorithm

Lemma 4.3 It is not necessary to save the value of Ps,j, if P (s1 ⊆ ej) = 0.

Proof Referring to Equation (4.4) and (4.8), if P (s1 ⊆ ej) = 0, then Ps,j = Ps,k

where ek is the nearest event of ej which has k > j and P (s1 ⊆ ek) > 0.

Let s be a k-length sequential pattern generated by joining two (k-1)-length pat-

terns as s = s′′ �� s′. Then, the first element of s and s′′ are identical when k ≥ 2.

74

For example, let s = 〈(a)(bc)(d)〉 and s = s′′ �� s′, then s′′ = 〈(a)(bc)〉, s′ = 〈(bc)(d)〉,
and we have s1 = s′′1 = (a).

Suppose L1 is a list of non-zero P (s′′1 ⊆ ei) values and L2 is a list of Ps′,j values with

P (s′1 ⊆ ej) > 0. Algorithm 9 computes the values of Ps,i from L1 and L2. For each

value of P (s′′1 ⊆ ei) > 0, we have P (s ⊆ ei) = P (s′′1 ⊆ ei) at event ei because s1 = s′′1.

Then we search the nearest event ek, which satisfies Ps′,k > 0 and k > i, to the right

of ei. Thus, we have Ps′,i+1 = Ps′,k, by Lemma 4.3. If P (s′ ⊆ ei) > 0, the value of

Ps′,i must have been saved and we can directly read it from L2; if P (s′ ⊆ ei) > 0,

Ps′,i = Ps′,i+1. Now that we have the values of P (s ⊆ ei), Ps′,i+1 and Ps′,i, we can

compute Ps,i by either Equation (4.4) or (4.8). Thereafter, the support probability is

P (s � d) = Ls[0]. The time complexity of Algorithm 9 is linear because both L1 and

L2 are iterated only once.

We extend the data structure prefix-tree to save intermediate results such as L1

and L2 in each iteration of uncertain SPM. The root of the prefix tree is the empty

pattern φ. Each edge in the tree is associated with an item. The key of a node is

identified by the path from root to that node. Values are not associated with inner

nodes; only leaf nodes point to a list of Ps,j values. Each value of Ps,j is linked to the

event ej where P (s1 ⊆ ej) > 0. Here s1 is the first element of s.

In the prefix-tree, all the descendants of a node share a common prefix of the

pattern associated with that node. Thus, it is more space-efficient, comparing to

save sequential patterns individually. Figure 4.4 shows an example of computing

and updating support probabilities by this new data structure. In Figure 4.4(a),

the leaf nodes are 1-length sequential patterns linked to the events in an uncertain

sequence. For example, the node containing pattern s = 〈B〉 is associated with two

values (Ps,2 = 0.96, Ps,3 = 0.9) which point to uncertain events e2 and e3. The

support probability of 〈B〉 is P (s � d) = Ps,2 because e2 is the first event where

P (s1 ⊆ e2) > 0. The time cost of searching a k-length pattern in the prefix-tree is

O(k), and k is usually small.

75

A

2 3eid 1
B BI A
0.6 0.9Pe 0.8

4
C
1.0

B

AB AC BC

A

2 3eid 1
B BI A
0.6 0.9Pe 0.8

4
C
1.0

CB D

5
D
0.2

(a) 1-length (b) 2-length

A B

B C C

A B C D

0.8 0.96 0.9 1.0 0.2

0.768 0.8 0.96 0.9Ps,j

A

AB

A

B

ABC

C

eid 1
I A
Pe 0.8

0.768

(c) 3-length

Ps,j

Ps,j

C D

Figure 4.4. Computing support probabilities in the prefix-tree

Another benefit of our algorithm is that we are no longer generating candidates

in a centralized node; instead, we can broadcast p-FSPs to all mappers and generate

candidates in parallel. In a map function applied to sequence d, if a p-FSP s is not

supported, any extension of s is impossible to be supported by d. In order to generate

(k+1)-length candidates that are potentially supported by d, we only need to join k-

length p-FSPs that are supported and saved in the prefix-tree of d. In Figure 4.4(b),

suppose S1 is a set of 1-length p-FSPs and 〈D〉 ∈ S1, then we can prune node D from

the prefix tree and generate 2-length candidates from three 1-length p-FSPs: 〈A〉,
〈B〉 and 〈C〉 for this sequence.

In building the 2-length prefix-tree of Figure 4.4(b), we take the candidate pattern

s = 〈(A)(B)〉 as an example. We first search leaf nodes associated with s′′ = 〈A〉 and
s′ = 〈B〉 in the 1-length pattern tree. Then we retrieve P (s′′1 ⊆ e1) = 0.8, Ps′,2 = 0.96

and Ps′,3 = 0.9 and compute Ps,1 = 0.8 ∗ 0.96 = 0.768 by Equation (4.4). Thereafter,

we generate a new leaf node 〈AB〉 for the 2-length prefix tree.

After expanding the tree for every possible 2-length candidate, we eliminate all

1-length patterns that have not been extended. For instance, node with 〈C〉 is prune

76

because no 2-length candidate starting with item C are potentially supported in the

sequence.

The 2-length prefix tree is saved to build 3-length prefix-tree in Figure 4.4(c). And

this process continues until no new candidates are generated.

4.5 Evaluation

We implement our algorithms in Spark and evaluate the performance in large scale

datasets. The uncertain SPM algorithm which directly adopts dynamic programming

in section 4.4.1 is denote by basic. We denote our distributed uncertain SPM algo-

rithm in section 4.4.3 by dsp. We also implement the IMRSPM algorithm [57] in

Spark and name it as uspm here.

We employ the IBM market-basket data generator [46] to generate sequence

datasets in different scales by varying the parameters:

(1) C : number of sequences;

(2) T : average number of events per sequence;

(3) L: average number of items per event per sequence;

(4) I : number of different items.

An existential probability α is added to each event in the synthetic datasets,

where α ∈ [0.5, 0.9] is a parameter to control uncertain levels. We name a synthetic

uncertain dataset by its parameters. For example, a dataset C10kT4L10I10k indicates

C = 10k = 10 ∗ 1000, T = 4, L = 10 and I = 10k = 10 ∗ 1000.

4.5.1 Scalability

In this section, we evaluate the scalability of our DSP algorithm on various syn-

thetic datasets in a Spark cluster with 100 nodes. Initially, we set uncertain level

α = 0.8 and frequentness probability threshold τp = 0.7. In Figure 4.5(a) to 4.5(d),

we set τs = 2%∗C; in Figure 4.6(a) to 4.6(d), we have τs = 1%∗C; and τs = 0.5%∗C
in Figure 4.7(a) to 4.7(d). Under each setting of τs, we vary the values of C, T ,L

77

0
10

00
20

00
30

00
40

00

T10L3I10k

C

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

dsp
uspm
basic

(a) C, τs = 2%

0
10

00
20

00
30

00
40

00

C100kL3I10k

T

ru
nn

in
g

tim
e

(s
)

10 20 30 40 50 60

dsp
uspm

(b) T , τs = 2%

0
50

0
10

00
15

00
20

00

C100kT10I10k

L

ru
nn

in
g

tim
e

(s
)

2 4 6 8 10 12

dsp
uspm

(c) L, τs = 2%

0
50

10
0

15
0

20
0 C100T10kL3

I

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

dsp
uspm

(d) I, τs = 2%

Figure 4.5. Scalability of DSP with τs = 2%

and I to evaluate the performance of DSP in different scales: (1) Figure 4.5(a),

4.6(a) and 4.7(a) show the running time variations of DSP when C varies from 1000

to 100 000 000, where T = 10, L = 3 and I = 10k. (2) Figure 4.5(b), 4.6(b) and

4.7(b) show the running time variations of DSP when T varies from 10 to 60, where

C = 100k, L = 4, I = 10k. (3) Figure 4.5(c), 4.6(c) and 4.7(c) show the running time

variations when L varies from 2 to 12, where C = 100k, T = 4, I = 10k. (4) Figure

4.5(d), 4.6(d) and 4.7(d) show the running time variations when I varies from 10 000

to 10 000 000, where C = 100k, T = 4, L = 4.

78

0
10

00
20

00
30

00
40

00

T10L3I10k

C

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

dsp
uspm
basic

(a) C, τs = 1%

0
10

00
20

00
30

00
40

00

C100kL3I10k

T

ru
nn

in
g

tim
e

(s
)

10 20 30 40 50 60

dsp
uspm

(b) T , τs = 1%

0
50

0
10

00
15

00
20

00

C100kT10I10k

L

ru
nn

in
g

tim
e

(s
)

2 4 6 8 10 12

dsp
uspm

(c) L, τs = 1%

0
50

10
0

15
0

20
0 C100T10kL3

I

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

(d) I, τs = 1%

Figure 4.6. Scalability of DSP with τs = 1%

And we observe the following phenomenons from Figure 4.5, 4.6 and 4.7.

(1) dsp outperforms basic and uspm under every setting of the parameters. Specif-

ically, dsp is orders of magnitude faster than either basic or uspm in datasets with

larger values of T or L. When C > 10k, basic cannot finish because of the garbage

collection overhead from Spark. This indicates that directly extending dynamic pro-

gramming to Spark is not workable and also proves the advantage of our refined

schemas.

(2) The running time increase with the increment of C, T , L. This is intuitive be-

79

0
10

00
20

00
30

00
40

00

T10L3I10k

C

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

dsp
uspm
basic

(a) C, τs = 0.5%

0
10

00
20

00
30

00
40

00

C100kL3I10k

T

ru
nn

in
g

tim
e

(s
)

10 20 30 40 50 60

dsp
uspm

(b) T , τs = 0.5%

0
50

0
10

00
15

00
20

00

C100kT10I10k

L

ru
nn

in
g

tim
e

(s
)

2 4 6 8 10 12

dsp
uspm

(c) L, τs = 0.5%

0
50

10
0

15
0

20
0 C100T10kL3

I

ru
nn

in
g

tim
e

(s
)

103 104 105 106 107 108

dsp
uspm

(d) I, τs = 0.5%

Figure 4.7. Scalability of DSP with τs = 0.5%

cause increasing these parameters generates larger scale datasets. Comparing to the

C scale, both dsp and uspm are more sensitive to the increment of T and L. uspm

fails quickly when T or L becomes larger; however, dsp still performs well even with

large T or L values.

(3) The running time first drops and then arises with the increment of I. When

the value of I grows, the item occurrences become more sparse, and fewer p-FSPs

are mined under the same thresholds; meanwhile, the volume of data shuffled from

mapper to reducer via network increases because less key-value pairs are able to be

80

0.
1%

0.
2%

0.
5% 1% 2%

C100kT10L3I10k

of

 p
at

te
rn

s
0

50
00

10
00

0
15

00
0

20
00

0
25

00
0 1−length

2−length
3−length
4−length
>=5−length

(a) vary τs

0.
5

0.
6

0.
7

0.
8

0.
9

C100kT10L3I10k

of

 p
at

te
rn

s
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0 1−length
2−length
3−length
4−length
>=5−length

(b) vary α

Figure 4.8. Number of p-FSPs with different τs and α settings

pre-aggregated locally, which slows down the process when I is extremely large.

(4) The running time increases with the decrement of τs in the same dataset. This is

reasonable because more p-FSPs are found when τs is set to a smaller value.

Figure 4.8(a) shows the number of p-FSPs in the dataset C100kT10L3I10k with

uncertain level α = 0.8, where we vary the value of τs from 0.1% to 2%; Figure 4.8(b)

shows the effect of uncertain level α to the number of p-FSPs in C100kT10L3I10k,

where τs = 0.1% and α ∈ [0.5, 0.9]. In Figure 4.8, we observe:

(1) With the increment of τs, the number of p-FSPs decreases dramatically. This is

because a larger minimal support threshold makes fewer candidates be probabilisti-

cally frequent and is consistent to the phenomenon that the running time decreases

with the increment of τs.

(2) With the increment of α, the number of p-FSPs increases, which shows the effect

of data uncertainty in SPM problems. When uncertain level is high (α is small),

there are fewer precise information in the data, which makes it more difficult to find

p-FSPs under the same thresholds.

81

4.6 Conclusions

In case that no gap constraints are specified, we can further speed up the process

of mining sequence databases with existential uncertainty. In this chapter, we design

a dynamic programming approach to compute support probability in linear time and

extend it to distributed computing platform Spark. In order to minimize the mem-

ory cost, we optimize the original schema of the dynamic programming method and

design a new data structure to save intermediate results efficiently. The extensive ex-

periments proves that our algorithm is efficient and highly scalable for large uncertain

databases.

82

5 UNCERTAIN NEURAL NETWORK CLASSIFIER

5.1 Introduction

Classification is one of the most important applications in data mining and ma-

chine learning. Classification is the process of building a model that can describe

and predict the class label of data based on feature vector [58]. And a classifier can

be seen as a function that maps the features vector into class labels. Classification

problem has been well studied in the recent decade; however, the new challenge in

classifying uncertain data makes it to the front of research again.

In real world applications as sensor networks, the underlying data is not always

accurate and precise. For example, the output of a humidity monitoring sensor may

vary in a relative large range at the same position and the same time, because of

its precision limitation or other reasons as random noises. In practice, this type of

uncertainty are usually assumed to be Gaussian distributed. And one trivial approach

of handling such uncertain data is to use the mean of the data samples to approximate

the true data value. However, this simple method can only remove the influence of

symmetric white noise, but cannot even save the tail behavior of the data uncertainty.

A more sophisticated approach is to use a pair of parameters, mean and standard

deviation, to model the Gaussian distributed data uncertainty. Table 5.1 shows an

example of such an uncertain dataset.Here, the uncertain attribute value is assumed

to be in Gaussian, whose mean is μ, and standard derivative is σ. And in this chapter,

we design a neural network classifier based upon this specific type of uncertain data.

An artificial neural network (ANN), usually called Neural Network (NN), is a

mathematical model that consist of an interconnected group of artificial neurons,

and it processes information using a connection approach to computation. Modern

neural networks are widely used to model complex relationships between inputs X

83

Table 5.1.
An example of uncertain dataset

ID Class Label
Uncertain Attribute

(μ, σ)

1 Y (105,5)

2 N (110,10)

3 N (70,10)

4 Y (120,18)

and outputs Y , as a function f : X → Y . However, in conventional neural networks,

the inputs X are scalar values, and we extend it to handle Gaussian distributed

uncertain data in next sections.

5.2 Uncertain Perceptron

Let us start from Perceptron, which is a simple type of artificial neural network.

Perceptron is a classic model which constructs a linear classifier as shown in equation

(5.1).

y = F (
n∑

i=1

xi ∗ ωi + θ) (5.1)

F (s) =

⎧⎪⎨
⎪⎩
1, s≥0

0, s<0

(5.2)

where, x = (x1, ..., xn) is the input vector, ω = (ω1, ..., ωn) is the weight vector,

F is the activation function, and y is the predicted class label by the perceptron.

Now we revise the function of conventional perceptron and design a new uncertain

perceptron classifier for uncertain datasets. Here, for the simple of illustration, we

take a 2-dimensional uncertain dataset as an example. Assume the uncertain dataset

84

Figure 5.1. Geometric representation of uncertain perceptron

UD has two attributes X = (X1, X2), and one class label Y . Each attribute is

represented by the probability distribution function (pdf) of a Gaussian distribution

as Xi ∼ N(μi, σi), and the class label Y is selected from the set {+1,−1}. Figure 5.1
is a geometric representation of a linear classification for a 2-dimensional uncertain

dataset. In this figure, every data instance is represented by an area instead of a point,

because the value of each attribute is probabilistic, and we only have the knowledge

about its distribution over this area. The straight line L in the figure represents the

classification boundary, which corresponds to equation (5.3):

2∑
i=1

ωixi + θ = 0 (5.3)

We define a parameter t as:

t =
2∑

i=1

ωixi + θ (5.4)

85

We assume that uncertain attributes X1, X2 follows the Gaussian distribution as

Xi = N(μi, σi), independently. Then, t follows a distribution as:

f(t) ∼ N(
2∑

i=1

ωiμi + θ,
2∑

i=1

ω2
i σ

2
i) (5.5)

From equation (5.5), we are able to track the propagation of data uncertainty

and represent the linearly aggregated results by its pdf in this case. In conventional

perceptron model, the value of t indicates the class label of the input data instance,

referring to the the activation function in equation (5.2). However, in its uncertain

version, the value of t is probabilistic, and its pdf is shown in equation (5.5). There-

fore, we cannot assign a label to an instance based on the value of t any more, but

instead, we define a new activation function as in equation (5.6).

F (s) =

⎧⎪⎨
⎪⎩
+1, s≥ 0.5

−1, s < 0.5

(5.6)

where, s = P (t > 0). If P (t > 0) = 1, t is definitely larger than 0, which means

this instance is in class +1, and locates above the classification boundary L definitely,

like Point P in figure 5.1. Similarly, if P (t ≥ 0) = 0, it means the instance is in class

-1, and it locates below L as Point R. If P (t ≥ 0) ∈ (0, 1), it means that this

instance is possible to be in either class, and we assign its label by the class with

larger possibility. In the binary classification problem, an instance is more likely to

be in one class if and only if its probability of being in that class is larger than 0.5.

Thus, we use the threshold 0.5 in our new activation function.

Figure 5.2 shows the structure of uncertain perceptron. Here, the input (μi, σi) is

the mean and standard deviation of ith Gaussian distributed uncertain attribute. The

weighted sum t of these Gaussian distributed inputs is in the Gaussian distribution

as t ∼ N(μt, σt), and thus, we can compute the value of s as s = P (t > 0).

86

Figure 5.2. Structure of uncertain perceptron

5.3 Uncertain Multilayer Perceptron Neural Network

An uncertain multilayer perceptron neural network (UNN) is designed by adding a

hidden layer of uncertain neurons between input and output layers. Figure 5.3 shows

the layer structure of an example of uncertain neural networks. Here, the inputs

are the Gaussian distributed uncertain attributes Xi, represented by their mean and

standard deviation (μi, σi). In the hidden layer, its transfer function is defined as

FH = p(T > 0), where T =
∑

ωi ∗Xi+θ, and T ∼ N(
∑2

i=1 ωi ∗ μi + θ,
∑n

i=1 ω
2
i ∗ σ2

i).

The output layer neurons uses Sigmoid function as the activation function FO, and

then the outputs are limited in the range [0, 1], to model the membership in each

class.

A straight-forward way to process the uncertain information is to use its mean

value to represent the uncertain data points. Then, uncertain data have the same

form as certain data, and traditional neural network can be trained as a classifier.

We call this approach AVGNN (for averaging). This approach does not fully utilize

uncertain information and may result in loss of accuracy in some cases. In figure

5.4, we use an example to show the principle of potential improvement in classifying

accuracy of our UNN algorithm to this näıve AVGNN algorithm. Figure 5.4 shows

an example of classifying an 2-d uncertain data set by our uncertain neural network

classifier. Here, line L1 and line L2 reflect the training results in hidden layer of the

87

Input FH FO

(μ1, σ1)

(μ2, σ2)

y1

y2

Figure 5.3. Multilayer neural network structure

Figure 5.4. An example to show the improvement of classification accuracy

uncertain neural network. Suppose P is a test data point, and then we predicts the

label of P by our classifier. Because the expectation of the possible positions for P

locates in area II, it will be assigned to class II by AVG algorithm. However, if

we take a look at the detail distribution of P in figure 5.4, we can see that P has

a larger probability to be in area I than that in area II, and it is more reasonable

that we assign it to class I. And in such a case, our algorithm UNN will classify test

data point P to class I correctly, because it computes the probability of P belonging

to both class I and class II by its probability distribution and then assign it to the

class with larger probability. Therefore, UNN outperforms the näıve algorithm AVG

in classification accuracy.

88

We adopt a Levenberg-Marquardt back propagation algorithm to train this super-

vised feed-forward neural network. It requires that all the activation functions have

derivatives. Given the hidden layer activation function as in equation (5.7) , then,

its derivative is computed in equation (5.8). And equation (5.8) can be computed by

substituting two equations in (5.9) and (5.10).

F (μ, σ) = P (T > 0) =

∫ ∞

0

1√
2πσ

exp(−(t− μ)2

2σ2
)dt (5.7)

dF

dωi

=
∂F

∂μ
∗ dμ

dωi

+
∂F

∂σ
∗ dσ

dωi

(5.8)

∂μt

∂ωi

= μi

∂σ2
t

∂ωi

= 2σ2
i μi

(5.9)

dF

d(μ, σ2)
= (

∂F

∂μ
,
∂F

∂σ2
) = (

1√
2π

e−
μ2

2σ ,− μ

2
√
2πσ3

e−
μ2

2σ) (5.10)

After we get the derivatives of these activation functions, we now can train the

network by traditional gradient decent approach as Levenberg-Marquardt back prop-

agation algorithm.

The activation function in the hidden layer of our uncertain neural network has

its output between 0 and 1. When two different instances that are absolutely in the

same class, both of their output of the activation function is 1. And the contribution

of these two points in training the classifier are the same, no matter the difference

of their positions to the decision boundary. This may cause the network training

process be time consuming in some datasets. Therefore, we modify the hidden layer

activation function to make it able to measure the distance between training points

to the decision boundaries. In our uncertain data model, the data uncertainty is

represented by Gaussian distribution, which is symmetric w.r.t. its mean. Thus, we

89

design a new hidden layer activation function in equation (5.11) to accelerate the

training process.

FH(μ, σ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ ∗ P (T > 0) , μ > 0

0 , μ = 0

μ ∗ P (T < 0) , μ < 0

(5.11)

where, T is a Gaussian distributed random variable as T N(μ, σ). This new

activation function actually contains two parts: P (T > 0)/P (T < 0) is the probability

that a data point locates in the up side or down side of the decision boundary and μ

is the expected distance of the data point to the decision boundary. Next, we show

that the new activation function Fn is differentiable. Equation (5.12) shows that Fn

is continues at 0, because

lim
μ→0+

Fn(μ, σ) = lim
μ→0−

Fn(μ, σ) = Fn(0, σ) = 0 (5.12)

And, we compute the derivative of Fn by substituting equation (5.13) to equation

(5.10).

dFn

d(μ, σ2)
= (

∂Fn

∂μ
,
∂Fn

∂σ2
) (5.13a)

∂Fn

∂μ
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η + μ√
2πσ

e−
μ2

2σ , μ > 0

1/2 , μ = 0

1− η − μ√
2πσ

e−
μ2

2σ , μ < 0

(5.13b)

∂Fn

∂σ2
= − μ2

2
√
2πσ3

e−
μ2

2σ (5.13c)

90

Japanese Vowel Iris Ionosphere Magic Telescope Glass
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

w = 0.1
w = 0.2
w = 0.5
AVG

Figure 5.5. Prediction accuracy comparison of UNN and AVG

5.4 Experimental Results

5.4.1 Experiments on Accuracy

We implement our UNN approach in Matlab 6.5. We take five real datasets from

UCI repository [59], which are Japanese Vowel, Iris, Ionosphere, Magic Telescope,

Glass. For Japanese Vowel dataset, we directly use the raw data to estimate its

Gaussian distribution; for all other datasets, we add a zero-mean Gaussian distri-

bution to the original data, whose standard deviation equals to ω · x. Here, ω is

the control parameter and x is the original data value. As a comparison of the per-

formance, we also implement the AVG classifier which take the expectations of the

uncertain attributes as the input. Table 5.2 shows the performances of both UNN

and AVG in these datasets, and figure 5.5 compares the classification accuracies be-

tween our UNN algorithm and AVG classifier. UNN outperforms AVG in almost all

the datasets. And in some dataset as Inosphere and Magic Telescope, UNN improves

the accuracy by 6% to 7%. The reason is that UNN utilizes the detail distribution

of uncertain data to estimate the membership in each class. The classification and

prediction process is more sophisticated and comprehensive than AVG, and thus has

the potential to achieve a better performance.

91

Table 5.2.

Experimental results of applying UNN and AVG classifiers to five
uncertain datasets

Dataset Uncertain Level
UNN AVG

Train Test Train Test

Japanese Vowel estimate from raw data 98.50% 94.95% 99.17% 94.31%

Iris

ω1 = 0.1 98.05% 99.93%

99.17% 98.89%ω2 = 0.2 98.33% 99.93%

ω3 = 0.5 97.78% 98.89%

Ionosphere

ω1 = 0.1 92.75% 93.71%

97.17% 87.86%ω2 = 0.2 94.50% 90.73%

ω3 = 0.5 99.13% 92.05%

Magic Telescope

ω1 = 0.1 96.93% 80.01%

99.67% 73.17%ω2 = 0.2 97.50% 76.58%

ω3 = 0.5 97.50% 80.56%

Glass

ω1 = 0.1 77.05% 65.75%

74.02% 65.22%ω2 = 0.2 76.00% 69.59%

ω3 = 0.5 79.02% 65.57%

5.4.2 Experiments on Efficiency

As discussed above, an alternative activate function is designed to improve the

efficiency of networks training process. Here we present an experiment which com-

pares the efficiency of two networks with different hidden layer activate functions.

In this experiment, we name the network using the original function (equation 5.7)

as UNN-O and the networks using the modified activate function (equation 5.11) as

UNN-M.

92

Japanese Vowel Iris Inosphere Magic Telescope Glass
10

0

10
1

10
2

10
3

10
4

tr
a
in

in
g
 t

im
e
(s

)

AVG
UNN-M
UNN-O

Figure 5.6. Compare the training time of UNN-O, UNN-M and AVG

Japanese Vowel Iris Inosphere Magic Telescope Glass
10

0

10
1

10
2

10
3

tr
ai

ni
ng

 e
po

ch
s

AVG
UNN-M
UNN-O

Figure 5.7. Compare the number of training epochs of UNN-O, UNN-M and AVG

The training times of UNN-O and UNN-M are shown in figure 5.6, and the number

of training epochs are shown in figure 5.7. UNNs generally require more training time

and epochs than AVG, because of the more complex computation in managing data

uncertainty. However, compared to UNN-O, the figures also indicate that efficiency

of UNN-M is significantly improved, which proves the effectiveness of using our new

activation function.

5.5 Conclusion

In this section, we propose an uncertain neural network (UNN) model for clas-

sifying and predicting uncertain data. We use the probability distribution function

93

to represent the uncertain data attribute in our data model, and redesign the neural

network functions so that they can directly work on Gaussian distributed numeric

uncertain attributes. Our extensive experiments proves that our UNN classifier has

higher classification accuracy than the näıve approach. Since the usage of pdf may in-

crease the computational complexity, we design a new activation function to improve

the efficiency. As one of the supervised algorithms, UNN has the great potential to

be a very powerful tool of classifying uncertain data.

94

6 A NAÏVE BAYESIAN CLASSIFIER IN CATEGORICAL UNCERTAIN

STREAMS

6.1 Introduction

Data streams are widely used to model data in a lot of applications such as sensor

networks, RFID networks, and network monitoring systems. Data uncertainty, which

makes data imprecise or misleading, originates from many sources as data collection

error, measurement precision limitations, sampling error, and transmission error. For

example, in the traffic surveillance system, because we only record the state of a

vehicle at the recording time, the exact state of the vehicle at any other time can only

be inferred from data probabilistically. When the state of the vehicle is categorical

like normal/abnormal, the uncertain state of the vehicle can be represented by a

discrete pdf as normal:0.4, abnormal:0.6. A categorical attribute is an attribute with

finite possible values, and a categorical uncertain attribute is a categorical attribute

whose value is probabilistic. Data streams with categorical uncertain attributes are

so called categorical uncertain data streams.

Data uncertainty has to be carefully managed; otherwise it would significantly

downgrade the underlying performance of various data mining applications. A typical

approach is to use the expectation of the probabilistic attribute to manage data

uncertainty [60,61]. However, the expectation is only one of the statistic observations

of uncertain data, and lots of useful information is lost if we simply use the expectation

to model uncertain data. Some other methods adopt the possible world semantic

[29, 62] to enumerate all possible databases to analyze uncertain data. Although

these methods lead to an accurate result, it is usually too complex to be used in

uncertain data stream mining, because of its exponential computational complexity.

95

We develop a new approach to manage data uncertainty to induce näıve Bayesian

classifier in categorical uncertain data streams. We believe that data in one class are

similar in some aspects, which is the reason why they are classified to the same class.

In order to analyze the relation between the uncertain features of a data instance

and its class label, we innovatively map uncertain attribute values to data points

in the Euclidean space, where the coordinates of data points are transformed from

vector-valued pdfs. Classification model is a function which maps the features into

class labels. In previous uncertain classifiers [61, 63–65], uncertain attribute values

are treated as random variables, and the classification model in uncertain data maps

possible values of the uncertain feature into class labels. However, this approach has

the exponential complexity, and various assumptions are made to make it practical.

Meanwhile, the model is obscure to be understood because of its probabilistic intrin-

sics. However, by mapping the pdfs into data points in the Euclidean space, it helps

to reveal the relationship between the space of pdfs and the space of class labels,

and also helps to understand the classification rules by a new insight of the data

uncertainty.

Data stream classification is very sensitive to both memory and computation cost,

because data are coming continuously with a fast rate. Typically, the algorithm can

only scan the data in one-pass, and this one-pass constraint dictates the choice of

data structures and algorithms that can be used in data stream classification [66].

Meanwhile, managing pdf-represented uncertain data usually requires more compu-

tational resources, comparing to that in mining certain data. These new challenges

bring the uncertain data stream mining problems up to the front recently.

In this chapter, we propose a novel algorithm to induce the näıve Bayesian classifier

in categorical uncertain data streams. Our main contributions are listed as follows.

• We model the uncertain categorical data streams by mapping the pdfs of uncer-

tain categorical attribute to data points in the Euclidean space, and estimate

the density of points by the multi-dimensional kernel density estimator.

96

• We build a distance based and a density based näıve Bayesian model to classi-

fying uncertain categorical data streams.

• We develop the new pre-binning technique to discrete the pdfs, which signifi-

cantly improves the computational and space-efficiency.

• The experimental results in real world data streams prove the effectiveness and

efficiency of our approach.

6.2 Related Works

Recently, many classical data mining algorithms are revised for uncertain data [29,

43,60,67]. Specifically, a lot of classifiers are extended to the uncertain versions such as

uncertain decision tree classifier [63], uncertain SVM classifier [65] and uncertain rule-

based classifier [62]. A näıve Bayesian classifier for uncertain data is proposed in [61],

which represents the data uncertainty by continues random variable in either sample-

based or formula-based probability distribution. It uses the expectation of the random

variables to handle data uncertainty, which has the inherent weakness. The approach

of mapping vector-valued pdf to data points in multi-dimensional Euclidean space

is previously used in indexing uncertain data [68]. In our algorithms, we adopt this

mapping to construct more sophisticated classification model to reveal relationship

between pdfs and class labels.

Many uncertain data stream mining clustering algorithms are devised in recent

years [69, 70]. And [71] introduced a new Gaussian mixture model for processing

uncertain data streams. Though data streams classification has been well studied

[66,72], the uncertain data streams bring the classification problem back to the front,

and our algorithms are propose to solve this new problem.

97

Table 6.1.
An example of a categorical uncertain data stream

Id Color Class

1 Red:0.2, Green:0.6, Blue:0.2 1

2 Red:0.6, Green:0.2, Blue:0.2 2

3 Red:0.2, Green:0.5, Blue:0.3 1

4 Red:0.5, Green:0.3, Blue:0.2 2

5 Red:0.7, Green:0.2, Blue:0.1 2

6 Red:0.3, Green:0.6, Blue:0.1 1

7 Red: 0.5, Green: 0.1,Blue: 0.4 2

8 Red: 0.5, Green: 0.2, Blue: 0.3 2

· · · · · · · · ·

6.3 Problem Statement

An categorical uncertain attribute, denoted by AU , is represented by its discrete

pdf as 〈a1 : p1, a2 : p2, , an : pn〉, where {a1, a2, · · · , an} is the set of all possible values

of attribute AU , and pi is the probability that AU = ai. Table 6.1 shows an example

of uncertain categorical data stream. Here Color is the uncertain attribute which

has three possible values as {Red,Green and Blue}. An uncertain instance is then

represented by a vector valued pdf {Red : Pr, Green : Pg, Blue : Pb}.
We map a vector valued pdf 〈a1 : p1, a2 : p2, , ad : pd〉 of an uncertain categorical

attribute AU to a point in the d-dimensional Euclidean space whose coordinate is

〈p1, p2, . . . , pd〉. Fig. 6.1 shows the data points corresponding to uncertain instances

in Table reftb:exmp. The distance between two data points measures the similarity

of their corresponding vector valued pdfs.

98

0.2
0.3

0.4
0.5

0.6
0.7

0

0.2

0.4

0.6

0.8
0.1

0.2

0.3

0.4

0.5

Figure 6.1. Mapping vector valued pdfs into Euclidean points

Mapping discrete pdfs to data points helps to manipulate categorical data un-

certainty conveniently. First, we transfer probabilistic data instances to fixed points,

which enables the directly use of traditional data mining techniques. For example, we

can adopt a multi-variable kernel density estimator to estimate the density distribu-

tion of pdfs. Second, we can directly use pdfs as the input, instead of the probabilistic

attribute values. This property helps train a classification model to reveal the rela-

tions between pdfs and class labels. Third, we are now able to obtain an intuitive

understanding of the data model in uncertain data.

We incorporate the new uncertainty management into näıve Bayesian classifica-

tion model to design a classifier for uncertain data streams. The näıve Bayesian

classification model is shown in Equation (6.1).

P (ci|X) =

∏n
j=1 P (xj|Ci)

P (X)
∗ P (Ci) (6.1)

Where, X = 〈x1, x2, · · · , xn〉 is a test instance, Ci is a class label. Here xj is

a categorical uncertain attribute. The posterior probability P (Ci|X) indicates the

membership of X in the class Ci, and X is assigned to the class with maximal mem-

bership. We usually use Equation (6.2) instead of Equation (6.1) in classification,

because P(X) is a constant.

P (Ci|X) =
n∏

j=1

P (xj|Ci) ∗ P (Ci) (6.2)

99

In traditional certain databases, the likelihood P (X|Ci) is estimated by the fre-

quency of eventX in class Ci. However, we cannot count the frequency of probabilistic

attribute values in uncertain data. Therefore, by mapping vector valued pdfs to Eu-

clidean points, we cab measure P (X|Ci) by the density at point X, and estimate it

from uncertain data instances in class Ci.

A näıve approach is to use the mean mi of all data points in Ci to represent the

overall density distribution in class Ci so that P (X|Ci) is measured by the distance

between mi and X. A more sophisticated approach is to estimate the density distri-

bution from data, and the density at X is used to measure P (X|Ci). Data stream

usually requires one-pass scan in building classification models. And it is very im-

portant to train the model with bounded memory and computation cost in uncertain

data stream classification.

6.4 Näıve Bayesian Classifiers in Uncertain Streams

In this section, we propose two approaches to induce näıve Bayesian classifier in

categorical uncertain data streams.

6.4.1 A Distance Based Approach

As attributes are assumed to be independent in näıve Bayesian model, we first

analyze the computation of posterior probability for one attribute. In uncertain case,

a straightforward extension to the traditional approach is to define a new point Pi to

represent the data distribution in the class Ci, and calculate P (X|Ci) by the distance

between X and Pi.

Suppose AU is an uncertain categorical attribute with d possible values, we de-

fine point Pi as the closest point to all the n observed points in Ci. Let Pi =

(Pi1 , Pi2 , . . . , Pid), then it minimizes the d-dimensional Euclidean distance in Equation

(6.3).

100

argmin
Pi

n∑
j=1

√
(pj1 − Pi1)

2 + · · ·+ (pjd − Pid)
2 (6.3)

Where, pj = (pj1 , pj2 , · · · , pjd) are the n data points in Ci. By solving Equation

(6.3), the coordinate of Pi is computed in Equation (6.4).

Pi =

∑n
j=1 pj

n
(6.4)

Where n is the number of instances in Ci. We can see that Pi is the mean of data

observations in Ci, the point Pi is also called the center of the class Ci. The uncertain

attribute (a1 : p1, a2 : p2, . . . , ad : pd) of the test instance t is mapped to the data

point pt = (p1, p2, . . . , pd). The distance between pt and Pi reflects the membership of

pt belonging to class Ci. Here we use dot product to measure the similarity between

two discrete pdfs [6], and then P (X|Ci) is computed by Equation (6.5).

P (X|Ci) = X · Pi (6.5)

In data stream classification, when a new element p(n+1) comes, the position of Pi

for each categorical uncertain attribute can be updated incrementally by Equation

(6.6).

P n+1
i =

∑n+1
i=1 pi

n+ 1
=

n
n+1

∗∑n
i=1 pi

n
+

p(n+1)

n+ 1

=
n

n+ 1
P n
i +

p(n+1)

n+ 1

(6.6)

We substitute Equation (6.6) into Equation (6.2) to induce our distance-based

näıve Bayesian classifier for uncertain data streams.

The distance-based approach is simple and fast. We only need to maintain a

center point for each attribute in every class, and it cost no additional memory to

handle endless incoming data streams. The trade-off of this simplicity is that we

assume the density distribution has only one mode, which locates at the center point.

However, in most cases, the density distribution is much more complex, and cannot

101

be represented by a single point. Meanwhile, the center point position is sensitive to

outliers.

6.4.2 A Density Based Approach

In this section, we introduce a density-based approach to induce näıve Bayesian

classifier in uncertain streams. In each class, we employ a multi-variable kernel density

estimator to estimate the density distribution, which is shown in Equation (8).

f̂h(x) =
1

n

1

h

n∑
i=1

K(
x1 −Xi1

h1

, . . . ,
xd −Xid

hd

) (6.7)

Where, x = (x1, x2, . . . , xd) is a data point in the d-dimensional space, Xi =

(Xi1 , Xi2 , . . . , Xid) are n training points, h = (h1, h2, . . . , hd)
T is the bandwidth matrix

and K(μ) = K(μ1, , μd) is the multidimensional kernel function. K(μ)is usually

approximated by the multiplicative kernel[14], as shown in Equation (6.8).

K(μ) =
d∏

i=1

k(μi) (6.8)

Where k is a uni-variable kernel function, and then the density at x = (x1, . . . , xd)

in Equation (6.8) can be approximated by Equation (6.9).

f̂h(x1, . . . , xd) =
1

n

n∑
i=1

d∏
j=1

k(
xj −Xij

hj

) (6.9)

Here, k is the 1-dimensional kernel function, and the bandwidth hj is estimated

from the observations in each dimension. However, the kernel density estimator in

Equation (6.9) is not efficient enough for mining data streams, because its compu-

tation and memory cost is growing with the incoming data. Therefore, we design a

pre-binning approach to improve the efficiency of kernel estimation in data streams.

As the Euclidean data points are mapped from vectored pdfs in our model, the

cooperate values of all the data points are bounded in the range of [0, 1]. Thus, it

is practical and reasonable to discrete them into equal-width bins. For example, if

102

the precision of pdf is measured in unit 0.01, then there is no information lost if we

divide the partition [0, 1] into 100 bins equally. By pre-binning the incoming pdfs,

we significantly reduce the computation and memory consumption in kernel density

estimation. Suppose the range [0, 1] in each dimension of the space is equally divided

into k bins, then the entire space is divided into kd cubes with unit size 1/k. Here,

each cube is represented by its center point. We maintain a kernel table in memory to

record historical kernel points. For example, we first discrete the probability values in

Table 6.1 into five bins, and then insert the pre-binned vectored pdfs into the kernel

table, which is shown in Table 6.2.

Here the partition [0,1] is divided into five bins: b1 = [0, 0.2], b2 = (0.2, 0.4],

b3 = (0.4, 0.6], b4 = (0.6, 0.8] and b5 = (0.8, 1.0]. The value of a bin is represented

by its center point. For example, the value of b1 is 0.1. We can see that the data

instances with Id = 7 and Id = 8 in Table 6.1 are grouped to one kernel entry in

Table 6.2, because they are identical after binning. The size of the kernel table is

constant with the number of incoming data, which is at most 53 in this example.

The kernel table is updated, when comes a new training instance. Suppose AU
t is

a pre-binned uncertain attribute belonging to class Ci, then if there exists an entry

in the kernel table which is identical with AU
t , we increase the count of that kernel

in class Ci by one; otherwise, we add a new entry of the kenerl AU
t , and initialize its

number in Ci as 1.

Now we can revise the kernel density estimator in Equation (6.10) by using the

pre-binning technique.

f̂h(x) =
1

N

S∑
i=1

ni ∗
d∏

j=1

1

hj

k(
xj − Bij

hj

) (6.10)

Where N is the number of training instances, S is the number of entries in kernel

table, and ni is the number of ith kernel in the kernel table in this class. d is the

number of possible values for the attribute, hj is the bandwidth of the jth kernel

function, and Bij is the pre-binned value of ith kernel in jth dimension.

103

Table 6.2.
An example of a kernel table

Red Green Blue Class Count (NC1 , NC2)

0.1 0.5 0.1 (1, 0)

0.5 0.1 0.1 (0, 1)

0.1 0.5 0.3 (1, 0)

0.5 0.3 0.3 (0, 1)

0.7 0.1 0.1 (0, 1)

0.3 0.5 0.1 (1, 1)

0.5 0.1 0.3 (0, 2)

0.5 0.1 0.5 (0, 1)

The bandwidth hj can also be estimated from the kernel table by the plug-in

method in Equation (6.11).

hj = 0.9 ∗ A ∗N− 1
5 (6.11)

Where we have

A = min(
IQR

1.34
, σ)

Here IQR is the inter-quartile and σ is the standard deviation in one dimension.

Suppose there are totally Nj entries in jth dimension and each bin has ni duplicated

kernels, then the mean μj and standard deviation σ can be estimated by Equation

(6.12).

104

μj =

∑Nj

i=1 ni ∗ bij∑Nj

i=1 ni

σ2 =
1∑Nj

i=1 ni − 1
∗

Nj∑
i=1

(bij − μj)
2

(6.12)

Algorithm 6.1 shows the method to estimate parameter σ in one class C from kernel

table T . We first estimate the mean μ by one scan of the entries in the kernel table,

and then use μ to compute the standard deviation σ.

Similarly, we can estimate IQR = Q3 −Q1 from the kernel table. Q3 is the 75%

percentile quartile so that 75% of the values are smaller than Q3; and Q1 is the 25%

percentile quartile. In each Euclidean dimension of an uncertain attribute, we first

select out the entries belonging to class C and sort it by the entries’ values. Then, we

can directly select the Q3 and Q by one scanning of the sorted entries. The details

of IQR estimation are shown in Algorithm 6.2.

Now we can incrementally estimate the density distribution in uncertain data

streams. When new training data come, we update the kernel table to estimate the

density and compute P (X|Ci), which is used to calculate the membership of class

Ci for any test point X. X is classified to the class with the maximal membership.

Algorithm 6.3 shows our density based algorithm to induce näıve Bayesian classifier

in categorical uncertain data streams.

6.5 Experiments

6.5.1 Setup

We use five real datasets, which are listed in Table 6.3, from UCI repository in

our experiments. For all datasets except LED, we add synthetic data uncertainty

to raw data by the approach in [8]. Suppose a categorical attribute A in original

dataset D has n possible values, then the generated uncertain attribute AU has the

discrete pdf 〈a1 : p1, a2 : p2, . . . , an : pn〉. The original attribute value ak is defined as

105

Algorithm 6.1: Estimating σ in class C from kernel table

Input: T : kernel Table, N : number of entries in T

Output: σ

μ ← 0

s ← 0

foreach kernel entry e ∈ T do

if e.Nc > 0 then

e.k = 〈e.k1, . . . , e.kd〉
μ = (μ ∗ s+ e.k ∗ e.Nc)/(s+ e.Nc)

s = s+ e.Nc

end

end

σ2 ← 0

foreach kernel entry e ∈ T do

if e.Nc > 0 then

e.k = 〈e.k1, . . . , e.kd〉
σ2 = σ2 + (e.k − μ)2

end

end

return
√

σ2/(s− 1)

the Main Value, which is associated with the probability pm. Here pm is drawn from

a normal distribution N ∼ (μ, 0.1), where μ is a parameter to control the uncertain

level and its value is selected randomly from {0.6, 0.7, 0.8}. All other possible values

of AU except the Main value ak are assigned probabilities pi so that they satisfy the

constraint
∑n

i=1 pi = 1. For missing attribute values, it is reasonable to assign an equal

probability to every possible value in its discrete pdf. Meanwhile, we construct a noisy

dataset for comparison purpose by drawing one sample from each pdf-represented

uncertain attribute value.

106

Algorithm 6.2: Estimating IQR in class C from kernel table

Input: T : kernel Table, N : number of entries in T

Output: IQR

q1 ← 0.25 ∗N
q3 ← 0.75 ∗N
foreach dimension di do

v = φ

foreach kernel entry e ∈ T do

if e.NC > 0 then

v = v ∪ 〈e.ki, e.NC〉
end

end

sort(v) by v.ki

i ← 0, count ← 0

while i < v.size do
count = count + v.NC

if count ≥ q1 then
Q1 = v.ki

end

if count ≥ q3 then
Q3 = v.ki

break;

end

i = i+ 1

end

IQRi = Q3 −Q1

end

return IQR = 〈IQR1, . . . , IQRd〉

The original dataset LED is inherently imprecise [73]. Thus, we generate the

uncertain data stream by aggregating the original data. Every 100 instances of the

107

Algorithm 6.3: The density based näıve Bayesian classifier for categorical un-

certain streams
Input: A chunk of buffered data D = D1 ∪D2

D1:training set, D2: testing set

Output: predicted labels of D2

B ← binning D1 into k bins

update Kernel table T

estimate parameters σ and IQR to select bandwidth matrix h

L ← φ

foreach instance t ∈ D2 do

foreach attribute au ∈ t, au = {a1 : p1, . . . , an : pn} do

t ← bin(p1, . . . , pn)

foreach class Ci do

estimate P (Ci|t.au) by the density P (t.au|Ci)

end

end

compute the posterior probability P (C|t) = ∏
au P (Ci|t.au)

t.C = argmaxC P (C|t)
L = L ∪ {t.C}

end

return L

original dataset are grouped as one uncertain instance. and the probabilities of the

uncertain attributes are measured by their frequencies. For example, suppose one

attribute A in class Ci has two possible values a1, a2 and there are t instances in

class Ci among all 100 instances. If the frequency of a1 in these t instances is x,

and the frequency of a2 is y, then we estimate the probability distribution of A as

{a1 : x/t, a2 : y/t}. An uncertain instance is generated by repeating this process in

all attributes.

108

Table 6.3.
Datasets used in experiments

DataSet # of instance # of categorical attribute missing values

Credit 1000 13 N/A

Chess 3196 36 N/A

Voting 435 16 Yes

Mushroom 8124 22 Yes

Led 1 000 000 7 N/A

We repeatedly load the categorical uncertain datasets to simulate the uncertain

data streams. In our experiment system, an input buffer is used to save 200 incoming

data instances. The buffered data are equally divided into four folds. one is randomly

selected for testing; while other folds are used as new training data samples.

We implement both the distance-based and the density-based classifiers in our

experiments of classifying categorical uncertain data streams. We also implement a

batch-mode classical näıve Bayesian classifier in the sampled noisy datasets, for the

purpose of comparison. For each dataset except LED, we set different uncertain levels

by varying the value of μ. In density-based approach, we select different number of

bins from {20, 50, 100} in pre-binning process. We analyze the performances of our

algorithms to verify the following advantages: (1) prediction accuracy; (2) effect of

pre-binning technique; (3) memory efficiency.

6.5.2 Results

Table 6.4 compares the averaged prediction accuracies in the five uncertain data

streams. Our density-based näıve Bayesian classifier outperforms other two methods

in most cases. The prediction accuracy is improved when we select a proper value of

109

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of samples(*1000)
P

re
di

ct
io

n
A

cc
ur

ac
y

k=20
k=50
k=100
distance

(a) chess, μ = 0.6

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(b) chess, μ = 0.7

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(c) chess,μ = 0.8

1 2 3 4 5 6 7 8 9 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(d) credit,μ = 0.6

1 2 3 4 5 6 7 8 9 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)
P

re
di

ct
io

n
A

cc
ur

ac
y

k=20
k=50
k=100
distance

(e) credit,μ = 0.7

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(f) credit,μ = 0.8

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(g) mushroom,μ = 0.6

1 2 3 4 5 6 7 8 9 10

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(h) mushroom,μ = 0.7

1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(i) mushroom,μ = 0.8

1 2 3 4 5 6 7 8 9 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(j) voting,μ = 0.6

1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(k) voting,μ = 0.7

1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

of samples(*1000)

P
re

di
ct

io
n

A
cc

ur
ac

y

k=20
k=50
k=100
distance

(l) voting,μ = 0.8

Figure 6.2. Comparing prediction accuracy under different uncertain
levels in four data streams

k, which is the number of bins in pre-binning technique. k corresponds to the round-

off error in discretization, and reflects the trade-off between efficiency and accuracy.

110

Table 6.4.
Classification accuracies in uncertain data streams

Data- μ
Density based

Distance- Traditional-

streams k = 20 k = 50 k = 100 based NB

chess

0.6 0.806± 0.017 0.845± 0.038 0.760± 0.072 0.58± 0.220 0.597

0.7 0.816± 0.006 0.868± 0.031 0.866± 0.032 0.60± 0.140 0.551

0.8 0.796± 0.044 0.787± 0.019 0.817± 0.070 0.56± 0.150 0.482

credit

0.6 0.733± 0.023 0.770± 0.032 0.746± 0.014 0.723± 0.022 0.682

0.7 0.711± 0.032 0.735± 0.015 0.738± 0.018 0.701± 0.040 0.573

0.8 0.606± 0.025∗ 0.689± 0.023 0.722± 0.025 0.660± 0.018 0.431

mushroom

0.6 0.902± 0.019 0.932± 0.020 0.969± 0.024 0.910± 0.044 0.743

0.7 0.954± 0.024 0.976± 0.011 0.984± 0.009 0.927± 0.056 0.695

0.8 0.874± 0.026∗ 0.927± 0.028 0.968± 0.014 0.926± 0.046 0.477

voting

0.6 0.914± 0.030 0.950± 0.021 0.945± 0.020 0.721± 0.014 0.773

0.7 0.959± 0.019 0.964± 0.010 0.951± 0.022 0.899± 0.010 0.682

0.8 0.964± 0.010 0.929± 0.026 0.939± 0.018 0.907± 0.043 0.429

LED - 0.956± 0.027 0.995± 0.011 0.996± 0.018 0.901± 0.051 0.601

For example, in data stream mushroom, the density-based classifier has the highest

accuracy when k = 100. The resolution is higher when k is set to a large value, which

helps distinguish clustered Euclidean points. This also explains the reason why the

density-based classifier has the slightly lower accuracy in credit and mushroom than

other two approaches, when k = 20. However, in the data stream chess, it achieves

the best performance when k = 20. The reason is that the smaller k value helps

reduce the influence of outliers.

111

The original LED dataset contains inherent error, and its optimal classification ac-

curacy is proved to be 74% [73]. However, by pre-aggregating the original LED dataset

into the categorical uncertain data stream, our density-based classifier achieves the

accuracy 95.6% ∼ 99.6%, which outperforms the traditional näıve Bayesian classifier

and the distance-based approach. This proves that our uncertain management of

mapping pdfs into Euclidean points is effective in classifying uncertain data streams.

By comparing to the performance of traditional näıve Bayesian algorithm in Table

6.4, we can see that our density-based classifier is robust to data uncertainty. The

accuracy of traditional näıve Bayesian classifier drops dramatically with the increment

of noise; while our density-based approach has relatively similar performance under

different uncertain levels.

Fig. 6.2 compares the performance between our density-based classifier and

distance-based algorithm under different uncertain levels in the four data streams.

Here each marked point is the prediction accuracy in one iteration, which processes

five frames of buffed data. We can see that the density-based approach has a more

smooth performance than the distance-based method. The first reason is that the

distance-based approach is more sensitive to the influence of outliers. Second, the

distance-based approach can only work in the single mode data streams; while the

density-based method does not have this constraint and can effectively classify data

streams in arbitrary shapes with accumulative training instances. This is also the

reason why the density based classifier usually has smaller standard deviation of its

prediction accuracy.

Fig. 6.3 shows the kernel table size in classifying data stream LED. The data

stream contains 200 000 uncertain instances in total. In Fig. 6.3, the kernel table size

quickly arrives to almost a constant in every setting of the bin number. Because of

the pre-binning technique, we consume bounded memory to build the kernel table for

the incoming data. In practice, if we set k = 100, then it only needs less than 1MB

memory to classify the uncertain stream.

112

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800

1000

1200

1400

1600

1800

2000

2200
LED

K=20
K=50
K=100

Figure 6.3. Size of kernel tables in classifying LED data stream

6.6 Conclusion

In this paper, we propose a new approach to construct näıve Bayesian classifier

for uncertain categorical data streams. We map the vectored pdfs of uncertain cate-

gorical attribute into points in the multi-dimensional Euclidean space to estimate the

distribution of pdf inputs,which is used to induce näıve Bayesian classifier. We pre-

bin the discrete pdf to guarantee the bounded computation and memory efficiency in

classifying uncertain data streams.Experiments proved the outstanding performance

of our methods. In the future, we will continue to develop data mining applications

in uncertain stream minings.

113

7 DISCRETIZATION IN UNCERTAIN DATABASES

7.1 Introduction

Data discretization is a commonly used data pre-processing technique in data

mining. Data discretization reduces the number of values for a given continues at-

tribute by dividing the range of the attribute value into several intervals. Interval

labels are then used to replace the actual data values. Replacing numerous values

of a continues attribute by a small number of interval labels thereby simplifies the

original data. This leads to a concise, easy-to-use, knowledge-level representation of

mining results. Discretization is often performed prior to the data mining process

and usually considered as the pre-processing step in data mining and knowledge dis-

covering. For example, many classification algorithms as AQ [74], CLIP [75], and

CN2 [76] are only designed for category data, and numerical data are usually first

discretized before being processed by these classification algorithms. Assume A is

one of the continues attributes of a dataset, A can be discretized into n intervals

as D = {[d0, d1), [d1, d2), ..., [dn−1, dn]}, where di is the value of the endpoints for

each interval. Then, D is called as a discretization scheme on attribute A. A good

discretization algorithm not only produces a concise view of continues attributes so

that experts and users can have a better understanding of the data, but also helps

machining learning and data mining applications to be more effective and efficient.

A number of discretization algorithms have been proposed in literature these year

[77], most of them works only on traditional certain data. However, data tends to be

uncertain in many applications [43]. Data uncertainty can downgrade the performance

of various data mining algorithms if it is not well processed. It is widely accepted

that we use a random variable with probability distribution to model data uncertainty.

114

Thus, uncertain attribute value is often represented by an interval associated with a

pdf over it [43, 67].

In this chapter, we propose a data discretization technique call Uncertain Class-

Attribute Interdependency Maximization (UCAIM) for uncertain data. It is based on

traditional CAIM discretization algorithm, and we extend it with a new mechanism

to process uncertainty. Probability distribution function is commonly used to mired

data uncertainty and pdf can be represented in a formula based or sample based

form. We adopt the concept of probability cardinality to build the quanta matrix

for uncertain data. Based on the quanta matrix, we define a new criterion value

ucaim to measure the interdependency between uncertain attributes and uncertain

class memberships. The optimal discretization scheme is determined by search the

one with the largest ucaim value.

7.2 Related Works

Discretization algorithms can be divided into top-down and bottom-up methods

according to how the algorithms generate discrete schemes [78]. Both top-down and

bottom-up discretization algorithms can be further subdivided into unsupervised and

supervised methods [79]. Equal width and equal frequency are the well-known un-

supervised top-down algorithms, while the supervised top-down algorithms include

MDLP [80], CADD(class-attribute dependent discretize algorithm) [81], information

entropy maximization [82], CAIM (class-attribute interdependent maximization al-

gorithm) [83] and FCAIM (fast class-attribute interdependent maximization algo-

rithm) [84]. Since CAIM selects the optimal discretization scheme that has the highest

interdependence between target class and discretized attributes, it is proved to be su-

perior to other top-down discretization algorithms in helping the classifiers to achieve

high classification accuracy. FCAIM extends CAIM by using a different strategy to

select fewer boundary points during the initialization, which speeds up the process of

finding the optimal discretization scheme.

115

In the bottom-up category, there are widely used algorithms such as ChiMerge [85],

Chi [86], Modified Chi2 [87] and Extended Chi2 [88]. Bottom-up method starts

with the complete list of all continues values of the attribute as cut-points, so its

computational complexity is usually higher than the top-down method. Algorithms

like ChiMerge requires users to provide some parameters such as significant level and

minimal/maximal interval numbers during the discretization process. [89] illustrates

that all these different supervised discretization algorithms can be viewed as assigning

different parameters to a unified goodness function, which can be used to evaluate

the quality of discretization algorithms. There also exist some dynamic discretization

algorithms [64] which are designed for particular machine learning algorithms such as

decision tree and näıve Bayesian classifier.

All the algorithms mentioned above are based on traditional certain datasets. To

the best of our knowledge, no discretization algorithm has been proposed for uncertain

data that are represented by pdfs. In the recent years, there have been growing

interests in uncertain data mining. And a number of classic classification algorithms

are extended to process uncertain datasets, as uncertain decision tree [63], uncertain

näıve Bayesian classifier [61] and so on. Therefore, it is extremely important that data

preprocessing techniques like discretization properly handle this kind of uncertainty

as well.

7.3 Problem Statement

In our uncertain data model, we first define the uncertain attribute, denoted as

Aun , as the probabilistic value of a numerical attribute A. In uncertain dataset D,

each tuple ti is associated with a feature vector Vi = (fi,1, fi,2, ..., fi,k) to model its

uncertain attributes. Here, fi,j is the pdf represent the uncertainty attribute Aun
i,j in

tuple ti. Meanwhile, a pdf Ci is assigned as tuple ti’s uncertain class label as class

membership.

116

Table 7.1.
An example of uncertain dataset

ID Class type Attribute 1 Attribute 2

1 T:0.3, F:0.7 (105, 5) (100:0.3, 104:0.6, 110:0.1)

2 T:0.4, F:0.6 (110, 10) (102:0.2, 109:0.8)

3 T:0.1, F:0.9 (70, 10) (66:0.4, 72:0.4, 88:0.2)

In practical applications, uncertainties are usually modeled in forms of Gaussian

distributions, and parameters such as mean μ and standard deviation σ are used to

model the Gaussian distributed uncertainty. In such a case, uncertain attribute Aun
i,j

has a formula based probability as Aun
i,j ∼ N(μ, σ). In case that the pdf of data

uncertainty has no closed form, a sample based method is used to represent the pdf

as {Aun
i,j |(x1 : p1), (x2 : p2), ..., (xn : pn)}, where X = {x1, x2, ..., xn} is the set of all

possible values of attribute Aun
i,j , and pi is the probability that Aun

i,j = xi.

Not only can the attributes be uncertain, class labels may also contain uncer-

tainty. Instead of having the accurate class label, a class membership may be a pdf

as Ci = {c|(c1 : p1), (c2, p2), ..., (cn, pn)}, where C = {c1, c2, ..., cn} is the set containing
all possible class labels, and pi is the probability that this instance ti belongs to class

ci. Table 7.1 shows an example of an uncertain dataset. Both attributes and class

labels of the dataset are uncertain. Their precise values are unavailable and we only

have knowledge about the pdf. For attribute 1, its uncertainty is represented buy

a Gaussian distribution with parameters (μ, σ). For attribute 2, it lists all possible

values with their corresponding probabilities for each instance. Note that the uncer-

tainty of class label in our model is always represented in the sample based format as

the values are discrete.

117

7.4 UCAIM Algorithm

7.4.1 Cardinality Count For Uncertain Data

According to the uncertain model, an uncertain attribute Aun
i,j is associated with a

pdf either in a formula based or sample based format. If it is in a formula based format,

then we can compute the probability that the value of Aun
i,j falls in range [left, right]

by equation 7.1; otherwise, we compute this probability by equation (7.2).

P (Aun
i,j ∈ [left, right]) =

∫ right

left

fA(x)dx (7.1)

where, fA(x) is the probability density function of uncertain attribute Aun
i,j .

P (Aun
i,j ∈ [left, right]) =

∑
xk∈[left,right]

pk (7.2)

where,xk is the possible value of Aun
i,j , and pk is the probability that Aun

i,j = xk.

If the uncertain class label’s distribution is independent with the pdf of uncertain

attribute value, then, given a tuple ti, the joint probability that its value falls in range

[left, right] and it is assign a class label ci can be calculated in equation (7.3).

P (Aun
i,j ∈ [left, right], Ct = ci) = P (Aun

i,j ∈ [left, right]) ∗ P (Ct = ci) (7.3)

Given an partition as [left, right], for all the tuples in class ci, we compute the

sum of the probabilities that the value of its uncertain attribute Aun
i,j is in the range

[left, right]. This summation is called probability cardinality. For example, the

probability cardinality of partition P = [a, b) for class ci is calculated in equation

(7.4).

Pci =
n∑

i=1

P (Aun
i,j ∈ [a, b)) ∗ P (C = ci) (7.4)

Probability cardinalities provide us valuable insight during the discretization pro-

cess and it is used to build quanta matrix for uncertain data.

118

Table 7.2.
Quanta matrix and discretization scheme

class Intervals Class Total

[d0, d1) ... [dr−1, dr) ... [dn−1, dn]

c1 q11 ... q1r ... q1n M1+

...

ci qi1 ... qir ... qin Mi+

...

cs qs1 ... qsr ... qsn Ms+

Interval Total M+1 M+r M+n M

7.4.2 Quanta Matrix for Uncertain Data

The discretization algorithm is to find the minimal number of discrete intervals

while minimizing the loss of class-attribute interdependency. Suppose F is a continues

numeric attribute, and there exists a discretization scheme D on F , which divides

the whole continues domain of attribute F into n discrete intervals bounded by the

endpoints as D : {[d0, d1), [d1, d2), ..., [dn−1, dn]}, where d0 is the minimal value and

dn is the maximal value of attribute F ; d1, d2, ..., dn−1 are cutting points arranged in

ascending order.

In certain dataset, every value of attribute F is precise; therefore its value will be

in only one of the n intervals. However, the value of an uncertain attribute can vary in

a range, and the interval it belongs to is probabilistic. We use the probability that the

value of an uncertain attribute belongs to an interval to model its membership. Thus,

the class membership for a specify interval varies with different discretization scheme

D. The class variable and the discretization variable of attribute F are treated as

two random variables defining a 2-D quanta matrix, and Table 7.2 shows an example

of quanta matrix.

119

In table 7.2, qir is the probability cardinality of the uncertain attribute Aun
F which

belongs to the ith class and has its value within the interval [dr−1, dr]. Thus, according

to equation 7.4, qir can be calculated as qir = Pci(C = ci, A
un
F ∈ [dr−1, dr)). Mi+ is

the sum of the probability cardinality for objects belonging to the ith class, and

M+r is the total probability cardinality of Aun
F that are within the interval [dr−1, dr),

for i = 1, 2, ..., s, and r = 1, 2, ..., n.Then, the estimated joint probability that one

uncertain attribute values Aun
F of a tuple t is within the interval Dr = [dr−1, dr) and

t belongs to class ci is calculated in equation (7.5).

pir = p(C = ci, Dr|Aun
F) =

qir
M

(7.5)

7.4.3 Uncertain Class-Attribute Interdependent Discretization

First, we briefly introduce the traditional Class-Attribute Interdependency Maxi-

mization (CAIM) discretization approach. CAIM is one of the classical discretization

algorithms. It generates the optimal discretization scheme by quantifying the inter-

dependence between classes and discretized attributes, and its criterion is defined in

equation 7.6

CAIM(c,D|Aun
F) =

∑n
r=1

max2
r

M+r

n
(7.6)

where, n is the number of intervals, and r iterates through all inter values, i.e.

r = 1, 2, ..., n. maxr is the maximum value in the rth column of the quanta matrix,

i = 1, 2, ..., s, M+r is the sum of probabilities that the values of attribute F for each

instance are in the interval Dr = [dr−1, dr).

From the definition in equation (7.6), we can see that the caim value increases

when the values of maxi grow, which indicates the increase of interdependence be-

tween the class labels and the discrete intervals. Thus, CAIM algorithm finds the

optimal discretization scheme by searching the scheme with the highest caim value.

Since the maximal value maxr dominants the value of CAIM criterion, the class

120

Table 7.3.
An example of uncertain dataset

Attribute(x : px) class(ci : pi)

(0.1:0.3),(0.9:0.7) (0:0.9),(1:0.1)

(0.1:0.2),(0.9:0.8) (0:0.9),(1:0.1)

(0.9:1.0) (0:1.0)

(0.2:0.7),(0.8:0.3) (0:0.1),(1:0.9)

(0.1:0.7),(0.8:0.2) (0:0.1),(1:0.9)

which maxr corresponds to is called main class. And a larger maxr indicates the

more interdependency between main class and the interval Dr.

Although caim performs well in traditional certain cases, it encounters new chal-

lenges in uncertain datasets. For each interval, CAIM algorithm only takes the main

class into account, but does not consider the distribution over all other classes, which

leads to problems in its uncertain version. In an uncertain dataset, each instance

no longer has a deterministic class label, but it has a discrete pdf over all possible

classes, which reduces the interdependency between attributes and classes. We use

the probability cardinality to build the quanta matrix for uncertain attributes, and

then observe that the original caim criterion cannot well manage probabilistic data.

Here we use an example in table 7.3 to show the potential drawbacks.

121

From table 7.3, we calculate the probability cardinality of attribute x in each class

as following.

P (x = 0.1, c = 0) = 0.3 ∗ 0.9 + 0.2 ∗ 0.9 + 0.7 ∗ 0.1 = 0.52

P (x = 0.1, c = 1) = 0.3 ∗ 0.1 + 0.2 ∗ 0.1 + 0.7 ∗ 0.9 = 0.68

P (x = 0.2, c = 0) = 0.7 ∗ 0.1 = 0.07

P (x = 0.2, c = 1) = 0.7 ∗ 0.9 = 0.63

P (x = 0.8, c = 0) = 0.3 ∗ 0.1 + 0.2 ∗ 0.1 = 0.05

P (x = 0.8, c = 1) = 0.3 ∗ 0.9 + 0.2 ∗ 0.9 = 0.45

P (x = 0.9, c = 0) = 0.7 ∗ 0.9 + 0.8 ∗ 0.9 + 0.1 ∗ 0.1 + 1.0 ∗ 1.0 = 2.36

P (x = 0.9, c = 1) = 0.7 ∗ 0.1 + 0.8 ∗ 0.1 + 0.1 ∗ 0.9 = 0.24

Referring to the definition of caim criterion, the caim value for the original quanta

matrix in Table 7.4 is caim = 32/(3 + 2) = 1.8. From the distribution of attribute

values in each class, we can see that the attribute values of instances in class 0 have a

high probability cardinality at x = 0.9; and those instance in class 1 mainly locate in

another end around x = 0.1, and x = 0.2. Obviously, x = 0.5 is a reasonable cutting

point to generate one discretization scheme as {[0, 0.5), [0.5, 1.0]}. After splitting, the
quanta matrix turns to be as in table 7.5, and its caim value is

caim =
1.312

1.31+0.59
+ 2.412

2.41+0.69

2
= 1.38 (7.7)

The goal of the CAIM algorithm is to find the discretization scheme with the

highest caim value, so [0, 0.5)[0.5, 1.0] will not be accepted as a better discretization

scheme, because caim value decrease from 1.8 to 1.38 after splitting at x = 0.5. From

this example, we see that data uncertainty obscure the interdependency between

classes and attribute values by flatting the probability distributions. Therefore, when

the original CAIM criterion is applied to uncertain data, it results in two new prob-

lems. First, it usually does not create enough intervals in the discretization scheme

122

Table 7.4.
Quanta matrix for the original uncertain dataset

class Interval:[0,1]

0 3

1 2

Table 7.5.
Quanta matrix for splitting datasets

class Interval

[0,0.5) [0.5,1.0]

0 0.59 2.41

1 1.31 0.69

or it stops splitting too early, which causes the loss of class-attribute interdepen-

dence. Second, in order to increase the caim value, it is possible that the algorithm

generates intervals with very small probability cardinalities, which reduces the ro-

bustness of the algorithm. For uncertain data, the attribute-class interdependence

is probabilistic and is also modeled by a probability distribution. The original caim

definition ignore this distribution and only considers the main class. Therefore, we

revise the original definition of discretization criterion to discrete uncertain numerous

data. Now that uncertainty blurs the attribute-class interdependency and reduces the

difference between the main class and rest of the classes, we make the new criterion

more sensitive to the change of values in quanta matrix. We propose the uncertain

caim criterion called ucaim, which is defined in equation (7.8).

UCAIM(c,D|Aun
F) =

∑n
r=1

max2
r∗δr

M+r

n
(7.8a)

δr =

∑s
i=1,qir �=maxr

maxr − qir

s− 1
(7.8b)

123

In equation (7.8a), maxr is the maximum value among all qir values, which is

the maxim value within the rth column of the quanta matrix, and M+r is the total

probability of continues values of attribute F that are within the interval Dr =

[dr−1, dr). δr in equation (7.8b) is the average offset or difference for all other qir

values to maxr.

The lager the attribute-class interdependence, the larger the value maxr/M+r is.

And CAIM then use it to identify splitting points. In the UCAIM algorithm, the δr

shows how significant the main class is, compared to other classes. When δr is large,

it means that within interval r, the probability that an instance belongs to the main

class is much higher than the other classes, so the interdependence between interval r

and the main class become high. In sum, we propose the ucaim criterion for two main

reasons: (1) Compared with maxr/M+r, we multiply it with the factor δr to make the

value δr ∗ maxr/M+r more sensitive to interdependence changes, which usually are

not that significant for uncertain data; (2) The value maxr/M+r may be large merely

because M+r is small, which happens when there are not many instances falling into

interval r. However δr does not have such problem, because it measures the relative

relationship between main class and other classes.

Now we apply the new definition to the sample uncertain data in table 7.3. For

the original quanta matrix in table 7.4, the ucaim value is

ucaim =
32 ∗ (3− 2)

5
= 1.8

And in the quanta matrix after splitting as in table 7.5, we have

δ1 = 1.31− 0.59 = 0.72

δ2 = 2.41− 0.69 = 1.72

ucaim =
1.312∗0.72
1.31+0.59

+ 2.412∗1.72
2.41+0.69

2
= 1.98

Since ucaim value increases after splitting, the cutting point x = 0.5 will be

accepted in the discretization scheme. From this example, we can see that ucaim has

the potential to be more effective in finding the interdependency between attribute

values and classes, compared to original approach.

124

7.4.4 Uncertain Discretization Algorithm

Algorithm 7.1 shows the detail UCAIM uncertain discretization algorithm. It

consists of two main steps: (1) initialization of candidate interval endpoints and the

initial discretization scheme; (2) iterative additions of new splitting points to achieve

the highest value of ucaim criterion.

The time complexity of our ucaim algorithm is similar to the classic caim al-

gorithm. For a single attribute, in the worst case, the running time of caim is

O(Mlog(M)) [83], and M is the number of distinct values of the discretized at-

tribute. In ucaim algorithm, the additional computation is to calculate Sr, which

costs O(C · M) time. Because C is the number of class labels and usually is much

smaller than M , the additional time cost is O(M), and the final running time is still

O(Mlog(M)).

7.5 Experimental Results

In this section, we present the experimental results of UCAIM discretization al-

gorithm on eight datasets. We compare our technique with the traditional CAIM

discretization algorithm to show the effectiveness of ucaim for uncertain data.

7.5.1 Setup

The datasets selected to test the UCAIM algorithm are: Iris plants dataset (Iris),

Johns Hopkins University Ionosphere dataset (Ionosphere), Pima Indians Diabetes

dataset (Pima), Glass Identification dataset (Glass), Wine dataset (Wine), Breast

Cancer Wisconsin Original dataset (Breast), Vehicle Silhouettes dataset (Vehicle)

and Statlog Heart dataset (Heart). All these datasets are drawn from UCI machine

learning repository [59], and their detail information is shown in table 7.6.

These datasets are made uncertain by adding Gaussian distributed noises as in

[70, 90]. The Gaussian noise added to each numeric attribute value has the zero

125

Algorithm 7.1: uncertain discretization Algorithm: UCAIM

Input: A database with continues uncertain attribute Aun
F and its labels

C = c1, ...cs

Output: Optimal discretization schema: D

Find the maximal and minimal possible values of Aun
F , recorded as d0, d1

Create a set B of all potential endpoints. For uncertain attribute modeled by

sample based pdf, we sort all distinct possible values and use them to form the

set B; for formula based pdf, we use the mean of each distribution to form B.

Set the initial discretization scheme D : [d0, d1], set GlobalUcaim = 0.

Let k = 1

forall the endpoints i, i ∈ B do
Initial new UCAIM value as ucaim = 0, and new scheme newD = null

if i /∈ D then
tentatively add i to D to generate a candidate discretization scheme

CDi

compute the ucaim value of CDi as ucaimi

if ucaimi > ucaim then
ucaim = ucaimi

newD = CDi

end

end

end

if ucaim > GlobalUcaim or k < s then
GlobalUcaim = ucaim

D = newD

k = k + 1

goto

end

return D

126

Table 7.6.
Properties of experimental datasets

Dataset #of classes # of instances # of attributes # of continues

Iris 3 1 150 4

Ionosphere 2 351 34 34

Pima 2 768 8 8

Glass 7 214 10 10

Wine 3 178 13 13

Breast 2 699 10 10

Vehicle 4 846 18 18

mean, and its standard deviation is drawn from a uniform distribution in [0, 2∗f ∗σ].
Here, σ is the standard deviation of the original values of the attribute, and f is a

parameter used to define different uncertain level. The value of f is selected from

the set {1, 2, 3}. For the uncertainty in class labels, we assume the original class for

each instance is the main class, and assign it a probability pmc, and all other classes

have the same probability p = (1− pmc)/(n− 1), where n is the number of all classes.

Then, we drawn a sample for each uncertain attribute value in the uncertain dataset,

and generate a new dataset as a comparison.

We use the accuracy of uncertain näıve Bayesian classifier to evaluate the quality

of discretization algorithms. As the purpose of our experiment is to compare dis-

cretization algorithms, we ignore nominal attributes when we train the classifier. In

the experiments, we first compare our UCAIM algorithm with the original CAIM

algorithm (CAIM-O) which does not take data uncertainty into account. Next, we

compare the UCAIM with the discretization algorithm named CAIM-M, which di-

rectly use caim criterion on uncertain quanta matrix.

127

Table 7.7.

Average classification accuracies with different discretization algo-
rithms under different uncertain levels

Uncertain level UCAIM CAIM-M CAIM-O

f = 1, pmc = 0.9 79.53% 77.44% 72.51%

f = 2, pmc = 0.8 78.19% 72.16% 70.15%

f = 3, pmc = 0.7 71.79% 66.26% 61.96%

7.5.2 Results

The accuracy of uncertain näıve Bayesian classifier on these eight datasets is shown

in table 7.8. The average classification accuracy under different uncertain levels for all

three algorithms is shown in table 7.7. And figure 7.1 shows the detail performance

comparison of these algorithms at each uncertain level.

From table 7.7, 7.8 and figure 7.1, we can see that UCAIM outperforms the other

two algorithms in most cases. Particularly, UCAIM has a more significant perfor-

mance improvement for datasets with higher uncertainty. That is because UCAIM

utilizes extra information such as pdfs of uncertain data and uses the new criterion to

retrieve the class-attribute interdependency which is not that obvious when data are

uncertain. Therefore, UCAIM is more powerful in helping improve the performance

of näıve Bayesian classifier in uncertain data.

7.6 Conclusion

In this section, we propose a new discretization algorithm for uncertain data. We

employ both formula-based and sample-based pdf to model numeric uncertain at-

tributes, and define a new criterion to discover the class-attribute interdependency

in the uncertain dataset. Experiments shows that our UCAIM algorithm can signifi-

cantly help näıve Bayesian classifier to achieve a higher classifying accuracy.

128

(a) f = 1, pmc = 0.9

(b) f = 2, pmc = 0.8

(c) f = 3, pmc = 0.7

Figure 7.1. Classification accuracies with different discretization al-
gorithms under different uncertain levels

129

Table 7.8.

Accuracies of the uncertain Näıve Bayesian classifier with different
discretization algorithms

Dataset Uncertain level UCAIM CAIM-M CAIM-O

Iris

f = 1, pmc = 0.9 88.67% 81.67% 80.56%

f = 2, pmc = 0.8 76.67% 73.33% 69.56%

f = 3, pmc = 0.7 72.66% 71.33% 63.85%

wine

f = 1, pmc = 0.9 96.07% 94.38% 63.85%

f = 2, pmc = 0.8 93.09% 89.32% 85.39%

f = 3, pmc = 0.7 88.44% 73.59% 77.53%

glass

f = 1, pmc = 0.9 61.07% 57.94% 47.66%

f = 2, pmc = 0.8 57.94% 53.27% 37.07%

f = 3, pmc = 0.7 50.93% 43.92% 35.98%

Ionosphere

f = 1, pmc = 0.9 74.09% 81.26% 76.31%

f = 2, pmc = 0.8 78.34% 77.13% 72.17%

f = 3, pmc = 0.7 77.20% 75.88% 69.66%

pima

f = 1, pmc = 0.9 77.13% 75.74% 71.35%

f = 2, pmc = 0.8 72.32% 70.89% 63.97%

f = 3, pmc = 0.7 70.45% 68.66% 62.33%

breast

f = 1, pmc = 0.9 95.42% 94.27% 93.36%

f = 2, pmc = 0.8 90.70% 87.83% 87.14%

f = 3, pmc = 0.7 87.83% 83.12% 80.68%

Vehicle

f = 1, pmc = 0.9 61.22% 55.39% 50.13%

f = 2, pmc = 0.8 57.44% 52.12% 44.72%

f = 3, pmc = 0.7 53.19% 43.61% 37.87%

Heart

f = 1, pmc = 0.9 82.59% 78.88% 75.33%

f = 2, pmc = 0.8 78.19% 72.16% 70.15%

f = 3, pmc = 0.7 73.63% 69.95% 67.76%

130

8 SUMMARY

This dissertation studies how to handle uncertainty information in data mining. It

models two typical types of uncertainty in uncertain databases: tuple-level uncer-

tainty and attribute-level uncertainty. And it aims to mine accurate results by incor-

porating uncertainty information in the process of data mining.

In particular, we investigate sequential pattern mining with either existential un-

certainty or temporal uncertainty as a motivating example of how to incorporate

uncertain information in traditional data mining algorithms. For different sequential

pattern mining frameworks, we have developed various ways to handle uncertainty

and highlighted that the result of uncertain sequential pattern mining strongly de-

pends on both the domain and the user. Distributed computing platforms, such as

MapReduce and Spark, are also utilized to mine sequential patterns in large scale

uncertain databases, which make our algorithms more practical for real applications.

We also study uncertainty management in supervised machine learning processes.

For example, we develop an artificial neural network to classify numeric uncertain

data, in which we track the linear propagation of data uncertainty from input to

output. Meanwhile, we also develop a Näıve Bayesian classifier to classify categorical

uncertain data streams. We map the vector-like distribution of uncertain attributes

to certain points in an Euclidean space, from which we learn the model for classifying

uncertain streams. In addition, we design a discretization algorithm for uncertain

data, since data pre-processing is an important step in uncertain data mining.

Mining uncertain data is challenging in both quality and performance. However,

we explore various ways of uncertainty management and integrate them with different

types of data mining application to mine satisfiable results from uncertain data. And

our approaches are also proved to be very practical in real world applications.

REFERENCES

131

REFERENCES

[1] Kugatsu Sadamitsu, Satoshi Sekine, and Mikio Yamamoto. Sentiment analysis
based on probabilistic models using inter-sentence information. In Proceedings of
the 6th International Conference on Language Resources and Evaluation, 2008.

[2] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In Proceedings of ACM
International Conference on Management of Data, SIGMOD ’03, pages 313–324,
2003.

[3] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the
teenage years. In Proceedings of the 32nd International Conference on Very
Large Databases, VLDB ’06, pages 9–16. VLDB Endowment, 2006.

[4] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty: Data
cleansing and the merge/purge problem. Data Mining and Knowledge Discovery,
2(1):9–37, 1998.

[5] Vladimir Ryabov and Seppo Puuronen. Estimation of uncertain relations be-
tween indeterminate temporal points. In Advances in Information Systems, vol-
ume 1909, pages 108–116, 2000.

[6] C.C. Aggarwal. On unifying privacy and uncertain data models. In the 24th
IEEE International Conference on Data Engineering, ICDE ’08, pages 386–395,
2008.

[7] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Querying impre-
cise data in moving object environments. In IEEE Transactions on Knowledge
and Data Engineering, volume 16, pages 1112–1127, 2004.

[8] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying
of sets of possible worlds. In Proceedings of ACM International Conference on
Management of Data, volume 16, pages 34–48, 1987.

[9] F. Sadri. Modeling uncertainty in databases. In IEEE International Conference
on Data Engineering, pages 122–131, 1991.

[10] T. Green and V. Tannen. Models for incomplete and probabilistic information.
In Proceedings of the 9th International Conference on Extending Database Tech-
nology, pages 278–296, 2006.

[11] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern
mining with uncertain data. In International Conference on Knowledge Discovery
and Data Mining, SIGKDD ’09, pages 29–38, 2009.

132

[12] Jianzhong Li, Zhaonian Zou, and Hong Gao. Mining frequent subgraphs over
uncertain graph databases under probabilistic semantics. The VLDB Journal,
21(6):753–777, 2012.

[13] Nilesh Dalvi, Christopher Ré, and Dan Suciu. Probabilistic databases: diamonds
in the dirt. Communications of the ACM, 52(7):86–94, 2009.

[14] Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain data mining:
An example in clustering location data. In Proceedings of the 10th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, volume 3918, pages 199–
204, 2006.

[15] Zhou Zhao, Da Yan, and Wilfred Ng. Mining probabilistically frequent sequen-
tial patterns in uncertain databases. In Proceedings of the 15th International
Conference on Extending Database Technology, pages 74–85, 2012.

[16] Zhou Zhao, Da Yan, and Wilfred Ng. Mining probabilistically frequent sequential
patterns in large uncertain databases. In IEEE Transactions on Knowledge and
Data Engineering, volume 26, pages 1171–1184, 2013.

[17] Muhammad Muzammal and Rajeev Raman. Mining sequential patterns from
probabilistic databases. In Proceedings of the 15th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 210–221, 2011.

[18] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Expressing and opti-
mizing sequence queries in database systems. In ACM Transactions on Database
Systems, pages 282–318, 2004.

[19] Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng. Mining
uncertain data with probabilistic guarantees. In Proceedings of the 16th ACM
International Conference on Knowledge Discovery and Data Mining, pages 273–
282, 2010.

[20] Xingzhi Sun, M.E. Orlowska, and Xue Li. Introducing uncertainty into pattern
discovery in temporal event sequences. In IEEE International Conference on
Data Mining, pages 299–306, 2003.

[21] James F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11):832–843, 1983.

[22] Frank Höppner. Discovery of temporal patterns: Learning rules about the qual-
itative behaviour of time series. In Proceedings of the 5th European Conference
on Principles of Data Mining and Knowledge Discovery, pages 192–203, 2001.

[23] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos.
Discovering frequent arrangements of temporal intervals. In Proceedings of the
5th IEEE International Conference on Data Mining, ICDM ’05, pages 354–361,
2005.

[24] Edi Winarko and John F. Roddick. Armada: An algorithm for discovering richer
relative temporal association rules from interval-based data. Data and Knowledge
Engineering, 63(1):76–90, 2007.

133

[25] Yongluan Zhou, Chunyang Ma, Qingsong Guo, Lidan Shou, and Gang Chen.
Sequence pattern matching over time-series data with temporal uncertainty. In
Proceedings of 17th International Conference on Extending Database Technology,
pages 205–216, 2014.

[26] C.E.Dyreson and R.T.Snodgrass. Supporting valid-time indeterminacy. In ACM
Transactions on Database Systems, volume 23, pages 1–57, 1998.

[27] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating prob-
abilistic queries over imprecise data. In Proceedings of ACM International Con-
ference on Management of Data, SIGMOD ’03, pages 551–562, 2003.

[28] Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking
queries for probabilistic data. In IEEE Transactions on Knowledge and Data
Engineering, 23(12):1903–1917, 2011.

[29] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and
Andreas Zuefle. Probabilistic frequent itemset mining in uncertain databases. In
Proceedings of the 15th ACM International Conference on Knowledge Discovery
and Data Mining, pages 119–128, 2009.

[30] Jian Pei, Jiawei Han, and Wei Wang. Mining sequential patterns with con-
straints in large databases. In Proceedings of the 18th International Conference
on Information and Knowledge Management, pages 18–25, 2002.

[31] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Proceedings of the 11th International Conference on Data Engineering, pages
3–14, 1995.

[32] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gener-
alizations and performance improvements. In Proceedings of the 5th International
Conference on Extending Database Technology, pages 3–17, 1996.

[33] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1-2):31–60, 2001.

[34] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,
and Mei-Chun Hsu. Freespan: frequent pattern-projected sequential pattern
mining. In Proceedings of the 6th ACM International Conference on Knowledge
discovery and Data Mining, pages 355–359, 2000.

[35] Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Mei chun Hsu. Prefixspan: Mining sequential patterns efficiently
by prefix-projected pattern growth. In Proceedings of the 17th IEEE Interna-
tional Conference on Data Engineering, pages 215–224, 2001.

[36] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern
mining using a bitmap representation. In Proceedings of the 8th ACM Inter-
national Conference on Knowledge Discovery and Data Mining, pages 429–435,
2002.

[37] Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han. Mining long sequen-
tial patterns in a noisy environment. In Proceedings of the ACM International
Conference on Management of data, SIGMOD ’02, pages 406–417, 2002.

134

[38] Ding-Ying Chiu, Yi-Hung Wu, and Arbee L. P. Chen. An efficient algorithm
for mining frequent sequences by a new strategy without support counting. In
Proceedings of the 20th IEEE International Conference on Data Engineering,
pages 275–286, 2004.

[39] Li Wan, Ling Chen, and Chengqi Zhang. Mining frequent serial episodes over
uncertain sequence data. In Proceedings of the 16th International Conference on
Extending Database Technology, pages 215–226, 2013.

[40] Yuxuan Li, James Bailey, Lars Kulik, and Jian Pei. Mining probabilistic fre-
quent spatio-temporal sequential patterns with gap constraints from uncertain
databases. In IEEE International Conference on Data Mining, pages 448–457,
2013.

[41] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing patterns in
streams with imprecise timestamps. The VLDB Endowment, 3(1-2):244–255,
2010.

[42] Jiaqi Ge, Yuni Xia, and Jian Wang. Towards efficient sequential pattern min-
ing in temporal uncertain databases. In Proceedings of the 19th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 268–279, 2015.

[43] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms
and applications. In IEEE Transactions on Knowledge and Data Engineering,
21(5):609–623, May 2009.

[44] Chun-Kit Chui and Ben Kao. A decremental approach for mining frequent item-
sets from uncertain data. In Proceedings of the 12th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, pages 64–75, 2008.

[45] Chun-Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets from
uncertain data. In Proceedings of the 11th Pacific-Asia conference on Advances
in knowledge discovery and data mining, pages 47–58, 2007.

[46] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In Proceedings of the 20th International Conference
on Very Large Databases, pages 487–499, 1994.

[47] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Probabilistic event
extraction from rfid data. In In Proceedings of the 24th IEEE International
Conference on Data Engineering, pages 1480–1482, 2008.

[48] Yongxin Tong, Lei Chen, Yurong Cheng, and Philip S. Yu. Mining frequent item-
sets over uncertain databases. In Proceeding of the VLDB Endowment, volume 5,
pages 1650–1661, 2012.

[49] Byeong-Soo. Jeong, Ho-Jin. Choi, Md. Azam. Hossain, Md. Mamunur. Rashid,
and Md. Rezaul. Karim. A mapreduce framework for mining maximal contiguous
frequent patterns in large dna sequence datasets. In IETE Technical Review,
volume 29, pages 162–168, 2012.

[50] Ming-Syan Chen Chun-Chieh Chen, CHi-Yao Tseng. Highly scalable sequential
pattern mining based on mapreduce model on the cloud. In Proceedings of IEEE
International Congress on Big Data, pages 310–317, 2013.

135

[51] Iris Miliaraki, Klaus Berberich, Rainer Gemulla, and Spyros Zoupanos. Mind the
gap: Large-scale frequent sequence mining. In Proceedings of ACM International
Conference on Management of Data, pages 797–808, 2013.

[52] J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding
rating dimensions with review text. In Proceedings of the 7th ACM Conference
on Recommender Systems, pages 165–172, 2013.

[53] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, pages 2–2, 2012.

[54] Muhammad Muzammal and Rajeev Raman. On probabilistic models for uncer-
tain sequential pattern mining. Proceedings of the 6th International Conference
on Advanced Data Mining and Applications, pages 60–72, 2010.

[55] M.S.Chen J. W. Huang, S.C.Lin. Dpsp: Distributed progressive sequential pat-
tern mining on the cloud. In Proceedings of the 14th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, pages 27–34, 2010.

[56] Deng Jie, Qu Zhiguo, Zhu Yongxu, Gabriel-Miro Muntean, and Wang Xiaojun.
Towards efficient and scalable data mining using spark. In International Con-
ference on Information and Communications Technologies, pages 1–6, 2014.

[57] Jiaqi Ge, Yuni Xia, and Jian Wang. Mining uncertain sequential patterns in iter-
ative mapreduce. In Proceedings of the 19th Pacific-Asia Conference on Knowl-
edge Discover and Data Mining, pages 243–254, 2015.

[58] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-
spective. In IEEE Transactions on Knowledge and Data Engineering, 5(6):914–
925, 1993.

[59] K. Bache and M. Lichman. UCI machine leaning repository, 2013.

[60] Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael Chau, and
Kevin Y. Yip. Efficient clustering of uncertain data. In Proceedings of the 6th
IEEE International Conference on Data Mining, pages 436–445, 2006.

[61] Jiangtao Ren, Sau Dan Lee, Xianlu Chen, Ben Kao, Reynold Cheng, and David
Cheung. Naive bayes classification of uncertain data. In Proceedings of the 9th
IEEE International Conference on Data Mining, pages 944–949, 2009.

[62] Chuancong Gao and Jianyong Wang. Direct mining of discriminative patterns
for classifying uncertain data. In Proceedings of the 16th ACM International
Conference on Knowledge Discovery and Data Mining, pages 861–870, 2010.

[63] Biao Qin, Yuni Xia, and Fang Li. Dtu: A decision tree for uncertain data.
In Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, pages 4–15, 2009.

[64] Fernando Berzal, Juan-Carlos Cubero, Nicolás Maŕın, and Daniel Sánchez.
Building multi-way decision trees with numerical attributes. Information Sci-
ence, 165(1-2):73–90, September 2004.

136

[65] J. Bi and T. Zhang. Support vector machine with input data uncertainty. In
Proceedings of Advances in Neural Information Processing Systems, pages 369–
374, 2004.

[66] C.C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. On demand
classification of data streams. In Proceedings of the 10th ACM International
Conference on Knowledge Discovery and Data Mining, pages 503–508, 2004.

[67] C.C. Aggarwal. On density based transforms for uncertain data mining. In IEEE
23rd International Conference on Data Engineering, pages 866–875, 2007.

[68] Sarvjeet Singh, Chris Mayfield, Sunil Prabhakar, Rahul Shah, and Susanne Ham-
brusch. Indexing uncertain categorical data. In Proceedings of the 23rd IEEE
International Conference on Data Engineering, pages 616–625, 2007.

[69] C.C. Aggarwal. On high dimensional projected clustering of uncertain data
streams. In IEEE International Conference on Data Engineering, pages 1152 –
1154, 2009.

[70] Charu C. Aggarwal and Philip S. Yu. A framework for clustering uncertain data
streams. In Proceedings of IEEE International Conference on Data Engineering,
pages 150–159, 2008.

[71] Thanh T.L, Liping Peng, Boduo Li, Yanlei Diao, and Liu Anna. Pods: A new
model and processing algorithm for uncertain data streams. In Proceedings of the
ACM International Conference on Management of Data, pages 159–170, 2010.

[72] Haixun Wang, Wei Fan, and Philip S. Yu. Mining concept-drifting data stream
using ensemble classifiers. In Proceedings of the 9th ACM International Confer-
ence on Knowledge Discovery and Data Mining, pages 226–235, 2003.

[73] M. Tan and L. Eshelman. Using weighted networks to represent classification
knowledge in noisy domains. In Machine Learning, 1988.

[74] Kenneth A. Kaufman and Ryszard S. Michalski. Learning from inconsistent and
noisy data. In Proceedings of the 11th International Symposium on Foundations
of Intelligent Systems, ISMIS ’99, pages 411–419, 1999.

[75] Krzysztof J. Cios and Lukasz A. Kurgan. New learning paradigms in soft com-
puting. Physica-Verlag GmbH, 2002.

[76] Peter Clark and Tim Niblett. The cn2 induction algorithm. Machine Learning,
3(4):261–283, March 1989.

[77] Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A re-
cent survery. In International Transactions on Computer Science and Engineer-
ing, volume 32, pages 47–58, 2006.

[78] Usama M. Fayyad and Keki B. Irani. Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning. In Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence, pages 1022–1027, 1993.

[79] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsuper-
vised discretization of continuous features. In Proceedings of the 12th Interna-
tional Conference on Machine Learning, pages 194–202, 1995.

137

[80] Mark H. Hansen and Bin Yu. Model selection and the principle of minimum
description length. Journal of the American Statistical Association, 96:746–774,
1998.

[81] Y. Linde, A. Buzo, and R. Gray. An Algorithm for Vector Quantizer Design.
IEEE Transactions on Communications, 28(1):84–95, January 2003.

[82] Andrew K. C. Wong and David K. Y. Chiu. Synthesizing statistical knowledge
from incomplete mixed-mode data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(6):796–805, June 1987.

[83] Lukasz A. Kurgan and Krzysztof J. Cios. Caim discretization algorithm. IEEE
Transactions on Knowledge and Data Engineering, 16(2):145–153, February
2004.

[84] Lukasz A. Kurgan and Krzysztof J. Cios. Fast class-attribute interdependence
maximization (caim) discretization algorithm. In Proceedings of International
Conference on Machine Learning and Applications, pages 30–36, 2003.

[85] Randy Kerber. Chimerge: discretization of numeric attributes. In Proceedings
of the 10th National Conference on Artificial Intelligence, pages 123–128, 1992.

[86] Huan Liu and Rudy Setiono. Chi2: Feature selection and discretization of nu-
meric attributes. In In Proceedings of the 7th International Conference on Tools
with Artificial Intelligence, pages 388–391, 1995.

[87] F. E. H. Tay and L. Shen. A modified chi2 algorithm for discretization. IEEE
Transactions on Knowledge and Data Engineering, 14(3):666–670, May 2002.

[88] Chao-Ton Su and Jyh-Hwa Hsu. An extended chi2 algorithm for discretization of
real value attributes. IEEE Transactions on Knowledge and Data Engineering,
17(3):437–441, March 2005.

[89] Ruoming Jin, Yuri Breitbart, and Chibuike Muoh. Data discretization unifica-
tion. Knowledge and Information Systems, 19(1):1–29, March 2009.

[90] Charu C. Aggarwal and Philip S. Yu. Outlier detection with uncertain data. In
SIAM International Conference on Data Mining, pages 483–493, 2008.

VITA

138

VITA

Jiaqi Ge received his BS and MSEE from Nanjing University in 2005 and 2008,

respectively. Upon receiving his PhD from Purdue University in May 2016, he joined

Expedia Inc as a data scientist.

	Purdue University
	Purdue e-Pubs
	3-2016

	Sequential pattern mining with uncertain data
	Jiaqi Ge
	Recommended Citation

	form30

