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Abstract

Many real-world application domains such as sensor-monitoring systems for environmental
research or medical diagnostic systems are dealing with data that is represented by multiple
observations. In contrast to single-observation data, where each object is assigned to exactly
one occurrence, multi-observation data is based on several occurrences that are subject to
two key properties: temporal variability and uncertainty. When defining similarity between
data objects, these properties play a significant role. In general, methods designed for single-
observation data hardly apply for multi-observation data, as they are either not supported
by the data models or do not provide sufficiently efficient or effective solutions. Prominent
directions incorporating the key properties are the fields of time series, where data is
created by temporally successive observations, and uncertain data, where observations are
mutually exclusive. This thesis provides research contributions for similarity processing –
similarity search and data mining – on time series and uncertain data.

The first part of this thesis focuses on similarity processing in time series databases.
A variety of similarity measures have recently been proposed that support similarity pro-
cessing w.r.t. various aspects. In particular, this part deals with time series that consist
of periodic occurrences of patterns. Examining an application scenario from the medical
domain, a solution for activity recognition is presented. Finally, the extraction of feature
vectors allows the application of spatial index structures, which support the acceleration
of search and mining tasks resulting in a significant efficiency gain. As feature vectors
are potentially of high dimensionality, this part introduces indexing approaches for the
high-dimensional space for the full-dimensional case as well as for arbitrary subspaces.

The second part of this thesis focuses on similarity processing in probabilistic data-
bases. The presence of uncertainty is inherent in many applications dealing with data
collected by sensing devices. Often, the collected information is noisy or incomplete due to
measurement or transmission errors. Furthermore, data may be rendered uncertain due to
privacy-preserving issues with the presence of confidential information. This creates a num-
ber of challenges in terms of effectively and efficiently querying and mining uncertain data.
Existing work in this field either neglects the presence of dependencies or provides only
approximate results while applying methods designed for certain data. Other approaches
dealing with uncertain data are not able to provide efficient solutions. This part presents
query processing approaches that outperform existing solutions of probabilistic similarity
ranking. This part finally leads to the application of the introduced techniques to data
mining tasks, such as the prominent problem of probabilistic frequent itemset mining.
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Zusammenfassung

Viele Anwendungsgebiete, wie beispielsweise die Umweltforschung oder die medizinische
Diagnostik, nutzen Systeme der Sensorüberwachung. Solche Systeme müssen oftmals in
der Lage sein, mit Daten umzugehen, welche durch mehrere Beobachtungen repräsentiert
werden. Im Gegensatz zu Daten mit nur einer Beobachtung (Single-Observation Data)
basieren Daten aus mehreren Beobachtungen (Multi-Observation Data) auf einer Vielzahl
von Beobachtungen, welche zwei Schlüsseleigenschaften unterliegen: Zeitliche Veränderlich-
keit und Datenunsicherheit. Im Bereich der Ähnlichkeitssuche und im Data Mining spielen
diese Eigenschaften eine wichtige Rolle. Gängige Lösungen in diesen Bereichen, die für
Single-Observation Data entwickelt wurden, sind in der Regel für den Umgang mit mehre-
ren Beobachtungen pro Objekt nicht anwendbar. Der Grund dafür liegt darin, dass diese
Ansätze entweder nicht mit den Datenmodellen vereinbar sind oder keine Lösungen anbie-
ten, die den aktuellen Ansprüchen an Lösungsqualität oder Effizienz genügen. Bekannte
Forschungsrichtungen, die sich mit Multi-Observation Data und deren Schlüsseleigenschaf-
ten beschäftigen, sind die Analyse von Zeitreihen und die Ähnlichkeitssuche in probabilisti-
schen Datenbanken. Während erstere Richtung eine zeitliche Ordnung der Beobachtungen
eines Objekts voraussetzt, basieren unsichere Datenobjekte auf Beobachtungen, die sich
gegenseitig bedingen oder ausschließen. Diese Dissertation umfasst aktuelle Forschungsbei-
träge aus den beiden genannten Bereichen, wobei Methoden zur Ähnlichkeitssuche und zur
Anwendung im Data Mining vorgestellt werden.

Der erste Teil dieser Arbeit beschäftigt sich mit Ähnlichkeitssuche und Data Mining in
Zeitreihendatenbanken. Insbesondere werden Zeitreihen betrachtet, welche aus periodisch
auftretenden Mustern bestehen. Im Kontext eines medizinischen Anwendungsszenarios
wird ein Ansatz zur Aktivitätserkennung vorgestellt. Dieser erlaubt mittels Merkmalsex-
traktion eine effiziente Speicherung und Analyse mit Hilfe von räumlichen Indexstrukturen.
Für den Fall hochdimensionaler Merkmalsvektoren stellt dieser Teil zwei Indexierungsme-
thoden zur Beschleunigung von Ähnlichkeitsanfragen vor. Die erste Methode berücksichtigt
alle Attribute der Merkmalsvektoren, während die zweite Methode eine Projektion der An-
frage auf eine benutzerdefinierten Unterraum des Vektorraums erlaubt.

Im zweiten Teil dieser Arbeit wird die Ähnlichkeitssuche im Kontext probabilistischer
Datenbanken behandelt. Daten aus Sensormessungen besitzen häufig Eigenschaften, die
einer gewissen Unsicherheit unterliegen. Aufgrund von Mess- oder Übertragungsfehlern
sind gemessene Werte oftmals unvollständig oder mit Rauschen behaftet. In diversen Sze-
narien, wie beispielsweise mit persönlichen oder medizinisch vertraulichen Daten, können
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Daten auch nachträglich von Hand verrauscht werden, so dass eine genaue Rekonstruktion
der ursprünglichen Informationen nicht möglich ist. Diese Gegebenheiten stellen Anfrage-
techniken und Methoden des Data Mining vor einige Herausforderungen. In bestehenden
Forschungsarbeiten aus dem Bereich der unsicheren Datenbanken werden diverse Proble-
me oftmals nicht beachtet. Entweder wird die Präsenz von Abhängigkeiten ignoriert, oder
es werden lediglich approximative Lösungen angeboten, welche die Anwendung von Me-
thoden für sichere Daten erlaubt. Andere Ansätze berechnen genaue Lösungen, liefern die
Antworten aber nicht in annehmbarer Laufzeit zurück. Dieser Teil der Arbeit präsentiert
effiziente Methoden zur Beantwortung von Ähnlichkeitsanfragen, welche die Ergebnisse
absteigend nach ihrer Relevanz, also eine Rangliste der Ergebnisse, zurückliefern. Die an-
gewandten Techniken werden schließlich auf Problemstellungen im probabilistischen Data
Mining übertragen, um beispielsweise das Problem des Frequent Itemset Mining unter
Berücksichtigung des vollen Gehalts an Unsicherheitsinformation zu lösen.
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Chapter 1

Introduction

1.1 Preliminaries

In the past two decades, there has been a great deal of interest in developing efficient
and effective methods for similarity search and mining in a broad range of applications
including molecular biology [19], medical imaging [129] and multimedia databases [185] as
well as data retrieval and decision support systems. At the same time, improvements in
our ability to capture and store data has lead to massive datasets with complex structured
data, which require special methodologies for efficient and effective data exploration tasks.

The exploration of data and the goal of obtaining knowledge that is implicitly present
is part of the field of Knowledge Discovery in Databases (KDD). KDD is the process of
extracting new, valid and potentially useful information from data, which can be further
processed by diverse applications [94]. The general steps of the KDD process are illustrated
in Figure 1.1.

Figure 1.1: Visualization of the KDD process [91].

Following the process description of Ester and Sander [91], the first steps are selection
of relevant data from the database, and preprocessing it in order to fill gaps or to combine
data derived from different sources. Furthermore, a transformation is performed, which
leads to a suitable representation of the data for the targeted application. The actual
data mining step uses algorithms that extract patterns from the data, which are finally
evaluated by the user.
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Well-known data mining tasks are

• the field of clustering, where objects with similar characteristics are grouped, such
that the similarity of objects within a cluster is maximized, while the similarity
between different clusters is minimized;

• outlier detection, where the objective is to find objects that are not assigned to a
cluster;

• classification, where objects are assigned to most appropriate class labels based on
the learning effects obtained with previously assigned objects;

• rule mining, where, given a database of transactions, correlations and dependencies
are examined by retrieving association rules.

These data mining tasks are strongly connected to applications which take advantage of
their output, i.e., from the gained patterns contained in the data. Applications that will
be part of this thesis are the following.

Example 1.1 Prevention of diseases is an important part of medical research. In order
to supervise the presence of physical health, methods of medical monitoring provide reliable
evidence. In some cases, patients are required to fulfill a particular quota of physical ac-
tivity, which can be captured via sensing devices. Finally, recognition of activity requires
applying classification.

Example 1.2 Rule mining is commonly applied to market-basket databases for the analy-
sis of consumer purchasing behavior. Such databases consist of a set of transactions, each
containing the items a customer purchased. The most important and computationally in-
tensive step in the mining process is the extraction of frequent itemsets – sets of items that
occur in a specified minimum number of transactions.

Many data mining tasks are based on the similarity of objects. This may, for example, be
the case in activity recognition, where a clustering method or a similarity-based classifica-
tion technique requires determining similarity between objects. This step, the similarity
query, is not only useful to support the KDD process, but is also important in the con-
text of content-based multimedia retrieval or proximity search. For example, starting from
2001, the popular search engine Google has provided the possibility to retrieve similar im-
ages to a selected reference image1. Regarding proximity search in geospatial applications,
location-based services provide a list of relevant points of interest specified by the user,
based on similarity queries w.r.t. the user’s current location.

An overview of the basics needed for similarity processing, i.e., for the determination of
similarity between objects in order to answer similarity queries and to solve data mining
tasks that are based on the similarity among objects, will be given in the following section.
This also contains a summary of most commonly used similarity query types.

1Google images: http://images.google.com/

http://images.google.com/
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Figure 1.2: Vector objects with their spatial representation, d = 2.

1.2 Similarity Processing in Databases

1.2.1 Similarity of Data Objects

The definition of similarity between data objects requires an appropriate object represen-
tation. The most prevalent model is to represent objects in a d-dimensional vector space
R
d, d ∈ N, also called feature space. An object then corresponds to a d-dimensional

feature vector, illustrated as a single point, as depicted in Figure 1.2. The similarity be-
tween two d-dimensional objects x and y is commonly reflected by a distance function
dist : Rd ×Rd → R+

0 , which is one of the Lp-norms (p ∈ [1,∞)), formally:

distp = p

√√√√ d∑
i=1

|xi − yi|p, (1.1)

where xi (yi) denotes the value of x (y) in dimension i. In the following, the notation dist
will denote the currently used Lp-norm, where the most prominent example, namely the
Euclidean distance, will be used in the most cases (p = 2). An important property of the
Lp-norm is that it is a metric, which implies that the triangle inequality is fulfilled. This
property can be exploited in order to accelerate the performance of similarity queries.

1.2.2 Similarity Queries: A Short Overview

Basically, in a similarity query, the distance between a query object q ∈ D and each
database object x ∈ D is computed in order to return all objects that satisfy the corre-
sponding query predicate. This work deals with the most prominent query types, which
are described in the following.

• An ε-range query retrieves the set RQ(ε, q) that contains all objects from x ∈ D for
which the following condition holds:

∀x ∈ RQ(ε, q) : dist(x, q) ≤ ε.

ε-range queries are, for example, used with density-based clustering methods, such
as DBSCAN [90] and OPTICS [14], where objects are examined whether they build
dense regions and, therefore, generate a clustered structure of the data.
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• A nearest neighbor (NN) query retrieves the object x ∈ D for which the following
condition holds:

x ∈ NN (q)⇔ ∀y ∈ D \ {x} : dist(x, q) ≤ dist(y, q).

• The NN query can be generalized to the k-nearest neighbor (k-NN) query, which
retrieves the set NN (k, q) that contains k objects from x ∈ D for which the following
condition holds:

∀x ∈ NN (k, q), ∀y ∈ D \ NN (k, q) : dist(x, q) ≤ dist(y, q).

k-NN queries are more user-friendly and more flexible than ε-range queries. Choosing
the number k of results that shall be returned by a query is usually much more
intuitive than selecting some query radius ε. In addition, many applications like
data mining algorithms that further process the results of similarity queries require
to control the cardinality of query results [137]. k-NN queries can easily be translated
into ε-range queries yielding the same result set, setting the ε parameter to the
distance of the query point to its kth nearest neighbor (the k-NN distance). One
direct use of k-NN queries in data mining is in similarity-based classification tasks,
e.g., in the k-NN classification, where k-NN queries are used to classify data items
of unknown labels to class labels corresponding to the most similar labeled item.

• A variant of the NN query is the reverse nearest neighbor (RNN) query. Given a
set of objects and a query object q, an RNN query returns all objects which have
q as their nearest neighbor. Analogously to the NN query, the RNN query can be
generalized to the Rk-NN query. The works of [35, 36] further generalizes the RNN
query for arbitrary query predicates as well as multiple query objects by defining
inverse queries. Given a subset of database objects Q ⊂ D and a query predicate,
an inverse query returns all objects that contain Q in their result. Among others,
solutions are proposed for inverse ε-range queries, and inverse k-NN queries. Reverse
and inverse queries will not be explained in detail, as this is out of scope of this thesis.

• Finally, a ranking query iteratively retrieves objects x ∈ D in ascending order w.r.t.
their distance to a query object. Similarity ranking is one of the most important
operations in feature databases, e.g., for search engines, where ranking is used to
report the most relevant object first. The iterative computation of answers is very
suitable for retrieving results the user could have in mind. This is a big advantage
of ranking queries over ε-range and k-NN queries, in particular if the user does not
know how to specify the query parameters ε and k. Nevertheless, the parameter k
can be used to limit the size of the ranking result (also denoted as ranking depth),
similarly to the k-NN predicate, but retaining the ordering of results. For example, a
ranking query returns the contents of a spatial object set specified by a user (e.g., the
k nearest restaurants) in ascending order of their distance to a reference location. In
another example in a database of images, a ranking query retrieves feature vectors of
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(c) Ranking query.

Figure 1.3: Visualization of the most prominent query types, d = 2.

images in ascending order of their distance (i.e., dissimilarity) to a query image and
returns the k most similar images. The restriction of the output to a ranking depth
allows an early pruning of true drops in the context of multi-step query processing
in order to accelerate similarity search algorithms.

• Contrary to the common ranking query, a probabilistic inverse ranking query [152]
determines the rank for a given query object according to a given, user-defined score
function fscore, and, thus, rates the significance of the query object among peers.

In the general case of relational data, query results are often determined w.r.t. a score
function, where the distance to a query object is a special case (i.e., a high score value
is reflected by a low spatial distance value). A popular example is the top-k query [92],
where the objective is to retrieve the k objects with the highest combined (e.g., average)
scores, out of a given set of objects that are ranked according to m different ranking or
score functions (e.g., different rankings for m different attributes).

Examples for the query types ε-range, k-NN and ranking are visualized in Figure 1.3.

1.2.3 Efficient Processing of Similarity Queries

The acceleration of similarity queries via index structures in an important part in the
context of similarity search. A straightforward solution performs a sequential scan of all
objects, i.e., computes the distances from the query object to all database objects. Based
on these computations, objects that satisfy the query predicate are returned. This solution
is, however, very inefficient, yielding a runtime complexity which is linear in the size of the
database. The goal of efficient processing techniques is to reduce cost required for distance
computations (CPU cost) and read operations on the database (I/O cost).

Using an index structure, the number of objects that have to be accessed can be sig-
nificantly reduced [52]. Common approaches comprise data-organizing indexes like tree
structures (e.g., the B-tree [22]) or space-organizing structures like hashing [144, 161].
Popular and commonly used index structures for multidimensional spaces are the variants
of the R-tree [101], as they showed to perform superior to other structures. The most
prominent example here is the R∗-tree [23], which will also be used in this work.
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(a) R-tree MBRs. (b) R-tree structure.

Figure 1.4: Visualization of an R-tree structure, d = 2.

Tree-based structures for multidimensional spaces group objects of spatial proximity
and bound each group by a minimum bounding rectangle (MBR), which yields lower and
upper approximations of the distance of these objects to a query object. MBRs are further
recursively grouped and bounded, yielding a hierarchy of MBRs, where the hierarchically
highest MBR represents the root of the tree, comprising the whole data space (cf. Fig-
ure 1.4). For efficiently answering similarity queries, the tree is traversed; search paths
can then early be discarded (“pruned”) based on the distance bounds of the MBRs. Thus,
both CPU and I/O cost can be saved, since not all database objects have to be considered.
For example, the best-first search algorithm [107] exploits the structure of the R-tree.

With increasing dimensionality, however, index structures like the R-tree degrade rapidly
due to the curse of dimensionality [24]. This phenomenon relativizes the term of similarity
between spatial objects; distances are no more significant when the dimensionality of the
vector space increases. This effect forces index structures to consider more objects and to
perform a much higher number of distance computations. Thus, depending on the distri-
bution of the data, the sequential scan often outperforms common index structures already
with a dimensionality of about d = 10. A solution is provided by commonly applied meth-
ods enhancing the sequential scan, for example the VA-file [207]. These structures follow
a process of multistep query processing (cf. Figure 1.5), which consists of a filter step (or
several successive filter steps) and a refinement step. In the filter step, distance approx-
imations of objects are used in order to categorize the objects. True hits already satisfy
the query predicate based on their distance approximations and, thus, can be added to the
result. True drops do not satisfy the query predicate based on the approximated distances
and can therefore be discarded from further processing. Candidates may satisfy the query
predicate based on their approximations and have to be further processed. Multiple filter
steps can be performed, successively reducing the candidate set, before finally refining all
retrieved candidates, which is, in general, more expensive than examining objects based
on their distance approximations.
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Filter 1DB Candidates CandidatesFilter i Refinement…

True Hits

True Drops

Figure 1.5: Multistep query processing.

1.2.4 From Single to Multiple Observations

Similarity relationships can clearly be determined via distance functions if the objects
are created by single occurrences. However, tackling the problem of solving the above
similarity queries for objects that consist of multiple occurrences, where these occurrences
are subject to specific key properties, poses diverse challenges. The following section will
introduce the terminology of multi-observation data, where objects are represented by more
than one occurrence, in contrast to single-observation data, which denotes data obtained
from a single occurrence.

1.3 A Definition of Multi-Observation Data

Many real-world application domains such as sensor-monitoring systems for object track-
ing, environmental research or medical diagnostics are dealing with data objects that are
observed repeatedly, which creates multiple observations for one object. These observations
are subject to two key properties that do not occur in the single-observation case:

• Key Property of Temporal Variability : Considering an object X evolving in time,
multiple observations xi (1 ≤ i ≤ n) of X occur in a temporal sequence, which
incorporates the key property of temporal variability. Then, a multi-observation
object represents characteristics of measurements that are captured over time, such
that xi is the observation of X at time ti.

• Key Property of Uncertainty : An object X may be represented by several possible
states at the same time. Then, X consists of a finite set of observations xj (1 ≤
j ≤ m), where exactly one observation corresponds to the real occurrence of X.
Incorporating possible states, each observation xj is associated with a probability
(or confidence) value, indicating the likelihood of being the real occurrence of X.
In common data models, observations correspond to alternative occurrences, which
creates an existential dependency among the observations of an object.
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Incorporating these two key properties, a d-dimensional object in the context of multi-
observation data, in the following called multi-observation object, can be defined as follows.

Definition 1.1 (Multi-Observation Object) A d-dimensional object X is called multi-
observation object, if at least one of the above properties is fulfilled. It consists of multiple
observations xi,j ∈ Rd (1 ≤ i ≤ n, 1 ≤ j ≤ m) evolving in time, represented by m different
states at each of n points in time.

Definition 1.1 considers a discrete object representation with a finite number of observa-
tions. This discrete representation will be assumed in this work. The special case of an
object having only one observation (n = m = 1) will be called single-observation object.

Multi-observation data as defined above is not far from the definition of multi-instance
data. According to [142], an object in the context of multi-instance data is represented
by a set of instances in a feature space. However, the essential difference is that, for the
instances of a such an object, no special assumptions are made about specific properties
or characteristics in contrast to multi-observation objects.

The task of similarity processing in multi-observation data poses diverse challenges.
While both key properties, temporal variability and uncertainty, are coexisting in the
general case, this thesis will distinguish between two different contexts for multi-observation
data, each incorporating one key property of multi-observation data:

• Part II will focus on the key property of temporal variability while neglecting the
uncertainty property. An object X is then described by n (temporally ordered) ob-
servations x1, . . . , xn and m = 1. The presence of temporal changes of an object with
observations taken over time leads to the context of time series. A short introduction
to this part will be provided in Section 1.4.

• Part III will deal with the key property of uncertainty while neglecting the property of
temporal variability. In this case, an object X is described by m (mutually exclusive)
observations x1, . . . , xm and n = 1. This part provides contributions in the context
of probabilistic (uncertain) databases and will briefly be introduced in Section 1.5.

1.4 Temporal Variability: Time Series

1.4.1 Motivation

In a large range of application domains, the analysis of meteorological trends, of medi-
cal behavior of living organisms, or of recorded physical activity is built on temporally
dependent observations. The presence of a temporal ordering of the observations of a
multi-observation object incorporates the key property of temporal variability and leads
to the data model of time series. In particular in environmental, biological or medical
applications, we are faced with time series data that features the occurrence of temporal
patterns composed of regularly repeating sequences of events, where cyclic activities play a
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vertical acceleration force of a walking human 
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Figure 1.6: Evolution of periodic patterns in medical and biological applications [2].

key role. An example of a periodic time series is depicted in Figure 1.6, showing the motion
activity of a human, in particular the vertical acceleration force that repetitively occurs
during a human motion like walking or running. Though consecutive motion patterns show
similar characteristics, they are not equal. It is possible to observe changes in the shape of
consecutive periodic patterns that are of significant importance.

In the medical domain, physical activity becomes more and more important in the
modern society. Nowadays, cardiovascular diseases cover a significant part of annually
occurring affections, which is due to the reduced amount of activity in the daily life [21].
The automation of working processes as well as the availability of comfortable travel op-
tions may cause overweight [211], which may result in lifestyle diseases, such as diabetes
mellitus [163]. Warburton et al. [204] showed that prevention and therapy of such diseases
as well as the rehabilitation after affections or injuries can be supported by continuous and
balanced physical activity. For this purpose, patients are required to fulfill a regular quota
of activity which follows a particular training schedule that is integrated into the daily life,
but which cannot be supervised. In order to obtain reliable evidence about the achieved
physical activity within a particular time period, accelerometers can act as tools that pro-
vide accurate results, since filled questionnaires tend to be strongly subjective [12, 206].
This statement is obvious, as, according to [97], the patients tend to overestimate their own
abilities, which leads to results that are likely to be biased. Furthermore, the evaluation
of results is very complex and time-consuming. In order to improve the quality, i.e., the
accuracy and the objectivity of these results, accelerometers serve as suitable devices for
medical monitoring. The recordings of sensor observations allow the detection of any type
of human motions that are composed of cyclic patterns. Cycling, for example, is a typi-
cal activity where cyclic movements repeatedly occur via pedaling; but periodic patterns
can also be detected from other activities, such as walking, running, swimming and even
working. In this context, the analysis of time series leads to the field of activity recognition.

1.4.2 Challenges

In the single-observation case, temporal characteristics do not occur, since an object is
created by only one observation. Assuming a dimensionality of d = 1 for the purpose of
simple illustration, distances between objects can be mapped to the simple differences of the
values (cf. Figure 1.7, left depiction). In the illustrated example, dist(A,B) < dist(A,C)
holds.
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Figure 1.7: Single- and multi-observation objects w.r.t. temporal variability (d = 1).

In the multi-observation case, an object corresponds to a time series. In the right
depiction of Figure 1.7, the objects A, B and C are extended to three one-dimensional
time series of length n. In addition to the domain describing the value (the amplitude) of
an observation, a temporal domain is needed, which creates the sequence of values.

While the similarity relationships can be observed clearly in the single-observation case,
getting the intuition in the multi-observation case is more complicated. A visual exploration
yields the impression that the amplitude values of the observations of time series A are
closer to the amplitudes of time series B than to the amplitudes of C, i.e., here again,
dist(A,B) < dist(A,C) seems to hold if the Euclidean distance is simply translated to the
multi-observation case. According to Equation (1.1), in the general case, the Euclidean
distance between two d-dimensional time series X and Y of length n is computed as

dist =

√√√√ n∑
i=1

(
d∑
j=1

(xi,j − yi,j)2

)
,

where xi,j (yi,j) denotes the value of the ith observation of X (Y ) in dimension j. However,
for some scenarios, this relationship may not be satisfying. B may be closer to A regarding
the single amplitude values, but incorporating the temporal ordering, C may be closer to
A, as it contains the same, but shifted pattern evolution as A, whereas the evolution of B
shows different characteristics. Even if the amplitudes are normalized to an equal range,
e.g., [0, 1], we still cannot be sure whether the result corresponds to the desired semantics.

Here, the question arises where exactly to put emphasis when computing similarity
among time series. Important characteristics of time series are defined by temporal pat-
terns of observations, which show periodic occurrences in many scenarios. Regarding these
periodic patterns, the general challenges are how they can be determined and how ap-
propriate similarity measures can be applied in order to take these patterns into account.
Examining the medical application scenario of activity recognition, a method of analyzing
cyclic activities will be presented in Part II.



1.5 Uncertainty: Probabilistic Databases 13

The complex data structure of potentially long time series in conjunction with the
temporal ordering as well as the presence of noise and missing values due to erroneous
sensor recordings and hardware limitations pose further challenges. A combination of
feature extraction, a sufficiently good representation of the time series by feature vectors
and the possibility to use suitable indexes for enhancing similarity queries and data mining
tasks in potentially high-dimensional feature spaces is required. These requirements will
also be addressed in Part II.

1.5 Uncertainty: Probabilistic Databases

1.5.1 Motivation

Following the key property of uncertainty, observations of an object are given as a set of
occurrences of this object that are available at the same time. The question of interest
in this case is the following: “Which observation is most likely to represent object X?”
Depending on the data model, the existence of an observation affects the existence of the
others that may represent the same object.

The potential of processing probabilistic (uncertain) data has achieved increasing in-
terest in diverse application fields, such as traffic analysis [143] and location-based ser-
vices [209]. By now, modeling, querying and mining probabilistic databases has been
established as an important branch of research within the database community.

Uncertainty is inherent in many applications dealing with data collected by sensing
devices. Recording data involves uncertainty by nature either caused by imprecise sensors
or by discretization which is necessary to record the data. For example, vectors of values
collected in sensor networks (e.g., temperature, humidity, etc.) are usually inaccurate, due
to errors in the sensing devices or time delays in the transmission. In the spatial domain,
positions of moving individuals concurrently tracked by multiple GPS devices are usually
imprecise or inconsistent, as the locations of objects usually change continuously. Uncer-
tainty also obviously occurs in prediction tasks, e.g., weather forecasting, stock market
prediction and traffic jam prediction. Here, the consideration of alternative prediction
results may help to improve the reliability of implications based on the predictions. For
example, the traffic density on a single road segment can be well predicted for a given time
in the future if all possible locations of all vehicles at that time are incorporated. Further-
more, personal identification and recognition systems based on video images or scanned
image data images may also have errors due to low resolution or noise. Finally, data may
be rendered uncertain due to privacy-preserving issues, where uncertainty is required in
order to distort exact information on objects or individuals.

1.5.2 Challenges

The challenges for similarity processing in probabilistic databases are motivated by Fig-
ure 1.8, where three objects A, B and C are depicted in a two-dimensional vector space
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Figure 1.8: Single- and multi-observation objects w.r.t. uncertainty (d = 2).

(d = 2). Here, the dimensions are assumed to be of equal range (which can be generalized
to different ranges or weights for the context of relational attributes). Again assuming that
the Euclidean distance is used, it can be observed from the example in Figure 1.8(a) that
dist(A,C) < dist(A,B) holds in the single-observation (certain) case.

In the example of the multi-observation case, each object consists of a set of m = 5
observations. The question is now to define an appropriate distance measure between the
objects, as the relationship dist(A,C) < dist(A,B) of the single-observation case may
not be valid anymore (cf. Figure 1.8(b)). Measures reflecting the distance of point sets
(e.g., the Sum of Minimum Distances [86] as used with multi-instance objects) are not
appropriate, as they neglect the fact that each observation is associated with a confidence
value, which also has to be incorporated when determining the distances between objects.
Other possible solutions, e.g., the single-link distance [190] from the field of hierarchical
clustering, only yield one representative (in this case a lower bound) of the distances.

Incorporating the confidences of the observations, there are two straightforward solu-
tions of determining the distances, which, however, bear significant disadvantages. On
the one hand, considering all possible worlds (cf. Chapter 9), i.e., computing the pair-
wise, probability-weighted Euclidean distances between all combinations of observations
of two objects, causes exponential runtime and is therefore not applicable. In the above
example, Figure 1.8(c) depicts one possible world, which also relativizes the previously
observed relationship; here, the relationship dist(A,C) > dist(A,B). The second solu-
tion is to represent each uncertain object by the mean vector of its observations and then
simply apply the Euclidean distance to these (single-observation) objects. However, this
aggregated representation causes a significant information loss w.r.t. the real distribution
and the confidence of the observations within the objects, which may lead to incorrect or
inaccurate results.

Part III will address the need for effective and efficient approaches for similarity pro-
cessing in uncertain databases, in particular with solutions for similarity ranking queries
in spatially uncertain data and with extending the used techniques for data mining tasks,
such as the probabilistic variant of the prominent problem of frequent itemset mining.
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Chapter 2

Outline

The body of this thesis is organized as follows:

Part II will deal with the key property of temporal variability of multi-observation
data by focusing on similarity processing in time series databases. Here, similarity based
on the extraction of periodic patterns from time series will play a key role. After giving
a motivation for the analysis of time series and the need of acceleration techniques in
Chapter 3, Chapter 4 will provide an overview of related work. Here, most important time
series analysis methods as well as indexing techniques for high-dimensional feature spaces
that support efficient processing will be summarized.

Chapter 5 will present the generic data mining framework Knowing which is designed
for time series analysis. The central application scenario for this framework is the process
of activity recognition. Chapter 6 [39, 41] will present an activity recognition approach for
three-dimensional time series from accelerometers. The process chain of common solutions
will be augmented by additional steps in order to achieve superior results to those of
competitors. The experimental evaluation of the presented approach was supported by the
Knowing framework.

An important step of the activity recognition process is the extraction of feature vectors
from time series. This allows the acceleration of similarity queries, which are a potential
part of the classification step within the activity recognition process, by the use of index
structures for the potentially high-dimensional feature space. Chapter 7 [40] will address
this problem for the full-dimensional space by providing a technique which enhances the se-
quential scan and which is based on a modified physical database design. Chapter 8 [32, 33]
will address the case where only a subset of attributes chosen at query time is relevant.
Two index-based solutions will be presented which address similarity processing for arbi-
trary subspaces. These solutions can in particular be applied in the context of querying
and analyzing time series that are represented by feature vectors, if the user is aware of
selecting appropriate subspace dimensions.

Part III will address the key property of uncertainty of multi-observation data by dealing
with similarity processing in the context of probabilistic databases. The main focus here
will be set on the acceleration of probabilistic similarity ranking of spatially uncertain
objects. The techniques for efficient processing will then be applied to probabilistic mining
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applications. Preliminary definitions of the used data models and the motivations to the
problems that are to solve will first be given in Chapter 9. An overview of related work
will follow in Chapter 10.

Chapter 11 [45, 49] will introduce a framework that supports iterative probabilistic
similarity ranking. A ranking algorithm based on a divide-and-conquer method will be
presented that exploits the full probabilistic information given by inexact object repre-
sentations in a more efficient way. A second approach will apply an existing solution for
relational data, which is based on a dynamic-programming technique, to spatially uncer-
tain data. Chapter 12 [43] will introduce an incremental probabilistic ranking approach
that enhances the dynamic-programming algorithm. This will reduce the computational
cost of the former solutions from exponential and quadratic runtime to linear complexity.

Chapter 13 [44] will focus on the probabilistic inverse ranking query, which represents
the contrary problem of the “common” probabilistic ranking. Therefore, the dynamic-
programming technique proposed in Chapter 12 will be extended to uncertain stream
data, i.e., to data that changes with elapsing time. The solution will provide result updates
requiring constant time.

Chapter 14 [48] will propose an approach for the detection of potentially interesting
objects (hot items) of an uncertain database in a probabilistic way. A hot item is defined
by a sufficiently large population of similar objects in the database and is an essential step
for several density-based data mining techniques. This approach will be based on a further
extension of the dynamic-programming technique used in the previous chapters.

The final chapters of Part III will go beyond the definition of multi-observation data,
but remain in the area of uncertainty. Chapters 15 [46] and 16 [47] will tackle the prob-
lem of probabilistic frequent itemset mining. Chapters 15 will introduce a framework
which efficiently computes the frequentness of probabilistic itemsets, again extending the
dynamic-programming technique used in the previous chapters of Part III. Chapter 16 will
utilize a similar, but more intuitive technique. Furthermore, an approach will be presented
to mine all probabilistic frequent itemsets in uncertain transaction databases without can-
didate generation, thus providing a solution which is more efficient in terms of computation
time and memory requirements.

Finally, Part IV will conclude this thesis. The contributions of this work for current
research will first be summarized in Chapter 17. The last chapter (Chapter 18) will exam-
ine possible future directions for each of the contributions included in this thesis for the
context of the research areas of time series, indexing of high-dimensional feature spaces
and probabilistic databases, respectively.
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Part II

Key Property of Temporal
Variability : Time Series
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Chapter 3

Introduction

3.1 Preliminaries

3.1.1 A Definition of Time Series

The data model of time series incorporates the key property of temporal variability of
multi-observation data (cf. Chapter 1). The general time series model used in this part is
defined as follows, picking up a slight modification of the definition given in [16].

Definition 3.1 (Time Series) A time series X = (x1, . . . , xn) is an ordered sequence of
values xi ∈ R (1 ≤ i ≤ n) w.r.t. a temporal domain, where ti < ti+1 and f(ti) = xi.
Hereby, f : N→ R is a function mapping time stamps to amplitude values.

In the existing literature, the temporal domain which comprises the time stamps, in most
cases, assumed to be discrete, i.e., X contains a finite number of values; in this work, a
discrete time domain will be assumed as well. Hence, in this part, the points ti are called
time stamps. The (amplitude) values of a time series will be referred to as observations.

3.1.2 Similarity-Based Time Series Analysis

When querying time series within analysis and mining tasks, most methods focus on time
series retrieval w.r.t. the best whole or subsequence matching with a query time series.
Popular distance measures for time series comprise, for example, the Euclidean distance
or the Dynamic Time Warping (DTW ) approach, which has first been used for speech
recognition [182] and proposed for the utilization in time series similarity and data mining
in [29]. These measures, however, bear significant drawbacks. The Euclidean distance
does not consider the temporal dependency of observations, and, thus, does not reflect
particular characteristics of time series (cf. Chapter 1). DTW addresses this shortcoming
by allowing shifting and scaling in the time domain, but rapidly degenerates due to its high
computational cost with a high number of observations. Commonly applied solutions are
provided via dimensionality reduction methods and the extraction of significant features
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that allow the usage of Lp-norms in the feature space and traditional indexing techniques
like the R∗-tree [23] for the feature space.

This part will focus on similarity processing on time series with a special focus on
cyclic activities, in particular on the evolution of periodic patterns that repeatedly occur
in specified periods over time. The motivation is given by the application scenario of
activity recognition.

3.1.3 From Time Series Analysis to Activity Recognition

The field of activity recognition is an important application domain where the analysis of
time series supports the detection and prevention of diseases. In this context, a dedicated
processing chain is performed, including time series segmentation (which detects the peri-
odic patterns), dimensionality reduction and the final classification. A short summary of
these steps with related work will be provided in Chapter 4.

The process of activity recognition can be supported by the time series analysis frame-
work Knowing [41], which will be presented in Chapter 5. Knowing is based on a modular
structure that supports the extraction of knowledge from data, which is, in the general KDD
process, not restricted to the analysis itself, but accompanied by pre- and postprocessing
steps. Handling data coming directly from the source, e.g., a sensor, often requires precon-
ditioning like parsing and removing irrelevant information before data mining algorithms
can be applied to analyze the data. Standalone data mining frameworks do not provide
such components since they require a specified input data format. Furthermore, they are
often restricted to the available algorithms or a rapid integration of new algorithms for the
purpose of quick testing is not possible. Knowing addresses this shortcoming and is easily
extendible with additional algorithms by using an OSGi compliant architecture. In the
context of activity recognition, Knowing serves as a medical monitoring system recording
physical activity. Knowing was originally designed for time series analysis in the context
of medical monitoring. However, the need for an extensive data mining functionality lead
to a decoupling of the basic structures, resulting in a powerful data mining framework.

Chapter 6 will propose an activity recognition approach which utilizes matching-based
similarity processing on time series derived from three-dimensional accelerometers. Here,
the structure of patterns is strongly dependent of the characteristics of an activity. State-
of-the-art activity recognition systems already provide good results, but the accuracy of
recognition algorithms often depends on the position of the sensors and the quality of the
data. The provided solution [39], that emerged from publications in the medical sector [197,
198], proposes an activity recognition system designed for accelerometers positioned at the
ankle. In general, this position achieves superior recordings to other body positions [196].
Here, the detection of the periodic patterns is a basic task. A periodic activity appears as a
time series containing similar, consecutive periodic segments; however, a pattern sequence
may contain (nonperiodic) gaps due to measurement errors or intended movement breaks
because of diverse influences like red traffic lights that interrupt continuous cycling or
walking. An optimal classification result should include both the periodic parts and the
nonperiodic segments in case the latter are surrounded by the same activity. However,
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Figure 3.1: Transformation of a time series into the feature space.

the characteristics of periodic and nonperiodic segments are not necessarily the same.
An adequate representation of the characteristics of the segments will be provided by
the transformation to the feature space. This implies the possibility to apply common
spatial indexing techniques for efficient processing. An extensive evaluation on real-world
datasets will show that the provided solution outperforms prior work, while focusing on
the effectiveness of activity recognition.

3.1.4 Accelerating the Process via Indexing

The activity recognition process of Chapter 6 is performed based on the extraction of rel-
evant characteristics from time series. A time series of length n is then represented by
a single point in the d-dimensional feature space, which reduces the complexity of time
series, as commonly d � n holds. In the context of similarity processing, this allows
the application of spatial index structures, which accelerate similarity queries and, there-
with, data mining algorithms that further process the results of similarity queries (such as
similarity-based classification), resulting in a significant efficiency gain.

An example for feature transformation is illustrated in Figure 3.1. Here, two character-
istic features f1 and f2 are extracted from a time series A (cf. Figure 3.1(a)), which then
represent A as two-dimensional points in the feature space, where distances between ob-
jects are commonly determined by Lp-norms (cf. Figure 3.1(b)). Efficient query processing
is then performed using a spatial index – in this example by an R∗-tree (cf. Figure 3.1(c)).

It will be shown in Chapter 6 that the derived feature vectors from the time series
tend to be high-dimensional. To address possibilities to boost query processing in high-
dimensional feature spaces, this part will present two indexing variants for both the full-
dimensional case and for arbitrary subspaces. Both solutions will focus on k-nearest neigh-
bor (k-NN) queries, as these can directly be used in activity classification tasks.
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3.2 Indexing in High-Dimensional Feature Spaces

3.3 Full-Dimensional Indexing

Similarity processing in high-dimensional data is inherently difficult, due to the curse of
dimensionality [24]. This phenomenon relativizes the term of similarity between spatial
objects; distances are no more significant when the dimensionality of the feature space
increases. Then, for example, nearest neighbor search is no more meaningful if the nearest
neighbor of an arbitrary query object is not sufficiently different from its farthest neigh-
bor [51].

Common index structures for feature spaces degenerate due to this well-known problem;
it has been stated that, depending on the data distribution, the sequential scan performs
superior to index structures. Addressing the drawbacks of traditional index structures
in high-dimensional spaces, Chapter 7 [40] will elaborate on the vertical decomposition
technique employed in [85], which provides a method for enhancing similarity processing
high-dimensional data based on the sequential scan. While the abundance of data storage
and retrieval systems is based upon horizontally decomposed data, vertical decomposi-
tions exhibit intriguing advantages, but also contain serious restrictions. Some of these
restrictions will be overcome in Chapter 7.

3.4 Indexing Approaches for Subspace Queries

There are many scenarios for applications where the similarity of objects is defined for a
subset of attributes. Moreover, users should be able to define an interesting subspace for
each query independently. While much research has been done in efficient support of sim-
ilarity queries regarding the full-dimensional space or single dimensions only, scarcely any
support of similarity search in subspaces has been provided so far, e.g., [136, 156]. These
approaches, however, are variations of the sequential scan and, thus, lacking conditions for
efficient processing. Overcoming these drawbacks, two index-based solutions introduced
in [32, 33] will be presented in Chapter 8. They facilitate efficient similarity processing
for user-defined, arbitrary subspaces in large and potentially high-dimensional databases,
if the user is aware of a meaningful feature combination.

Regarding the relevance of features in subspace search for activity recognition (cf. Chap-
ter 6), the user may examine arbitrary feature combinations in order to classify new activ-
ities. In other scenarios like image retrieval, it could be of interest for any user to search,
e.g., in a database of images represented by texture-, color-, and shape-descriptions, for
objects that are similar to a particular image where the similarity is related to the shape
of the motifs only but not to their color or even the color of the background. Also, for
different queries, different regions of interest in a picture may be relevant. Furthermore,
An online-store might like to propose similar objects to a customer where similarity can
be based on different subsets of features. While in such scenarios, meaningful subspaces
can be suggested beforehand [105, 130], in other scenarios, possibly any subspace could
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be interesting. For example, for different queries, different regions of interest in a picture
may be relevant. Since there are 2d possible subspaces of a d-dimensional data set, it is
practically impossible to provide data structures for each of these possible subspaces in
order to facilitate efficient similarity search. Another application where efficient support
of subspace similarity queries is required are subspace clustering algorithms [137] that rely
on searching for clusters in a potentially large number of subspaces. If efficient support of
subspace range queries or subspace nearest neighbor queries were available, virtually all
subspace cluster approaches could be accelerated considerably.
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Chapter 4

Related Work

4.1 Similarity of Time Series

4.1.1 Similarity Measures

Matching-based analysis comprises methods that, given a query time series, return the
time series from the database that yield the best matching(s) to the query. The two
main foci here are full matching w.r.t. the complete time series and partial matching w.r.t.
subsequences. Overall, there are abundant approaches performing matching-based analysis
of time series. Typical measures are the Lp-norms, where the Euclidean distance is most
popular. However, its ability to reflect the temporal ordering of observations is poor (cf.
Chapter 1). Searching patterns can be supported by the edit distance measures, comprising
Dynamic Time Warping (DTW ) [29], that supports asynchronous matching, and other
variants of the edit distance, such as the Longest Common Subsequence (LCSS ) [200],
the Edit Distance on Real sequence (EDR) [71] and the Edit distance with Real Penalty
(ERP) [70]. Since the edit distance measures support only scaling and shifting in the time
domain, the works [72, 73] introduce the Spatial Assembling Distance (SpADe) model,
which additionally supports scaling and shifting in the amplitude domain and, thus, is also
applicable for pattern detection in streaming time series.

Matching-based approaches based on warping techniques often suffer from their unsat-
isfying time complexity. Thus, a number of dimensionality reduction techniques are com-
monly applied on time series. Well-known examples among them are the Discrete Wavelet
Transform (DWT ) [66], the Discrete Fourier Transform (DFT ) [9], the Piecewise Aggre-
gate Approximation (PAA) [120, 213], the Singular Value Decomposition (SVD) [128], the
Adaptive Piecewise Constant Approximation (APCA) [121], Chebyshev Polynomials [64],
the Piecewise Linear Representation (PLR) [122], the Piecewise Linear Approximation
(PLA) [167], or the Symbolic Aggregate Approximation (SAX ) [159, 160]. In [93], the
authors propose the GEMINI framework, that allows to incorporate any dimensionality
reduction method into efficient indexing, as long as the distance function on the reduced
feature space satisfies the lower bounding property. Extracted features of different types
and expressiveness are combined to feature vectors.
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Existing work that utilizes dimensionality reduction methods in the context of activity
recognition will be reviewed in Subsection 4.1.2.

In some application scenarios, the exact observations are less important than the fact
whether a particular amplitude threshold is exceeded, such that an observation can be
regarded to represent a significant event. This leads from matching-based to threshold-
based time series analysis. Threshold-based analysis on time series is performed by the
detection of similar events or regions of significance which exceed a particular amplitude
level, and finally by the consideration of a representation or a similarity measure that
focuses on these events.

The authors of [176] propose a bit sequence representation of time series. For each ob-
servation, a bit is set if the corresponding amplitude value exceeds a particular threshold
value. Thus, sequence patterns are defined on the threshold-exceeding amplitudes. Sim-
ilarity can then efficiently be computed based on those bits. However, this solution does
not provide a possibility to specify a particular threshold value at query time.

This restriction has been addressed in [2, 3], which support similarity search methods
based on the consideration of significant events that can be recognized with amplitude
values that exceeding a particular threshold. Given a threshold value τ , this approach
reduces time series to a sequence of intervals corresponding to time periods where the am-
plitude value of a time series exceeds τ . Based on this threshold representation, the features
proposed in [4] can be calculated over the whole amplitude spectrum for different values
of τ . Thus, time-domain properties can be captured over the whole available amplitude
range. The authors of [2] introduce the dual-domain time series representation, where the
existence of periodic patterns is captured from multiple time domains. Threshold-based
techniques allow to materialize these patterns as spatial objects. There, it is shown that
the extraction of simple features can achieve a good quality of similarity query results. An
implementation is provided in [42].

4.1.2 Applicative Time Series Analysis: Activity Recognition

The general steps of the activity recognition process is related to the general KDD process
(cf. Chapter 1). Contributions as well as applicative publications that use particular tech-
niques will be summarized in the following part. A more detailed survey of this processing
chain is given in [17].

Data Preprocessing

Recorded time series data from accelerometers often contains noise of high frequency, which
in many cases distorts the actual signal. Thus, sliding-window-based average [127] or
median filters [118] are applied in order to remove outliers. Furthermore, removing the
effect of the gravitational force is supposed to distinguish activity from non-activity phases.
This is in general obtained by applying a low-pass filter, as shown in [13, 118].
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Segmentation

In order to separate periodic parts from nonperiodic parts, time series are divided into
subsequent segments. In the literature, there exist different techniques for segmenting time
series. Sliding-window-based methods [131, 174, 201, 202] are suitable for online processing
and provide pattern matching algorithms starting with a reference sample that is extended
until the matching distance exceeds a particular threshold. Top-down approaches in the
context of time series processing [148, 153, 188] recursively split a time series into two
subsequences w.r.t. an approximation error threshold. Complementary approaches [123,
124, 125] work in a bottom-up manner, starting with n

2
segments of size 2 (where n denotes

the number of observations) and combining adjacent subsequences until an upper cost
bound is reached.

In [122], time series segmentation is used to obtain a piecewise linear representation of
time series, such as PLA [167] PLR [122]. The authors propose the SWAB framework,
which combines the advantages of sliding-window, which is most efficient, and bottom-up,
which provides best segmentation quality. Nevertheless, sliding-window-based methods are
still most frequently used in the area of activity recognition [17], as it is suitable for online
processing. Selected coefficients obtained by dimensionality reduction methods and further
characteristics are then obtained by feature extraction. Thus, the segmentation method
used in Chapter 6 is based on a sliding-window algorithm. The obtained segments will
turn out to provide a good separation of the activity recordings.

Feature Extraction

Periodic and nonperiodic segments of time series are commonly described by a combination
of features of different types.

• Time-domain features, such as mean, variance and standard deviation [146, 171, 205]
or the Root Mean Square (RMS ) [100, 164] are directly derived from the time series.
Further prominent examples of this feature type are the average time between the
peaks [146] and the number and average value of the peaks [205].

• Many publications apply well-known dimensionality reduction techniques by trans-
forming the time series into the frequency domain (see also Subsection 4.1.1). Fre-
quency-domain features can be derived by the DFT (or FFT, Fast Fourier Trans-
form [62]) and are used in [20, 193]. Features like aggregated FFT coefficients or the
entropy of the frequency domain [20], that distinguish activities where similar energy
values are detected (e.g., running and cycling), or single FFT coefficients [133] are
also used in existing literature.

• A combination of domains w.r.t. time and frequency is given by wavelet features,
derived from the DWT and is used in the context of gait classification [169].

• Heuristic features cannot be directly derived from the time series, but require math-
ematical and statistical methods to be extracted from the three dimensions of ac-
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celerometrical time series data simultaneously. A prominent example here is the
Signal Magnitude Area (SMA), which is defined by the sum of the absolute values
of all axes within the current time window and that is used in several works [13, 58,
118, 127, 212]. A further feature of this class is given by the Inter-Axis Correlation,
which is a suitable measure to distinguish between movements measured at different
body parts [20]. However, the authors of [171] could prove that this feature performs
inferior to the simple features like mean and standard deviation. Further heuristic
features will be presented in Chapter 6.

The adequate combination of features is an important task, since the classification of the
time series highly depends on a good representation.

Feature Vector Dimensionality Reduction

In order to reduce the computational effort of the classification process, dimensionality
reduction is typically applied in order to remove redundant information; this decreases the
size of the feature vectors. In the context of accelerometer data, the literature distinguishes
between methods of feature selection and feature transformation, which can also be used
in combination.

• Feature selection methods include, for example, methods based on Support Vector
Machines (SVMs [132], e.g., applied in [203]), or the forward-backward search tech-
nique [218] (e.g., used in [171] and also in Chapter 6).

• Feature transformation methods further support the separation of different classes.
Commonly applied techniques here are the Principal Component Analysis (PCA [170],
e.g., used in [212, 216]), the Independent Component Analysis (ICA [81], e.g., used
in [166]) or the Linear Discriminant Analysis (LDA [95], e.g., used in [100, 127] and
also in Chapter 6).

Classification

The effectiveness and also the efficiency varies with the selection of the classifier. Using
similarity-based classifiers, similarity queries performed within the classification process
can be further accelerated via indexing techniques. The latter issue will be addressed in
Chapters 7 and 8 for the case of k-nearest neighbor (k-NN) queries, which are performed
in the context of k-NN classification.

Several publications in the context of activity recognition apply supervised classification
methods based on pattern recognition and training phases, e.g., decision trees [20, 106, 118],
Hidden Markov Models [205], Gaussian Mixture Models [13], k-NN classifiers [106, 171],
Näıve Bayes classifiers [106], Support Vector Machines (SVMs) [132], or Neural Net-
works [127, 146]. Chapter 6 will propose an additional step that improves the classification
result.
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4.2 Indexing in High-Dimensional Feature Spaces

4.2.1 Full-Dimensional Indexing

The contributions of research on full-dimensional index structures are abundant [183].
Established index structures, such as [23, 28, 101, 119], are designed and optimized for the
complete data space where all attributes are relevant for data partitioning and clustering
or for simply satisfying a query predicate. With increasing dimensionality, however, index
structures degrade rapidly due to the curse of dimensionality [24].

A solution is provided by commonly applied methods enhancing the sequential scan, for
example the VA-file [207]. Other approaches use a hybrid structure, which is tree-based,
but requires to scan successive blocks or node elements [27, 28].

A third solution tackling the problem of indexing high-dimensional data called BOND is
given in [85], which is also a search strategy enhancing the sequential scan. Contrary to the
aforementioned techniques, BOND exploits modifications w.r.t. the physical database de-
sign. The basic idea is to use a columnstore architecture (as known from NoSQL database
systems), sort the columns according to their potential impact on distances and prune
columns if their impact becomes too small to change the query result. However, BOND
depends on particular assumptions that restrict the applicability of the approach. Chap-
ter 7 [40] will introduce a solution that overcomes most of these restrictions.

4.2.2 Indexing Approaches for Subspace Queries

The first approach addressing the problem of subspace similarity search explicitly has been
proposed by the Partial VA-file in [136]. There, the authors propose an adaptation of the
VA-file [207] to the problem of subspace similarity search. The basic idea of this approach
is to split the original VA-file into one partial VA-file for each dimension, containing the
approximation of the original full-dimensional VA-file in that dimension. Based on the in-
formation of the partial VA-files, upper and lower bounds of the true distance between data
objects and the query are derived. Subspace similarity queries are processed by scanning
only the relevant files in the order of relevance, i.e., the files are ranked by the selectivity
of the query in the corresponding dimension. This processing is similar to [85], which will
be reviewed in the full-dimensional case in Chapter 7, and which implicitly addresses the
subspace problem by its physical design via weighted search. A third approach to the
problem is proposed in [156], although only ε-similarity range queries are supported. The
idea of this multipivot-based method is to derive lower and upper bounds for distances
based on the average minimum and maximum impact of a possible range of the subspace
dimensions; these bounds are computed in a preprocessing step for a couple of pivot points.

All these approaches are variations of the sequential scan. Contrary, Chapter 8 will
present two index-based solutions that accelerate similarity search in arbitrary subspaces.
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Chapter 5

Knowing : A Generic Time Series
Analysis Framework

5.1 Motivation

Supporting the data mining process by tools was and still is a very important step in
the history of data mining. With the support of several tools like ELKI [1], MOA [56],
WEKA [102], RapidMiner [165] or R [175], scientists are nowadays able to apply a diversity
of well-known and established algorithms on their data for quick comparison and evalua-
tion. Although all frameworks perform data mining in their core, they all have different
target groups.

WEKA and MOA provide both algorithms and GUIs. By using these GUIs, the user can
analyze datasets, configure and test algorithms and visualize the outcome of the according
algorithm for evaluation purposes without needing to do some programming. As the GUI
cannot satisfy all complex scenarios, the user still has the possibility to use the according
APIs to build more complex scenarios in his or her own code.

RapidMiner integrates WEKA and provides powerful analysis functionalities for analy-
sis and reporting which are not covered by the WEKA GUI itself. RapidMiner provides an
improved GUI and also defines an API for user extensions. Both RapidMiner and WEKA
provide some support to external databases.

The aim of ELKI is to provide an extensible framework for different algorithms in the
fields of clustering, outlier detection and indexing with the main focus on the compara-
bility of algorithm performance. Therefore, single algorithms are not extensively tuned
to performance, but tuning is done on the application level for all algorithms and index
structures. Like the other frameworks, ELKI also provides a GUI, so that programming
is not needed for the most basic tasks. ELKI also provides an API that supports the
integration of user-specified algorithms and index structures.

All the above frameworks provide support for the process of quick testing, evaluating
and reporting and define APIs in different depths. Thus, scientists can incorporate new
algorithms into the systems. R provides a rich toolbox for data analysis. Also, there are
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many plug-ins which extend the functionality of R.

In cases where the requirements enforce a rapid development from data mining to
a representative prototype, these unstandardized plug-in systems can cause a significant
delay which is caused by the time needed to incorporate the algorithms. Each implemen-
tation of an algorithm is specifically adapted to the according framework without being
interchangeable.

With the use of a standardized plug-in system like OSGi1, Java Plug-in Framework
(JPF) or Java Simple Plug-in Framework (JSPF), each implementation of an algorithm
does not have to be specifically adapted to the according framework. This chapter will
introduce Knowing (Know ledge Engineering) [41], a framework that addresses this short-
coming by bridging the gap between the data mining process and rapid prototype devel-
opment. This is achieved by using a standardized plug-in system based on OSGi, so that
algorithms can be packed in OSGi resource bundles. This offers the possibility to either
create new algorithms as well as to integrate and exchange existing algorithms from com-
mon data mining frameworks. The advantage of these OSGi compliant bundles is that they
are not restricted for use in Knowing, but can be used in any OSGi compliant architecture.

The data mining tool Knowing includes the following contributions:

• a simple, yet powerful graphical user interface (GUI),

• a bundled embedded database as data storage,

• an extensible data mining functionality,

• extension support for algorithms addressing different use cases, and

• a generic visualization of the results of the data mining process.

Details of the architecture of Knowing will be given in Section 5.2. The application sce-
nario, described in Section 5.3, presents the medical monitoring system MedMon [186],
which itself extends Knowing. In the developer stage, it is easily possible to switch be-
tween the scientific data mining view and the views which will be presented to the end users
later on. As MedMon is intended to be used by different target groups of the medical area
(physicians and patients), it is desired to use a single base system for all views and only
deploy different user interface bundles for each target group. This way, the data mining
process can seamlessly be integrated into the development process by reducing long-term
maintenance to a minimum, as only a single system with different interface bundles has
to be kept up to date and synchronized instead of a special data mining tool, a physician
tool and a patient tool.

1OSGi Alliance: http://www.osgi.org/

http://www.osgi.org/
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5.2 Architecture

5.2.1 Modularity

Applying a standardized plug-in system like OSGi, the bundles can be used in any OSGi
compliant architecture like the Eclipse Rich Client Platform (RCP)2 or the NetBeans
RCP3. Then, the integration of existing algorithms can simply be done by wrapping and
packing them into a separate bundle. Such bundles are then registered as independent
service providers to the framework. In either case, algorithms are wrapped into Data
Processing Units (DPU) which can be integrated and configured via pluggable RCP-based
GUI controls. Thus, the user is able to perform an arbitrary amount of steps to pre- and
postprocess the data. Furthermore, the possibility is provided to use the DPUs contained
in the system in any other OSGi compliant architecture. As dependencies between resource
bundles have to be modeled explicitly, it is much easier to extract particular bundles from
the system. This loose coupling is not only an advantage in case where algorithms should
be ported between completely different systems, but also if the GUI should be changed
from a data mining view to a prototype view for the productive system. This can be
done by either using the resource bundles containing the DPUs, or by directly extending
Knowing itself.

In the current implementation, the Knowing framework is based on the established
and well-known Eclipse RCP system and uses the standardized OSGi architecture4, which
allows the composition of different bundles. This brings the big advantage that data miners
and developers can take two different ways towards their individual goal: if they start a
brand new RCP-based application, they can use Knowing out of the box and create the
application directly on top of Knowing. The more common case might be that an RCP-
or OSGi-based application already exists and should only be extended with data mining
functionality. In this case, only the appropriate bundles are taken from Knowing and
integrated into the application.

The following part describes the architecture of the Knowing framework, which consists
of a classical three-tier architecture comprising data storage tier, data mining tier and GUI
tier, where each tier can be integrated or exchanged using a modular concept.

5.2.2 Data Storage

The data storage tier of Knowing provides the functionality and abstraction layers to
access, import, convert and persist the source data. The data import is accomplished by
an import wizard using service providers, so that importing data is not restricted to a
particular format.

Applying the example of the MedMon application, a service provider is registered that
reads binary data from a three-dimensional accelerometer [198] which is connected via

2Eclipse RCP: http://www.eclipse.org/platform/
3NetBeans RCP: http://netbeans.org/features/platform/
4Eclipse Equinox: http://www.eclipse.org/equinox/

http://www.eclipse.org/platform/
http://netbeans.org/features/platform/
http://www.eclipse.org/equinox/
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Figure 5.1: The process chain editor of Knowing user interface.

USB. The data storage currently defaults to an embedded Apache Derby database5 which
is accessed by the standardized Java Persistence API (JPA & EclipseLink). This has the
advantage that the amount of data being read is not limited by the main memory of the
used workstation and that the user does not have to set up a separate database server
on his or her own. However, by using the JPA, there is the possibility to use more than
20 elaborated and well-known database systems which are supported by this API6. An
important feature in the data storage tier arises from the possibility to use existing data to
support the evaluation of newly recorded data, e.g., to apply particular parts of the data
as training sets or reference results.

5.2.3 Data Mining

This tier includes all components needed for data mining and data analysis. OSGi bundles
containing implemented algorithms are available fully transparently to the system after
the bundle is registered as a service provider.

Algorithms are either implemented directly or wrapped in DPUs. Following the design
of WEKA, DPUs represent filters, algorithms or classifiers. One or more DPUs can be
bundled into an OSGi resource bundle which is registered into the program and, thus,
made available in the framework. Bundling algorithms enforces a pluggable and modular

5Apache Derby: http://db.apache.org/derby/
6List of supported databases: http://wiki.eclipse.org/EclipseLink/FAQ/JPA

http://db.apache.org/derby/
http://wiki.eclipse.org/EclipseLink/FAQ/JPA
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architecture, so that new algorithms can be integrated and removed quickly without the
need for extensive dependency checks. The separation into bundles also provides the pos-
sibility of visibility borders between bundles, so that separate bundles remain independent
and, thus, the system remains maintainable. The modularity also provides the possibility
to concatenate different algorithms into processing chains so that algorithms can act both
as sources and targets of processed entities (cf. Figure 5.1). Raw data for example first
could pass one or more filtering components before being processed by a classification or
clustering component.

The creation of a processing chain (a.k.a. model) of different, concatenated algorithms
and data-conditioning filters is supported by GUI controls, so that different parameters or
concatenations can be tested easily. After a model has proved to fit the needs of a use case,
the model can be bundled and later be bounded to other views of the GUI, so that the
cost for porting, adapting and integration is minimized to binding components and models
together. Hence, porting and adapting algorithms and other components from different
APIs is not needed.

This architecture provides the possibility to integrate algorithms from other sources
like [1, 56, 102, 175], so that existing knowledge can be reused without having to reim-
plement algorithms from scratch. This also provides the possibility to quickly replace
components by different implementations if performance or licensing issues require to do
so.

In the data mining part of the application, Knowing does not only support plain Java
but also relies on the use of the Scala programming language7. Scala is a functional and
object-oriented programming language which is based on the Java Virtual Machine, so
that it seamlessly integrates into Knowing. The advantage of Scala in this part of the
application lies in the simple possibility of writing functional code shorter than in regular
Java code. By using the Akka actor model8, it is easy to create processing chains which
are executed in a parallel way so that Knowing can make use of multi-core systems.

5.2.4 User Interface

Using the well-established Eclipse RCP and its powerful concept of views enables developers
to easily replace the view of the data mining scientists with different views for end users
or prototypes. Thus, the task of porting data mining algorithms and the data model
to the final application is replaced by just combining the binding model with the view
components. As Eclipse itself is designed as an RCP using OSGi, it is comparatively easy
to unregister the original Knowing GUI and replace it with an interface representing the
final application.

7Scala programming language: http://www.scala-lang.org/
8Project Akka: http://akka.io/

http://www.scala-lang.org/
http://akka.io/
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5.3 Application Scenario

The application is motivated by an early stage of the application prototype MedMon
(Med ical Monitoring), which is based on Knowing. MedMon is a prototype of a use case
for monitoring a patient’s activity to support his or her convalescence and is presented
in [186].

Physical activity in this case includes various types of motion like walking, running and
cycling. The task is to perform data mining on long-term temporal sensor data provided
by people wearing the accelerometer, which is recording and storing acceleration data in
all three axes with a frequency of 25 Hz. When the sensor is connected to a computer,
the data is parsed and transferred to the Knowing framework, where it is stored in the
underlying database. Knowing is able to deal with different types of time series which are
not limited to the medical field but can be applied to different types of scenarios where
time series data is being produced and needs to be analyzed. Analyzing the data in this use
case means the application of classification techniques in order to detect motion patterns
of activities and, thus, to separate the different types of motions. Available algorithms as
well as additionally implemented techniques for data mining and the preconditioning of the
temporal data (e.g., filtering of specific information, dimensionality reduction or removing
noise) can efficiently be tested and evaluated on the data and can furthermore be applied
to the data by taking advantage of the OSGi compliant architecture (cf. Section 5.2). By
using the standardized OSGi plug-in system, Knowing integrates and embeds well-known
data mining tools and, thus, avoids the reimplementation of already tested algorithms.
The requirement of a quick migration of the final data mining process chain to a prototype
system is accomplished by using different graphical views on a common platform. Thus,
neither the process models nor the algorithms need to be ported. Instead, only a different
view of the same base model needs to be activated to enable the prototype. Finally, the
demo provides a generic visualization model to present the results of the data mining
process to the user. An exemplary GUI frame is depicted in Figure 5.2. The import of the
raw data is simplified by a wizard, which includes a preview of the time series.

Working with MedMon, the user is enabled to switch between different roles. The
prototype allows several views on the recorded data and the results of the data mining
process:

• the data mining view, where DPUs can be combined to processing chains and which
allows to employ newly developed algorithms;

• the physician view, which provides a more detailed view on the data for multiple
users’ activities and the possibility to add and modify electronic health records;

• and the patient view, which displays only a very brief summarization in order to give
feedback to the user about his or her achieved activity pensum each day.

In the presented use case, it is possible to analyze the daily activity processes and perform
long-term data analysis, as performed by the activity recognition solution in Chapter 6. In
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Figure 5.2: The MedMon prototype GUI.

MedMon, this analysis uses an aggregated view of the results of the data mining process
from the physician view and the patient view. In particular, the data mining view offers
possibilities of the integration of newly developed algorithms and methods for data mining
on the recorded database. More precisely, the current process comprises the import of sen-
sor data from binary files, followed by the steps performed with the approach of Chapter 6:
data preprocessing, the segmentation of the data, the derivation of features from the ex-
tracted segments, dimensionality reduction techniques and the classification of the results
(which can additionally be augmented by postprocessing steps, such as the reclassifica-
tion). Here, the user is able to decide whether to add noise filters for the raw data, select
appropriate features to represent the segments or to choose from different classification
methods.

The MedMon prototype system is not limited to medical applications, but provides a
valuable tool for scientists having to deal with large amounts of time series data. The
source code of the Knowing framework, the MedMon prototype in its current state and
the project wiki are available via GitHub9.

9Knowing on GitHub: https://github.com/knowing/

https://github.com/knowing/
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5.4 Summary

This chapter presented the data mining framework Knowing which allows faster integration
of data mining techniques into the development process of scientific processing methods,
so that information and data can be managed more effectively. The application scenario
showed the integration of Knowing in the application of medical monitoring and outline
the bridge between data mining and development.
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Chapter 6

Activity Recognition on Periodic
Time Series

6.1 Introduction

Many applications that take advantage of the ability to examine the evolution of periodic
patterns in time series can be found in the biological, environmental or medical domain. In
the latter, an important application where the analysis of time series supports the detection
and prevention of diseases is the field of activity recognition. In order to analyze activity,
there is a need of appropriate techniques that detect different activity patterns and to
assign them to predefined activity labels.

This chapter will present an algorithm for activity recognition, where time series data
derived from three-dimensional accelerometers is analyzed in order to classify the recorded
patterns w.r.t. different types of activities. Here, the three dimensions reflect the direction
of physical movement in each axis, i.e., forward/backward, left/right and up/down. The
application scenario was published in a medical context [197, 198] within a collaboration
with the Sendsor GmbH 1, who also provided the accelerometers used to record the datasets
for the experimental evaluation of this chapter. These sensors measure acceleration ampli-
tudes of ±2g.

Diverse pieces of work have shown that the position of an accelerometer has a significant
influence on the results obtained while measuring physical activity [20, 173, 196]. The
results of this research leads to varying interpretations, as the set of activities that have
to be classified strongly depends on the problem definition. There is still no dedicated
position where the measurements of an accelerometer provide globally best results that
are independent of the set of activities; however, it has been shown that accelerometers
positioned at the ankle achieve superior recordings to other body positions [196].

Activity recognition requires several steps of preprocessing before the classifier can
separate different activities properly (cf. Chapter 4). Avci et al. [17] provide a detailed
survey of these steps. An overview of the general processing chain is shown in Figure 6.1.

1http://www.sendsor.de

http://www.sendsor.de
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Figure 6.1: A visualization of the activity recognition process.

The main contributions of this chapter, highlighted in Figure 6.1, consist of

• a reconstruction of the data peaks within the preprocessing steps for the case that
the measured acceleration values exceed the amplitude range,

• the introduction of additional features to represent the recorded physical activities,

• and a reclassification step that corrects classification errors.

The rest of this chapter is organized as follows. The preprocessing steps performed on the
time series will be summarized in Section 6.2. Section 6.3 will present the segmentation
algorithm. Section 6.4 will give details about the examined features for the classification.
Applied techniques for dimensionality reduction of feature vectors will be presented in
Section 6.5. A postprocessing step that corrects classification errors will be presented in
Section 6.6. Section 6.7 will provide a broad experimental part containing the evaluation
of the process chain against an existing approach. Finally, Section 6.8 will conclude this
chapter.

The experimental evaluation was performed using the Knowing framework [41] (cf. Chap-
ter 5), which was developed in conjunction with the approach that will be proposed in this
chapter.

Table 6.1 provides an overview of the most frequent notations used in this chapter. The
processing chain is started with data preprocessing in the following section.

6.2 Preprocessing Steps

6.2.1 Outlier Removal

In order to remove outliers in the data that emerged from measurement or transmission
errors, an average filter is applied [127]. Thus, further processing techniques that are
applied to the data are not influenced by noise. This is, in particular, important for time
series segmentation (cf. Section 6.3) and feature extraction, e.g., the computation of the
Average Peak Amplitude feature (cf. Section 6.4).
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Notation Description

X a one-dimensional time series
n the length (number of observations) of X
ti the ith time stamp of X
xi the observation of x occurring at time ti
Xti the subsequence of X starting at time ti
X̂ a reference sample of X

n̂ the length of X̂
∆opt the optimal pattern length
∆max the maximum pattern length
ρopt the correlation obtained with ∆opt

τρ the correlation threshold
S a segment (subsequence) of X
n′ the length of S
Smax the maximum amplitude value of S
τmin the required minimum amplitude for peaks
v a feature vector
dv the dimensionality of v

Table 6.1: Table of notations frequently used in this chapter.

6.2.2 Peak Reconstruction

In some cases, the sensor recordings may be incomplete. The approach that will be pre-
sented in this chapter uses a sensor that measures acceleration amplitudes in the range
of ±2g. However, very intense or fast movements with a higher acceleration value create
amplitudes that exceed this range. For consecutive values that are beyond this range,
these intervals are cut, yielding significant gaps. One solution to overcome this problem
is, of course, to use a sensor that supports measurements of a higher amplitude range up
to ±12g [58]. However, in order to be independent of technical constraints, the following
method provides a reconstruction of the original signal.

The first step is to identify time intervals where the measured acceleration has exceeded
the amplitude range. In these parts, at least two observations must exist with a maximum
(minimum) amplitude of exactly +2g (−2g). As this scenario is an improbable case, such
a sequence is likely to be the result of truncated data. The missing data after truncations
can be reconstructed using the preceding and following observations. Based on these
values, the average gradients before and after a peak (∆before and ∆after) are derived (cf.
Equations (6.1) and (6.2)) and the average total gradient ∆total can be computed (cf.
Equation (6.3)).

∆before =
1

o

a∑
i=a−o

xi+1 − xi (6.1)
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Algorithm 1 Peak Reconstruction: reconstructPeaks(X, o, maxAmp)

Require: X, o, maxAmp
1: n← |X| i← 1, j ← i+ 1
2: while j ≤ n do
3: while xi = maxAmp and xj = maxAmp do
4: j ← j + 1
5: end while
6: a← i, b← j − 1
7: compute ∆before, ∆after and ∆total according to Eqs. (6.1), (6.2) and (6.3)
8: c← b− a
9: h← b c

2
c

10: for i = 1→ h− 1 do
11: xa+i ← xa+i + (

√
i ·∆total)

12: xb−i ← xb−i + (
√
i ·∆total)

13: end for
14: if c mod 2 = 1 then
15: xa+h ← xa+h + (

√
h ·∆total)

16: else if |∆before| > |∆after| then
17: xb−(h−1) ← xb−(h−1) + ∆total

18: else
19: xa+(h−1) ← xa+(h−1) + ∆total

20: end if
21: i← j + 1, j ← j + 2
22: end while

∆after =
1

o

b+o∑
i=b

xi − xi+1 (6.2)

∆total =
∆before + ∆after

2
(6.3)

Here, xi corresponds to the observation measured at time ti (1 ≤ i ≤ n) and n corresponds
to the length of the time series. A truncated data peak is defined to start at time ta and
to end at time tb. The variable o denotes the number of observations before and after the
peak (respectively) that are considered for the computation of the missing data.

Algorithm 1 presents the steps of the peak reconstruction for one axis. The trun-
cated peaks are determined while scanning the time series once (condition in line 2). If
two successive maximum amplitudes are detected (the maximum depends on the sensor
characteristics and can be set as a parameter maxAmp), the algorithm finds the whole
truncated time range (line 4) and computes the average gradients (line 7). The variable
c denotes the number of subsequent occurring maximum (minimum) values, which is 2 in
the most simple case. Using the variable h, the first (line 11) and last b c

2
c values (line 12)

are interpolated based on a weighted total gradient. If c is odd, then the central value in
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Figure 6.2: An example time series with periodic and nonperiodic segments.

the peak, now represented by xa+h, has to be recomputed in addition (line 15). Otherwise,
both amplitudes xa+(h−1) and xb−(h−1) are equal. Then, a global extremal value within this
segment is ensured by increasing one of the middle values (lines 16ff).

6.3 Segmentation

Detecting periodic parts in time series is performed via segmentation, where a time series
is divided into periodic and nonperiodic sequences (cf. Figure 6.2), in the following called
segments. Both periodic and nonperiodic sequences are then processed separately based
on extracted features (cf. Section 6.4). For a periodic segment, it can be assumed that the
detected activity holds for the entire time period, which is due to the periodicity in the
signal. A nonperiodic segment may contain activity changes or indefinable acceleration
recordings. A feature vector describing a segment is independent of the segment’s length.

The first step of the segmentation is the detection of present periodicity. For this
purpose, a commonly used method in the community of activity recognition is to apply a
sliding window algorithm [131, 174, 201, 202], where autocorrelation [60] is used in order
to measure the self-similarity of time series segments. In general, the autocorrelation
ρ(X, t1, t2) of a time series X at two time stamps t1 and t2 is defined as

ρ(X, t1, t2) =
E[(Xt1 − µt1)(Xt2 − µt2)]

σt1σt2
, (6.4)

where Xti denotes the subsequence of X starting at time ti and µti (σti) denotes the mean
(variance) of Xti (i = 1, 2). Hereby, the length of the subsequence is limited to the current
reference sample length n̂, which is defined below. The pseudocode of the segmentation
algorithm is illustrated in Algorithm 2.

For each starting point of a potential period (denoted by the time stamp ti, which
is initially set to the first time stamp 1), the algorithm consists of two phases: Phase
1 determines the periodicity of the time series X of length n (lines 15-21), and Phase
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Algorithm 2 Time Series Segmentation: segmentation(X, τρ, ∆max, np)

Require: X, τρ, ∆max, np
1: i← 1, Lnp ← [], n← |X|
2: while i ≤ n do
3: X̂ ← extractReferenceSample(X, ti), n̂← |X̂|
4: if i+ ∆max = n then
5: ∆max ← n− i− n̂+ 1 {cut ∆max if too long}
6: end if
7: if ∆max < 2 · n̂ then
8: while i ≤ n do
9: Lnp.add(xi) {assign remaining observations to a nonperiodic segment}

10: i← i+ 1
11: end while
12: createNonPeriodicSegment(Lnp)
13: else
14: ∆t ← l, ρ← 0, ρopt ← 0, ∆opt ← i
15: while ∆t ≤ ∆max do
16: ρ← ρ(X̂, ti, ti + ∆t) {search for optimal shift ∆opt}
17: if ρ > ρopt then
18: ρopt ← ρ, ∆opt ← ∆t

19: end if
20: ∆t ← ∆t + 1
21: end while
22: if ρopt < τρ then
23: Lnp.add(xi) {τρ was never exceeded}
24: i← i+ 1
25: else
26: createNonPeriodicSegment(Lnp) {materialize nonperiodic segment}
27: Lnp.clear()
28: ρ← 0, j ← i
29: while ρ ≥ τρ and j ≤ n− n̂+ 1 do

30: ρ← ρ(X̂, ti, tj)
31: j ← j + ∆opt {extend periodic segment}
32: end while
33: if j − i+ n̂ ≥ np then
34: createPeriodicSegment(X, ti, tj−1) {materialize periodic segment}
35: else
36: createNonPeriodicSegment(X, ti, tj−1) {materialize nonperiodic segment}
37: end if
38: i← j
39: end if
40: end if
41: end while
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2 extracts the periodic segments (lines 29-32). Therefore, X has to be scanned once
completely (condition in line 2). In each iteration, a potential period is represented by a

reference sample X̂ of length |X̂| = n̂, which is extracted from X (line 3). Before starting
the process in the actual iteration, a maximum shift range has to be set in order to limit
the length of a pattern period and, thus, to increase the matching chances. This range
will be denoted by ∆max in the following. Generally, ∆max is set as an input parameter.
However, its value has to be decreased if it exceeds the time series length (line 4f). Also,
if ∆max < 2 · n̂ holds, i.e., a shift of the reference sample length n̂ cannot be performed,
all remaining observations are inserted in a temporary list called Lnp, which collects all
observations that are regarded to be nonperiodic (line 9). The elements will later be
materialized as a nonperiodic segment (line 12). Otherwise, Phase 1 is started.

Phase 1, starting from line 15, detects the optimal window shift between periodic
occurrences of patterns. The reference sample X̂ is now matched with a sliding window
that contains the following observations of the time series within the maximum shift range
∆max. The window shift ∆opt yielding the highest correlation between X̂ and the pattern
occurring in the window is considered as optimal. Thus, the optimal distance between
patterns of a periodic cycle is given by ∆opt observations. A sufficiently high correlation
value is defined by a threshold τρ, which is also an input parameter of the algorithm. Thus,
if no correlation higher than τρ is found within the maximum shift range ∆max, the current
optimal shift ∆opt does not contain any significant periodic pattern. Then, the algorithm
considers the current start time ti to be nonperiodic (line 23) and continues with the next
iteration using the respective sample sequence shifted by one time stamp, now starting at
time stamp ti+1 (line 24).

If a periodic pattern (with ρopt ≥ τρ) is found, the remaining observations in the Lnp
list, i.e., the observations that have before been marked as nonperiodic, are combined to
a nonperiodic segment (line 26) and removed from the Lnp list (line 27). Then, Phase 2
extracts periodic segments from the time series X, starting from line 29. The pattern is
shifted by ∆opt, yielding the new starting time tj, and the correlation between the current
reference sample and the following subsequence is computed. If a minimum correlation
of τρ between Xti and Xtj is obtained (which is obvious with the first shift, as this was
the “highest” correlation value that yielded the value for ∆opt), the periodic segment is
extended performing further shifts of length ∆opt. This shifting procedure is continued
until a correlation value less than τρ is obtained or the periodic pattern reoccurs until the
end of the time series is reached (condition in line 29). A periodic segment is required
to have a minimum length np. If the extracted segment, thus, consists of np or more
observations, a periodic segment is created (line 34). Otherwise, a nonperiodic segment is
created (line 36). Afterwards, the algorithm restarts from the observation at the first time
stamp after the extracted segment (line 38). The segmentation algorithm is finished if all
observations have been assigned to a (periodic or nonperiodic) segment. This condition is
satisfied after all time stamps of the time series have been tested (line 2).

The presented segmentation algorithm is generally restricted to a single time series. An
extension for three-dimensional accelerometer data requires a slight modification. Here,
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the optimal pattern distance is chosen from the time series where the highest correlation
value is obtained, and it is then applied to all time series. In order to mark a periodic
segment, the correlation values ρopt of all three time series have to exceed τρ (line 22).

In general, the autocorrelation method is sensitive w.r.t. slight deviations of the pe-
riodicity. Thus, an activity might be divided into several consecutive periodic segments
showing different behavior w.r.t. frequency or intensity of the acceleration.

The runtime complexity of the segmentation algorithm is O(n · (∆max − n̂)). In the
worst case, the segmenting process has to find the optimal shift within a range of ∆max− n̂
for each of the n observations.

6.4 Feature Extraction

As already stated in Section 6.3, the segments are of different length, so that classifica-
tion cannot be directly performed based on the raw segments, since subsequence matching
would require a high computational cost. Also, this step will not perform efficiently having
segments that consist of a high number of observations. In order to overcome these prob-
lems, each segment is represented by a feature vector of the same dimensionality, where
the choice of features can vary for periodic and nonperiodic segments. An overview of the
final choice of features will be given in Subsection 6.7.2.

The feature vectors used for the approach presented in this chapter contain time-domain
features and heuristic features, which will be summarized in the following. Frequency-
domain features will not be considered in order to the save computational cost w.r.t. the
transformation of the time series to the frequency domain.

For each periodic segment S, it is sufficient to derive only one feature vector v, as
common characteristics for a segment follow directly from the periodicity of the observa-
tions contained in the segment. If a minimum length of np observations for S is assumed
for each axis recorded by the accelerometer, the usage of feature vectors now reduces the
dimensionality from at least 3 ·np values (regarding all three axes) to dv, where dv denotes
the dimensionality of v and in general dv � np holds. In an exemplary case of np = 100
and dv = 15 (which will be the final size for the experimental part), this corresponds to a
reduction of at least 95%. For nonperiodic segments, it cannot be assumed that all obser-
vations were captured with the same physical activity, as no periodicity has been detected.
Thus, a single feature vector would not represent the entire segment that well. In order
to minimize this error, a nonperiodic segment is again split up into subsegments having
a number of nnp observations, each represented by its own feature vector. In most cases,
the last subsegment contains less than nnp observations, since a nonperiodic segment, in
general, varies in its length. If the last subsegment contains more than nnp

2
observations,

another feature vector is computed. If this is not the case, this subsegment will be ne-
glected in the classification step, as it hardly contains sufficiently enough information for
the creation of some features, such as the ARC feature, which will be explained in the
following. However, this subsegment will be considered again in the reclassification step,
which is performed after the classification (cf. Section 6.6).
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The following features will be examined in the context of the proposed approach.

Auto Regression Coefficients (ARC)

The autoregressive model is commonly used in the context of modeling time series [60].
Let xi be the observation of a time series X at time ti. xi is modeled as the sum of p
linearly weighted recent values. The autoregressive model of order p is given by

xi =

p∑
j=1

aj · x(i−j) + εi, (6.5)

where aj is the jth autoregressive coefficient and εi is a noise term at time ti. Given a time
series X, the coefficients aj can be estimated in various ways, such as the method of least
squares [57].

Autoregressive coefficients predict the prospective course of a signal based on recent
values and have been used in [126, 127] in the context of activity recognition. For the
solution of this work, the first three coefficients for each axis of the accelerometer data are
used, yielding nine feature values.

Signal Magnitude Area (SMA)

The Signal Magnitude Area (SMA) is a well-known heuristic energy measure in the context
of activity classification [13, 58, 118, 127, 212]. It is computed by summing up the absolute
observation amplitudes of the three accelerometer axes and by normalizing the result w.r.t.
the length of the corresponding segment S, i.e.,

SMA =
1

n′

n′∑
i=1

(|xi|+ |yi|+ |zi|). (6.6)

Hereby, n′ corresponds to the length of S, and xi, yi and zi are the values of the respective
axis at time ti. As the maximum amplitudes might vary for each axis, activities showing
intense acceleration values occurring with high frequency contribute to a high SMA value,
whereas low-acceleration activities result in a low SMA.

Tilt Angle (TA)

The Tilt Angle (TA) feature is described by the average tilt angle of the lower leg over
time. The accelerometer is supposed to be worn in the same position at the ankle. Hence,
physical activity can be described by the angle ϑ between the gravitational vector and the
positive z-axis of the sensor, i.e., ϑ = arccos(z). Recognition of activities like swimming,
which enforces a different tilt angle of the lower leg, takes considerable advantage of the
TA feature. The TA feature has been used in [127] and will, thus, be examined in the
experimental evaluation.
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Algorithm 3 Peak Detection: detectPeaks(S, pmin, τmin, ∆τ , minDist)

Require: S, pmin, τmin, ∆τ , minDist
1: Smax ← arg maxx∈S(S)
2: τ ← Smax
3: PPeak ← {x ∈ S : x ≥ τ}
4: while |PPeak| < pmin and τ > τmin do
5: τold ← τ
6: τ ← τ −∆τ · Smax
7: PPeak.add({x ∈ S : τold > x ≥ τ})
8: for all xi, xj ∈ PPeak do
9: if ti − tj ≤ minDist then

10: PPeak ← PPeak \ {min(xi, xj)}
11: end if
12: end for
13: end while
14: avg ← 1

|PPeak|
∑

x∈PPeak
x

15: if |PPeak| ≥ pmin then
16: return avg
17: else
18: return sgn(avg)
19: end if

Average Peak Amplitude (APA)

The Average Peak Amplitude (APA) will be introduced, which is an energy measure and is,
in contrast to the SMA, restricted to the (positive and negative) peak amplitudes within
a temporal window of the current segment S.

The process of identifying the peaks is outlined in Algorithm 3. The signal has been
cleaned w.r.t. outliers beforehand (cf. Subsection 6.2.1), so that the set of detected peaks
is not influenced by erroneous observations. The actual identification step first determines
the global absolute extremum of S, denoted by Smax (line 1).

Next, a threshold τ is introduced, which defines a minimum amplitude for all potential
peaks contained in S. τ is initialized with the value of Smax (line 2). The set of observations
w.r.t. τ , denoted by PPeak, is initially created (line 3) . As long as the algorithm has not
yet detected a mandatory minimum number of peaks pmin, τ is decreased by ∆τ · Smax
(line 6), yielding new elements for PPeak (line 7).

PPeak may contain neighboring observations that actually belong to the same peak. In
order to reduce the result to a single observation per peak, a minimum distance minDist
between peaks is introduced that has to hold. If two amplitudes identified as peaks show a
distance less than minDist , the observation with the lower amplitude value will be removed
(line 10; here, a numerical ordering w.r.t. the amplitudes is assumed for the observations).

The described procedure is repeated until pmin is reached or τ has reached a minimum
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value of τmin (condition in line 4). In the latter case, S contains only few significant
amplidudes.

Finally, the feature value represents the average of all peak amplitudes in the current
segment, where the APA is only considered as significant if the number of peaks is at least
pmin (lines 15ff). Otherwise, a default value depending on the amplitude sign is returned.

Surrounding Segmentation Rate (SSR)

Physical activity classes can also differ in their fraction of periodic segments. For example,
in the context of this work, the sensor recordings for the activity Cycling showed to contain
more nonperiodic segments than Running, as periodic movements often have been inter-
rupted by external influencing factors. This observation leads to the derivation of a simple,
but suitable heuristic feature describing the Surrounding Segmentation Rate (SSR). The
computation of the SSR is performed for a temporal window of wSSR seconds surrounding
the current segment, which is in particular suitable for long-term activities. Thus, for
a window containing overall s segments, sp and snp denote the numbers of periodic and
nonperiodic segments, respectively; it holds that s = sp + snp. Then, the SSR is computed
by SSR = sp

s
.

6.5 Dimensionality Reduction

6.5.1 Feature Selection

In order to reduce the computational effort of the actual classification process, a dimen-
sionality reduction of feature vectors is typically applied in order to remove redundant
information; this decreases the size of the feature vectors. In the context of accelerometer
data, the literature distinguishes between methods of feature selection and feature transfor-
mation, which can also be used in combination. The selection of most relevant features for
the feature vector was performed using the forward-backward search [218]. This method
can be applied to reduce the effort of testing all feature combinations, which would be
exponential in the number of features. This is achieved by alternately adding features to
the feature vector with the currently best quality (which yields a new feature combination)
and removing features (to examine subsets of combinations that have not been considered
before).

6.5.2 Feature Transformation

The separation of different activity classes can further be supported applying the Linear
Discriminant Analysis (LDA) [95] on the feature vector after the feature selection step.
This is called feature transformation. The LDA minimizes the variance of features within a
class and maximizes the variance of features between different classes, having the side effect
of slight performance gain. Applying the benefits of the LDA to the current application
scenario, this step neglects person-specific differences with the same physical activity, which
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Algorithm 4 Reclassification of Observation xi: reclassObservation(xi, W , cl)

Require: xi, W , cl
1: w ← |W |
2: I ← {0, . . . , cl − 1}
3: W ← [0, . . . , 0]
4: Lold ← xi.label , Lnew ← −1
5: for all xj ∈ W \ {xi} do
6: xj.weight ← w−1

2
− |j − i|+ 1

7: W [xj.label ]←W [xj.label ] + xj.weight
8: end for
9: Lnew ← arg maxl∈I(W)

10: if Lold 6= −1 or Lold 6= Lnew and W [Lnew] >
∑

l∈I\{Lnew}(W [l]) then
11: xi.label ← Lnew
12: end if

is caused by different body heights or variations in the execution of movements. Finally,
the LDA leads to a robustness of the classification w.r.t. the exact position of the sensor.
Despite the fact that the sensor is fixed on the ankle, continuous movements can lead to
a rotation or a shift of the sensor, which influences the quality of the data and, thus, the
quality of the classification results. Applying the LDA, these errors can be corrected.

6.6 Reclassification

In order to classify short subsegments where no features were extracted (cf. Section 6.4),
a postprocessing step is applied which assigns the most likely class label to these subseg-
ments. This likelihood depends on the classification results obtained for the surrounding
segments. Furthermore, this step detects errors that occurred in the actual classification
step. These errors may contain highly improbable results. The application of activity
recognition provides sufficiently interpretable information for these cases. For example, if
two significantly long segments classified as Cycling contain a short segment classified as
Elliptical Trainer, the classification result of the latter segment will be revised. A formal
description of the unsupervised reclassification is outlined in Algorithm 4.

Hereby, the variable cl denotes the number of activity classes; also, the activity class
labels are represented as indices. Temporally used data structures are the list of class label
indices I and the list of weights W of the class labels; the weight values are referenced
by the respective class label index i ∈ {0, . . . , cl − 1}. The reclassification step takes, for
each observation, the available information of the neighboring observations into account
by considering a temporal window W of size w = |W |, containing the current observation
xi as well as w−1

2
preceding and w−1

2
successive observations. For observations that are

close to the border of the time series, W is cut off accordingly. Based on the class labels of
each observation xj contained in W (j 6= i), a weighted linear distribution of the occurring
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Activity # Datasets Duration (hh:mm:ss)

Ell. Trainer 3 00:55:07
Walking 6 02:42:09
IL Skating 3 01:55:50
Running 6 02:37:13
Cycling 4 02:32:46

Total 22 10:43:05

Table 6.2: Datasets used for the experimental evaluation.

labels is computed, which considers more recent observations to have more impact. Thus,
the distance-based weight xj.weight of a neighboring observation xj corresponds to w−1

2
,

whereas the weight of the most distant observation is 1 (line 6). The distribution of the
weights of the observations xj corresponds to a linear time-fading function. A quadratic or
general distribution-based fading function would also be applicable here. If xi has not been
classified before (the label obtained in the classification is denoted by Lold, where a value
of -1 implies no assignment to a class label) or the class label Lnew that shows the highest
weighted occurrence has a significant influence on xi (i.e., its relative weighted occurrence
is higher than the sum of all other classes), the reclassification was successful and Lnew is
assigned to xi (line 11).

For the reclassification of each of the n observations, the surrounding w − 1 observa-
tions within the window W have to be regarded; thus, this algorithm requires a runtime
complexity of O(n · w). In order to obtain a speed-up of this process for practical use,
this step can be parallelized by the Knowing framework (cf. Chapter 5), which is able to
exploit multi-processor systems.

6.7 Experimental Evaluation

6.7.1 Datasets

The application scenario for the presented approach was given by a collaboration with the
Sendsor GmbH, who also provided the accelerometers used to record the datasets that will
be used in this section. The accelerometers record amplitudes in the range of ±2g with a
rate of 25 Hz. In order to obtain accurate and representative acceleration measurements,
the accelerometer is worn by the patients at the ankle [196].

In the context of this chapter, five different activity classes were examined: Walking,
Running, Cycling, In-line Skating (IL Skating) and Elliptical Trainer (Ell. Trainer). The
datasets used for the following experiments are summarized in Table 6.2. The evaluation
was performed using the Knowing framework [41] (cf. Chapter 5).
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6.7.2 Experimental Setup

Choice of the Classifier

The evaluation of the presented activity classification approach was performed using the
Näıve Bayes classifier [106]. In the context of implementing the Knowing framework, an
evaluation of overall 32 classifiers that are available in WEKA [102] has been performed,
where Näıve Bayes turned out to provide solutions of superior quality on periodic and
nonperiodic segments to the other classifiers. Hereby, the effectiveness of the classifiers
was measured by the classification accuracy or recognition rate, which is a common quality
measure for classifiers for assigning new data to a specific class label [103] and which is
in particular used in the field activity recognition [17]. According to the semantics of a
classification [103], objects are divided into positive (P ) and negative (N) objects, which
denote the number of objects that are returned by a classifier w.r.t. a label and the number
of objects that have been discarded, respectively. The classification accuracy yields values
between 0 and 1 (i.e., 1 if all objects are correctly classified) and is computed as

accuracy =
TP + TN

P +N
,

where TP denotes the number of positive objects that are correctly recognized (i.e., that
are expected to belong to the result) and TN denotes the number of negative objects that
have been rightly discarded. In the case of activity recognition, the accuracy denotes the
amount of correctly labeled segments.

The first experiment was performed without applying reclassification. Näıve Bayes
yielded a classification accuracy of 97.18% (more details will be provided in Subsec-
tion 6.7.3). Results of slightly minor quality were obtained using Sequential Minimum
Optimization [172] (accuracy of 96.67%) and a normalized Gaussian radial basis function
network (accuracy of 94.88%).

In addition, two methods based on Artificial Neural Networks (ANNs) were tested in
order to provide the comparability to the approach of [127]. The latter uses a multilevel
perceptron based on backpropagation learning [181, 208], which is available in WEKA. The
second evaluated ANN, which is based on resilient propagation learning [179], is available
in the Encog Machine Learning Framework 2. In the evaluated settings, each of the neural
networks consisted of a hidden layer of ten neurons and an output layer of five neurons,
which corresponds to the number of evaluated activities. While the resilient propagation
classifier yielded a total classification accuracy of 93.43%, the backpropagation classifier
achieved a very low accuracy value of 27.7%. In addition, the backpropagation classifier
required extensive computational cost on the used dataset. Thus, for the comparison
experiments (cf. Subsection 6.7.3), the resilient propagation classifier was applied to be
used with the approach of [127] instead.

2http://www.heatonresearch.com/encog

http://www.heatonresearch.com/encog
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Description Abbreviation # Values [127] This Approach [39]

Auto Regression Coefficients ARC 9 X X
Signal Magnitude Area SMA 1 X X
Tilt Angle TA 1 X X
Average Peak Amplitude APA 3 - X
Surrounding Segmentation Rate SSR 1 - X

Table 6.3: Set of used features.

Feature Selection

The selection of most relevant features for the feature vector was performed using the
forward-backward search technique [218] (cf. Subsection 6.5.1). For periodic segments,
the feature selection step yielded a feature vector dimensionality of dv = 15. For the
nonperiodic segments, the selection process yielded the same feature vector as for periodic
segments. An overview of the used features for the evaluation of the current approach and
the competing approach of [127] is given in Table 6.3. In addition to the features presented
in Section 6.4, the simple features Arithmetic Mean, Variance and Inter-Axis Correlation,
used in [20], were included into the selection process, but proved to contain no significant
information.

Further Parameter Settings

For creating the experimental setup for the following experiments, some parameters were
set to default values. The window size for the average filter that is applied as a prepro-
cessing step to remove outliers (cf. Section 6.2) was set to 3. The number of observations
o that are considered for the peak reconstruction was set to 2.

The settings for the extracted features (cf. Section 6.4) are the following: The length nnp
of nonperiodic subsegments was set to 80 (3.2 seconds). For the APA feature, values for the
minimum peak threshold (τmin = 0.7), the peak threshold step (∆τ = 0.02), the minimum
number of peaks (pmin = 3) and the minimum distance between peaks (minDist = 10)
were set. For the SSR feature, the window size wSSR was set to 1500, which corresponds
to a temporal window of 60 seconds.

For the segmentation (cf. Section 6.3), the following default values were used: The

reference sample X̂ consisted of n̂ = 25 observations, which corresponds to one second.
The required minimum correlation τρ was set to 75%. The minimum length np of periodic
segments was set to 100 observations, which corresponds to four seconds.

In the reclassification step (cf. Section 6.6), the size w for the temporal window, which
is used to capture the weighted occurrences of the class information of the surrounding
observations, consists of 751 observations (750 plus the observation that is to reclassify),
which corresponds to 15 seconds before and after the current observation, respectively.
Furthermore, as five activity classes are evaluated in this chapter, cl = 5.
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Figure 6.3: Classification result.

6.7.3 Classification Results

The classification algorithm was evaluated by performing a cross validation on the activ-
ity classes. For each time series segment containing one of the five activities (cf. Subsec-
tion 6.7.1), the obtained classification accuracy using the default settings of Subsection 6.7.2
are depicted in Figure 6.3(a). The classification yields accuracies of more than 95% for each
activity. The highest classification error was obtained with the activity Walking, which was
classified as Cycling with 3.56%, which can simply be explained by the observation that
these activities are likely to create similar accelerations. In order to visualize the percentage
of segments that were incorrectly classified or could not be classified at all, the reclassifica-
tion step was omitted in the first experiment. The following experiments also neglect this
step. Finally, the effect of the reclassification will be examined in Subsection 6.7.7.

In [127], the classification of 15 different activities yielded an accuracy of 97.9%. For
the evaluation in the context of this chapter, a slight adaption of this approach was imple-
mented: the resilient propagation algorithm was used instead of the usually applied back-
propagation algorithm due to performance reasons (cf. Subsection 6.7.2). Figure 6.3(b)
illustrates the classification results of the approach introduced in this chapter in compari-
son with the results of [127]. It can be observed that, for each class, the approach of [127]
achieves less accuracy than the approach presented in this chapter.

6.7.4 Effect of the Preprocessing Steps

The next experiment will examine the effect of the preprocessing steps. Evaluating the
peak reconstruction (cf. Subsection 6.2.2), the classification results could be improved for
three out of five activities (Walking, Running and In-line Skating). This can be explained
by the fact that these activities take advantage of their significant peaks because of signif-
icant movements, whereas the movements of Cycling and Elliptical Trainer are indirectly
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Figure 6.4: Effect of the peak reconstruction and the segmentation.

supported by the sports equipment, which may lead to rather smooth movements. Overall,
this step yielded an overall precision gain of almost 1% (cf. Figure 6.4(a)).

6.7.5 Effect of the Segmentation

Next, the effect of the segmentation (cf. Section 6.3) was evaluated. Instead of choosing a
näıve solution without a segmentation that extracts only one feature vector for the time
series, the time series was divided into non-overlapping subsequences of equal length, thus
neglecting the periodicity. Each subsequence contained 80 observations, analogously to
the size of nonperiodic segments in the original approach (cf. the experimental setup in
Subsection 6.7.2), and a feature vector was derived for each segment. The SSR feature
could not be applied here, as, for this segmentation variant, no information about the
amount of surrounding periodic segments is available. Hence, the used feature vector
consisted of 14 features for this variant of the classification approach. The results are
shown in Figure 6.4(b). For long-term activities that are very constant over time, such as
Running and Elliptical Trainer, the equal-length segmentation yields comparable results,
as there are no gaps in the data which are hard to classify. For activities consisting of
short-term periods interrupted by several breaks due to external influence factors, e.g., in
the case of Cycling, where pedaling is often noncontinuous, a classification supported by
a segmentation into periodic and nonperiodic parts achieves a significant improvement of
4% in average. Similar observations explain the significant improvement with the activities
Walking and In-line Skating, as the step length is not homogeneous.

6.7.6 Effect of the Feature Transformation

In the next experiment, the effect of the LDA (cf. Subsection 6.5.2) was examined. With
the most activity classes, the LDA improves the results only slightly. This shows that the
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Figure 6.5: Effect of the LDA and the reclassification.

combination of features done by the forward-backward search already yielded representative
feature vectors with almost no redundant information. In the processing chain, the forward-
backward search step is performed before the application of the LDA.

The only activity that obtains a significant performance gain with applying the LDA
is the activity Elliptical Trainer. As this activity is, intuitively, very similar to both
activities Walking and Cycling, an accurate separation among these classes is not always
possible. The classification errors(27% classified as Walking, 23% classified as Cycling)
prove this intuition. Moreover, the training datasets for this activity class seem to be
very inhomogeneous due to significantly different velocities. Here, the LDA maximizes the
differences to the other activity classes successfully. Thus, these errors can be corrected.
The results of this comparison are depicted in Figure 6.5(a).

6.7.7 Effect of the Reclassification

The reclassification step was omitted with the evaluations of Subsections 6.7.3 to 6.7.6 in
order to get the amount of unclassified data returned. Finally, the observed results with
an additional application of the reclassification step are illustrated in Figure 6.5(b)). Here,
a slight improvement of 1.6% was achieved. Most nonperiodic segments that could not be
classified in the actual classification step seem to contain many activity changes within a
short time period, which leads to errors in the reclassification step.

6.7.8 Conclusions

Concluding, it can be stated that the proposed approach achieves results of high quality,
since a state-of-the-art activity recognition method could be outperformed. The evaluation
of the processing steps showed that each of them supports the actual classification step in
order to provide reliable evidence about the performed activity. For the case of limited
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resources, i.e., if the classification algorithm has to run on the firmware of the sensor in
order to provide a real-time recognition and to return results quickly, a trade-off solution
between storage and processing time requirements and classification accuracy has to be
found. Among further potentials for future work, this issue will be picked up again in
Chapter 18.

6.8 Summary

This chapter provided an effective solution for the application scenario of activity recogni-
tion on periodic time series that are collected from accelerometers. The proposed solution
extends existing methods by integrating additional processing steps, such as a reconstruc-
tion of the data peaks and a reclassification step as well as a utilization of suitable features
to improve the classification results. The experimental part showed an improved recogni-
tion quality in comparison with existing work.
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Chapter 7

Accelerating Similarity Processing in
High-Dimensional Feature Spaces

7.1 Introduction

Chapter 6 focused on similarity processing on time series in the context of activity recog-
nition. An essential step of this approach is the extraction of features, which allows to
accelerate similarity processing by indexing techniques. Therefore, common solutions like
the R∗-tree [23] are appropriate. With increasing dimensionality, however, index structures
degrade rapidly due to the curse of dimensionality [24]. A solution is provided by com-
monly applied methods enhancing the sequential scan [207] or by using a hybrid structure,
which is tree-based, but requires to scan successive blocks or node elements [27, 28].

BOND [85] is a search strategy enhancing the sequential scan. Contrary to the afore-
mentioned techniques, BOND exploits modifications w.r.t. the physical database design.
The basic idea is to use a columnstore architecture (as known from NoSQL database sys-
tems), sort the columns according to their potential impact on distances and prune columns
if their impact becomes too small to change the query result. By the design of this method,
subspace queries can also be facilitated implicitly with the same architecture.

However, BOND is motivated by the application of metrics for image retrieval and, thus,
requires particular properties of a dataset which restricts the application considerably:

1. The first metric proposed in BOND is only applicable to normalized histogram data.

2. Using the Euclidean distance, still the length of each vector is required for pruning
columns with low impact.

3. Stricter bounds for the Euclidean distance metric further improve the pruning, but
require Zipfian distributed data (similarly to hyperbolic functions, e.g., color or gray
scale histograms) and a particular resolve order of the columns in the database.

This chapter specifically focuses on extending BOND by loosening the restrictions of its
use for datasets and by improving the pruning power, still providing a scan-based solution.
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The rest of this chapter is organized as follows: Section 7.2 will summarize the benefits
of BOND, but also outline its deficiencies w.r.t. the mentioned aspects. Afterwards, the
proposed extensions of this chapter will be described in Section 7.3. The experiments
in Section 7.4 will include an extensive evaluation and will demonstrate the improved
performance in full-dimensional search. Finally, Section 7.5 will conclude this chapter.

7.2 BOND revisited

7.2.1 General Processing

Processing multi-step queries using a filter-refinement framework, traditional index ap-
proaches resolve the data of feature vectors row-wise (horizontally) in order to obtain their
exact representation. The main advantage of BOND is that feature vectors are resolved
column-wise (vertically) so that the values of a feature vector x are obtained successively.
Thus, the resolved part of x is known exactly, whereas the unresolved part has to be
approximated. This approach is inherently different from traditional tree-indexing ap-
proaches where a feature vector is either completely approximated or completely available.
In order to avoid possibly unnecessary I/O-operations, traditional tree-indexing techniques
aim at avoiding to resolve as many feature vectors as possible which are not part of the
result set. On the contrary, BOND starts with resolving all feature vectors column by
column and tries to approximate the remaining part of the feature vectors. As soon as the
approximation yields a sufficiently high pruning power, false candidates can be pruned, so
that the remaining dimensions of these feature vectors do not have to be resolved. BOND
supports regular k-nearest neighbor (k-NN) queries on the full dimensionality as well as
on weighted subspaces. In this chapter, the full-dimensional case will be analyzed.

The main goal of the pruning statistics used in BOND is to tighten the distance ap-
proximations of the yet unresolved parts of the feature vectors in order to prune false
candidates as soon as possible before unnecessarily resolving additional columns for these
vectors.

The rest of this chapter follows the notation of [85], where q ∈ Rd denotes a d-
dimensional query vector and x ∈ Rd denotes an arbitrary d-dimensional feature vector of
the database. Any database vector x can be split into a resolved part x− ∈ Rd− and an
unresolved part x+ ∈ Rd+ , so that x = x− ∪ x+ and d = d− + d+. The variable d− ∈ [1, d]
denotes the number of columns that have been resolved so far. The distance dist(q, x)
between q and x can, thus, be approximated by a composition of the exact distance w.r.t.
the resolved part plus the approximation of the unresolved part. Depending on the type
of the bound, the approximation of dist(q, x) is the following:

maxDist(q, x) = dist(q−, x−) + maxDist(q+, x+) ≥ dist(q, x) (7.1)

minDist(q, x) = dist(q−, x−) + minDist(q+, x+) ≤ dist(q, x) (7.2)

Performing a k-NN query, the resulting distance bounds are then used to refine the can-
didate set in a traditional way, where all candidates are pruned if their lower distance
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bound is greater than the kth smallest upper bound. The distance dist(q−, x−) between
the known parts of q and x can be computed precisely. Concerning the unknown part (x+),
an approximation for the lower and upper distance bounds to the query vector q needs to
be created.

In the following, the approximations of BOND based on the Euclidean distance will be
summarized. The additionally introduced approximations for the histogram intersection
metric will be omitted, as the solution that will be provided in this chapter aims at being
independent of the application to histogram data.

7.2.2 Simple Approximation

The basic approach of BOND uses the application scenario of histogram data, where the
length of each data vector can safely be assumed to be 1. Relaxing this condition, an
extension of the basic approach assumes the unit hypercube [0, 1]d as the data space and is
based on the Euclidean distance. Thus, a lower and an upper approximation for the exact
distance

dist(q, x) =
d∑
i=1

(qi − xi)2 (7.3)

between the query vector q and a database vector x has to be found, where the resolved
part of the approximations corresponds to

dist(q−, x−) =
d−∑
i=1

(q−i − x−i )2. (7.4)

The extension proposed in [85] does not rely on any distribution or assumption of the data,
as it only depends on q, so that the approximations maxDist and minDist , which denote
the upper and lower distance bound between q and x, respectively, are derived by

maxDist(q+, x+) =
d∑

i=d−+1

max(q+
i , 1− q+

i )2 and (7.5)

minDist(q+, x+) = 0. (7.6)

The advantage of being independent of the data distribution and of the resolve order is paid
with the loss of pruning power. The weakness of these bounds is obvious, in particular for
the lower bound, which assumes the distance of 0 for the remaining (unresolved) subspace,
and the upper bound only takes the values of the query vector into account and does not
make any assumptions on the database vectors.

7.2.3 Advanced Approximation

An extension yielding tighter approximations relies on the partial sums of the query vector
q and each database vector x, which are stored as the aggregated values of q and x for the
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dimensions that have not been resolved yet. In the following, these sums will denoted by
T (q+) and T (x+). Furthermore, this extension assumes a skewed Zipfian distribution of
the data, which allows resolving the query vector q in decreasing order and applying the
obtained resolve order to x. Considering a d-dimensional database and d− already resolved
dimensions, Equations (7.5) and (7.6) are replaced by

maxDist(q+, x+) =
l−1∑

i=d−+1

q2
i + (ul − ql)2 +

d∑
i=l+1

(1− qi)2 and (7.7)

minDist(q+, x+) =
(T (x+)− T (q+))2

d+
, (7.8)

where l = d−bT (x+)c and ul = T (x+)−bT (x+)c. Although this method provides the best
results in [85], the bounds computed by this method quickly lose their pruning power if the
data distribution changes. This method strictly requires a particular resolve order of the
columns in the database, which is not optimal in the case of other distributions or in case
of correlated dimensions. However, changing the resolve order is not an option, because
this would invalidate the proof for the correctness of the pruning bounds suggested by [85].
Concerning the advantages and disadvantages of BOND, it can be stated that BOND
achieves very good performance on datasets that follow a skewed Zipfian distribution (like
color or gray scale histograms). In this case, a large number of distance computations and
I/O-operations can be saved compared to the sequential scan.

7.3 Beyond BOND

7.3.1 Restrictions of BOND

One of the main limitations of BOND is the dependency of the data distribution. The
distance approximations proposed in [85] work well as long as the data follows a skewed
Zipfian distribution like in the case of color histograms and if the database columns are
resolved in decreasing order of the query feature values. If either of the conditions is
not satisfied, BOND quickly degenerates, i.e., possibly the complete dataset needs to be
resolved to answer the query. The approach BeyOND extends the original idea of BOND in
order to supply a query system that allows efficient execution of k-NN queries on datasets
that follow an arbitrary or unknown distribution, so that the following restrictions are
removed:

1. BeyOND does not depend on the data distribution, so any distance metric can be
employed that provides valid upper and lower distance approximations.

2. The values xi (i ∈ {1, . . . , d}) of the feature vectors are no more restricted to xi ∈
[0, 1] in each dimension.

3. BeyOND does not rely on a specific resolve order of the query vector, so more so-
phisticated resolve techniques can be applied to further increase the pruning power.
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Removing the first and third restriction also disables the possibility to use the improved
distance approximations of [85] summarized in Section 7.2.3. Thus, the starting point
is to improve the weak approximations shown in Subsection 7.2.2 and in particular in
Equations (7.5) and (7.6).

In the following, this section will describe how BeyOND combines the concepts of
BOND and the VA-file [207] by introducing subcubes (Subsection 7.3.2), which approximate
sets of feature vectors, and by gaining further approximation quality by minimum bounding
rectangles (MBRs) for particular subcubes (Subsection 7.3.3). Thereby, the concepts will
be based on a BOND-style columnstore architecture, such that it is still possible to resolve
the dataset in a column-wise manner. A restriction that remains in BeyOND, however, is
the embedding into a non-unit hypercube, so that the minimum and maximum values of
each dimension need to be known.

7.3.2 Subcubes

The first proposed extension is to pick up the idea of the VA-file [207] by splitting the cube
once in each dimension w.r.t. the median of the data. Thus, the hypercube describing
the feature space is partitioned into 2d pairwise disjunct subcubes. Each subcube can be
identified by the according Z-Order ID (Z-ID), which is stored as a memory-efficient bit
representation. This Z-ID is stored additionally to the values of each feature vector. The
locations of the split positions in each dimension are stored in separate arrays, so that
quantile splits are also supported. Assuming that the feature vectors are composed of
8 byte double values, the memory consumption of a feature vector increases by a value
of
⌈
sd
8

⌉
bytes with s denoting the number of split levels. It would also be possible to

increase the split level of the cubes even further. Nevertheless, each additional split also
directly increases the size of the Z-IDs. This leads to a trade-off between additional memory
consumption from larger Z-IDs and tighter approximations for the upper and lower bounds
of the distances due to smaller subcubes. An evaluation of the impact of additional split
levels will be shown in the experimental part (cf. Section 7.4). Given a Z-ID of a feature
vector and the coordinate arrays containing the split positions, it is a computationally
cheap task to recreate the coordinates of the according subcube, so that the bounds of
potentially 2d subcubes need not be kept in memory but can be quickly recomputed on
demand.

The subcubes provide the advantage that the upper and lower distance approximations
do not have to be computed w.r.t. the complete hypercube that encloses the feature space
but only between the cubes containing the query vector and the feature vectors of the
database. Thereby, the following two cases have to be considered, where Zq and Zx are
the Z-IDs of the query vector q and a vector x of the database, respectively:

• Zq = Zx indicates that both q and x share the same subcube, so the upper bound
of the distance approximation can be lowered to the borders of this subcube (cf.
Equation (7.9)). The lower distance remains 0 for all unresolved dimensions (cf.
Equation (7.10)).
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Figure 7.1: Improvement of the upper/lower distance approximation.

• Zq 6= Zx implies that q and x are located in different subcubes, so the lower distance
approximation can be raised to the minimum distance of q to the subcube containing
x (cf. Equation (7.10)). The upper distance approximation is then computed w.r.t.
the bounds of the subcube containing x using Equation (7.9). Compared to approx-
imating the upper distance w.r.t. the complete hypercube, this decreases the upper
bound when both subcubes share a common plane, which is the case in d− 2 out of
d− 1 cases (cf. Figures 7.1(a) and 7.1(b)). The obtained bounds now are

maxDist(q+, x+) =
d∑

i=d−+1

max
(
|qi − cminxi

|, |qi − cmaxxi
|
)2

and (7.9)

minDist(q+, x+) =
d∑

i=d−+1

{
0, if qi ∈

[
cminxi

, cmaxxi

]
min

(
|qi − cminxi

|, |qi − cmaxxi
|
)2

otherwise
, (7.10)

where cmaxxi
(cminxi

) denotes the maximum (minimum) distance to the subcube c that contains
the feature vector x in dimension i.

7.3.3 MBR Caching

In high-dimensional datasets that do not cluster strongly, the majority of the 2d subcubes
is occupied by at most one feature vector. In the few cases that a subcube is occupied by
more feature vectors, a solution is to tighten the distance approximation of the subcubes
using MBRs (cf. Figure 7.1(c)). Therefore, for all subcubes which are occupied by more
than one feature vector, the MBR for the according set of feature vectors is computed.
This MBR is stored in a priority queue (PQ) which is sorted in descending order w.r.t. the
score function

f(MBR) =
Vsubcube · card(MBR)

VMBR

, (7.11)

where card(MBR) denotes the number of feature vectors contained in the according MBR
and Vsubcube (VMBR) denotes the volume of the subcube (MBR).
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As the resulting MBRs cannot be derived from any fixed values similarly to the case
of the split positions, at least two d-dimensional coordinates are required to define each
MBR, so that each MBR requires d · 16 bytes (again assuming 8 byte double coordinates).
Even though this seems to be a quite large overhead, an MBR can be shared among all
feature vectors of the respective set. Thus, the memory increase is reduced to d·16

card(MBR)

per feature vector comprised by the MBR. As the MBR is associated with the respective
Z-ID, not even an additional memory pointer is required for the feature vector.

In order to define an upper limit for this additional memory consumption, the size of the
MBR queue PQ is limited to 1% of the total number of feature vectors in the database.
Combined with the score function of Equation (7.11), it is ensured that only a limited
number of MBRs is held, where each MBR contains a large amount of feature vectors on
the one hand and also covers a significantly smaller volume than the surrounding subcube
on the other hand. This threshold has to be chosen as a trade-off between pruning power
and additional memory consumption. Alternatively, the threshold can also be chosen in
absolute values if the additionally required amount of memory shall be limited. In any
case, the threshold should be chosen low enough, so that either all MBRs can be kept in
memory or it should be ensured that only those MBRs are read from disk that approximate
a fairly large number of feature vectors, so that the time needed to load the MBRs is still
smaller than resolving the respective feature vectors.

In order to use the tighter approximation provided by the MBRs, the variables cminxi

and cmaxxi
in Equations (7.9) and (7.10) need to be filled with the coordinates of the MBR

instead with those of the subcube, so that this second extension integrates seamlessly into
the computation of the distance approximations.

7.4 Experimental Evaluation

7.4.1 Datasets and Experimental Setup

In order to measure the impact of the VA-file approach and the MBR caching w.r.t. the
pruning power, the following tests were performed. First, both distance approximations
of the original implementation of BOND were evaluated using the simple distance approx-
imations (in the following denoted as Bond) and the improved approximations utilizing
the specific resolve order w.r.t. the query vector (Bond+). Then, the contribution of
the VA-file approach was evaluated by measuring the pruning power of a one- and a two-
level VA-file (Beyond-1, Beyond-2). Finally, the additional impact by adding the MBR
caching instead of an additional split was tested with BeyondMBR-1. The approaches
were evaluated on three datasets (summarized in Table 7.1):

• ALOI-27 : 27-dimensional reduced versions of originally 216-dimensional Zipfian
distributed color histograms extracted from the Amsterdam Library of Object Im-
ages [99] comprising 110,250 feature vectors. This dataset poses the hardest chal-
lenge, as BOND is expected to perform best on this dataset as the color histograms
follow a Zipfian distribution.
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Table 7.1: Datasets used in the evaluation.
Name Rows Dimensions Type

ALOI-27 110,250 27 color hisograms, Zipfian
CLUSTERED-50 300,000 20 synthetic, uniform, 50 Gaussian clusters
PHOG 10,715 110 gradient histograms

• CLUSTERED-50 : Synthetic dataset of 300,000 20-dimensional feature vectors, or-
ganized in 50 clusters. The means of the clusters are uniformly distributed in the
data space. Each cluster follows a multivariate Gaussian distribution.

• PHOG : 10,715 feature vectors derived from pyramid histograms of oriented gradi-
ents (HoG Features) with 110 dimensions. The features were provided from the
work of [87] and represent gradient histograms which were extracted from medical
computer tomography images. The features were already reduced in dimensionality
by applying a Principal Component Analysis (PCA) [116] and the dimensions are
ordered by decreasing value of the eigenvalues.

7.4.2 Pruning Power Evaluation

In the experiments, 50 k-NN queries (k = 10) were submitted to the database and the
number of feature vectors was measured that were pruned after a data column was resolved
and the distance approximations were recomputed. The charts in Figures 7.2, 7.3 and 7.4
represent the averaged cumulative amount of feature vectors that were pruned after a
column was resolved; the x-axis counts the number of resolved dimensions, whereas the
achieved pruning power is marked on the y-axis. The areas under the curves can, thus, be
regarded as the amount of data that does not need to be resolved from disk, whereas the
areas above the curves indicate the amount of data that needs to be taken into account
for further refinement from disk and for the computation of the distance approximations.
This observation can be regarded as a simple visual proof that tighter approximations
yield higher pruning power, as more feature vectors can be pruned at a very early stage
of the computation, so that further data columns of this feature vector do not have to be
resolved. In the ideal case, only a few columns have to be resolved until the k final nearest
neighbors remain in the dataset.

Comparing ALOI-27 with the other datasets, it can be observed that Bond+ performs
as expected on Zipfian distributed histogram-like datasets. Nevertheless, Bond+ resolves
about half of the data on the CLUSTERED-50 dataset and almost all columns on PHOG.
This behavior proves the strong dependence on the data distribution, which is addressed
in this chapter.

In the first improvement step of BeyOND (cf. Subsection 7.3.2), the approach presented
in this chapter proposed to divide the feature space into subcubes and, thus, to refine
the simple Euclidean distance approximation Bond. The gain of pruning power on is the
ALOI-27 dataset is clearly visible in Figure 7.2. Nevertheless, Bond+ still achieves higher
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Figure 7.2: Pruning power on ALOI-27.
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Figure 7.3: Pruning power on CLUSTERED-50.
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Figure 7.4: Pruning power on PHOG.

pruning power. On the contrary, on CLUSTERED-50, Beyond-1 outperforms Bond+,
as the subcubes provide good approximations of the clusters. These approximations are, in
this case, superior to the bounds of Bond+, since the underlying distribution of the data
is not Zipfian (cf. Figure 7.3). Finally, the impact of Beyond-1 on PHOG is significantly
higher than the impact of both Bond and Bond+, which do not perform on PCA’ed data
at all and achieve a comparably high pruning power while resolving the last dimensions.

Table 7.2 provides “snapshots” of the pruning power curves depicted in Figures 7.2, 7.3
and 7.4. The columns show the amount of resolved columns (in percent), where more than
25%, 50% and 90% of the candidates were pruned. The observations from rows 1-3 support
the above statements; the best results for Beyond-1 are achieved on the CLUSTERED-50
dataset, where only half the number of dimensions have to be resolved to achieve a pruning
power of 90%.

The intuitive approach to add more splits per dimension (Beyond-2) and, thus, to de-
crease the size of the subcubes performs well on ALOI-27 and CLUSTERED-50. This can
be observed with the curve for the approach in Figures 7.2 and 7.3 and also from the rows
4-6 of Table 7.2. In particular the CLUSTERED-50 dataset takes most advantage from the
quadratic growth of additional subcubes (2d → 4d), which poses a very good approximation
of the clusters. Figure 7.4 shows that the improvement on PHOG is negligible.

The second improvement with BeyOND precomputes the MBRs in the case a subcube
contains more than a single feature vector, the MBR would be small enough and the
maximum number of MBRs is not reached yet (cf. Subsection 7.3.3). In this case, the
portion of created MBRs that yield the largest volume decrease within the respective
subcube w.r.t. the score function f(MBR) was limited to 1% of the overall number of
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Table 7.2: Pruning power of Beyond-1, Beyond-2 and BeyondMBR-1.
Dataset Approach 25% 50% 90%

ALOI-27 Beyond-1 16 (59%) 19 (70%) 23 (85%)
CLUSTERED-50 Beyond-1 7 (35%) 8 (40%) 10 (50%)
PHOG Beyond-1 45 (41%) 58 (53%) 80 (73%)

ALOI-27 Beyond-2 7 (26%) 9 (33%) 21 (75%)
CLUSTERED-50 Beyond-2 1 (5%) 1 (5%) 1 (5%)
PHOG Beyond-2 45 (41%) 55 (50%) 79 (72%)

ALOI-27 BeyondMBR-1 1 (4%) 1 (4%) 10 (37%)
CLUSTERED-50 BeyondMBR-1 1 (5%) 1 (5%) 1 (5%)
PHOG BeyondMBR-1 37 (34%) 50 (45%) 77 (70%)

Table 7.3: Total amount of data viewed with the different approaches.
Dataset Bond Bond+ Beyond-1 Beyond-2 BeyondMBR-1

ALOI-27 96.3% 3.2% 66.9% 38.3% 7.7%
CLUSTERED-50 81.6% 51.4% 36.3% 1.6% 1.4%
PHOG 97.6% 99% 52.6% 52.3% 45.4%

feature vectors. The results are shown with the approach BeyondMBR-1, which denotes
the MBR-based variant of Beyond-1. Here again, the results can be observed from Figures
7.2, 7.3 and 7.4, where BeyondMBR-1 is indicated by the dotted line, and in rows 7-9
of Table 7.2. On the ALOI-27 dataset, the initial pruning power in the first dimension is
even comparable to Bond+. On CLUSTERED-50, BeyondMBR-1 yields comparable
results to Beyond-2. Here, 98% of the data could be pruned at once. PHOG again
poses the hardest challenge due to its very high dimensionality. However, there is a slight
improvement compared to the basic subcube approaches Beyond-1 and Beyond-2.

7.4.3 Additional Splits vs. MBRs

Table 7.3 shows the total amount of resolved data, which is computed by

r =

∑d
i=1 (# resolved vectors) · i

(# vectors) · d− k
.

It can be observed that in case of ALOI-27 and PHOG, it is more profitable to extend
the original idea of BOND with a 1-level VA-file and additional MBRs (BeyondMBR-
1) instead of simply adding more layers (Beyond-2) which generates more subcubes.
On the CLUSTERED-50 dataset, there is almost no difference between BeyondMBR-1
and Beyond-2. Nevertheless, the solution with BeyondMBR-1 offers more flexibility
regarding the choice of MBRs and the control of additional memory consumption than
simply increasing the split level.
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Overall, it can clearly be observed that on ALOI-27, Bond+ outperforms the other
approaches significantly. This was expected due to the distribution of the dataset. How-
ever, the MBR Caching with BeyondMBR-1 achieves almost similar pruning power. On
CLUSTERED-50, the improvements of the BeyOND approaches are significant, in particu-
lar with one more split (Beyond-2) or MBR Caching (BeyondMBR-1). Finally, PHOG
is a hard challenge for both Bond and Bond+, whereas Beyond-1 provides reasonably
tight bounds with one split of the data cube. This result, however, can hardly be further
improved.

7.5 Summary

This chapter addressed the variant of indexing the full-dimensional space to enhance k-NN
queries and extended a technique for high-dimensional feature spaces based on vertically
decomposed data, known as BOND. The proposed techniques support the vertical decom-
position and a better approximation of vectors in the high-dimensional feature space, while
they do not depend on a particular distribution of the data. Combining the techniques of
the partitioning the data space, as performed by the VA-file, and tightening the distance
bounds using MBRs, the resulting approach achieves superior performance to prior work.
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Chapter 8

Enhancing Similarity Processing in
Arbitrary Subspaces

8.1 Introduction

Chapter 7 introduced a sequential-scan-based technique that enhances efficient query pro-
cessing in high-dimensional feature spaces. There, the acceleration of similarity queries
w.r.t. the full-dimensional case was considered. In some cases, the similarity of objects is
based on a subset of attributes only, which leads to the problem of similarity search in
subspaces. This problem has, for example, been explicitly addressed in [136, 156]. These
approaches, however, are also based on the sequential scan and, in the case of subspace
queries, lacking conditions for efficient processing. The solutions that will be provided
in this chapter facilitate efficient subspace similarity search in large and potentially high-
dimensional datasets where the user or the application can define an interesting subspace
for each query independently (that is, similarity is defined ad hoc based on an arbitrary
subset of attributes only). To this end, two index-based approaches will be proposed in
this chapter to support subspace similarity search. As an example, applying subspace
similarity to the activity recognition problem of Chapter 6, the proposed solutions can en-
hance activity recognition algorithms for the detection of new movement patterns in case
the user is aware of a meaningful and relevant collection of features. Then, the feature
selection step applying forward-backward search can be omitted in order to reduce the
computational effort of the process chain, as further similarity processing can be based on
relevant subspaces only by using the techniques proposed in this chapter.

The remainder of this chapter is organized as follows. The problem of subspace sim-
ilarity search will be formally defined in Section 8.2. Then, Section 8.3 will propose an
index-based bottom-up solution using the ideas of ranking and top-k retrieval. A second
approach working in a top-down manner as an adaptation of the R-tree will be proposed in
Section 8.4. An experimental evaluation of the introduced methods including a general and
theoretical comparison will be presented in Section 8.5. Section 8.6 will finally conclude
this chapter.
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8.2 Subspace Similarity Search (SSS)

A common restriction for the small number of approaches tackling subspace similarity
search (cf. Chapter 4) is that Lp-norms are assumed as distance measures. Hence, the
problem definition of this chapter also relies on this restriction. In the following, D denotes
a database of N objects in a d-dimensional space Rd, and the distance between points in
D is measured by a distance function dist : Rd ×Rd → R

+
0 which is one of the Lp-norms

(p ∈ [1,∞)). In order to perform subspace similarity search, a dS-dimensional query
subspace will be represented by a d-dimensional bit vector S of weights, where dS weights
are 1 and the remaining d− dS weights are 0; formally:

Definition 8.1 (Subspace) A subspace S of a d-dimensional data space is represented
by a vector S = (S1, . . . , Sd) ∈ {0, 1}d, where Si = 1, if the ith attribute is an element of
the subspace, and Si = 0, otherwise. The number dS of 1-entries in S, i.e., dS =

∑d
i=1 Si

is called the dimensionality of S.

For example, in a three-dimensional data space, the subspace representing the projection
on the first and third axis is represented by S = (1, 0, 1), having a dimensionality of 2.

A distance measure for a subspace S can then be figured as a weighted Lp-norm, where
the weights can either be 1 (if this particular attribute is relevant to the query) or 0 (if
this attribute is irrelevant), formally:

Definition 8.2 (Subspace Distance) The distance in a subspace S between two points
x, y ∈ D is given by

distS(x, y) = p

√√√√ d∑
i=1

Si |xi − yi|p, (8.1)

where xi, yi, and Si denote the values of the ith component of the vectors x, y, and S,
respectively.

Accordingly, a subspace ε-range query can be formalized as:

Definition 8.3 (Subspace ε-Range Query) Given a query object q and a dS-dimen-
sional query subspace (dS ≤ d) represented by a corresponding vector S of weights, a
subspace ε-range query retrieves the set RQ(ε, S, q) that contains all objects from D for
which the following condition holds:

∀x ∈ RQ(ε, S, q) : distS(x, q) ≤ ε. (8.2)

The related problem of subspace k-nearest neighbor (k-NN) queries can be formally defined
as follows.
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Definition 8.4 (Subspace k-NN Query) Given a query object q and a dS-dimensional
query subspace (dS ≤ d) represented by a corresponding vector S of weights, a subspace
k-NN query retrieves the set NN (k, S, q) that contains k objects from D for which the
following condition holds:

∀x ∈ NN (k, S, q),∀y ∈ D \ NN (k, S, q) : distS(x, q) ≤ distS(y, q). (8.3)

Some of the rare existing approaches for subspace similarity search focus on ε-range queries,
which is a considerable lack (cf. Chapter 1). This is even more evident when searching
subspaces of different dimensionality, because in this case, also the value of ε needs to be
adjusted to the subspace dimensionality in order to produce meaningful results. This is
a non-trivial task even for expert users, since recall and precision of an ε-sphere becomes
highly sensitive to even small changes of ε depending on the dimensionality of the data
space. Also, many applications like data mining algorithms that further process the results
of subspace similarity queries require to control the cardinality of such query results [137].
Therefore, the approaches that will be introduced in this chapter will focus on k-NN queries.

8.3 Index-Based SSS – Bottom-Up

8.3.1 The Dimension-Merge Index

The solution to subspace similarity search that will be proposed in this section (referred
to as Dimension-Merge Index ) is based on the ad hoc combination of one-dimensional
index structures. The combination technique is algorithmically inspired by top-k queries
on a number of different rankings of objects according to different criteria. In the current
scenario, if the objects are assumed to be ranked w.r.t. the distance to the query object in
each dimension, respectively, it is possible to apply top-k methods to solve subspace k-NN
queries with the rankings of the given subspace dimensions.

8.3.2 Data Structures

The key idea is to vertically decompose the data contained in D for the organization of full-
dimensional space, as also performed in Chapter 7. For the restriction to subspaces, each
dimension is organized separately in an index Ii (1 ≤ i ≤ d), using the feature value of the
dimension as spatial key and the ID of the corresponding object as value. For this purpose,
a B+-tree seems adequate, as it is specialized for indexing one-dimensional data. In this
problem, however, it is even more appropriate to use a (one-dimensional) R∗-tree [23], as
it heuristically tries to minimize the extension of nodes, which was shown to be important
for spatial queries. The used R∗-tree has the following two modifications:

• Each leaf node has a link to its left and right neighbor. This relation is well defined
since the tree only organizes a single dimension on which a canonical order is defined.

• Each leaf node stores the values of the facing boundaries of its two neighbors.
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q

q1

q2

Figure 8.1: Initial situation of the data
space.

objectTable

Object distI1 distI2 minDistS maxDistS

Index Bounds

Index Imin Imax

I1 0.3 9.0
I2 0.0 8.5

L2 0.3 12.4

Table 8.1: Initial situation of indexes and
objectTable.

The second data structure needed is a hash table for storing (possibly incomplete) object
information with the object ID as key. This table will be referred to as objectTable. It
is used to store, for each object, the distance to the query object in each dimension. If
this information is not known, the corresponding field remains empty. In Figure 8.1 and
Table 8.1, an example for a two-dimensional subspace query is shown. In the example,
the leaf nodes (pages) of the two relevant index structures I1 and I2 organizing the ob-
jects in the dimensions of the subspace are illustrated at the borders of the data space.
Initially, the objectTable is empty. Along the fields for distance values for each dimension
in the objectTable, the values for lower and upper bounds can be computed, using the
current information of the index bounds for the one-dimensional indexes I1 and I2. The
computation of these bounds will be detailed in the following.

8.3.3 Query Processing

When a subspace query (q, S) arrives, only those indexes Ii are considered where Si = 1.
On these one-dimensional indexes, incremental NN queries (where qi is the query for Ii)
are performed. A call of the function getNext() on the index Ii returns the leaf node
closest to the query qi in dimension i, whose contained objects have not yet been reported.
The challenge is to combine the results of the single dimensions to a result on the whole
subspace. This is done by the objectTable, which is empty at the beginning of the query
process. For each object x, which was reported by an index Ii, an entry in the objectTable
is created. If it already exists, the corresponding entry is updated (i.e., the distance w.r.t.
dimension i of object x is set to distIi(qi, xi), where the distance is restricted to the subspace
corresponding to the current dimension i). If an object x has not yet been seen in index Ij
(j 6= i), its value in dimension j in the objectTable is undefined. The distance distS(q, x)
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Algorithm 5 k-NN Query on Dimension-Merge Index: kNN-DMI(q, S, k, I)

Require: q, S, k, I
1: maxKnnDist ←∞
2: while maxKnnDist ≥ minObjectDistS(q, I) do
3: i← chooseIndex(I)
4: leafNode ← Ii.getNextNode(qi)
5: objectTable.insert(leafNode.elements)
6: maxKnnDist ← objectTable.getMaxKnnDist(k)
7: end while
8: objectTable.refine()

between an object x ∈ D and q in the subspace S can be upper bounded by

maxDistS(q, x) = p

√√√√ d∑
i=1

Si ·
{
|xi − qi|p (Case 1)
max(|Imini − qi|, |Imaxi − qi|)p (Case 2)

, (8.4)

where Imini and Imaxi are the lower and upper bound of the data contained inD in dimension
i, respectively. These bounds can be obtained directly from the index Ii, as this corresponds
to the boundaries of the root node. Obviously, it holds that maxDistS(q, x) ≥ distS(q, x).
For the calculation of maxDistS(q, x), two cases have to be considered: if object x has been
found in index Ii (Case 1), the exact value in this dimension can be used. Otherwise, the
bounds of the data space have to be used in order to approximate the value in this dimension
(Case 2). Using Equation (8.4) and the information contained in the objectTable, an upper
bound for the distance distS(q, x) can be obtained for each object x ∈ D. Therefore, it is
also possible to calculate an upper bound for the distance of the kth-nearest neighbor to
the query object, which can be used as pruning distance. The upper bound is recorded in
the objectTable, and updated if necessary.

Analogously, a lower bound for each object in the objectTable can be obtained by

minDistS(q, x) = p

√√√√ d∑
i=1

Si ·
{
|xi − qi|p (Case 1)
|Inexti − qi|p (Case 2)

, (8.5)

where Inexti is the position of the query-facing boundary of the page obtained by the next
call of the function getNext() on Ii. Again, it is necessary distinguish the cases where xi
has been reported (Case 1) or where it is undefined at the moment (Case 2). This lower
bound is important for the refinement step of the query algorithm and it is recorded in the
objectTable, and updated if necessary.

The pseudocode for a subspace k-NN query on the Dimension-Merge Index is given in
Algorithm 5. Initially, the upper bound of the kth-nearest neighbor distance (maxKnnDist)
is set to infinity. As long as there exists an object which could have a lower distance than
the current maxKnnDist and which is not in the objectTable, the filter step has to be
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Figure 8.2: Situation of the data space af-
ter four getNext()-calls.

objectTable

Object distI1 distI2 minDistS maxDistS

x1 0.5 2.94 9.01
x2 1.0 3.06 9.06
x3 0.4 1.94 8.51
x4 1.0 2.15 8.56
x5 1.5 2.42 8.63
x6 1.0 3.07 9.06
x7 1.9 1.5 2.42 2.42
x8 1.7 2.55 8.67

Index Bounds

Index Imin Imax

I1 2.9 9.0
I2 1.9 8.5

L2 3.47 12.4

Table 8.2: Situation of indexes and object-
Table after four getNext()-calls.

continued and, thus, more points have to be inserted into the objectTable. The minimum
distance of an object which is not in the objectTable is given by

minObjectDistS(q, I) = p

√√√√ d∑
i=1

Si · |Inexti − qi|p. (8.6)

At the point where minObjectDist is larger than the maxKnnDist (as seen in Figure 8.2
and Table 8.2 for k = 1), the algorithm enters the refinement step. The objects were
retrieved in ascending order of their indices. In the current state, minObjectDist exceeds
maxKnnDist = maxDistS(q, x7) for the first time. Now, no object which is not in the
objectTable can be part of the result, therefore only objects contained in the objectTable
at this time have to be considered. In order to keep the number of resolved objects
(corresponding to the number of expensive page accesses) low, the technique for refinement
from optimal multi-step processing, proposed in [135], is used.

Algorithm 5 can easily be adapted to ε-range queries. Only the maxKnnDist has to be
set to ε and does not have to be updated (i.e., line 6 is to be omitted).

8.3.4 Index Selection Heuristics

The most important part of the algorithm considering the performance is the chooseIndex
method (line 3). For a fast termination of the filter step it is necessary to

• find and minimize the upper bound of maxKnnDist and

• increase the minimum distance a page can have
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as fast as possible. This section proposes three heuristics for choosing the appropriate
index in each step.

The first heuristic (Round Robin) sequentially chooses the index in a round robin fashion
and can be seen as a simple baseline. The problem with this heuristic is that it does not
take the data distribution into account. Thus, it does not meet the two requirements for
a fast processing of the filter step (see above).

The second heuristic, called GlobalMinDist-heuristic, aims at the first point: it always
chooses the index Ii which has the closest page to the query qi considering dimension i. As
will be shown in the experimental evaluation, this heuristic yields a superior performance
of the query processing. However, the GlobalMinDist-heuristic will perform very bad in a
subspace where one dimension has a much larger scale than the other dimensions. In this
setting the GlobalMinDist-heuristic will prefer resolving pages from the indexes organizing
the dimensions with a small extent, as in these dimensions, the minDist from the query
will be very low compared to the dimensions with a higher extent. Thus, the second
requirement is not met, and many pages get resolved without much information gain.

To overcome this drawback, a third heuristic is proposed, which will be referred to as
MinScore-heuristic. For each index Ii, the score

fscore(Ii) =
|qi − Inexti |
Imaxi − Imini

(8.7)

is computed and the index minimizing fscore(Ii) is chosen. This normalization prevents
the algorithm from preferring dimensions with small extent.

8.4 Index-Based SSS – Top-Down

8.4.1 The Projected R-Tree

This section proposes the Projected R-Tree, a redefinition of the R-tree to answer sub-
space queries. Though, the provided solution can be integrated into any hierarchical index
structure and is not necessarily restricted to R-trees.

The idea of the top-down approach is to apply one index on the full-dimensional data
space. The key issue is that, for a subspace similarity query, the minimum distance between
an index page P and the query object q in subspace S has to be properly defined because
then, it is possible to just use the best-first search algorithm [107] without any changes.
The minimum distance between an index page P and the query object q in the subspace
S can be computed as

minDistS(q, P ) = p

√√√√√ d∑
i=1

Si ·


|Pmin
i − qi|p if Pmin

i > qi
|qi − Pmax

i |p if Pmax
i < qi

0 otherwise
, (8.8)

where Pmin
i and Pmax

i are the lower and upper bound of the page P in the ith dimension,
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Figure 8.3: One-dimensional subspace
query on a two-dimensional space us-
ing a Projected R-Tree.

Iteration APL maxKnnDist

0 (0.0,root) ∞
1 (0.0,P1), (0.0,P3), (0.7,P4),

(1.6,P2)
∞

2 (0.0,P1c), (0.0,P3), (0.7,P4),
(1.6,P2), (3.0,P1b), (3.2,P1a)

∞

3 (0.0,P3), (0.7,P4), (1.6,P2),
(3.0,P1b), (3.2,P1a)

0.8

4 (0.0,P3b), (0.2,P3a), (0.7,P4),
(1.6,P2), (3.0,P1b), (3.2,P1a)

0.8

5 (0.2,P3a), (0.7,P4), (1.6,P2),
(3.0,P1b), (3.2,P1a)

0.5

6 (0.7,P4), (1.6,P2), (3.0,P1b),
(3.2,P1a)

0.2

Table 8.3: Processing of a sample query.

respectively. Equation (8.8) is designed for the rectangular page region of R-trees. For the
implementation here, an R∗-tree has been used as underlying tree index.

8.4.2 Query Processing

When a query q arrives, it is processed in a best-first manner, as proposed in the well-
known best-first k-NN search algorithm [107]. The algorithm maintains an active page list
(APL) which contains pages of the index structure ordered ascending by their minDist to
the query. Since a subspace query is processed, only the dimensions defined by the query
are taken into account for the calculation of the minDist . The algorithm starts inserting
the root of the index structure into the APL. In each iteration, the first page from the
APL is processed. If it is a directory node, its children are inserted into the APL. If it is
a leaf node, the distance of each point contained in the page to the query is computed.
Each point may therefore update the maxKnnDist, which is the distance of the kth-nearest
point found so far. The process stops if the minDist of the first entry of the APL is larger
than the maxKnnDist. In this case, none of the pages in the APL can contain an object
being part of the k-nearest neighbors of the query. Figure 8.3 and Table 8.3 illustrate an
example of a subspace query.

8.4.3 Discussion

The Projected R-Tree is a relatively straightforward adaptation and can be regarded as
complementary to the Dimension-Merge Index. In contrast to the Dimension-Merge Index
using one index for each dimension, the Projected R-Tree just needs one index applied to
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Table 8.4: Datasets used in the evaluation.
Name Rows Dimensions Type

WEATHER 1, 128, 186 9 meteorological data
ALOI-8 /ALOI-64 110,250 8/64 color histograms, Zipfian

UNIFORM 100,000 20 synthetic, uniform
CLUSTERED-1000 100,000 20 synthetic, uniform, 1,000

Gaussian clusters

the full-dimensional data space. As a result, the Projected R-Tree does not need to merge
the partial results of the rankings performed for each dimension in the corresponding
subspace. Relying on the full-dimensional indexing of a dataset, the Projected R-Tree
can be expected to perform superior to the Dimension-Merge Index, in the cases where
the dimensionality of the query subspace is approaching the dimensionality of the dataset
(if the latter does not disqualify methods based on full-dimensional indexing). On the
other hand, as the index used in the Projected R-Tree organizes the data w.r.t. the full-
dimensional space, the locality property of a similarity query which might hold for the
full-dimensional space does not necessarily hold for the subspace the query relates on.
Generally, the more the dimensionality of the original data space differs from that of the
query subspace, the smaller is the expected effectiveness of the index for a given subspace
query. In summary, depending on the dimensionality of the query subspace, both indexing
approaches qualify for subspace similarity search. While the Dimension-Merge Index is
more appropriate for lower-dimensional subspace queries, the Projected R-Tree should be
used when the dimensionality of the query subspace approaches that of the data space.
This statement will be supported by the experimental evaluation, which will be summarized
in the following section.

8.5 Experimental Evaluation

8.5.1 Datasets and Experimental Setup

The approaches were evaluated on three datasets (summarized in Table 8.4):

• WEATHER: 9-dimensional meteorological dataset, consisting of 1,128,186 feature
vectors, used in [27].

• ALOI-8 /ALOI-64 : 8- and 64-dimensional reduced versions of originally 216-dimensional
Zipfian distributed color histograms extracted from the Amsterdam Library of Object
Images [99] comprising 110,250 feature vectors.

• UNIFORM : Synthetic dataset of 100,000 20-dimensional feature vectors which are
uniformly distributed in the data space.
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(a) 1-NN queries on WEATHER. (b) 10-NN queries on WEATHER.

(c) 1-NN queries on ALOI-8. (d) 10-NN queries on ALOI-8.

(e) 1-NN queries on ALOI-64. (f) 10-NN queries on ALOI-64.

Figure 8.4: Queries with different subspace dimensions on the real-world datasets.
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• CLUSTERED-1000 : Synthetic dataset of 100,000 20-dimensional feature vectors,
organized in 1,000 clusters. The means of the clusters are uniformly distributed in
the data space. Each cluster follows a multivariate Gaussian distribution.

This section evaluates the methods proposed in this chapter based on the experiments
from [32]. In particular, Subsection 8.5.2 compares the different algorithms for subspace
indexing on real-world datasets, whereas Subsection 8.5.3 focuses on the performance of the
different heuristics for the Dimension-Merge Index on synthetic datasets having different
characteristics. The used datasets are summarized in Table 8.4 and in more detail described
as follows:

8.5.2 Evaluation of Methods for Subspace Indexing

This section compares the approaches DMI (Dimension-Merge Index proposed in Sec-
tion 8.3), PT (Projected R-Tree proposed in Section 8.4), PVA (Partial VA-file [136])
and MP (a variant of the multiivot-based algorithm [156] for k-NN queries) for subspace
indexing. Unless stated otherwise, the different approaches on a dataset were compared
with k = 1 and k = 10 with increasing subspace dimension displayed on the x-axis. Due to
the long runtime and the high amount of disc accesses of MP, this approach was omitted
with WEATHER and ALOI-64.

In order to compare the different approaches, between 1,000 and 10,000 k-NN queries
were performed for each dataset. For DMI, PT and MP, all page accesses that could
not be served by the LRU-cache were measured. For all experiments with the mentioned
approaches, an infinite cache was assumed. PVA does not only perform random page
accesses for reading data, but also implements a heuristic that switches to a block read of
pages if it turns out that multiple subsequent pages have to be read. Therefore, block read
pages and randomly accessed pages of PVA were measured separately. In order to make
the results of PVA comparable to the results of the other approaches, the number of block
read pages was combined with the number of randomly accessed pages an estimated read
time was calculated. To achieve this, a seek time of 8 ms and a transfer rate of 60 MB/s
were assumed.

Figure 8.4 compares the proposed methods on the real-world datasets. For different
values of k on WEATHER (cf. Figures 8.4(a) and 8.4(b)), it can be observed clearly
that DMI is superior or equal to the other approaches up to a subspace size of four
dimensions. For ALOI-8 (cf. Figures 8.4(c) and 8.4(d)), using DMI is more appropriate for
a subspace size of up to three dimensions. On ALOI-64 (cf. Figures 8.4(e) and 8.4(f)), DMI
outperforms PVA and PT for up to four subspace dimensions until it reaches a break-even
point with PVA at a subspace size of five dimensions. Regarding the dimensionality of the
dataset and the subspace dimensions where DMI performs better than one of the other
methods (three on ALOI-8, four on WEATHER and five on ALOI-64 ), it can be stated that
DMI – such as PVA – is more effective on datasets with higher dimensionality, depending
on the parameter k (exemplarily shown in Figure 8.5 for ALOI-64 ). The obtained results
confirm the discussion from Subsection 8.4.3. In all tested settings, DMI performs best as
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Figure 8.5: k-NN queries on ALOI-64 (dS = 4,
increasing k).
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Figure 8.6: Heuristics on datasets with
different characteristics.

long as the dimensionality of the subspace query is moderate. When the dimensionality
increases, PT becomes superior to DMI. PVA is a scan-based approach and well suited
if a dataset is hard to index (e.g. very high-dimensional). WEATHER seems to be well
indexable by the projected variant of the R∗-tree, therefore PT is superior to PVA. The
ALOI-8 /ALOI-64 datasets in contrast are rather hard to index (in particular ALOI-64
having a very high dimensionality).

8.5.3 Evaluation of the Heuristics

The proposed heuristics for the Dimension-Merge Index (cf. Section 8.3) address differ-
ent problems of the data distribution. To accurately show their behavior, the heuristics
Round-Robin (RR), Global-MinDist (GMD) and MinScore (MS) were tested on syn-
thetic datasets with different characteristics. 1,000 10-NN queries on a three-dimensional
subspace were performed, measuring the page accesses needed by each dimension using the
DMI approach (again assuming an infinite LRU-cache) and averaging the outcomes. The
results are illustrated in Figure 8.6. On UNIFORM and CLUSTERED-1000, the more
sophisticated heuristics (GMD and MS) are superior to the näıve RR method, since they
try to find a more suitable dimension instead of more or less randomly picking one. If
the dimensions are scaled randomly, the GMD heuristics favors the dimension with the
minimum scale factor. However, this dimension does only increase the minimum distance
of all other objects by a small value. Therefore it can stop the filter step very late, which
results in many unnecessary page accesses.

8.6 Summary

This chapter proposed and studied index-based solutions for supporting k-NN queries in ar-
bitrary subspaces of a multidimensional feature space. Therefore, two different approaches
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were studied. One of the main problems this chapter addressed was how to schedule the
available information from the various dimensions in order to obtain good distance approx-
imations of the objects for an early pruning of candidates. The evaluation showed that the
proposed solutions perform superior to the competitors.
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Chapter 9

Introduction

9.1 Preliminaries

In Part II, multi-observation data has been focused w.r.t. the key property of temporal
variability. While, with the model of time series, the observations of an object occur
consecutively in dependency of the temporal domain, an object incorporating the key
property of uncertainty (cf. Chapter 1) is given by multiple states at the same time, modeled
by a set of observations; this leads to the research direction of uncertain or probabilistic
data. Here, the basic question arises which of these observations is most likely to represent
this object. Materializing this likelihood, the observations are associated with probability
values; this creates existential dependencies among the observations, as the existence of an
observation affects the existence of the other observations of the same object.

Coping with data uncertainty initiates a need for developing suitable data models and
techniques for searching and mining. The models commonly applied for probabilistic
databases – and in particular for this work – will be presented in Section 9.2. Then,
an introduction to probabilistic similarity queries will be given in Section 9.3, in particular
to the interesting problem of probabilistic similarity ranking in spatially uncertain data
(Section 9.4). The technique that will be used for efficiently solving the probabilistic rank-
ing problem will prove to be applicable to further challenges that will be tackled, among
them are the problem of probabilistic inverse ranking and the task of hot item detection.
The final chapters of this part will go beyond the definition of multi-observation data, but
remain in the area of uncertainty. There, the prominent problem of probabilistic frequent
itemset mining will be addressed by applying techniques that emerged from the use in the
context of probabilistic ranking. These problems will be motivated in Section 9.5.
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(a) Discrete attribute uncertainty. (b) Continuous attribute uncertainty.

Figure 9.1: Variants of attribute uncertainty.

9.2 Modeling Uncertain Data

9.2.1 Categorization

Uncertainty in databases can generally be incorporated as tuple uncertainty and attribute
uncertainty. Assuming tuple uncertainty, tuples are associated with a probability to appear
in the database. This characteristic is also called existential uncertainty. The property of
attribute uncertainty implies that a tuple has at least one uncertain attribute where the
possible values are contained within a defined range. In the literature, probabilistic data
models are classified in two types w.r.t. the attribute uncertainty: the discrete uncertainty
model (cf. Figure 9.1(a)) and the continuous uncertainty model (cf. Figure 9.1(b)).

In many real-world applications, uncertain objects are already given by discrete obser-
vations, in particular if the objects are derived from sensor signals. This type of represen-
tation is motivated by the fact that, in many cases, only discrete but ambiguous object
information – as usually returned by common sensor devices – is available, e.g., discrete
snapshots of continuously moving objects. Therefore, this part will focus on the discrete
uncertainty model by adopting a prominent representative among the discrete uncertainty
models. The ULDB model or x-relation model [25], introduced in the Trio system [8], will
be presented in the following.

The continuous uncertainty model will not be relevant in the context of this work, but
for the sake of completeness, it will briefly be explained within a summary of related work
on uncertain data in Chapter 10.

9.2.2 The X-Relation Model

The x-relation model extends the relational database model by incorporating uncertainty
and lineage [25] and it supports existential uncertainty and attribute uncertainty. Relations
in the x-relation model are called x-relations and contain uncertain tuples with alternative
instances, which are called x-tuples. Each x-tuple T corresponds to a set of tuples. Each
tuple t ∈ T is associated with a probability P (t), denoting the likelihood that it exists in
T . This characteristic realizes existential uncertainty of tuples. The probabilities represent
a discrete probability distribution of T , which realizes the attribute uncertainty of T ; the
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(a) Tuples and x-tuples.

Tuples

Tuple Location Prob.

t1 Renzy’s Den 50%
t2 Waterhole 20%
t3 Hunting Grounds 30%

t4 Waterhole 10%
t5 Hunting Grounds 10%
t6 The Forest 20%

Tiger X-Relation

Name X-Tuple

Renzy {t1, t2, t3}
Unknown Tiger ? {t4, t5, t6}

(b) Possible worlds.

Possible Worlds

World Tuples Prob.

W1 {t1},{} 30%
W2 {t1}, {t4} 5%
W3 {t1}, {t5} 5%
W4 {t1}, {t6} 10%
W5 {t2},{} 12%
W6 {t2}, {t4} 2%
W7 {t2}, {t5} 2%
W8 {t2}, {t6} 4%
W9 {t3},{} 18%
W10 {t3}, {t4} 3%
W11 {t3}, {t5} 3%
W12 {t3}, {t6} 6%

Table 9.1: Tuples describing locations of tigers, an x-relation containing x-tuples with their
possible locations and corresponding possible worlds with their probabilities.

constraint that
∑

t∈T P (t) ≤ 1 holds. The condition
∑

t∈T P (t) < 1 implies existential
uncertainty of x-tuples, meaning that the x-tuple may not exist at all.

9.2.3 The Possible Worlds Semantics

In relational databases, a popular semantics to cope with the uncertainty of data has been
introduced by adopting Saul Kripke’s Possible Worlds Semantics [145], e.g., as performed
in [15]. Incorporating this semantics into the x-relation model, an uncertain database D is
instantiated into a possible world as follows [44]:

Definition 9.1 (Possible Worlds) Let D = {T1, . . . , TN} be an uncertain database and
let W = {t1, . . . , tN} be any (certain) database instance which corresponds to a subset of
tuples ti appearing in D such that ti ∈ Ti, i ∈ {1, . . . , N}. The probability of this database
instance (world) W to occur is P (W ) =

∏N
i=1 P (ti). If P (W ) > 0, W is a possible world;

the set of all possible worlds is denoted by W.

The x-relation model is a special type of the possible worlds model that additionally allows
mutual independence among the x-tuples. Furthermore, the tuples t of an x-tuple T are
assumed to be mutually exclusive, i.e., no more than one instance t of an x-tuple T can
appear in a possible world instance at the same time. In the general model description,
the possible worlds are constrained by rules that are defined on the tuples in order to
incorporate correlations or dependencies between tuples [187].
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The x-relation model will be used as a basic object model in the major part of the
following chapters. To get an intuition of this model, an example, taken from [134], will
be given below.

Example 9.1 Table 9.1 shows an x-relation that contains information about the possible
positions of tigers in a wildlife sanctuary. Here, the first x-tuple describes the tiger named
“Renzy”, who may be found at three possible (alternative) locations t1, t2 and t3. He may
be in his cave with a probability of 50% or located at the water hole and at the hunting
grounds with a probability of 20% and 30%, respectively. This x-tuple logically yields three
mutually exclusive, possible tuple instances, one for each alternative location. Now, we
know that an unknown tiger may have entered the wildlife sanctuary with a probability
of 40%. In this case, it is not certain that the unknown tiger exists at all, which is an
existential uncertainty of the x-tuple, denoted by a “?” symbol [25]. To incorporate this
existential uncertainty, an additional, “empty” tuple is inserted added to the x-tuple of the
unknown tiger, such that the probabilities of the possible worlds can be computed according
to Definition 9.1. Taking into account the four alternatives (including the alternative of no
unknown tiger) for the position of the unknown tiger, there are twelve possible instances
(worlds) of the tiger x-relation. In general, the possible worlds of an x-relation R correspond
to all combinations of alternatives for the x-tuples in R. In this model, the probability of the
unknown tiger being at the water hole is not affected by the current position of Renzy, due
to the independence assumption among x-tuples. Considering the general case with possible
tuple dependencies, this example could be extended by the “natural” restriction that male
tigers are territorial and the position of a tiger may be affected by the presence of other
tigers in its close vicinity. Thus, for example, world W6 might not occur by rule.

9.2.4 Translation to Spatial Databases

For the use in this work, the semantics of the x-relation model will be translated into a
spatial context. Then, an uncertain database D consists of N uncertain objects with spatial
attributes, where each object X corresponds to an x-tuple and each observation x ∈ X
corresponds to a tuple. The attribute uncertainty of objects of a d-dimensional vector space
R
d is called positional uncertainty. Then, objects do not have a unique position in Rd, but

have multiple positions associated with a probability value. Thereby, the probability value
assigned to a position x ∈ Rd of an object X denotes the likelihood that X is located at
the position x in the vector space. The existential dependency, which describes the rule
that observations belonging to the same object are mutually exclusive, will be assumed for
the rest of this part. This dependency realizes the main characteristic of uncertain data.

According to [43, 45], a formal definition of a positional uncertain object within a
d-dimensional vector space is given as follows:

Definition 9.2 (Discrete Uncertain Object) A discrete uncertain object X corres-
ponds to a finite set of observations (alternative positions) in a d-dimensional vector space,
each associated with a confidence value, i.e., X = {(x, P (X = x))}, where x ∈ Rd, and
P (X = x) ∈ [0, 1] indicates the likelihood that object X is represented by observation x.
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Corresponding to the discrete uncertainty model, the probabilities of the observations repre-
sent a discrete probability distribution of the alternative positions, such that the condition∑

(x,P (X=x))∈X P (X = x) ≤ 1 holds. The collection of observations of all objects forms the
uncertain database D.

Analogously to the x-relation model, this definition also assumes independence among the
uncertain objects as well as mutual exclusiveness among observations of the same object.
This object definition will be used in Chapters 11 to 14. In the following, a positionally
uncertain object will be called uncertain object for simplicity and realizes the key property
of uncertainty, introduced in Chapter 1. Furthermore, existentially uncertain objects will
not be considered; it is assumed that

∑
(x,P (X=x))∈X P (X = x) = 1. In the special case

where m = 1, this corresponds to a single-observation (in this part also called certain)
object.

The data model for uncertain transactions applied with probabilistic frequent itemset
mining in Chapters 15 and 16 is based on the plain x-relation model and allows the
presence of existentially uncertain items.

9.3 Probabilistic Similarity Queries

The simplest solution to perform queries on uncertain objects is to represent the objects by
an exact object, e.g., the mean of all observations, and perform query processing in a tra-
ditional way. The advantage of this straightforward solution is that established similarity
processing techniques can be applied. However, this solution is accompanied by informa-
tion loss, since the similarity between uncertain objects is obviously more meaningful when
taking the whole information of the object uncertainty into account. For probabilistic data,
special formulations of queries are required in order to take the uncertainty of the data into
account, especially if the data attributes, e.g., the locations in the case for moving objects
in spatial databases, are changing continuously. Thus, contrary to the single-observation
(certain) case, the output of probabilistic similarity queries is usually in form of a set of
result objects, each associated with a probability value indicating the likelihood that the
object satisfies the query predicate.

Basically, any query predicate that is applicable for single-observation (certain) data is
extendible to uncertain data, e.g., probabilistic ε-range (PεR) queries [112, 138], probabilis-
tic k-nearest neighbor (Pk-NN) queries [162] and probabilistic reverse k-nearest neighbor
(PRk-NN) queries [37]. The main challenge for Pk-NN and PRk-NN queries is that the
neighborhood probability of objects depends on the location of the other objects in the
database. Result outputs may be restricted to objects with a sufficiently high result prob-
ability. For this purpose, the probabilistic threshold k-NN query [75] applies a probability
threshold to control a minimum probability for objects to appear in the result set.

Similarly to the single-observation case, a probabilistic similarity ranking query ranks
database objects in descending order w.r.t. their similarity to a query object. Due to the
significance of similarity ranking queries (cf. Chapter 1), the first chapters of this part
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Figure 9.2: Observations and rank probability graph [43].

will focus on probabilistic ranking queries, which will be discussed in more detail in the
following.

9.4 Probabilistic Similarity Ranking

9.4.1 Ranking Semantics

In contrast to PεR queries and Pk-NN queries, probabilistic ranking queries do not have
a unique query predicate, since the query predicate changes with each ranking position.
In case of a probabilistic ranking query, a set of probability values is assigned to each
result object, one for each ranking position. This output will be called Rank Probability
Distribution (RPD) in the following. A formal definition will follow in Chapter 11. Com-
monly, a small part of the RPD should be sufficient and, thus, more convenient for most
applications. Therefore, analogously to the single-observation case, an output limitation is
commonly used by the ranking depth k.

Due to the variance of the ranking positions of the objects, there does not exist a unique
order in which the results are reported. The following example illustrates the problem of
the ambiguity of probabilistic ranking.

Example 9.2 Consider, for example, a set of three two-dimensional objects A, B, and
C (e.g., locations of mobile users), and their corresponding uncertain positions {a1, a2},
{b1, b2, b3}, and {c1, c2, c3}, as shown in Figure 9.2(a). Each observation carries a prob-
ability (shown in brackets); observations of the same object are assumed to be mutually
exclusive. According to Definition 9.2, the sum of observation probabilities of each object
does not exceed 1. Assume that the objects A, B, and C shall be ranked w.r.t. their dis-
tances to the query observation q shown in the figure, where, for example, any Lp-norm can
be applied. Clearly, several rankings are possible. In specific, each combination of obser-
vations defines an order. For example, for the combination {a1, b1, c1} the object ranking
is (B,A,C), while for the combination {a2, b3, c1} the object ranking is (A,B,C). Each
combination corresponds to a possible world (cf. Definition 9.1), whose probability can be



9.4 Probabilistic Similarity Ranking 93

computed by multiplying the probabilities of the observations that comprise it, assuming
independent existence probabilities between the observations of different objects.

However, not all of this information might be of interest for the user and it could be difficult
to extract the relevant information. Therefore, most applications require the definition
of an unambiguous ranking where each object (or observation) is uniquely assigned to
one rank. For example, assume that a robbery took place at location q and the objects
correspond to the positions of suspects that are sampled around the time the robbery took
place. The probabilities of these observations depend on various factors (e.g., the time
difference of the observation to the robbery event, errors of capturing devices, etc.). As an
application, it may be the demand to define a definite probabilistic proximity ordering of
the suspects to the event, in order to prioritize interrogations.

9.4.2 This Work in the Context of Probabilistic Ranking

In the first unambiguous probabilistic ranking solution for the x-relation model, Soliman
et al. presented in [192] a top-k query processing algorithm for uncertain data in relational
databases according to the x-relation model (cf. Subsection 9.2.2). The authors proposed
two different variants of uncertain top-k queries: U-Topk and U-kRanks, where the general
qualifying criterion of a ranking or score function fscore is used. In probabilistic databases,
fscore is created by the interaction of the score attributes and the probability of a tuple [111].

In the U-Topk query, the objective is to find the top-k in each possible world for a
given score function (Step 1) and then report the result that has the highest aggregated
probability over all possible worlds (Step 2). The first step requires a prior score ordering
of the tuples in each possible world, such that U-Topk can be classified as an approach
of probabilistic ranking. However, analogously to the single-observation case, the result is
comparable to the Pk-NN query in spatial data.

In contrast, the U-kRanks query reports a probabilistic ranking of the tuples (i.e., for
each ranking position i one tuple t, which is a clear winner on rank i). For this computation,
obvious requirements are the probabilities of t to be ranked ith in all possible worlds. The
probability that an object is ranked at a specific position i can be computed by summing
the probabilities of the possible worlds that support this occurrence.

In Chapters 11 and 12, the problem definition of computing the probabilistic ranking
corresponds to the U-kRanks query problem. Also, Chapter 11 will include an example for
the U-kRanks semantics.

In [192], an efficient solution for U-kRanks is only given for the case where all tuples
are mutually independent, which does not hold for the x-relation model (as there is a
dependency among all tuples of an x-tuple). Instead, all possible worlds would have to be
enumerated. Since the number of possible worlds is exponential in the number of uncertain
objects, it is impractical to enumerate all of them in order to find the rank probabilities of
all tuples.

Chapter 11 will present the first probabilistic similarity ranking algorithm based on
the full probabilistic information given by the inexact object representations according to
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Definition 9.2, which incorporates the application of the x-relation model to spatial data.
Here, the score function fscore is defined by the distance to the query object (i.e., a high
score value is reflected by a low uncertain distance value). A divide-and-conquer-based
probabilistic ranking algorithm will be introduced within a framework, which significantly
reduces the complexity of the computation of the rank probabilities.

The main drawback of U-kRanks is that this query type only considers the probability
of an object to be ranked on a particular ranking position. The confidences of prior ranking
positions of an object are ignored in the case they are exceeded by another object. However,
the latter confidences might also be relevant for the final setting of the ranking position
of an object. Therefore, diverse variants of probabilistic ranking schemes will be studied
in Chapter 11, which differ in the order in which the results are reported and in the form
their confidence values are aggregated.

In order to be independent of any probabilistic ranking output, the result provided by
the algorithm of Chapter 11 will be a object-rank bipartite graph containing the proba-
bilities for all objects to be on each ranking position, which corresponds to an RPD (cf.
Subsection 9.4.1). Going back to Example 9.2, Figure 9.2(b) illustrates such a bipartite
graph. For example, the probability that object A occurs on rank 1 is 0.46 and the prob-
ability that object B is first is 0.54. Non-existing edges imply a probability of 0, i.e., it is
not possible that the object occurs at the corresponding ranking position. In this example,
all observations of A precede all those of C w.r.t. the distance to q, so C cannot occur as
first object and A cannot be ranked on the last position.

Despite of the improvement of the computational effort for solving U-kRanks by the
divide-and-conquer-based solution of Chapter 11, the overall runtime to obtain the RPD
is still exponential in the number of uncertain objects. An improved method based on the
x-relation model was given for relational data by Yi et al. in [214]. There, it has been
shown that the U-kRanks query result can be computed in polynomial time by introducing
a dynamic-programming technique for probabilistic ranking which is known as Poisson
Binomial Recurrence (PBR) [147]. A second approach that will be given in Chapter 11
already exploits this technique and applies it to the spatial object model according to
Definition 9.2.

Chapter 12 [43] will introduce a method that achieves a significant improvement of
this approach, which further reduces the computational complexity to linear time in the
number of uncertain objects for particular assumptions while having the same memory
requirements. Furthermore, it will be shown how the output of the proposed method (i.e.,
the RPD, which corresponds to the output of the solution of Chapter 11) can also be
applied to state-of-the-art top-k definitions that generate unambiguous ranking outputs
based on the x-relation model. More details of these definitions will be given with related
work in Chapter 10 and with the solutions in Chapter 12.

The essential module of the framework of Chapters 11 and 12 is the computation
of an observation-based RPD. This requires the computation of the probability for an
observation x that i objects are closer to the query observation q than x, for all ranks
i ∈ {1, . . . , k}. The RPD is dynamically computed by performing a linear scan over the
ordered observations. The resulting probabilities are aggregated to build the probability
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of each object at each rank.
In contrast to [192, 214], where the ranking results are built upon a tuple-based ranking,

the objective in Chapters 11 and 12 is to return a ranking of uncertain objects, which
correspond to the x-tuples in the x-relation model. It will, therefore, also be shown that
the cost required to solve the object-based RPD is similar to that required to solve the
observation-based RPD. The temporary solution based on observations additionally only
requires to build the sum over all observation-based rank probabilities, which can be done
on-the-fly without additional cost.

Finally, the cost required to build a final unambiguous ranking result (e.g., U-Topk, U-
kRanks) from the RPD can be neglected. The unambiguous ranking can also be computed
on-the-fly by simple aggregations of the corresponding RPD.

The PBR can be applied to solutions for a variety of problems in probabilistic databases,
which will be motivated in the following section. Its incremental processing scheme allows
the introduction of a solution of quadratic runtime with linear update costs for the problem
of continuous probabilistic inverse ranking (Subsection 9.4.3). Furthermore, data mining
applications, in this context the problem of hot item detection and the prominent task
of probabilistic frequent itemset mining benefit from the dynamic-programming approach
(Section 9.5).

9.4.3 Probabilistic Inverse Ranking

Contrary to the “common” probabilistic ranking query, which reports objects in ascending
order w.r.t. their distance to a query object and assigns them to each rank with a proba-
bility, a probabilistic inverse ranking query monitors a given query object and retrieves all
possible ranks of this object according to a given, user-defined score function. A motivating
example, taken from [152], is the following.

Example 9.3 For a newborn, it may be of interest to get information about his or her
health in comparison with other babies in terms of height, weight, and so on. In this
case, it is possible to infer the newborn’s health from his or her rank in comparison with
others. Data of newborn babies in a hospital are confidential. Thus, for the sake of privacy-
preservation, such information is usually perturbed by adding synthetic noise or generalized
by replacing exact values with uncertain intervals, before releasing them for research pur-
poses. Thus, in these situations, a probabilistic inverse ranking query can be conducted
over uncertain data (perturbed or generalized) in order to obtain all possible ranks that a
newborn may have with high confidence.

While the probabilistic inverse ranking problem has been tackled for static data [149, 158],
Chapter 13 will apply the incremental approach of updating the probability distribution of
Chapter 12 on uncertain stream data, i.e., when the data changes with elapsing time. Here,
an uncertain stream is a stream of observations with confidences, e.g., observed positions of
moving objects derived from multiple sensors. Corresponding to the definition of uncertain
objects (cf. Definition 9.2), each observation carries a confidence value which reflects the
likelihood that the observation conforms with the current true object state.
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In Chapter 13, a framework will be presented that updates the inverse ranking query
result very efficiently, as the stream provides new observations of the objects. It will
be theoretically and experimentally shown that the query update can be performed in
linear time, corresponding to the time complexity of the incremental method presented in
Chapter 12.

9.5 Probabilistic Data Mining

9.5.1 Hot Item Detection in Uncertain Data

The detection of objects which build dense regions with other objects within a vector space
is a foundation of several density-based data mining techniques, in particular density-based
clustering [90, 184], outlier detection and other density-based mining applications [61, 143,
194]. A (certain) object x for which exists a sufficiently large population of other objects
in a database D that are similar to x is called a hot item. Intuitively, an item that shares
its attributes with many other items could be potentially interesting, as its shows a typical
occurrence of items in the database. Application areas where the detection of hot items
is potentially important for example include the detection of “hot” research topics, the
detection of interesting products for online shopping advertising or the pre-detection of
criminal activities.

Chapter 14 [48] will give provide more details for these examples and will then propose
an approach for the detection of potentially interesting objects (hot items) of an uncertain
database in a probabilistic way. An algorithm for arbitrary probabilistic predicates, again
based on the PBR, will be presented which detects hot items, where, to each object x, a
confidence value is assigned that reflects the likelihood that x is a hot item. In the context of
Chapter 14, hot items can be abstracted to objects that satisfy a given similarity predicate
together with a reasonably large set of other items. For example, if the equality predicate
is assumed, then a hot item satisfies the frequent item property, as this item is equal to
many other items and, thus, occurs frequently in the database.

9.5.2 Probabilistic Frequent Itemset Mining

The final chapters of this part will go beyond the definition of spatially uncertain objects,
but remain in the area of uncertainty. There are various data mining applications that
have to cope with the presence of uncertainty. Then, techniques designed for similarity
query processing can apply in order to obtain effective and efficient solutions. For example,
association rule analysis is one of the most important fields in data mining. It is commonly
applied to market-basket databases for the analysis of consumer purchasing behavior. Such
databases consist of a set of transactions, each containing the items a customer purchased.
The most important and computationally intensive step in the mining process is the extrac-
tion of frequent itemsets – sets of items that occur in a minimum number of transactions.
It is generally assumed that the items occurring in a transaction are known for certain.
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However, also in transaction databases, this is not always the case – as already outlined in
Part I –, due to several reasons:

• In many applications, the data is inherently noisy, such as data collected by sensors
or in satellite images.

• In privacy protection applications, artificial noise can be added deliberately [210].
Finding patterns despite this noise is a challenging problem.

• By aggregating transactions by customer, it is possible to mine patterns across cus-
tomers instead of transactions. This produces estimated purchase probabilities per
item per customer rather than certain items per transaction.

Probabilistic frequent itemset mining in uncertain transaction databases semantically
and computationally differs from traditional techniques applied to standard (certain) trans-
action databases. The consideration of existential uncertainty of item(sets), indicating the
probability that an item(set) occurs in a transaction, makes traditional techniques inappli-
cable. Chapter 15 [46] will introduce probabilistic formulations of frequent itemsets based
on the possible worlds semantics (cf. Definition 9.1), allowing existentially uncertain items.
In this probabilistic context, an itemset X is called frequent if the probability that X occurs
in a minimum number of transactions is above a given threshold. The presented solution
has been the first approach addressing this problem under the possible worlds semantics.
In consideration of the probabilistic formulations, a framework will be presented which
solves the probabilistic frequent itemset mining problem efficiently, applying the PBR.

As a follow-up work of Chapter 15, Chapter 16 [47] will propose the first Probabilistic
Frequent Pattern Growth (ProFP-Growth) algorithm. Here, an approach based on the
FP-tree [104] will be used in order to mine all probabilistic frequent itemsets in uncertain
transaction databases without candidate generation in a probabilistic way, thus providing
even a faster and more memory-efficient solution. The method to compute the support
probability distribution will apply the concept of Generating Functions, as proposed in the
context of probabilistic ranking in [154]. This concept has similar objectives to the PBR
w.r.t. dynamic-programming techniques and incremental processing.
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Chapter 10

Related Work

10.1 Categorization

Existing approaches in the field dealing with uncertain data can be categorized into diverse
directions. Work on uncertain data models will be reviewed in Section 10.2. Related work
in the context of probabilistic query processing and mining on uncertain data will be
summarized in Sections 10.3 and 10.4.

10.2 Modeling and Managing Uncertain Data

Uncertain data models are classified in discrete and continuous uncertainty models. Dis-
crete models regard the composition of databases with uncertain tuples [84], where each
tuple is associated with a probability denoting the likelihood that it exists in the relation.
This model adopts the Possible Worlds Semantics [145] (cf. Definition 9.1 of Chapter 9).
The x-relation model proposed in [8, 25] supports uncertain tuples with alternative in-
stances which are assumed to be mutually exclusive, i.e., no more than one instance of an
uncertain tuple can appear in a possible world instance at the same time. The discrete
uncertainty model has been adopted by many approaches dealing with probabilistic data,
e.g., [108, 114, 154, 191].

Applications where there exists at least one uncertain attribute which is assumed to
follow a continuous probability density function (PDF) have to cope with the continuous
uncertainty model.

Following the convention of uncertain databases with continuous uncertainty, the mul-
tidimensional PDF fX of an object X is (minimally) bounded by an uncertainty region
RX , such that ∀x /∈ RX : fX(x) = 0 and

∫
RX

fX(x)dx ≤ 1, where, similarly to the

discrete uncertainty model, the case
∫
RX

fX(x)dx < 1 implies the presence of existential
uncertainty. The assumption of a bounded PDF is realistic, because the spectrum of pos-
sible values of attributes is usually bounded and it is commonly used in related work,
e.g., [50, 68, 74, 76, 78]. Even if fX is given as an unbounded PDF, e.g., a Gaussian PDF,
a common strategy is to truncate PDF tails with negligible probabilities and normalize the
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resulting PDF. In specific, [50] shows that, for a reasonable low truncation threshold, the
impact on the accuracy of probabilistic ranking queries is quite low while having a very
high impact on the query performance.

Methods for similarity processing that are based on the continuous uncertainty model
involve expensive integrations of the PDFs. In order to reduce the high computational
effort, the generally applicable concept of Monte Carlo sampling is used, which generates
the set of (discrete) observations according to a given PDF [114]. Thus, this concept allows
the application of methods originally designed for discrete uncertainty models.

A popular solution in the field of spatial data is to approximate the uncertainty region
by MBRs, which allows the application of spatial pruning methods, e.g., [34]. Other works
apply hypersphere approximations, e.g., [155, 195].

Popular indexing methods to enhance probabilistic query processing comprise the Gauss-
tree [54] for Gaussian distributed PDFs, the U-tree [195] for arbitrary distributions, the
UI-tree [220] and the APLA-tree [162], which uses piecewise-linear approximations.

10.3 Probabilistic Query Processing

10.3.1 Probabilistic Similarity Ranking

In the context of probabilistic ranking, significant work has been done in the field of
probabilistic top-k retrieval yielding unambiguous rankings from probabilistic data. A
detailed summary of the most approaches can be found in [114].

[55] applies the Gauss-tree [54] in order to incrementally retrieve those k objects which
have a sufficiently high probability of being located inside a given query area.

Probabilistic top-k queries have been studied first by Soliman et al. [192] on the x-
relation model. The authors propose two different ways of ranking tuples: the uncertain
top-k query (U-Topk) and the uncertain k-ranks query (U-kRanks). At the same time, Ré
et al. proposed in [177] an efficient but approximate probabilistic ranking based on the
concept of Monte Carlo simulation.

The approach proposed in [214] was the first efficient exact probabilistic ranking ap-
proach for the x-relation model. The results for U-Topk and U-kRanks are computed
by means of a dynamic-programming technique, known as Poisson Binomial Recurrence
(PBR) [147] and early stopping conditions for accessing the tuples. The work proposed in
Chapters 11 and 12 uses this technique as a module of computing the object-rank proba-
bilities which can, among others, be used to solve the U-kRanks problem efficiently.

In [155], the probabilistic ranked query for the context of distributions over spatial data
is based upon the same definition as U-kRanks.

The Probabilistic Threshold Top-k (PT-k) query problem [108] aggregates the proba-
bilities of an observation appearing on rank k or higher. Given a user-specified probability
threshold p, PT-k returns all observations that have a probability of at least p of being on
rank k or higher. In this definition, the number of results is not limited by k, but depends
on the threshold parameter p. This approach also utilizes the PBR.
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The Global top-k approach [219] is very similar to PT-k. It ranks the observations by
their top-k probability and then takes the top-k of these. The advantage here is that, unlike
in PT-k, the number of results is fixed, and there is no user-specified threshold parameter
that has to be set.

Cormode et al. [83] reviewed alternative top-k ranking approaches for uncertain data,
including U-Topk and U-kRanks, and argued for a more robust definition of ranking,
namely the expected rank for each tuple (or x-tuple). The expected rank is defined by
the weighted sum of the ranks of the tuple in all possible worlds, where each world in
the sum is weighed by its probability. The k tuples with the lowest expected ranks are
argued to be a more appropriate definition of a top-k query than previous approaches.
Nevertheless, it could be found by experimentation that such a definition may not be
appropriate for ranking objects (i.e., x-tuples), whose observations have large variance (i.e.,
they are scattered far from each other in space). Therefore, a follow-up work [114] computes
the median rank and the quantile rank in order to obtain more robust measures against
outliers and high variances. These approaches run in loglinear time and, thus, outperform
exact approaches that do not use any estimation. The main drawback of the approaches
is that, by using an aggregated estimator, information is lost about the distribution of the
objects. This is the reason why Chapters 11 and 12 focus on the computation of the RPD,
at the and presenting a solution which also requires loglinear runtime complexity.

The goal of [191] is to rank uncertain objects (i.e., x-tuples) where the scores are
uncertain and can be described by a range of values. Based on these ranges, the authors
define a graph that captures the partial orders among objects. This graph is then processed
to compute U-kRanks and other queries. Although [191] has similar objectives to the
approaches of Chapters 11 and 12, it operates on a different input, where the distribution
of uncertain scores is already known, as opposed to the ranking approaches of this work,
which dynamically computes this distribution by performing a linear scan over the ordered
observations.

The work of [215] studies probabilistic ranking of objects according to their distance
to a query point. However, the solutions are limited to existentially uncertain data with a
single observation.

Related to probabilistic top-k queries, [180] introduced queries on uncertain data with
aggregations, such as probabilistic count and probabilistic sum queries, where the number
of tuples is determined that have a higher (uncertain) score than the current tuple. The
consideration of all possible worlds is, however, again very inefficient. The authors of [96]
apply the continuous probabilistic count query on wireless sensor network environments,
which, in this context, reports the number of sensor nodes whose measured values satisfy
a given query predicate. An efficient result computation is achieved by applying the PBR.
The work [109] proposes the continuous probabilistic sum query in wireless sensor networks
applying Generating Functions, which have been introduced by [154] while solving a wide
class of probabilistic top-k queries in the same time complexity. This concept has similar
objectives to the PBR w.r.t. dynamic-programming techniques and incremental processing
and will also be used in this work, namely in the context of probabilistic frequent itemset
mining in Chapter 15.
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10.3.2 Probabilistic Inverse Ranking

In contrast to ranking in uncertain data, where there exists abundant work, there is limited
research on the inverse variant of ranking uncertain data. The inverse ranking query on
certain data was first introduced by Li [152]. Chen et al. [158] apply inverse ranking to
probabilistic databases by introducing the probabilistic inverse ranking (PIR) query. Ac-
cording to [158], the output of a PIR query consists of all possible ranks for a (certain) query
object q, for which q has a probability higher than a given threshold. Another approach for
answering PIR queries has been proposed by [149], which computes the expected inverse
rank of an object. The expected inverse rank can be computed very efficiently, however, it
lacks from a semantic point of view. In particular, an object that has a very high chance
to be on rank 1, may indeed have an expected rank far from rank 1, and may not be in
the result using expected ranks. Thus, no conclusion can be made about the actual rank
probabilities if the expected rank is used, since the expected rank is an aggregation that
drops important information. The first exact PIR approach for continuously changing data
in the context of observation streams will be presented in Chapter 13.

In order to deal with massive datasets that arrive online and have to be monitored,
managed and mined in real time, the data stream model has become popular. Surveys of
systems and algorithms for data stream management are given in [18, 168]. A generalized
stream model, the probabilistic stream model, was introduced in [113]. In this model, each
item of a stream represents a discrete probability distribution together with a probability
that the element is actually present in the stream. There has been work of interest on
clustering uncertain streams [7], as well as on processing more complex event queries over
streams of uncertain data [178]. [82] presents algorithms that capture essential features of
the stream, such as quantiles, heavy hitters, and frequency moments. In [115], the authors
propose a framework for processing continuous top-k queries on uncertain streams.

10.3.3 Further Probabilistic Query Types

Beyond probabilistic ranking, there is a variety of work tackling other query types in
uncertain data, including probabilistic range queries, probabilistic nearest neighbor (PNN)
queries and some variants, and probabilistic reverse nearest neighbor (PRNN) queries.
Probabilistic range queries have been addressed in [76, 78, 112, 138, 195].

There exist approaches for PNN queries based on certain query objects [77] and for
uncertain queries [110, 139]. The authors of [74] add threshold constraints and propose
the constrained PNN query for certain query points in order to retrieve only objects whose
probability of being the nearest neighbor exceeds a user-specified threshold. A combination
of the concepts of PNN queries and top-k retrieval in probabilistic databases is provided
by top-k PNN queries [50]. Here, the idea is to return the k most probable result objects
of being the nearest neighbor to a single-observation (certain) query point.

[162] proposed a solution for probabilistic k-nearest neighbor (Pk-NN) queries based
on expected distances. [75] introduced the probabilistic threshold k-NN (PTk-NN) query,
which requires an uncertain object to exceed a probability threshold of being part of the
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Pk-NN result. Here, the query is assumed to be a single-observation object.
The framework that is proposed in [34] introduced the concept of probabilistic domi-

nation in order to efficiently answer Pk-NN and PTk-NN queries as well as probabilistic
ranking and inverse ranking queries for uncertain query objects, applying Uncertain Gen-
erating Functions, an extended variant of the Generating Functions introduced in [154].

The PRNN query returns the set of all objects for which the probability that an uncer-
tain query object Q is their nearest neighbor exceeds a user-defined probability threshold.
This problem has been tackled by by [157] for the continuous model and by [67] for the dis-
crete case. The work [37] showed to achieve superior results to the mentioned approaches;
furthermore, an extension to PRk-NN queries is proposed.

10.4 Probabilistic Data Mining

The aspect of identifying hot items, i.e., objects that are similar to a given amount of other
objects, is the basis of several density-based mining applications [61, 90, 143, 184, 194].
The detection of hot items can be efficiently supported by a similarity join query used in
a preprocessing step, in particular the distance-range self-join. A survey of probabilistic
join queries in uncertain databases can be found in [134]. Approaches for an efficient join
are proposed in [138]. The main advantage of this approach is that discrete positions in
space can efficiently be indexed using traditional spatial access methods, thus allowing to
reduce the high computational cost to process complex query types.

Apart from the analysis of spatial objects, there are various data mining applications
that have to cope with the presence of uncertainty. For example, the detection of frequent
itemsets as a preprocessing step for rule mining is one of the most important problems in
data mining. There is a large body of research on Frequent Itemset Mining (FIM), but
very little work has recently been addressing FIM in uncertain databases [79, 80, 150].
The approach proposed in [80] computes the expected support of itemsets by summing all
itemset probabilities in the U-Apriori algorithm. Later, in [79], they additionally proposed
a probabilistic filter in order to prune candidates early. In [150], the UF-growth algorithm is
proposed. Like U-Apriori, UF-growth computes frequent itemsets by means of the expected
support, but it uses the FP-tree approach [104] in order to avoid expensive candidate
generation. UF-growth considers itemsets to be frequent if the expected support exceeds
a minimum support threshold. The main drawback of this estimator is that information
about the uncertainty of the support is lost; [79, 80, 150] ignore the number of possible
worlds in which an itemset is frequent. [217] proposes exact and sampling-based algorithms
to find likely frequent items in streaming probabilistic data. However, they do not consider
itemsets with more than one item. Finally, except for [199], existing FIM algorithms
assume binary-valued items which precludes simple adaptation to uncertain databases.
The approaches proposed in Chapters 15 [46] and 16 [47] have been the first methods that
find frequent itemsets in an uncertain transaction database in a probabilistic way.

A different tree-based algorithm is presented in [151], which suggests an upper bound
of the expected support by dealing with projected transactions.
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Chapter 11

Probabilistic Similarity Ranking on
Spatially Uncertain Data

11.1 Introduction

A probabilistic ranking query on uncertain objects computes for each object X ∈ D the
probability that X is the ith nearest neighbor (1 ≤ i ≤ |D|) of a given query object Q.
The simplest solution to perform queries on spatially uncertain objects is to represent each
object by exactly one observation, e.g., the mean vector, and perform query processing
in a traditional way. The advantage of this straightforward solution is that established
query and indexing techniques can be applied. However, this solution is accompanied by
information loss, since the similarity between uncertain objects is obviously more meaning-
ful when taking the full information of the object uncertainty into account. An example
of the latter case is shown in Figure 11.1(a), which depicts uncertain objects A, . . . , U ,
each represented by its mean value. The results of a distance range query w.r.t. the query
object Q are shown in the upper right box. There are critical objects like P , which is
included in the result, and O, which is not included, though they are very close to each
other. The result based on the full probabilistic object representation is shown in Fig-
ure 11.1(b). Here, the gray shaded fields indicate those objects which are also included
in the non-probabilistic result. Obviously, the objects O and P have quite similar prob-
abilities (P (O) = 53%, P (P ) = 60%) of belonging to the result. Additionally, it can be
observed that the objects E, F , G and M are certain results, i.e., have a probability of 1
to appear in the result set.

This chapter will tackle the problem of similarity ranking on spatially uncertain data
exploiting the full probabilistic information of uncertain objects. First, diverse forms of
ranking outputs will be suggested which differ in the order the objects are reported to
the user. Then, a framework based on iterative distance browsing will be proposed that
supports efficient computation of the probabilistic similarity ranking.

The representation of uncertain objects will be based on Definition 9.2 (cf. Chapter 9),
where the objects are assumed to incorporate positional uncertainty, i.e., each uncertain
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(a) Query on objects represented by mean positions. (b) Query on objects with full uncertainty.

Figure 11.1: Distance range query on objects with different uncertainty representations.

object consists of a set of multiple observations which are mutually exclusive.
In the following, Section 11.2 will formally define different semantics of probabilistic

ranking on uncertain objects. Then, Section 11.3 will introduce a framework containing
the essential modules for computing the rank probabilities of uncertain observations. In
Section 11.4, two approaches will be presented to speed-up the computation of the rank
probability distribution. These approaches will be evaluated w.r.t. effectiveness and effi-
ciency in Section 11.5. Finally, Section 11.6 will conclude this chapter.

11.2 Problem Definition

11.2.1 Distance Computation for Uncertain Objects

In order to compute a rank probability distribution for positionally uncertain objects w.r.t.
their spatial distances to a query object, also these distances have to incorporate the
uncertainty. Like the uncertain position, the distance between two uncertain objects (or
between two objects where at least one of them is an uncertain object) can be described by
a PDF that reflects the probability for each possible distance value. However, for uncertain
objects with discrete uncertainty representations, another form of distance is needed. This
distance is defined as follows:

Definition 11.1 (Uncertain Distance) Let dist : Rd ×Rd → R+
0 be an Lp-norm-based

distance function, and let X ∈ D and Y ∈ D be two uncertain objects, where X and Y
are assumed to be independent of each other. Then, an uncertain distance in the discrete
uncertainty model is a collection

distu(X, Y ) = {(d, p) ∈ R+
0 ,∀(x, P (X = x)) ∈ X, ∀(y, P (Y = y)) ∈ Y :

d = dist(x, y), p = P (X = x) · P (Y = y)}.



11.2 Problem Definition 107

Here, the condition
∑

(d,p)∈distu(X,Y ) p = 1 holds.

Since distance computations between uncertain objects are very expensive, computation-
ally inexpensive distance approximations are required in order to reduce the candidate set
in a filter step. For this reason, it makes sense to introduce distance approximations that
lower and upper bound the uncertain distance between two uncertain objects.

Definition 11.2 (Minimum and Maximum Object Distance) Let X = {x1, . . . , xm}
and Y = {y1, . . . , ym′} be two uncertain objects. Then, the distance

minDist(X, Y ) = min
i∈{1,...,m},j∈{1,...,m′}

(dist(xi, yj))

is called minimum distance between the objects X and Y , and

maxDist(X, Y ) = max
i∈{1,...,m},j∈{1,...,′}

(dist(xi, yj))

is called maximum distance between X and Y .

11.2.2 Probabilistic Ranking on Uncertain Objects

A probabilistic ranking query assigns a set of probability values to each result object, one
value for each ranking position. This Rank Probability Distribution (RPD) is defined as
follows:

Definition 11.3 (Rank Probability Distribution (RPD)) Let Q be an uncertain
query object and let D be a database containing N uncertain objects. A Rank Proba-
bility Distribution (RPD) is a function PQ : D × {1, . . . , k} → [0, 1] that reports, for a
database object X ∈ D and a ranking position i ∈ {1, . . . , k}, the probability which reflects
the likelihood that X is on the ith ranking position w.r.t. the uncertain distance distu(X,Q)
between X and the query object Q in ascending order.

Table 11.1 summarizes the most frequently used notations of this chapter on the following
page. Chapter 12 will also fall back on these notations.

Assuming k = N , the RPD represents a complete probabilistic assignment of each
database object to its possible ranking positions, which can be visualized by a bipartite
graph, where the zero probabilities PQ(X, i) = 0 (1 ≤ i ≤ N) can be omitted (cf. Figure 9.2
in Chapter 9). For this reason, diverse variants of query definitions will be proposed that
can be easily motivated by the fact that the user could be overstrained with ambiguous
ranking results. They specify how the results of an RPD can be aggregated and reported
in a more comfortable form which is more easy to read. In particular, for each ranking
position, only one object is reported, i.e., for each ranking position i, the object which is
most likely to appear on the given position i is reported. The final unambiguous rankings
can be built in a postprocessing step.
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Notation Description

D an uncertain database
N the cardinality of D
k the ranking depth that determines the number of ranking positions

of the ranking query result
m the number of observations belonging to an object
Q an uncertain query object in respect to which a rank probability

distribution (RPD) is computed
q a query observation belonging to Q in respect to which an RPD is

computed
B a distance browsing of D w.r.t q

X, Y , Z uncertain objects, each corresponding to a finite set of alternative
observations

x, y, z observations belonging to the objects X, Y , Z respectively
P (X = x) the probability that object X is represented by observation x
S a set of objects that have already been retrieved, i.e., the set that

contains an object X iff at least one observation of X has already
been returned by the distance browsing B

Pq(X, i) the probability that object X is assigned to the ith ranking position
i, i.e., the probability that exactly i − 1 objects in (D \ {X}) are
closer to q than X

Pq(x, i) the probability that an observation x of object X is assigned to the
ith ranking position i, i.e., the probability that exactly i−1 objects
in D \ {X} are closer to q than x

Pi,S,x the probability that exactly i objects Z ∈ S are closer to q than
observation x

Px(Z) the probability that object Z is closer to the query observation q
than the observation x; computable using Lemma 11.3

Table 11.1: Table of notations used in this chapter and in Chapter 12.

U-kRanks Query

A U-kRanks query is defined according to [192, 214] as follows:

Definition 11.4 (U-kRanks) A U-kRanks query incrementally retrieves for a ranking
position i a result tuple of the form (X,PQ(X, i)), where X ∈ D has a higher probability
then all other objects ∀Z ∈ D \ {X} to appear on the ranking position i, formally

PQ(X, i) ≥ PQ(Z, i).

In a U-kRanks query, an object can be assigned to multiple ranking positions, or it can
not occur at all.
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Probabilistic Ranking Query Based on Maximum Confidence

A similar query definition reports the objects in such a way that the ith reported object
has the highest confidence to be at the given ranking position i, but without multiple or
empty assignments of objects.

Definition 11.5 (PRQ MC ) A probabilistic ranking query based on maximum confi-
dence (PRQ MC) incrementally retrieves for a ranking position i a result tuple of the form
(X,PQ(X, i)), where X ∈ D has not been reported at previous ranking iterations (i.e., at
ranking positions j < i) and Z ∈ D\{X} which have not been reported at previous ranking
iterations, formally

PQ(X, i) ≥ PQ(Z, i), X has not been reported at previous ranking iterations.

These two types of queries only consider the probability of an object to be ranked on a
particular ranking position. The confidences of prior ranking positions of an object are
ignored in the case they are exceeded by another object. However, the confidences of prior
ranking positions might also be relevant for the final setting of the ranking position of an
object. This assumption will be taken into account with the next query definition.

Probabilistic Ranking Query Based on Maximum Aggregated Confidence

The next query definition PRQ MAC takes aggregated confidence values of ranking posi-
tions into account. Contrary to the previous definition, this query assigns to each object
X a unique ranking position i by aggregating over the confidences of all prior ranking
positions j < i according to X. Thus, this definition extends the semantics of PRQ MC
by aggregation.

Definition 11.6 (PRQ MAC ) A probabilistic ranking query based on maximum ag-
gregated confidence (PRQ MAC) incrementally retrieves for a ranking position i a result
tuple of the form (X,

∑
j∈{1,...,i} PQ(X, j)), where X ∈ D has not been reported at previous

ranking iterations (i.e., at ranking positions j < i) and Z ∈ D \ {X} which have not been
reported at previous ranking iterations, formally

i∑
j=1

PQ(X, j) ≥
i∑

j=1

PQ(Z, j).

The query types defined above specify the ranking position of each object X by comparing
the ranking position confidence of X with the confidences of the other objects.

Probabilistic Ranking Query Based on Expected Matching

This query assigns to each object its expected ranking position without taking the confi-
dences of the other objects into account.
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Rank A B C U-kRanks PRQ MC PRQ MAC EM

1 0.8 0.0 0.2 A (0.8) A (0.8) A (0.8) A (1.3)
2 0.1 0.5 0.4 B (0.5) B (0.5) C (0.6) C (2.2)
3 0.1 0.5 0.4 B (0.5) C (0.4) B (1.0) B (2.5)

Table 11.2: Object-rank probabilities from Example 11.1.

Definition 11.7 (PRQ EM ) A probabilistic ranking query based on expected matching
(PRQ EM) globally retrieves a result tuple of the form (X,µ(X)) and assigns to the ranking
position i the object X ∈ D which has the ith highest expected rank; formally

µ(X) =
N∑
i=1

i · PQ(X, i).

In other words, the objects are reported in ascending order of their expected ranking
position. This corresponds to the expected rank semantics [83].

Discussion

As already stated, the suggested unambiguous probabilistic ranking output types contain
different semantics. The following example provides an overview of the advantages and
drawbacks.

Example 11.1 Consider three uncertain objects A, B and C, for which an RPD accord-
ing to Definition 11.3 has been computed. These ranking probabilities are illustrated in
Table 11.2. Object A has a probability of 80% to appear on rank 1 and of 10% to appear at
ranks 2 and 3, respectively. Object B will never appear on rank 1, but with 50% on ranks
2 and 3, respectively. The probabilities of object C are 20% for rank 1, 40% for rank 2 and
40% for rank 3. According to the definition of U-kRanks [192, 214], the object with the
highest probability will appear on the corresponding ranking position, even if it has already
been returned for a previous ranking position. Thus, this output assigns A to rank 1, B
to rank 2 and again B to rank 3. The drawback here is that B appears twice, whereas
C does not appear in the result at all. The PRQ MC semantics tackles this lack, as no
object can be reported for a ranking position if it has already been reported before. Thus,
for rank 3, the only object left is C. This approach avoids multiple assignments of objects.
However, it does not consider the probability distribution of the other objects and the prior
ranks. The PRQ MAC semantics provides a solution using the aggregated probabilities,
also considering the values for the previous ranks. Then, A remains on rank 1 due to the
highest probability. For rank 2, the probability of C is 0.2 + 0.4 = 0.6 and therefore higher
than the probability of B, which is 0 + 0.5 = 0.5; hence, C is ranked second. A has already
been assigned before and is not considered here. Finally, B is ranked third, as it is the
only remaining object. The expected rank approach EM assigns the objects to the ranking
positions w.r.t. an ascending order of their expected ranks; thus, A is ranked first with an
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Figure 11.2: Framework for probabilistic similarity ranking.

expected rank of 1.3, C is ranked second (2.2) and B is ranked third (2.5), providing the
same definite ranking result as PRQ MAC. However, EM has also some drawbacks [114].

The user is now able to decide which of the semantics fits to his or her problem definition.
Nevertheless, the drawback of some approaches can be a decisive factor.

11.3 Probabilistic Ranking Framework

11.3.1 Framework Modules

The basic framework on which the solutions of this and the next chapter will rely consists
of two modules, which are performed in an iterative way (cf. Figure 11.2):

• Module 1: The first module (distance browsing B) incrementally retrieves the ob-
servations of all objects in order of their distance to a query observation q. More
details will be given in Subsection 11.3.2.

• Module 2: The second module computes the RPD, i.e., the rank probability Pq(x, i)
of each observation x to be ranked on the ith ranking position w.r.t. the distance to
a query observation q, reported from the distance browsing for all 1 ≤ i ≤ k. Details
will be provided in Subsection 11.3.3. In this chapter, the ranking depth k will be
assumed to be equal to the database size N , i.e., a complete object ranking will be
retrieved.

The computation of the RPD is iteratively processed within a loop. First, a distance
browsing is initialized among the observations starting from a given query point q. For
each observation fetched from the distance browsing (Module 1), the corresponding rank
probabilities are computed (Module 2) and the RPD, generated from the probabilistic
ranking routine, is updated.
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The rank probabilities of the observations (i.e., tuples in the x-relation model) reported
from the second module can optionally be aggregated into rank probabilities of the objects
(i.e., x-tuples in the x-relation model), as described in Section 11.4. Moreover, having
computed the (object- or observation-based) RPD for each query observation q ∈ Q, the
results can finally be merged by weighing the partial results for each q ∈ Q by the confidence
of q of representing Q, i.e.,

PQ(X, i) =
∑
q∈Q

Pq(X, i) · P (q ∈ Q).

Finally, in a postprocessing step, the RPDs computed by the proposed framework can be
used to generate an unambiguous ranking of the objects or observations, as proposed in
Subsection 11.2.2.

11.3.2 Iterative Probability Computation

Distance Browsing (B)

Initially, a complete ordering of all observations w.r.t. the distance to q is initialized, which
is called distance browsing B. This can be facilitated by storing the observations in a spatial
index structure like the R∗-tree [23] and by using an incremental nearest neighbor search
algorithm [107]. Then, the observations are iteratively picked from the distance browsing
B. For each observation x ∈ X returned from B follows the immediate computation of
Pq(x, i), which denotes the probability that x is on rank i w.r.t. the distance to q for all
i (1 ≤ i ≤ N). Thereby, all other observations x′ 6= x of object X have to be ignored
due to the observation dependency of mutual exclusiveness, which is assumed by the data
model (cf. Definition 9.2 in Chapter 9). In general, other orders used for the observation
browsing, e.g., descending probability, as discussed in [214], might possibly lead to faster
algorithms if the probability distribution favors them. However, the distance-based order is
somewhat natural for incremental nearest-neighbor search around a query point, as there
exist efficient search modules that support it. Furthermore, the distance-based sorting
supports spatial pruning techniques in order to reduce the candidate set as far as possible
due to restricted memory.

For the probability computation, two auxiliary data structures are needed: the Ob-
servation Table (OT ), required to compute the probabilities by incorporating the other
objects Z ∈ D \ {X}, and the Probability Table (PT ), used to maintain the intermediate
results w.r.t. x and which finally contains the RPD. In the following, both data structures
OT and PT will be introduced in detail.

Observation Table (OT)

The observation table OT stores, for each accessed object separately, the portion of ob-
servations already returned from B. Additionally, for each accessed object, the portion
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of observations is required that has not been accessed so far. Entries of OT according to
object Xi are defined by

OT [i][1] =
h∑
j=1

P (Xi = xi,j),

where xi,j, 1 ≤ j ≤ h ≤ m are the observations of Xi fetched by B in previous processing
iterations. With {xi,j : xi,j ∈ Xi, 1 ≤ j ≤ m} denoting the complete set of observations of
Xi, it holds that

h∑
i=1

P (Xi = xi,j) ≤
m∑
i=1

P (Xi = xi,j).

Consequently, OT [i][0] denotes the portion of remaining, not yet returned observations and
can be directly computed by OT [i][0] = 1 − OT [i][1], such that, in fact, only entries for
OT [i][1] have to be maintained.

Probability Table (PT)

The probability table PT stores for each object Xi (1 ≤ i ≤ N) and each r ∈ {1, . . . , N}
the actual probability that r − 1 objects in D \ {Xi} are closer to the query observation q
than Xi. The entries of PT according to the jth observation of object Xi are defined as
follows:

PT [r][i][j] = Pq(xi,j, r)

= P [(r − 1) objects Z ∈ D \ {Xi}) are closer to q than the observation xi,j].

Here, the assumption is made that object Xi is the ith object for which B has reported at
least one observation. The same assumption is made for the observations of an uncertain
object (i.e., the observation xi,j is the jth closest observation of object Xi according to q).
These assumptions hold for the rest of this chapter.

11.3.3 Probability Computation

This subsection will show how to compute an entry PT [r][i][j] of the probability table
using the information stored in the observation table OT. Let OT be an observation table
of size N (i.e., OT stores the information corresponding to all N objects of the database
D). Let σr(i) ⊆ {Z ∈ D : Z 6= Xi} denote the set, called r-set of Xi, containing exactly

r − 1 objects. If r < N is assumed, obviously

(
N − 1
r − 1

)
different r-set permutations

σr(i) exist. For the computation of PT [r][i][j], it is important to consider the set Sr of all
possible r-set permutations according to Xi. The probability that exactly r−1 objects are
closer to the query observation q than the observation xi,j, can be computed as follows:

PT [r][i][j] =
∑

σr(i)∈Sr

∏
h ∈ {1, . . . , N}

h 6= i

{
OT [h][1] if Xh ∈ σr(i)
OT [h][0] if Xh /∈ σr(i)
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Assuming that the observation xi,j is currently processed, the following characteristics
hold: since the observations are processed in ascending order w.r.t. the distance to q, the
observation table entry OT [h][1] reflects the probability that object Xh is closer to q than
the observation xi,j. On the other hand, OT [h][0] reflects the probability that xi,j is closer
to q than Xh.

The entries of the probability table can now be computed by iteratively fetching the
observations from B. Thereby, all entries of the probability table are initially set to 0.
Then, the distance browsing B, which reports one observation of an uncertain object in
each iteration, is started. Each reported observation xi,j is used to compute for all r
(1 ≤ r ≤ N) the probability value that corresponds to the table entry PT [r][i][j]. After
filling the (i,j)-column of the probability table, the next observation is fetched from B in
the same way as this was done with xi,j. This procedure is repeated until all observations
are fetched from B.

The computation of the probability table can be very costly in space and time. One
reason is the size of the table that grows drastically with the number of objects and the
number of observations for each object. Another problem is the very expensive computation
of the probability table entries PT [r][i][j], which is the computational bottleneck of the
proposed probabilistic ranking algorithm. For each entry of PT [r][i][j], the computation is

required for the probabilities according to

(
N − 1
r − 1

)
different r-set permutations which

have to be summed up to the final probability value. For example, assuming N − 1 = 100
and r − 1 = 20, about 1.73 · 1013 r-set permutations need to be considered. Therefore,
Section 11.4 will propose methods that achieve a considerable reduction of the overall query
cost.

11.4 Accelerated Probability Computation

11.4.1 Table Pruning

If it is the final goal of probabilistic ranking to rank uncertain objects – not observations
–, it is not needed to maintain the separate results according to each observation of an
object. Instead of maintaining a table entry for each observation, the solution at hand is
to on-the-fly summing up the iteratively computed observation probabilities and weighing
them by the occurrence probabilities (confidences) of the respective observations. If a
final RPD for observations is required (e.g., for the original U-kRanks output as retrieved
in [192, 214]), the separate entries have to be maintained.

An additional reduction of both tables OT and PT (i.e., a reduction to those parts of
the table that should be available at once) can be achieved by only maintaining those parts
of the table that are required for further computations. Firstly, it is required to maintain
a table column only for those objects for which at least one observation has been reported
from B, whereas the columns for those objects, for which all observations have already
been fetched or for which no observation has been retrieved, can be skipped. Secondly,
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each row of PT that corresponds to a ranking position which is not within a particular
ranking range can be skipped as well. This range is given by the minimum and maximum
ranking position of uncertain objects for which currently a column of the probability table
has to be maintained. The following lemmata utilize the bounds for uncertain distances
that were introduced in Definition 11.2. A lower bound for the ranking position of an
uncertain object is defined as follows.

Lemma 11.1 (Minimum Ranking Position) Let X ∈ D be an uncertain object and
let q be the query observation. Furthermore, let N1 < N objects Y ∈ D \ {X} have a
maximum distance that is smaller than the minimum distance of X, i.e., |{Y ∈ D \ {X} :
maxDist(Y, q) < minDist(X, q)}| = N1. Then, the ranking position of object X must be at
least N1 + 1.

Analogously, an upper bound for the ranking position of an uncertain object is defined as
follows.

Lemma 11.2 (Maximum Ranking Position) Let X ∈ D be an uncertain object and
let q be the query observation. Furthermore, let N2 < N objects Y ∈ D \ {X} have a
minimum distance that is higher than the maximum distance of X, i.e., |{Y ∈ D \ {X} :
minDist(Y, q) > maxDist(X, q)}| = N2. Then, the ranking position of object X must be at
most N −N2.

As mentioned above, the computation of the object probabilities according to the ranking
position i only requires to consider those objects whose minimum and maximum ranking
position cover the ranking position i. This holds for those objects having at least one
observation within the current ranking position range. For all other objects, this rule of
spatial pruning can be applied. Usually, in practice, this is the case for only a small set
of objects, depending on their spatial variance, also referred to as degree of uncertainty.
The experimental section of this chapter (Section 11.5) will reflect the degree uncertainty
of an object by the spatial variance of its observations. This definition will slightly vary in
Chapters 12 and 13, where the degree of uncertainty will correspond to the side length of
the hyperrectangle in which the observations are distributed and to the standard deviation
of the observations. However, the information contained in these different semantics can
be regarded as similar.

11.4.2 Bisection-Based Algorithm

In the case of subsequently fetching observations belonging to the same object, the ranking
probabilities according to this object do not change. Hence, obviously only one compu-
tation of the probability value is required. However, the general case where two adjacent
observations reported from the ranking belong to different objects occurs more frequently.
For this case, the computational cost can be significantly reduced if a bisection-based
algorithm is utilized, as proposed in [45]. The bisection-based algorithm uses a divide-and-
conquer technique which computes, for a query observation q and a database object X, the
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Algorithm 6 Bisection-Based Algorithm: bisection(OT, min, max , r)

Require: OT, min, max , r
1: result ← 0
2: N ← max −min + 1
3: if r = 1 then
4: result ←

∏max
i=min OT [i][0]

5: else if r ≥ N then
6: result ←

∏max
i=min OT [i][1]

7: else
8: mid← d(min + max )/2e
9: for (i = 0→ min(d(max −min)/2e, r − 1)) do

10: Pleft ← bisection(OT, min, mid− 1, r − i− 1)
11: Pright ← bisection(OT, mid, max , i)
12: result ← result + (Pleft · Pright)
13: end for
14: end if
15: return result

probability that the object X is on rank r w.r.t. the distance to the query observation q,
i.e., that exactly r− 1 other objects are closer to q than the object X. Hence, the number
of r-set permutations that have to be computed can be reduced drastically. The main idea
is to recursively perform a binary split of the set of relevant objects, i.e., objects which
have to be taken into account for the probability computation. Instead of considering all
r − 1 out of N − 1 permutations, the r-set is split into two subsets of equal size. Then,
only r − i − 1 out of N−1

2
permutations for i ∈ {0, . . . , r − 1} have to be considered for

the one subset, combined with the i out of N−1
2

permutations of the other subset. As a

consequence, instead of considering

(
N − 1
r − 1

)
r-set permutations, the number of r-set

permutations to be considered can be reduced to

r−1∑
i=0

((
N−1

2

r − i− 1

)
+

(
N−1

2

i

))
.

The pseudocode for the computation of the rank probability is illustrated in Algorithm 6.
The bucket range of the r-set that is currently worked on is limited by the parameters
min and max . The observation table, which is used for probability computation (cf.
Subsection 11.3.2), is denoted by the additional parameter OT. The r-set split can be
recursively repeated for each subset. The recursive decomposition of a subset into two
buckets for each recursion, from which r− 1 (0 < r < N) out of N − 1 permutations have
to be computed, stops if r ≥ N . Then, there exists only one permutation σr(i) in the
current bucket that can be immediately computed and reported to the calling function of
the recursion (line 6). Otherwise, the actual recursive splitting, that computes the results
for the two summands Pleft and Pright in each recursion, is performed in lines 9ff. The



11.4 Accelerated Probability Computation 117

size of the divided permutations σr(i) is determined by the minimum of the bucket size
dmax−min

2
e and r − 1. If r = 1, the probability that there is no object closer to q than xi,j

is computed (line 4).
Afterwards, the corresponding results can be efficiently merged into the final result.

Although this approach accelerates the computational cost of the PT [r][i][j] significantly,
the asymptotical cost is still exponential in the ranking range.

11.4.3 Dynamic-Programming-Based Algorithm

In the following, an algorithm will be introduced that accelerates the computation by
several orders of magnitude. This algorithm utilizes a dynamic-programming scheme, also
known as Poisson Binomial Recurrence, first introduced in [147]. For the context uncertain
top-k queries, this scheme was originally proposed in [214] on the x-relation model, which
was the first approach that solves probabilistic queries efficiently by means of dynamic-
programming techniques. Here, this scheme is extended to the use with spatial data and
computes the probability that an uncertain object X ∈ D is assigned to a certain ranking
position w.r.t. the distance to a query observation q.

The probabilities of PT can be efficiently computed requiring a complexity of O(N3).
The key idea of this approach is based on the following property. Given a query ob-
servation q, an observation x of an uncertain database object X and a set of h objects
S = {Z1, Z2, . . . , Zh} for which the probability Px(Z) that Z ∈ S is closer to the query
observation q than x (i.e., that Z is closer to q than x) is known (i.e., all objects Z for
which at least one observation has been retrieved from B). The probability Px(Z) can be
computed according to the following lemma.

Lemma 11.3 Let q be the query object and let (x, P (X = x)) be the observation x of an
object X fetched from the distance browsing B in the current processing iteration. The
probability that an object Z 6= X is closer to q than x is

Px(Z) =

j∑
i=1

P (Z = zi),

where zi ∈ Z, 1 ≤ i ≤ j are the observations of Z fetched in previous processing iterations.

Lemma 11.3 says that it is possible to accumulate, in overall linear space, the probabilities
of all observations for all objects which have been seen so far and to use them to compute
Px(Z), given the current observation x and any object Z ∈ D \ {X}.

Now, the probability Pi,S,x that exactly i objects Z ∈ S are ranked higher than x w.r.t.
the distance to q can be computed efficiently, utilizing the following lemma.

Lemma 11.4 The event that i objects of S are closer to q than x occurs if one of the
following conditions holds. In the case that an object Z ∈ S is closer to q than x, then
i − 1 objects of S \ {Z} must be closer to q. Otherwise, if the assumption is made that
object Z ∈ S is farther from q than x, then i objects of S \ {Z} must be closer to q.
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Figure 11.3: Visualization of the dynamic-programming scheme.

The above lemma leads to the following recursion that allows to compute Pi,S,x by means
of the paradigm of dynamic programming:

Pi,S,x = Pi−1,S\{Z},x · Px(Z) + Pi,S\{Z},x · (1− Px(Z)),

where
P0,∅,x = 1 and Pi,S,x = 0 if i < 0 ∨ i > |S|. (11.1)

An illustration of this dynamic-programming scheme is given in Figure 11.3, where the size
of S is marked along the x-axis and the number of objects that are closer to q than the
currently processed observation x is marked along the y-axis. The shaded cells represent
the probabilities that have to be determined during the process of the RPD computation.
As illustrated, each grid cell (which is exemplary marked with a dot in Figure 11.3) can
be computed using the values contained in the left and the lower left cells. If the ranking
depth is restricted to k, all probabilities are needed that up to k − 1 out of N − 1 objects
– not N objects, as x cannot be preceded by the object it belongs to – are closer to x. In
each iteration of the dynamic-programming algorithm, O(N · k) cells have to be computed
(which is O(N2) in the setting of this chapter). Performing this for each observation that
is retrieved from the distance browsing B, this yields an overall runtime of (N3), as it can
be assumed that the total number of observations in the database is linear in the number
of database objects.

Regarding the storage requirements for the probability values, the computation of each
probability Pi,S,x only requires information stored in the current line and the previous line
to access the probabilities Pi−1,S\{Z},x and Pi,S\{Z},x . Therefore, only these two lines (of
length N) need to be preserved requiring O(N) space. The probability table PT used in
the straightforward and in the divide-and-conquer-based approach (cf. Subsection 11.3.2),
in contrary, had to store N2 ·m values, resulting in an overall space requirement of O(N3).

While the bisection-based algorithm still requires exponential asymptotical runtime for
the computation of the RPD, the dynamic-programming-based algorithm only requires a
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(a) UD = 2.0. (b) UD = 5.0.

Figure 11.4: Uncertain object distribution in 60× 60 space for different degrees of uncer-
tainty (N = 40, m = 20).

worst-case runtime of O(N3). This can be further reduced to a quadratic runtime w.r.t.
N , if the ranking depth k is assumed to be a small constant, which yields a complexity
of O(k · N2). In Chapter 12, a solution will be presented which computes the RPD in
linear time w.r.t. the database size. Therefore, the above dynamic-programming scheme
will be enhanced. Chapter 12 will also show how the proposed framework, enhanced with
the linear-time solution, can be used to support and significantly boost the performance
of state-of-the-art probabilistic ranking queries.

11.5 Experimental Evaluation

11.5.1 Datasets and Experimental Setup

This section will examine the effectiveness and efficiency of the proposed probabilistic
similarity ranking approaches. [45] only provides a sparse experimental part; therefore,
this section comprises the evaluation provided in [49]. Since the computation is highly
CPU-bound, the measurements describe the efficiency by the overall runtime cost required
to compute an entire ranking averaged over ten queries.

The following experiments are based on artificial and real-world datasets. The arti-
ficial datasets ART, which were used for the efficiency experiments, contain 10 to 1,000
ten-dimensional uncertain objects that are located by a Gaussian distribution in the data
space. Each object consists of m = 10 observations that are uniformly distributed around
the mean positions of the objects with a variance (in the following referred to as degree of
uncertainty (UD)) of 10% of the data space, if not stated otherwise. Figure 11.4 exem-
plarily depicts the distribution of uncertain objects when varying UD. A growing degree
of uncertainty leads to an increase of the overlap between the observations.

For the evaluation of the effectiveness of the proposed methods, two real-world datasets
were used: O3 and NSP. The O3 dataset is an environmental dataset consisting of 30
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Dataset PRQ MC PRQ MAC PRQ EM MP

O3 0.51 0.65 0.53 0.63
NSPh 0.36 0.43 0.29 0.35
NSPfrq 0.62 0.70 0.41 0.60

Table 11.3: Avg. precision for probabilistic ranking queries on different real-world datasets.

uncertain objects created from time series, each composing a set of measurements of the
ozone concentration in the air measured within one month1. Thereby, each observation
features a daily ozone concentration curve. The dataset covers observations from the years
2000 to 2004 and is labeled according to the months in a year. NSP is a chronobiologic
dataset describing the cell activity of Neurospora2 within sequences of day cycles. This
dataset is used to investigate endogenous rhythms. It can be classified w.r.t. two parameters
among others: day cycle and fungal type. For the experiments, two subsets of the NSP
datasets were used: NSPh and NSPfrq. NSPh is labeled according to the day cycle length.
It consists of 36 objects that created three classes of day cycle (16, 18 and 20 hours). The
NSPfrq dataset consists of 48 objects and is labeled w.r.t. the fungal type (frq1, frq7 and
frq+).

11.5.2 Effectiveness Experiments

The first experiments evaluate the quality of the different probabilistic ranking query se-
mantics (PRQ MC, PRQ MAC, PRQ EM) proposed in Subsection 11.2.2. In order to
make a fair evaluation, the results obtained with these approaches were compared with the
results of a non-probabilistic ranking (MP) which ranks the objects based on the distance
between their mean positions. For these experiments, the three real-world datasets O3,
NSPh and NSPfrq were used, each consisting of uncertain objects which are labeled as
described above.

In order to evaluate the quality of the semantics, a k-nearest neighbor (k-NN) classi-
fication was performed. According to the semantics of a classification [103], objects are
divided into positive (P ) and negative (N) objects, which denote the number of objects
that are returned by a classifier w.r.t. a label and the number of objects that have been
discarded, respectively. In the context of document retrieval, a popular measure that rates
the overall significance of query results when, for example, retrieving the k most similar
documents, is the precision [103], which denotes the percentage of relevant objects that
have been retrieved, and, thus, serves as a measure that can also reflect the quality of
the similarity ranking schemes. Formally, the precision is defined by TP

P
, which yields

values between 0 and 1. Hereby, TP denotes the number of retrieved relevant objects.
The average precision over all class labels (cf. dataset description in Subsection 11.5.1)

1The O3 dataset has been provided by the Bavarian State Office for Environmental Protection, Augs-
burg, Germany (http://www.lfu.bayern.de/).

2Neurospora is the name of a fungal genus containing several distinct species. For further information
see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html

http://www.lfu.bayern.de/
http://www.fgsc.net/Neurospora/neurospora.html
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Figure 11.5: Query processing cost w.r.t. UD.

can be observed from Table 11.3. Concluding, PRQ MAC provides a superior result
quality to the other approaches including the non-probabilistic ranking approach MP. In-
terestingly, the approach PRQ MC, which has a quite similar definition as the U-kRanks
query proposed in [192, 214], does not work very well and shows similar quality to MP.
The approach PRQ EM loses clearly and is even significantly below the non-probabilistic
ranking approach MP. This observation points out that the postprocessing step, i.e., the
way in which the results of the RPD are combined to a definite result, indeed affects the
quality of the result.

11.5.3 Efficiency Experiments

The next experiment evaluates the performance of the proposed probabilistic ranking accel-
eration strategies proposed in Section 11.4 w.r.t. the query processing time. The different
proposed strategies were compared with the straightforward solution without any addi-
tional strategy. The competing methods are the following:

• IT: Iterative fetching of the observations from the distance browsing B and compu-
tation of the probability table PT entries without any acceleration strategy.

• TP: Table pruning strategy where the reduced table space was used.

• BS: Bisection-based computation of the probability permutations.

• TP+BS: Combination of TP and BS.

• DP: Dynamic-programming-based computation of the probability permutations.

Influence of the Degree of Uncertainty

The first experiment compares all strategies (including the straightforward solution) for the
computation of the RPD on the artificial datasets with different values of UD. The evalu-
ation of the query processing time of the proposed approaches is illustrated in Figure 11.5.
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In particular, the differences between the used computation strategies are depicted for two
different numbers of observations per object (m = 10 and m = 30). Here, a database size
of 20 uncertain objects in a ten-dimensional vector space was utilized.

The plain iterative fetching of observations (IT) is hardly affected by an increasing
UD value, as it anyway has to consider all possible worlds for the computations of the
probabilistic rank distribution. The table pruning strategy TP significantly decreases the
required computation time. For a low UD, many objects cover only a small range of
ranking positions and can, thus, be neglected. An increasing UD leads to a higher overlap
of the objects and requires more computational effort. For the divide-and-conquer-based
computation of BS, the query time increases only slightly when increasing UD. However,
the required runtime is quite high even for a low UD value. The runtime of TP is much
lower for low degrees of uncertainty in comparison with BS; here TP is likely to prune a
high number of objects that are completely processed or not yet seen at all. A combination
of the benefits of the TP and BS strategies results in a quite good performance, but it
is outperformed by the DP approach. This is due to the independence of the dynamic
iterations of the degree of uncertainty, because the iterations require quadratic runtime in
any case.

Finally, it can be observed that the behavior with of each approach with an increasing
UD remains stable for different values of m. However, a higher number of observations
per object leads to significantly higher computational requirements of about an order of
magnitude for each approach. Thus, these experiments support that the required runtime
of computing the RPD is highly dependent on m, so that the need for efficient solutions is
obvious.

Scalability

The next experiment evaluates the scalability based on the ART datasets of different size.
The BS approach will be omitted in the following, as the combination TP+BS proved to
be more effective. Here again, different combinations of strategies were considered. The
results are depicted in Figure 11.6 for two different values of UD.

Figure 11.6(a) illustrates the results for a low UD value. Since, by considering all
possible worlds, the simple approach IT produces exponential cost, such that experiments
for a database size above 30 objects are not applicable. The application of TP yields a
significant performance gain. Assuming a low UD value, the ranges of possible ranking
positions of the objects hardly overlap. Furthermore, there are objects that do not have
to be considered for all ranking positions, since the minimum and maximum ranking posi-
tions of all objects are known (cf. Subsection 11.4.1). It can clearly be observed that the
combination TP+BS significantly outperforms the case where only TP is applied, as the
split of the r-sets reduces the number of combinations of higher ranked objects that have to
be considered when computing a rank probability for an observation. For small databases
where N < 100, there is a splitting and merging overhead of the BS optimization, which,
however, pays off for an increasing database size. For N < 700, TP+BS even beats the
DP approach, which is due to the fact that TP+BS takes advantage from the combi-



11.6 Summary 123

1

10

100

1000

10000

100000

0 200 400 600 800 1000 1200

Q
ue

ry
 ti

m
e 

[m
s]

Database size

TP+BS
DP

IT TP

(a) UD = 0.5.

1

10

100

1000

10000

100000

1000000

0 200 400 600 800

Q
ue

ry
 ti

m
e 

[m
s]

Database size

TP+BSTP

DP

IT

(b) UD = 5.0.

Figure 11.6: Comparison of the scalability of all strategies on the ART datasets with
different degrees of uncertainty.

nation of two optimizations, whereas the dynamic-programming algorithm DP requires
cubic runtime complexity anyway (cf. Subsection 11.4.3). However, for higher values of N ,
DP outperforms the other optimizations, as the presence of more objects also leads to the
presence of a higher overlap among uncertain objects as well as to an increasing size of the
r-sets.

With a high value of UD (cf. Figure 11.6(b)), the behavior of IT does not change, as it
has to consider all possible worlds anyway, regardless of the distribution of the observations
of uncertain objects. Also, TP is already not applicable for very small databases because
of an increased possible range of ranking positions and an increased overlap among the
objects. Even TP+BS degenerates soon, despite that the BS optimization has a higher
effect than the TP optimization for high degrees of uncertainty. Finally, as observed before,
DP is not much affected by the value of UD, and, thus, achieves an improvement of several
orders of magnitude in comparison with the other approaches.

11.6 Summary

This chapter introduced a framework that efficiently computes the rank probability distri-
bution (RPD) in order to solve probabilistic similarity ranking queries on spatially uncer-
tain data. In particular, methods were introduced that break down the high computational
complexity required to compute, for an object X, the probability that X appears on each
ranking position according to the distance to a query object Q. This complexity, in the
first approach still exponential in the number of retrieved observations, could be reduced to
a polynomial runtime by extending a dynamic-programming technique called Poisson Bi-
nomial Recurrence. The following chapter will introduce an incremental approach of com-
puting the RPD that enhances the dynamic-programming algorithm and finally achieves
an overall runtime complexity which is linear in the number of accessed observations.
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Chapter 12

Incremental Probabilistic Similarity
Ranking

12.1 Introduction

The step to compute the Rank Probability Distribution (RPD) that solves the bipartite
graph between uncertain objects and ranking positions w.r.t. the distance to a (potentially
uncertain) query object represents the main bottleneck of solving the problem of proba-
bilistic ranking. Chapter 11 already adopted a dynamic-programming technique from [214]
for the use in spatial data, which can perform this computation in quadratic time and lin-
ear space w.r.t. the number of observations required to be accessed until the solution is
confirmed. These requirements can finally regarded w.r.t. the database size, as basically,
it can be assumed that the total number of observations in the database is linear in the
number of database objects. This assumption holds for this chapter. The solution that
will be presented in this chapter will further extend the dynamic-programming-based al-
gorithm and reduce the former quadratic time complexity requirements to a linear-time
complexity solution. Similarly to Chapter 11, an assumption that will be made here is that
the observations can be accessed in increasing distance order to the query observation.

This chapter utilizes the definition of spatially uncertain objects according to Defini-
tion 9.2 of Chapter 9. However, the proposed method applies in general to x-relations [25]
and can be used irrespectively to whether uncertain objects or x-tuples are assumed. Thus,
it can be used as a module in various semantics that rank the objects or observations ac-
cording to their rank probabilities.

The main contributions of this chapter can be summarized as follows:

• This chapter will utilize the framework of Chapter 11, which is based on iterative dis-
tance browsing and which, thus, efficiently supports probabilistic similarity ranking
on spatially uncertain data.

• This chapter will present a theoretically founded approach for computing the RPD,
which corresponds to Module 2 of the framework presented in Chapter 11. It will be
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proved that the proposed method reduces the computational cost from O(k · N2),
achieved by [214] and Chapter 11, to O(k · N), where N is the size of the database
and k denotes the ranking depth; in this chapter, k < N will be assumed. The
key idea is to use the ranking probabilities of the previously accessed observation to
derive those of the currently accessed observation in O(k) time.

• Similarly to Chapter 11, the objective is to find an unambiguous ranking where each
object or observation is uniquely assigned to one rank. Here, any user-defined ranking
method (also those suggested in Chapter 11) can be plugged in, as the RPD is required
in order to compute unique positions. This will be illustrated for several well-known
probabilistic ranking queries that make use of such distributions. In particular, it
will be demonstrated that, by using the proposed framework, such queries can be
processed in O(N · log(N) + k · N) time1, as opposed to existing approaches that
require O(k · N2) time.

• Finally, an experimental evaluation will be conducted, using real-world and synthetic
data, which demonstrates the applicability of the framework and verifies the theo-
retical findings.

The rest of this chapter is organized as follows: Section 12.2 will introduce an efficient
approach to compute the RPD. The complete algorithm exploiting the framework will be
presented in Section 12.3. Section 12.4 will apply the approach to different probabilistic
ranking query types, including U-kRanks [192, 214], PT-k [108] and Global top-k [219] (cf.
Chapter 10). The efficiency of the proposed approach will be experimentally evaluated in
Section 12.5. Section 12.6 will conclude this chapter. The notations used in Chapter 11
will also be used throughout this chapter.

12.2 Efficient Retrieval of the Rank Probabilities

12.2.1 Dynamic Probability Computation

Consider an uncertain object X, defined by m probabilistic observations X = {(x1, P (X =
x1)), . . . , (xm, P (X = xm))} according to the model in Definition 9.2 of Chapter 9. The
probability that X is assigned to a given ranking position i (1 ≤ i ≤ k) w.r.t. the distance
to a query observation q is equal to the chance that exactly i− 1 objects Z ∈ D \ {X} are
closer to q than the object X. This probability, Pq(X, i), can be computed by aggregating
the probabilities Pq(x, i) over all observations (x, P (X = x)) of X, as already mentioned
in Chapter 11. Formally,

Pq(X, i) =
∑
x∈X

Pq(x, i) · P (X = x). (12.1)

1The O(N · log(N)) factor is due to presorting the observations according to their distances to the
query object. If the assumption is made that the observations are already sorted, then the framework can
compute the probability distributions for the first k rank positions in O(k · N) time.
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Hereby, the probability Pq(x, i) reflects the likelihood that exactly i−1 objects Z ∈ D\{X}
are closer to q than the observation x. Contrary to the approach of Chapter 11, which
maintains a table to store the probabilities, the more elegant solution is to maintain a list
of objects from which observations have been seen so far. This list will be called Active
Object List (AOL) in the following. Using the AOL, the table pruning of Chapter 11 is
implicitly performed, since objects, that have completely been processed or from which no
observation has yet been retrieved, do not have to be considered.

The computation of Pq(X, i) is performed in an iterative way, i.e., whenever a new
observation x is fetched from the distance browsing B, the probabilities Pq(x, i) ·P (X = x)
are computed for all ranks i ∈ {1, . . . , k} and Pq(X, i) is updated accordingly.

The following part will show how to compute the probabilities Pq(x, i) · P (X = x) for
all i ∈ {1, . . . , k} for a given observation (x, P (X = x)) of an uncertain object X, which
is assumed to be currently fetched from the distance browsing B. For this computation it
is required that, for all uncertain objects Z ∈ D \ {X}, the probability Px(Z) that Z is
closer to q than the current observation x is known. These probabilities are stored in the
AOL and can easily be kept updated due to Lemma 11.3 of Chapter 11:

Px(Z) =
∑

(z,P (Z=z))∈Z

P (Z = z)

In fact, it is only needed to manage in the list the probabilities of those objects for which
an observation has already been accessed and for which it is expected to access further
observations in the remaining iterations.

The issue of interest now is how the list AOL can be used to efficiently compute the
probabilities Pq(x, i). Assume that (x, P (X = x)) ∈ X is the current observation reported
from the distance browsing B. Let S = {Z1, . . . , Zj} be the set of objects which have
been seen so far, i.e., for which at least one observation has already been retrieved from B.
Furthermore, assume that X has been seen for the first time with the current observation
x, but not yet been added to S. According to Lemma 11.4 of Chapter 11, the probability
that x appears on ranking position i+ 1 of the first j + 1 objects seen so far only depends
on the event that i out of j objects Z ∈ S (i ≤ j) appear before X, no matter which of
these objects satisfies this criterion. Let Pi,S,x denote the probability that exactly i objects
of S are closer to q than the observation x. Now, the Poisson Binomial Recurrence [147]
can be applied:

Pi,S,x = Pi−1,S\{Z},x · Px(Z) + Pi,S\{Z},x · (1− Px(Z)),

where

P0,∅,x = 1 and Pi,S,x = 0 if i < 0 ∨ i > |S|. (12.2)

For each observation (x, P (X = x)) reported from B, it is necessary to apply this recursive
function. Specifically, it is needed to compute, for each observation (x, P (X = x)), the
probabilities Pi,S,x for all i ∈ {0, . . . ,min(k, |S|)} and for j = |S| subsets of S. It is
further assumed that the ranks > k are neglected. This has a cost factor of O(k · N)
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(a) Case 1: Previous observa-
tion x and current observation
y belong to the same object.

(b) Case 2: Observation y is the
first returned observation of ob-
ject Y .

(c) Case 3: Observation y is not
the first returned observation of
object Y and X 6= Y .

Figure 12.1: Cases when updating the probabilities, assuming x was the last processed
observation and y is the current one.

per observation retrieved from the distance browsing, leading to a total cost of O(k · N2).
Assuming that k is a small constant and that it is often not required to return a complete
ranking, this yields an overall runtime of O(N2).

The following section will show how to compute each Pi,S,x in constant time by utilizing
the probabilities computed for the previously accessed observation.

12.2.2 Incremental Probability Computation

Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈ Y be two observations consecutively returned
from the distance browsing. Without loss of generality, let (x, P (X = x)) be returned
before (y, P (Y = y)). The current state assumes that x was the last processed observation,
such that X ∈ S holds. Each probability Pi,S\{Y },y (i ∈ {0, . . . ,min(k, |S \ {Y }|)}) can
be computed from the probabilities Pi,S\{X},x in constant time. In fact, the probabilities
Pi,S\{Y },y can be computed by considering at most one recursion step backwards. This will
turn out to be the main improvement compared to [214], as the new probabilities Pi,S\{Y },y
are incorporated in the previous results, whereas [214] computes the ranking probabilities
from scratch (i.e., all shaded cells of the illustrated matrix in Chapter 11), requiring an
update cost of O(k ·N).

The following three cases have to be considered, which are illustrated in Figure 12.1.
The first two cases are easy to tackle; the third case is the most frequently occurring and
challenging one.

• Case 1: Both observations belong to the same object, i.e., X = Y (cf. Figure 12.1(a)).

• Case 2: Both observations belong to different objects, i.e., X 6= Y and (y, P (Y = y))
is the first retrieved observation of object Y (cf. Figure 12.1(b)).

• Case 3: Both observations belong to different objects, i.e., X 6= Y and (y, P (Y = y))
is not the first retrieved observation of object Y (cf. Figure 12.1(c)).
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Now, it will be presented how the probabilities Pi,S\{Y },y for i ∈ {0, . . . ,min(k, |S \ {Y }|)}
can be computed in constant time considering the above cases.

In the first case (cf. Figure 12.1(a)), the probabilities Px(Z) and Py(Z) of all objects in
Z ∈ S \ {X} are equal, because the observations of objects in S \ {X} that appear within
the distance range of q of y and within the distance range of q and x are identical. Since
the probabilities Pi,S\{Y },y and Pi,S\{X},x only depend on Px(Z) for all objects Z ∈ S \{X},
it is obvious that Pi,S\{Y },y = Pi,S\{X},x for all i.

In the second case (cf. Figure 12.1(b)), it is possible to exploit the fact that Pi,S\{X},x
does not depend on Y , as y is the first returned observation of Y . At this point, y ∈ S.
Thus, given the probabilities Pi,S\{X},x, the probability Pi,S\{Y },y can easily be computed
by incorporating the object X using the recursive Equation (12.2):

Pi,S\{Y },y = Pi−1,S\{Y,X},y · Py(X) + Pi,S\{Y,X},y · (1− Py(X)).

Since S \ {Y,X} = S \ {X, Y } and there is no observation of any object in S \ {X, Y }
which appears within the distance range of q and y but not within the range of q and x
(cf. Figure 12.1(b)), similar conditions that held for x can also be assumed for y. Thus,
the following equation holds:

Pi,S\{Y },y = Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)).

Furthermore, Pi−1,S\{X,Y },x = Pi−1,S\{X},x, because Y is not in the distance range of q and
x and, thus, Y /∈ S \ {X}. Now, the above equation can be reformulated:

Pi,S\{Y },y = Pi−1,S\{X},x · Py(X) + Pi,S\{X},x · (1− Py(X)). (12.3)

All probabilities of the term on the right hand side in Equation (12.3) are known and,
thus, Pi,S\{Y },y can be computed in constant time, assuming that the probabilities Pi,S\{X},x
computed in the previous step have been stored for all i ∈ {0, . . . ,min(k, |S \ {X}|)}.

The third case (cf. Figure 12.1(c)) is the general case which is not as straightforward
as the previous two cases and requires special techniques. Again, the assumption is made
that the probabilities Pi,S\{X},x computed in the previous step for all i ∈ {0, . . . ,min(k, |S \
{X}|)} are known. Similarly to Case 2, the probability Pi,S\{Y },y can be computed by

Pi,S\{Y },y = Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)). (12.4)

Since the probability Py(X) is assumed to be known, now the computation of Pi,S\{X,Y },x
is left for all i ∈ {0, . . . ,min(k, |S \ {X, Y }|)} by again exploiting Equation (12.2):

Pi,S\{X},x = Pi−1,S\{X,Y },x · Px(Y ) + Pi,S\{X,Y },x · (1− Px(Y )),

which can be resolved to

Pi,S\{X,Y },x =
Pi,S\{X},x − Pi−1,S\{X,Y },x · Px(Y )

1− Px(Y )
. (12.5)
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Assuming i = 0 yields

P0,S\{X,Y },x =
P0,S\{X},x − P−1,S\{X,Y },x · Px(Y )

1− Px(Y )
=

P0,S\{X},x

1− Px(Y )
,

because the probability P−1,S\{X,Y },x = 0 by definition (cf. Equation (12.2)). The case
i = 0 can be solved assuming that P0,S\{X},x is known from the previous iteration step.

With the assumption that all probabilities Pi,S\{X},x for all i ∈ {1, . . . ,min(k, |S\{X}|)}
as well as Px(Y ) are available from the previous iteration step, Equation (12.5) can be
used to recursively compute Pi,S\{X,Y },x for all i ∈ {1, . . . ,min(k, |S \ {X, Y }|)} using
the previously computed Pi−1,S\{X,Y },x. This recursive computation yields all probabilities
Pi,S\{X,Y },x (i ∈ {0, . . . ,min(k, |S \ {X, Y }|)}) which can be used to compute the probabil-
ities Pi,S\{Y },y for all i ∈ {0, . . . ,min(k, |S \ {X, Y }|)} according to Equation (12.4).

12.2.3 Runtime Analysis

Building on this case-based analysis for the cost of computing Pi,S\{X},x for the currently
accessed observation x of an object X, it is now possible to prove that the RPD can be
computed at cost O(k · N). The following lemma suggests that the incremental cost per
observation access is O(k).

Lemma 12.1 Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈ Y be two observations consec-
utively returned from the distance browsing B. Without loss of generality, the assumption
is made that the observation (x, P (X = x)) was returned in the last iteration in which
the probabilities Pi,S\{X},x have been computed for all i ∈ {0, . . . ,min(k, |S \ {X}|)}. In
the next iteration, in which (y, P (Y = y)) is fetched, the probabilities Pi,S\{Y },y for all
i ∈ {0, . . . ,min(k, |S \ {Y }|)} can be computed in O(k) time and space.

Proof. In Case 1, the probabilities Pi,S\{X},x and Pi,S\{Y },y are equal for all
i ∈ {0, . . . ,min(k, |S \ {Y }|)}. No computation is required (O(1) time) and the result
can be stored using at most O(k) space.

In Case 2, the probabilities Pi,S\{Y },y for all i ∈ {0, . . . ,min(k, |S \ {Y }|)} can be com-
puted according to Equation (12.3) taking O(k) time. This assumes that the Pi,S\{X},x have
to be stored for all i ∈ {0, . . . ,min(k, |S \ {Y }|)}, requiring at most O(k) space.

In Case 3, it is first needed to compute and store the probabilities Pi,S\{X,Y },x for all
i ∈ {0, . . . ,min(k, |S \ {X, Y }|)} using the recursive function in Equation (12.5). This can
be done in O(min(k, |S \ {X, Y }|)) time and space. Next, the computed probabilities can be
used to compute Pi,S\{Y },y for all i ∈ {0, . . . ,min(k, |S\{Y }|)} according to Equation (12.4)
which takes at most O(k) time and space. 2

After giving the runtime evaluation of the processing of one single observation, it is now
possible to extend the cost model for the whole query process. According to Lemma 12.1,
the assumption can be made that each observation can be processed in constant time if
k is chosen to be constant. Under the assumption that the total number of observations
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Approach No precomputed B Precomputed B
Soliman et al. [192] exponential exponential

Chapter 11 [45] exponential exponential
Yi et al. [214] O(k · N2) O(k · N2)

This chapter [43] O(N · log(N) + k · N) O(k · N)

Table 12.1: Runtime complexity comparison between the probabilistic ranking approaches;
N and k denote the database size and the ranking depth, respectively.

in the database is linear in the number of database objects, a runtime complexity would
be obtained which is linear in the number of database objects, more exactly O(k · N),
where k is the specified depth of the ranking. Up to now, the utilized data model assumes
that the pre- and postprocessing steps of the proposed framework require at most linear
runtime. Since the postprocessing step only includes an aggregation of the results in order
to obtain a final ranking output, the linear runtime complexity of this step is guaranteed.
Now, the runtime of the initial (certain) observation ranking has to be examined, which
is the preprocessing step needed to initialize the distance browsing B. Similarly to the
assumptions that hold for the competitors [45, 192, 214], it can also be assumed that
the observations are already sorted, which would involve linear runtime cost also for this
module. However, for the general case where a distance browsing has to be initialized first,
the runtime complexity of this module would increase to O(N · log(N)). As a consequence,
the total runtime cost of the proposed approach (including distance browsing) sums up to
O(N · log(N) + k · N). An overview of the computation cost is given in Table 12.1.

The cost required to solve the object-based rank probability problem is similar to that
required to solve the observation-based rank probability problem. The solution based on
observations additionally only requires to build the sum over all observation-based rank
probabilities, which can be done on-the-fly without additional cost. Furthermore, the cost
required to build a final unambiguous ranking (e.g., the rankings proposed in Section 12.4
or those proposed in Chapter 11) from the rank probabilities can be neglected. The fi-
nal ranking can also be computed on-the-fly by simple aggregations of the corresponding
(observation-based) rank probabilities.

Regarding the space complexity of an RPD of size O(k · N), a vector of length k has
to be stored for each object in the database. In addition, it is required to store the AOL
of a size of at most O(N), yielding a total space complexity of O(k · N +N) = O(k · N).
[214] directly combines the probability computations with the output of U-kRanks with
a space complexity of O(N). The approach presented this chapter solves the problem of
computing the RPD, i.e., the bipartite graph problem introduced in Chapter 9, and can
apply the solution to any definite ranking output. Details will be provided in Section 12.4.
To compute an RPD according to the current definition, [214] requires O(k · N) space as
well.
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Algorithm 7 Probabilistic Ranking Algorithm: probRanking(B, q)

Require: B, q
1: AOL← ∅
2: result← Matrix of 0s // size = N · k
3: p-rankx ← [0, . . . , 0] // length k
4: p-rank y ← [0, . . . , 0] // length k
5: y ← B.next()
6: updateAOL(y)
7: p-rankx[0]← 1
8: add p-rankx to the first line of result
9: while B is not empty and ∃p ∈ p-rankx : p > 0 do

10: x← y
11: y ← B.next()
12: updateAOL(y)
13: if Y = X then
14: {Case 1 (cf. Figure 12.1(a))}
15: p-rank y ← p-rankx
16: else if Y 6∈ AOL then
17: {Case 2 (cf. Figure 12.1(b))}
18: P (X)← AOL.getProb(X)
19: p-rank y ← dynamicRound(p-rankx, Py(X))
20: else
21: {Case 3 (Y 6= X, cf. Figure 12.1(c))}
22: P (X)← AOL.getProb(X)
23: P (Y )← AOL.getProb(Y )
24: adjustedProbs ← adjustProbs(p-rankx, Px(Y ))
25: p-rank y ← dynamicRound(adjustedProbs , Py(X))
26: end if
27: Add p-rank y to the next line of result
28: p-rankx ← p-rank y
29: end while
30: return result

12.3 Probabilistic Ranking Algorithm

12.3.1 Algorithm Description

The pseudocode of the probabilistic ranking algorithm is illustrated in Algorithm 7 and
provides the implementation details of the previously discussed steps. The algorithm re-
quires a query object q and a distance browsing operator B that allows to iteratively access
the observations sorted in ascending order of their distance to a query object.

First, the AOL is initialized, a data structure that contains one tuple (X,P (X)) for
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each object X that

• has previously been found in B, i.e., at least one observation of X has been processed

• and has not yet been completely processed, i.e., at least one observation of X has
yet to be found,

associated with the sum P (X) of probabilities of all its observations that have been found.
The AOL offers two functionalities:

• updateAOL(x): adds the probability P (X = x) of the observation x ∈ X to P (X),
where X is the object that x belongs to.

• getProb(X): returns the aggregated probability of object X (P (X)).

For efficient retrieval and update, it is mandatory that the position of a tuple (X,P (X)) in
the AOL can be found in constant time in order to sustain the constant time complexity of
an iteration. This can be approached by means of hashing or by directly storing with each
object X the information about the probability P (X), both requiring an additional space
cost of O(N). Another structure to keep is result , a matrix that contains, for each observa-
tion x that has been retrieved from B, and each ranking position i the probability Pq(x, i)
that x is located on ranking position i. In order to get an object-based rank probability,
observations belonging to the same object can be aggregated, using Equation (12.1).

Additionally, two arrays p-rankx and p-rank y are initialized, each of length k, which
contain, at any iteration of the algorithm, the probabilities Pi,S\{X},x and Pi,S\{Y },y respec-
tively, for all i ∈ {0, . . . , k}. x ∈ X is the observation found in the previous iteration and
y ∈ Y is the observation found in the current iteration (cf. Figure 12.1).

In line 5, the algorithm starts by fetching the first observation, which is closest to the
query observation q in the database. A tuple containing the corresponding object as well
as the probability of this observation is added to the AOL.

Then, the probability for the first position of x, p-rankx, is set to 1, while the proba-
bilities for all other k − 1 positions remain 0, because

P0,S\{X},x = P0,∅,x = 1 and Pi,S\{X},x = Pi,∅,x = 0

for i ≥ 1 by definition (cf. Equation (12.2)). This simply reflects the fact that the first
retrieved observation from B is always on rank 1. p-rank y is implicitly assigned to p-rankx.
Then, the first iteration of the main algorithm begins by fetching the next observation from
B (line 11). Now, the three cases explained in Subsection 12.2.2 have to be distinguished.

In the first case (line 13), both the previous and the current observation refer to the
same object. As explained in Subsection 12.2.2, there is nothing to do in this case, since
Pi,S\{X},x=Pi,S\{Y },y for all i ∈ {0 . . . , k − 1}.

In the second case (line 16), the current observation refers to an object that has not been
seen yet. As explained in Subsection 12.2.2, only an additional iteration of the dynamic-
programming algorithm has to be applied (cf. Equation (12.2)). This dynamic iteration
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Algorithm 8 Dynamic Iteration for Observation y: dynamicRound(oldRanking , Py(X))

Require: oldRanking (intermediate result without object X)
Require: Py(X) (probability that object X is closer to q than observation y)

newRanking ← [0, . . . , 0] {length k}
newRanking [0]← oldRanking [0] · (1− Py(X))
for i = 1→ k − 1 do

newRanking [i]← oldRanking [i− 1] · Py(X) + oldRanking [i] · (1− Py(X))
end for
return newRanking (result including object X)

Algorithm 9 Probability Adjustment: adjustProbs(oldRanking , Px(Y ))

Require: oldRanking (intermediate result including object Y )
Require: Px(Y ) (prob. that object Y is closer to q than the last retrieved observation x)

adjustedProbs ← [0, . . . , 0] {length k}
adjustedProbs [0]← oldRanking[0]

1−Px(Y )

for i = 1→ k − 1 do
adjustedProbs [i]← oldRanking[i]−adjustedProbs[i−1]·Px(Y )

1−Px(Y )

end for
return adjustedProbs (intermediate result at observation y ∈ Y , excluding object Y
from the current result)

dynamicRound is shown in Algorithm 8 and is used here to incorporate the probability
that X is closer to q than y into p-rank y in a single iteration of the dynamic algorithm.

In the third case (line 20), the current observation relates to an object that has al-
ready been seen. Thus, the probabilities Pi,S\{X},x depend on Y . As explained in Sub-
section 12.2.2, the influence of previously retrieved y ∈ Y on Pi,S\{X},x has to be filtered
out first, and then Pi,S\{X,Y },x has to be computed. This is performed by the probabil-
ity adjustment algorithm adjustProbs (cf. Algorithm 9) utilizing the technique explained
in Subsection 12.2.2. Using the Pi,S\{X,Y },x, the algorithm then computes the Pi,S\{Y },y
performing a single iteration of the dynamic algorithm like in Case 2.

In line 27, the computed ranking for observation y is added to the result. If the
application (i.e., the ranking method) requires objects to be ranked instead of observations,
then p-rank y is used to incrementally update the probabilities of Y for each rank.

The algorithm continues fetching observations from the distance browsing operator
B and repeats this case analysis until either no more samples are left in B or until an
observation is found with a probability of 0 for each of the first k positions. In the latter
case, there exist k objects that are closer to q with a probability of 1, i.e. for which all
observations have been retrieved, and the computation can be stopped, because the same
k objects must be closer to q than all further observations in the database that have not
yet been retrieved by the distance browsing B.



12.4 Probabilistic Ranking Approaches 135

12.4 Probabilistic Ranking Approaches

The method proposed in Subsection 12.2.2 efficiently computes, for each uncertain ob-
servation x and each ranking position i ∈ {1, . . . , k} the probability that x has the ith
rank. However, most applications require a unique ranking, i.e., each object (or obser-
vation) is uniquely assigned to exactly one rank. Various top-k query approaches have
been proposed generating unambiguous rankings from probabilistic data which are called
probabilistic ranking queries. The question at issue is how the framework proposed in this
and in the previous chapter can be exploited in order to significantly accelerate probabilis-
tic ranking queries. This section will show that the framework supports and significantly
boost the performance of the state-of-the-art probabilistic ranking queries. Specifically,
this is demonstrated by applying state-of-the-art ranking approaches, including U-kRanks,
PT-k and Global top-k.

The following ranking approaches are based on the x-relation model [25]. As mentioned
in Chapter 9, the x-relation model conceptionally corresponds to the uncertainty model
used here, where an observation corresponds to a tuple and an uncertain object correspond
to an x-tuple. In the following, the terms object and observation will again be used.

12.4.1 U-kRanks

The U-kRanks approach [192] reports the most likely observation for each rank i, i.e.,
the observation that is most likely to appear on rank i over all possible worlds. This
is essentially the same definition as proposed in PRank in [155]. The approach proposed
in [192] has exponential runtime. The runtime has been reduced to O(N2 · k) time in [214].
Using the proposed framework, the problem of U-kRanks can be solved in O(N · log(N) +
k · N) time requiring the same space complexity as follows.

First, the framework is used to create the RPD in O(N · log(N) + k · N) as ex-
plained in the previous section. Then, for each rank i (1 ≤ i ≤ k), the observation
arg maxx(p-rank q(x, i)) that has the highest probability of appearing on rank i can be
found in O(k · N). This is performed by finding for each rank i the observation which has
the highest probability to be assigned to rank i. Obviously, in this problem definition, a
single observation x may appear on more than one ranking position, or it may not appear in
the result at all (cf. also the example in Chapter 11). For example, in Figure 12.2, observa-
tion a is ranked on both ranks 1 and 2, while observation b is ranked nowhere. Therefore,
alternatively, the ranking semantics PRQ MC and PRQ MAC from Chapter 11 can be
considered here.

The total runtime for U-kRanks has, thus, been reduced fromO(k·N2) toO(N · log(N)+
k·N), which isO(N · log(N)) if k is assumed to be constant. PRQ MC and also PRQ MAC,
which has to regard all prior ranks 1 ≤ j < i in addition, can be solved with the same
computational requirements.
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Figure 12.2: Small example extract of a rank probability distribution (RPD) as produced
by the proposed framework.

12.4.2 PT-k

Similarly to the definition of PRQ MAC in Chapter 11, the Probabilistic Threshold Top-k
(PT-k) query problem [108] fixes the drawback of the previous definition by aggregating
the probabilities of an observation x appearing on rank k or higher. Given a user-specified
probability threshold p, PT-k returns all observations that have a probability of at least
p of being on rank k or higher. In this definition, the number of results is not limited
by k, but depends on the threshold parameter p. The model of PT-k consists of a set of
observations and a set of generation rules that define mutual exclusiveness of observations.
Each observation occurs in one and only one generation rule. This model conceptionally
corresponds to the x-relation model (with disjoint x-tuples). PT-k computes all result
observations in O(k · N) time, while also assuming that the observations are already
presorted. Thus, this yields a total runtime of O(N · log(N) + k · N). The framework can
be used to solve the PT-k problem in the following way.

The RPD is created in O(k · N) as explained in the previous section. For each obser-
vation x, the probability that x appears at position k or higher is computed (in O(k · N)).
Formally, all observations x ∈ D are returned for which the condition

{x ∈ D :
k∑
i=1

Pq(x, i) > p}

holds. As seen in Figure 12.2, this probability can simply be computed by aggregating all
probabilities of an observation to be ranked at k or higher. For example, for k = 2 and
p = 0.5, the obtained results are a and b. For p = 0.1, further observations may be in the
result, because there must be further observations (from observations that are left out here
for simplicity) with a probability greater than 0 to ranks 1 and 2, since the probability of
the respective edges associated with these ranks does not sum up to 1 yet.

The proposed framework is only able to match, not to beat the runtime of PT-k.
However, using the proposed approach, it is possible to additionally return the ranking
order, instead of just the top-k set.
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12.4.3 Global Top-k

Global top-k [219] is very similar to PT-k. It ranks the observations by their top-k proba-
bility, and then takes the top-k of these. This approach has a runtime of O(k · N2). The
advantage here is that, unlike in PT-k, the number of results is fixed, and there is no user-
specified threshold parameter. Here, the ranking order information that has been acquired
in the PT-k using the proposed framework to solve Global top-k in O(N · log(N) + k · N)
time, can be exploited.

The framework is used to create the RPD in O(N · log(N) +k · N) as explained in the
previous section. For each observation x, the probability that x appears at position k or
higher is computed (in O(k · N)) like in PT-k. Then, the k observations with the highest
probability are returned in O(k · log(k)).

12.5 Experimental Evaluation

12.5.1 Datasets and Experimental Setup

Extensive experiments were performed to evaluate the performance of the proposed proba-
bilistic ranking approach proposed in this chapter. The parameters that were evaluated are
the database size N (the number of uncertain objects), the ranking depth k and the degree
of uncertainty (UD) as defined below. In the following, the ranking framework proposed
in this chapter is briefly denoted by PSR.

The probabilistic ranking was applied to a scientific semi-real-world dataset SCI and
several artificial datasets ART X of varying size and degree of uncertainty. All datasets
are based on the discrete uncertainty model according to Definition 9.2 in Chapter 9.

The SCI dataset is a set of 1,600 objects, which was synthetically created based on
a data set comprising 1,600 environmental time series2. In the original time series data
set, each object consists of 48 ten-dimensional environmental sensor measurements taken
on one single day, one per 30 minutes. The ten measured attributes were temperature,
humidity, speed and direction of wind w.r.t. degree and sector, as well as concentrations of
CO, SO2, NO, NO2 and O3. An uncertain object X was then created based on one single
time series as follows by incorporating a real as well as a synthetic component. Addressing
the real component, each sensor measurement can be considered as an observation in the
feature space which is spanned by the ten dimensions enumerated above. The dimensions
were normalized within the interval [0,1] to give each attribute the same weight. Thus, a
time series is translated to a ten-dimensional spatial object with 48 alternative observations
xi, i ∈ {1, . . . , 48}. Finally, addressing the synthetic component, each xi ∈ X has to possess
a likelihood to represent X: P (X = xi). Here, the probability for each xi was set to 1

48
,

summing up in an overall probability of 1; thus, the dataset complies with the uncertain
data model of Definition 9.2 of Chapter 9. It is important to note that the method of

2The environmental time series have been provided by the Bavarian State Office for Environmental
Protection, Augsburg, Germany (http://www.lfu.bayern.de/).

http://www.lfu.bayern.de/
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creating the dataset does not imply a specific degree of uncertainty due to the availability
of the attributes values. The SCI dataset was used to evaluate the scalability and the
ranking depth.

The ART 1 dataset was used for the scalability experiments and consists of 1,000,000
objects. Here, each uncertain object is represented by a set of 20 three-dimensional ob-
servations that are uniformly distributed within a three-dimensional hyperrectangle. The
degree of uncertainty of this object then corresponds to the size (i.e., the side length) of
this hyperrectangle. All rectangles are uniformly distributed within a 10× 10× 10 feature
space. For the evaluation of the performance w.r.t. the ranking depth and the degree of
uncertainty, two collections of datasets, ART 2 and ART 3, were applied. Each dataset of
the collections is composed of 10,000 objects with 20 observations each and differs in the
degree of uncertainty of the corresponding objects. In ART 2, the observations of an object
are also uniformly distributed within a three-dimensional hyperrectangle. In ART 3, the
observations of an object follow a three-dimensional Gaussian distribution. The datasets of
ART 3 vary in the degree of uncertainty as well. For this dataset, the degree of uncertainty
simply denotes the standard deviation of the Gaussian distribution of the objects.

The degree of uncertainty is interesting in the performance evaluation, since it is ex-
pected to have a significant influence on the runtime. The reason is that a higher degree
of uncertainty obviously leads to a higher overlap between the objects which influences
the size of the active object list AOL (cf. Section 12.3) during the distance browsing. The
higher the object overlap, the more objects are expected to be in the AOL at a time. Since
the size of the AOL influences the runtime of the rank probability computation, a higher
degree of uncertainty is expected to lead to a higher runtime. This characteristic will be
experimentally evaluated in Subsection 12.5.3.

12.5.2 Scalability

This section gives an overview of the experiments regarding the scalability of PSR. The
obtained results are compared to the rank probability computation based on dynamic
programming as proposed by Yi et al. in [214]. This method, in the following denoted by
YLKS, has been the best prior approach for solving the U-kRanks (cf. Table 12.1). For a
fair comparison, the PSR framework was used to compute the same (observation-based)
rank probability problem as described in Section 12.2. As mentioned in Subsection 12.2.3,
the cost required to solve the object-based rank probability problem is similar to that
required to solve the observation-based rank probability problem. Furthermore, the cost
required to build a final unambiguous ranking (e.g., the rankings proposed in Section 12.4)
from the rank probabilities can be neglected, because this ranking can also be computed on-
the-fly by simple aggregations of the corresponding (observation-based) rank probabilities.

For the sorting of the distances of the observations to the query point, a tuned quicksort
adapted from [26] was used. This algorithm offers O(N · log(N)) performance on many
datasets that cause other quicksort algorithms to degrade to quadratic runtime.

The results of the first scalability tests on the real-world dataset SCI are depicted in
Figures 12.3(a) and 12.3(b). It can be observed that the required runtime for computing
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Figure 12.3: Scalability evaluated on SCI for different values of k.

the probabilistic ranking using the PSR framework increases linearly in the database
size, whereas YLKS has a runtime that is quadratic in the database size with the same
parameter settings. It can also be observed that this effect persists for different settings of
k. The effect of the O(N · log(N)) sorting of the distances of the observations is insignificant
on this relatively small dataset. The direct speed-up of the rank probability computation
using PSR in compared to YLKS is depicted in Figure 12.3(c). It shows, for different

values of k, the speed-up factor, which is defined as the ratio runtime(YLKS)
runtime(PSR)

describing the
performance gain of PSR w.r.t. YLKS. It can be observed that, for a constant number of
objects in the database (N = 1, 600), the ranking depth k has no impact on the speed-up
factor. This can be explained by the observation that both approaches scale linearly in k.

The next experiment evaluates the scalability of the database size based on the ART 1
dataset. The results of this experiment are depicted in Figures 12.4(a) and 12.4(b). The
former shows that the approach proposed in this chapter performs ranking queries in a
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Figure 12.4: Scalability evaluated on ART 1 for different values of k.

reasonable time of less than 120 seconds, even for very large database containing 1,000,000
and more objects, each having 20 observations (thus having a total of 20,000,000 observa-
tions). An almost perfect linear scale-up can be seen despite of the O(N · log(N)) cost for
sorting the database. This is due to the very efficient quicksort implementation in [26] that
the experiments have shown to require only slightly worse than linear time. Furthermore,
it can be observed that, due to its quadratic scaling, the YLKS algorithm is already in-
applicable for relatively small databases of size 5,000 or more. The direct speed-up of the
rank probability computation using PSR in comparison to YLKS for a varying database
size is depicted in Figure 12.4(c). Here, it can be observed that the speed-up of PSR in
comparison to YLKS increases linearly with the size of the database, which is consistent
with the runtime analysis in Subsection 12.2.3.
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Figure 12.5: Runtime w.r.t. the degree of uncertainty on ART 2 (uniform) and ART 3
(Gaussian).

12.5.3 Influence of the Degree of Uncertainty

The next experiment varies the degree of uncertainty (cf. Subsection 12.5.1) on the datasets
ART 2 and ART 3. In the following experiments, the ranking depth is set to a fixed value of
k = 100. As previously discussed, a varying UD leads to an increase of the overlap between
the observations of the objects and thus, objects will remain in the AOL for a longer time.
The influence of the UD depends on the probabilistic ranking algorithm. This statement
is underlined by the experiments shown in Figure 12.5. It can be seen in Figure 12.5(a)
that PSR scales superlinear in the UD at first, until a maximum value is reached. This
maximum value is reached when the UD becomes so large that the observations of an
object cover the whole vector space. In this case, objects remain in the AOL until almost
the whole database is processed in most cases due to the increased overlap of observations.
In this case of extremely high uncertainty, almost no objects can be pruned for a ranking
position, thus slowing down the algorithm by several orders of magnitude. It is also worth
noting that, in the used setting, the algorithm performs worse on Gaussian distributed data
than on uniformly distributed data. This is explained by the fact that the space covered
by a Gaussian distribution with standard deviation σ in each dimension is generally larger
than a hyperrectangle with a side length of σ in each dimension. A runtime comparison
of YLKS and PSR w.r.t. the average AOL size is depicted in Figure 12.5(b) for both the
uniformly and the Gaussian distributed datasets. The UD has a similar influence on both
YLKS and PSR.

12.5.4 Influence of the Ranking Depth

The influence of the ranking depth k on the runtime performance of the probabilistic
ranking method PSR is studied in the next experiment. As illustrated in Figure 12.6, where
the experiments were performed using both the SCI and the ART 2 dataset, the influence
of an increasing k yields a linear effect on the runtime of PSR, but does not depend on
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the type of the dataset. This effect can be explained by the fact that each iteration of Case
2 or Case 3 of the incremental probability computation (cf. Subsection 12.2.2) requires
a probability computation for each ranking position i ∈ {0, . . . , k}. The overall runtime
requirements on ART 2 is higher that on SCI due to the different database sizes, which
could already be observed in Subsection 12.5.2.

12.5.5 Conclusions

The experiments presented in this section show that the theoretical analysis of the pro-
posed approach, which was given in Subsection 12.2.3, can be confirmed empirically on
both artificial and real-world data. The performance studies showed that the proposed
framework computing the rank probabilities indeed reduces the quadratic runtime com-
plexity of state-of-the-art approaches to linear complexity. The cost required to presort the
observations are neglected in the settings due to the tuned quicksort. It could be shown
that the proposed approach scales very well even for large databases. The speed-up gain of
the proposed approach w.r.t. the rank depth k has shown to be constant, which proves that
both approaches scale linearly in k. Furthermore, it could be observed that the proposed
approach is applicable for databases with a high degree of uncertainty (i.e., the variance
of the observation distribution).

12.6 Summary

The approach proposed in this chapter achieved a significant improvement of the runtime
complexity of computing probabilistic ranking queries via incremental processing, overall
yielding a linear complexity under specific assumptions. The concepts proposed in this
chapter were theoretically and empirically proved to be superior to all existing approaches,
as the Poisson Binomial Recurrence was improved by a significant case study.
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Chapter 13

Continuous Probabilistic Inverse
Ranking on Uncertain Streams

13.1 Introduction

The two previous chapters focused on probabilistic ranking queries; they studied semantics
of ranking outputs and finally provided efficient solutions to compute the rank probability
distribution w.r.t. the distance to a query object, i.e., for each uncertain object X ∈ D
and each ranking position i (1 ≤ i ≤ k) the probability of an object to occur on rank i,
for the first k ranks. The semantics of similarity ranking is, finally, to return an ordered
list of “best” objects w.r.t. a particular criterion, where, for spatial data, the distance to a
query object is the most common one.

This chapter will focus on the probabilistic inverse ranking (PIR) query. While the PIR
problem has been tackled for static data [149, 158], this chapter will propose an extension
for uncertain streaming data, i.e., when the data changes with elapsing time. Given a
stream of uncertain objects, a user-defined score function fscore that ranks the objects and
a user-defined (uncertain) query object Q, a PIR query monitors the possible ranks of
this object, i.e., it computes all possible ranks of Q associated with a probability, which
corresponds to the rank probability distribution restricted to Q. Apart from considering
only static data, the semantics of a PIR query according to the definition in this chapter
semantically differs from [158], where the output of a PIR query consists of all possible
ranks for a (certain) query object q, for which q has a probability higher than a given
threshold. Furthermore, the approach of computing the expected inverse ranks [149] also
differs from a semantic point of view, bearing some significant disadvantages. For example,
an object that has a very high chance to be on rank 1, may indeed have an expected rank
far from rank 1, and may not be in the result using expected ranks. Thus, no conclusion
can be made about the actual rank probabilities if the expected rank is used, since the
expected rank is an aggregation that drops important information.

The PIR query is important for many real-world applications including financial data
analysis, sensor data monitoring and multi-criteria decision making where one might be
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(Chances; Risk)

Conf. Analyst Analyst Analyst
I (50%) II (30%) III (20%)

Stock I (10; 6) (12; 8) (10; 9)
Stock II (5; 4) (4; 4) (6; 5)
Stock III (4; 1) (5; 2) (5; 1)

Table 13.1: Chances and risk predictions
by three analysts for three stocks.

Figure 13.1: Stock prediction chart.

interested in the identification of the rank (significance) of a particular object among peers.

Example 13.1 Consider the exemplary application illustrated in Table 13.1. A financial
decision support system monitors diverse prognostic attributes of a set of three stocks, e.g.,
predicted market trend (chances) and volatility (risk), which are used to rate the profitability
of the stocks w.r.t. a given score function. As it can be observed, the chance and risk
estimations are not unique among different analysts, and each analyst is given a different
confidence level. Figure 13.1 shows graphically the three stocks with their respective analyst
predictions and the (certain) query object q which consists of only one observation. Here,
it is assumed to be given a score function defined as fscore = (Chances−Risk). The dotted
line in Figure 13.1 denotes all observations x where fscore(x) = fscore(q), i.e., all points
that have the same score as q. Any observation located to the right of this line has a higher
score than q, while any observation to the left has a lower score. Therefore, it can safely
be assumed that Stock II has a lower score than q, while Stock III certainly has a higher
score than q. However, the relative ranking of Stock I w.r.t. q is uncertain. While two
of three analysts (with a total confidence of 80%) would rank Stock I higher than q, the
third analyst would rank it lower. Thus, the PIR query for q returns that q is on rank 2
with a probability of 20%, on rank 3 with a probability of 80% and definitely not on rank
1 or 4. This result can be used to answer questions like “Given a score function, what is
the likelihood that a query stock q is one of the top-3 best stocks?”. The problem studied
in this chapter is how to efficiently update these likelihoods when the analysts release new
estimations on a ticker stream.

The rest of this chapter is organized as follows: Section 13.2 will formally define the problem
of probabilistic inverse ranking on data streams. The approach for solving the problem
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efficiently will be described in Section 13.3. Section 13.4 will generalize the problem by
additionally considering uncertain queries. The efficiency of the proposed approach will be
experimentally evaluated in Section 13.5. Finally, Section 13.6 will conclude this chapter.

13.2 Problem Definition

Similarly to the previous chapters, the solution that will be provided in this chapter adopts
the uncertain object model of Definition 9.2 of Chapter 9, where each uncertain object X
is assigned to m alternative observations and corresponds to exactly one x-tuple T , which
includes m alternative tuples t. It is assumed that

∑
t∈T P (t) = 1. For the problem of

inverse ranking, this assumption means no loss of generality, since existential uncertainty
can be modeled by simply adding to T an additional observation with a probability 1 −∑

t∈T P (t) and a score of −∞ (that is a distance of ∞ to the query). For example, the m
observations of an uncertain object are derived from m sources of information (sensors).
In the stock example (cf. Example 13.1), the sources correspond to the assessments of the
analysts. The most frequent notations throughout this chapter are slightly different from
the previous chapters and, thus, summarized in Table 13.2 on the following page.

The management of continuous measurements within a “dynamic” uncertain database,
i.e., where new observations arrive subsequently and need to be processed, leads to the uti-
lization of uncertain stream models. A probabilistic stream is defined analogously to [113].

Definition 13.1 (Probabilistic Stream) A probabilistic stream is a data stream S =
[x0, . . . , xt, . . . ] in which each observation xt encodes a random variable reported at time
t from the stream, corresponding to an object update. In particular, each observation xt
has the form (X,L), where X is an object ID and L is a location sequence of length |L|.
Each element l ∈ L contains a location ∈ Rd and a probability P (l) ∈ [0, 1]. In addition,
the assumption is made that

∑
l∈L P (l) = 1, i.e., it is assumed that the object does not

have an existential uncertainty, i.e., that object X is existentially certain. This implies the
definition of an appropriate time-fading function for the probabilities P (l).

An uncertain database instantiated from a probabilistic stream is defined as follows.

Definition 13.2 (Probabilistic Stream Database) A probabilistic stream database is
an uncertain database connected to at least one probabilistic stream. Each stream observa-
tion xt = (X,L) at time t denotes an update of the uncertain object X ∈ D, where X may
also be a new object. Therefore, at time t, the x-relation describing object X is replaced by
the new location distribution L coming from the stream.

This probabilistic stream database model is very general and can be easily adapted to
simulate popular stream models: the sliding window model of size w can be simulated by
imposing the following constraint to the probabilistic stream: for any two stream observa-
tions xt = (X,Lt) and x′t = (X,Lt′), t < t′ of the same object X, it holds that, if there is
no other stream observation between time t and time t′ concerning the same object X, Lt′
is derived from Lt by



146 13 Continuous Probabilistic Inverse Ranking on Uncertain Streams

Notation Description

D an uncertain database
N the cardinality of D
k the ranking depth that determines the number of ranking positions

of the inverse ranking query result
S a probabilistic stream
w the window size, i.e., the number of currently regarded recent ob-

servations
q a query observation in respect to which a probabilistic inverse rank-

ing is computed
X, Y , Z uncertain stream objects, each corresponding to a finite set of al-

ternative observations
P t
q (X) the probability that object X has a higher score than q at time t

P t(q, i) the result of the inverse ranking at time t: the probability that q is
on rank i at time t

P t
i,j,q the probability that, out of j processed objects, exactly i objects

have a higher score than q at time t
P t
i the result of the PBR at time t: the probability that i objects have

a higher score than q at time t, if all objects X for which P t
q (X) = 1

are ignored

P̂ t
i the adjusted result of the PBR at time t: identical to P t

i except
that the effect of the object that changes its position at time t+ 1
is removed from the calculation

Ct the number of objects X at time t for which P t
q (X) = 1

Table 13.2: Table of notations used in this chapter.

• adding exactly one new observation to Lt, and

• removing the oldest observation of Lt if |Lt| > w.

The probabilities P (l), l ∈ Lt are often set to P (l) = 1
|Lt| , but other distributions can be

used. In particular, more recently observed observations can be given a higher probability
to obtain the weighted sliding window model. Additionally, the infinite sliding window
model is obtained by setting w =∞. In this chapter, the stream model is left abstract, as
the proposed solutions are applicable for any model.

Now, as the data model is available, is the probabilistic inverse ranking query is defined
as follows.

Definition 13.3 (Probabilistic Inverse Ranking Query) Given an uncertain database
D of size N , a query object Q and a score function

fscore : D → R+
o .
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Assuming that only the first k ranks are of interest, a probabilistic inverse ranking query
PIR(Q) returns for each i ∈ {1, . . . , k} the probability P t(Q, i) that q is on rank i w.r.t.
the score function fscore, i.e., the probability that there exist exactly i − 1 objects X ∈ D
such that fscore(X) > fscore(Q) at time t.

Given a set of N uncertain objects and a probabilistic stream S as defined above, the
problem is to compute and update, for a given query object Q and a given score function
fscore, the result of PIR(Q) at each time t, i.e., after each object update. The challenge is
to ensure that this can be done correctly in terms of the Possible Worlds Semantics [145]
(cf. Chapter 9), and highly efficiently to allow online processing of the probabilistic stream
S. Since the number of possible worlds at a time t is exponential in the number N of
uncertain stream objects at time t, these two challenges are conflicting. The following
section will propose an approach to compute PIR(q), i.e., the probabilistic inverse ranking
for a single observation q ∈ Q, in O(k · N) from scratch, and to update it in O(k) when
a new update is fetched from the stream. In addition, Section 13.4 will show how the
result of PIR(Q) can be efficiently updated if the query object Q consists of more than
one observation and, thus, is itself a stream object that changes frequently.

13.3 Probabilistic Inverse Ranking (PIR)

13.3.1 The PIR Framework

Consider an uncertain stream database D of size N , a query observation q, a score function
fscore and a positive integer k. The proposed algorithm basically consists of two modules:

• Module 1: The initial computation of the PIR that computes, for each rank i ∈
{1, . . . , k}, the probability P t(q, i) that q is ranked on position i at the initial time t,
when the query is issued. Subsection 13.3.2 will show how this can be performed in
O(k · N) time.

• Module 2: The incremental stream processing that updates PIR(q) at time t + 1,
given the PIR at time t. Therefore, the probabilities P t+1(q, i) that q is ranked on
position i at time t + 1 have to be computed given the P t(q, i), i ∈ {1, . . . , k}. In
Subsection 13.3.3, it will be shown how this update can be done in O(k) time.

13.3.2 Initial Computation

For each object X ∈ D, let P t
q (X) be the probability that X has a higher rank than q at

time t, i.e., P t
q (X) = P (fscore(X) > fscore(q)). These probabilities can be computed in a

single database scan. The P t
q (X) can be processed successively by means of the Poisson

Binomial Recurrence (PBR) [147], as proposed for probabilistic ranking in the previous
chapters. Let P t

i,j,q be the probability that, out of the j objects processed so far, exactly i
objects have a higher score than q. This probability depends only on two events:
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• i− 1 out of the first j − 1 processed objects have a higher score than q and X has a
higher score than q.

• i out of the first j − 1 processed objects have a higher score than q and X does not
have a higher score than q.

This observation and the assumption of independence between stream objects can be used
to formulate the following PBR:

P t
i,j,q = P t

i−1,j−1,q · P t
q (X) + P t

i,j−1,q · (1− P t
q (X)) (13.1)

with P t
0,0,q = 1 and P t

i,j,q = 0 if i < 0 ∨ i > j.

When the last object of the database is processed, i.e., j = N , then P t
i,j,q = P t

i,N,q

Definition
=

P t(q, i + 1).1 Computing the P t(q, i + 1) for 0 ≤ i < k yields the probabilistic inverse
ranking. In each iteration, the computation of any P t

i,j,q can be omitted where i ≥ k, since
any ranks greater than k are not relevant, and thus, the cases where at least k objects have
a higher score than q are not of interest. In total, for each 0 ≤ i < k and each 1 ≤ j ≤ N ,
P t
i,j,q has to be computed resulting in an O(k · N) time complexity.

Equation (13.1) is only required for objects X for which 0 < P t
q (X) < 1. Objects X for

which P t
q (X) = 0 can safely be ignored in the initial computation, since they have no effect

on the P t(q, i). For objects X for which P t
q (X) = 1, a counter Ct is used that denotes

the number of these objects. Thus, when X is encountered in the initial computation,
the PBR can be avoided and Ct is incremented. This optimization will be referred to as
0-1-optimization in the experimental evaluation. The probabilities obtained from the PBR
by ignoring objects for which P t

q (X) = 1 are denoted as P t
i , 0 ≤ i < k.

The probabilistic inverse ranking can be obtained from the P t
i (0 ≤ i < k) and from Ct

as follows:

P t(q, i+ 1) =

{
P t
i−Ct , for Ct ≤ i ≤ Ct + k

0 , otherwise
(13.2)

Example 13.2 Given a database containing four objects X1, . . . , X4 and an inverse rank-
ing query with query observation q and k = 2, assume that P t

q (X1) = 0.1, P t
q (X2) = 0,

P t
q (X3) = 0.6 and P t

q (X4) = 1. To compute the initial inverse ranking, the first object to
process is X1, using Equation (13.1):

P t
0,1,q = P t

−1,0,q · P t
q (X1) + P t

0,0,q · (1− P t
q (X1)) = 0 · 0.1 + 1 · 0.9 = 0.9,

P t
1,1,q = P t

0,0,q · P t
q (X1) + P t

1,0,q · (1− P t
q (X1)) = 1 · 0.1 + 0 · 0.9 = 0.1.

Next, X2 is processed, but notice that P t
q (X2) = 0, so X2 can be skipped. Then, object X3

requires an additional iteration of Equation (13.1):

P t
0,2,q = P t

−1,1,q · P t
q (X3) + P t

0,1,q · (1− P t
q (X3)) = 0 · 0.6 + 0.9 · 0.4 = 0.36.

1The event that i objects have a higher score than q corresponds to the event that q is on rank i+ 1.
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P t
1,2,q = P t

0,1,q · P t
q (X3) + P t

1,1,q · (1− P t
q (X3)) = 0.9 · 0.6 + 0.1 · 0.4 = 0.58.

P t
2,2,q does not need to be computed, since k = 2. The next object to process is X4. Since
P t
q (X4) = 1, only Ct has to be incremented to 1. At this point, the computation is finished.

The obtained results are

P t
0 = 0.36 and P t

1 = 0.58.

To get the final inverse ranking at time t, it is possible to use Equation (13.2) to obtain

P t(q, 1) = P t
0−1 = P t

−1 = 0 and

P t(q, 2) = P t
1−1 = P t

0 = 0.36.

13.3.3 Incremental Stream Processing

A näıve solution would apply the PBR (cf. Equation (13.1)) whenever a new observation of
object X is fetched from the stream. However, the expensive update which is linear in the
size of the database would make online stream processing impractical for large databases.
The following part shows how P t+1(q, i) can be updated for 1 ≤ i ≤ k in constant time
using the results of the previous update iteration.

Without loss of generality, let X be the object for which a new position information is
returned by the stream at time t+ 1. P t

q (X) (P t+1
q (X)) denotes the old (new) probability

that X has a higher score than q.
The update algorithm uses two phases:

• Phase 1: Removal of the effect of the old value distribution of the uncertain object
X, that is, removal of the effect of the probability P t

q (X) from the result P t
i , 0 ≤ i < k.

This yields an intermediate result P̂ t+1
i , 0 ≤ i < k.

• Phase 2: Incorporation of the new value distribution of the uncertain object X,
that is, including the probability P t+1

q (X) in the intermediate result P̂ t+1
i , 0 ≤ i < k,

obtained in Phase 1.

Phase 1: Removal of P t
q (X)

The following cases w.r.t. P t
q (X) have to be considered:

• Case 1: P t
q (X) = 0. This case occurs if X is a new object or if it is certain that X

has a lower score than q at time t. Thus, nothing has to be done to remove the effect
of P t

q (X): P̂ t+1
i = P t

i .

• Case 2: P t
q (X) = 1, i.e., it is certain that X has a higher score than q at time t.

In this case, it is just needed to decrement Ct by one to remove the effect of P t
q (X).

Thus, P̂ t+1
i = P t

i and Ct+1 = Ct − 1.
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• Case 3: 0 < P t
q (X) < 1, i.e., it is uncertain whether X has a higher score than q at

time t. In order to remove the effect of P t
q (X) on all P t

i (0 ≤ i < k), the iteration
that most recently applied the PBR (cf. Equation (13.1)) has to be considered, which
was performed at time t′ ≤ t − 1 and used to obtain P t

i , 0 ≤ i < k. Let Y be the
object that was incorporated in this iteration:

P t
i = P t′

i−1 · P t
q (Y ) + P t′

i · (1− P t
q (Y )),

where P t′
i describes the probability that i objects have a score higher than q at time

t′, if (in addition to all objects Z for which P t
q (Z) = 1) Y is ignored. Now it can be

observed that the probabilities P t
i (0 ≤ i < k) are not affected by the order in which

the objects are processed within the recursion. In particular, the probabilities P t
i do

not change if the objects are processed in an order that processes X last. Thus, the
obtained probability is

P t
i = P̂ t

i−1 · P t
q (X) + P̂ t

i · (1− P t
q (X)).

This can be resolved to

P̂ t
i =

P t
i − P̂ t

i−1 · P t
q (X)

1− P t
q (X)

. (13.3)

Setting i = 0 yields

P̂ t
0 =

P t
0

1− P t
q (X)

, (13.4)

because the probability P̂ t
−1 that exactly -1 objects have a higher score than q is

0 by definition (cf. Equation (13.1)). Since the probabilities P t
i for 0 ≤ i < k are

known from the previous stream processing iteration, P̂ t
0 can be easily computed

using Equation (13.4). Now it is possible to inductively compute P̂ t
i+1 by using P̂ t

i

for any i and exploiting Equation (13.3).

Phase 2: Incorporation of P t+1
q (X)

In Phase 2, the same cases have to be considered:

• Case 1: P t+1
q (X) = 0, i.e., object X has no influence on the result at time t + 1.

Nothing has to be done. Thus, P t+1
i = P̂ t+1

i .

• Case 2: P t+1
q (X) = 1, i.e., it is certain that object X has a higher score than q.

Thus, Ct+1 = Ct + 1 and P t+1
i = P̂ t+1

i .

• Case 3: 0 < P t+1
q (X) < 1, i.e., the new probability for X to be ranked higher than q,

i.e. P t+1
q (X), can be incorporated to compute the new probabilistic inverse ranking

by an additional iteration of the PBR:

P t+1
i = P̂ t+1

i−1 · P t+1
q (X) + P̂ t+1

i · (1− P t+1
q (X)).
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Example 13.3 Reconsider Example 13.2, where time t yielded Ct = 1, P t
0 = 0.36 and

P t
1 = 0.58. Now, assume that at time t + 1 object X3 changes its probability from 0.6 to

0.2, i.e., P t
q (X3) = 0.6 and P t+1

q (X3) = 0.2. Phase 1 starts using Case 3. The use of
Equation (13.4) yields

P̂ t
0 =

P t
0

1− P t
q (X3)

=
0.36

0.4
= 0.9.

Going further, Equation (13.3) yields

P̂ t
1 =

P t
1 − P̂ t

0 · P t
q (X3)

1− P t
q (X3)

=
0.58− 0.9 · 0.6

0.4
= 0.1.

This completes Phase 1. In Phase 2, Case 3 is chosen, which yields

P t+1
0 = P̂ t

−1 · P t+1
q (X3) + P̂ t

0 · (1− P t+1
q (X3)) = 0 · 0.2 + 0.9 · 0.8 = 0.72 and

P t+1
1 = P̂ t

0 · P t+1
q (X3) + P̂ t

1 · (1− P t+1
q (X3)) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26.

This completes the update step (Ct remains unchanged, i.e., Ct+1 = Ct). The result is
obtained analogously to Example 13.2 using Equation (13.2):

P t+1(q, 1) = P t+1
0−1 = P t+1

−1 = 0 and

P t+1(q, 2) = P t+1
1−1 = P t+1

0 = 0.72.

Now, at time t+ 2, object X4 is assumed to change its probability from 1 to 0: in Phase 1,
Case 2 is used and Ct is decremented from 1 to 0 to obtain Ct+1 = 0. In Phase 2, Case 1
is used and nothing has to be done. The obtained probabilities are

P t+2
0 = P̂ t+1

0 = P t+1
0 = 0.72 and

P t+2
1 = P̂ t+1

1 = P t+1
1 = 0.26.

The result after using Equation (13.2) is

P t+2(q, 1) = P t+2
0−0 = P t+2

0 = 0.72 and

P t+2(q, 2) = P t+2
1−0 = P t+2

1 = 0.26.

Example 13.3 shows why it is important to maintain k probability values at each point of
time: even though some of the k probabilities may not be required to obtain the result, they
may be required to obtain the result at a later time.

Regarding the computational complexity, the following holds for both Phase 1 and Phase
2: Case 1 and Case 2 have a cost of O(1), since either nothing has to be done or only Ct

has to be incremented or decremented. Case 3 has a total cost of O(k) leading to a total
runtime of O(k) in the update step.
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13.4 Uncertain Query

The previous section assumed that the query q is fixed, i.e., it consists of only one ob-
servation with a certain position in Rd. This section will consider the case in which the
query is also given as an uncertain stream object, consisting of several observations that are
reported over time. Similarly to the database objects, it is assumed that the query object
Q is represented by a set of m alternative observations q ∈ Q at time t. The probabilistic
inverse ranking query PIR(Q) w.r.t. an uncertain query object Q can be computed by
aggregating the PIR query results w.r.t. each observation q of Q, as it is done with the
computation of an object-based probabilistic ranking in Chapter 11. Formally,

P t(Q, i) =
∑
q∈Q

P t(q, i) · P (Q = q)

for all q ∈ Q, where P (Q = q) denotes the probability that Q is located at observation q
and P t(q, i) is the probability that observation q is on rank i. P t(q, i) can be computed
and updated as proposed in Section 13.3.

In the current scenario, the stream may return new position information of Q as well.
Then, the probabilities of all objects being ranked before Q may change. Consequently, the
inverse ranking result usually needs to be recomputed from scratch, using the technique
shown in Subsection 13.3.2. However, in most applications, the position of an object only
changes slightly. Therefore, the probability of other objects to have a higher score than Q
normally does not change for most objects. This property is exploited as follows.

Let Q be the query object with alternative observations q ∈ Q at time t and let
f tscore min(Q) and f tscore max(Q) denote the minimum and maximum among all possible scores
derived from the observations of Q at time t. The following part assumes that a new query
observation is reported from the stream at time t+ 1:

Lemma 13.1 If f tscore min(Q) ≤ f t+1
score min(Q), then it holds that, for any object X with

P t
Q(X) = 0, P t+1

Q (X) = 0, assuming X has not been updated at time t+ 1.

Proof.
Assumption: f tscore min(Q) ≤ f t+1

score min(Q) (13.5)

Assumption: ∀x ∈ X : f tscore(x) = f t+1
score(x) (13.6)

Assumption: P t
Q(X) = 0 (13.7)

(Equation (13.7))⇔ ∀q ∈ Q,∀x ∈ X : f tscore(q) > f tscore(x)

⇔ ∀x ∈ X : f tscore min(Q) > f tscore(x) (13.8)

Definition: ∀q ∈ Q, ∀x ∈ X : f t+1
score(q) ≥ f t+1

score min(Q)

Equation (13.5)

≥ f tscore min(Q)
Equation (13.8)

≥ f tscore(x)
Equation (13.6)

= f t+1
score(x)

⇒ ∀q ∈ Q,∀x ∈ X : f t+1
score(q) ≥ f t+1

score(x)⇔ P t+1
Q (X) = 0

2
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Figure 13.2: Changes of fscore min(Q) and fscore max(Q).

Lemma 13.2 If f tscore max(Q) ≥ f t+1
score max(Q), then for any object X with P t

Q(X) = 1 it

holds that P t+1
Q (X) = 1.

Proof. Analogous to Lemma 13.1. 2

The following example for both cases is illustrated in Figure 13.2.

Example 13.4 Consider a slight modification of the stock Example (cf. Example 13.1).
In Figure 13.2(a), the current state of the observations at time t is visualized. Here, it is
certain that Stock II has a lower score than Q, whereas Stock III certainly has a higher score
than Q, as the set of observations of both objects do not overlap with the score range of Q.
However, the ranking position of Stock I w.r.t. Q is uncertain, as the observations overlap
with the score range of Q. Now, at time t+1, a new observation q4 of Q is fetched from the
stream (cf. Figure 13.2(b)). Assuming w = 3, the oldest observation q1 is removed, such
that f t+1

score min(Q) > f tscore min(Q). In is obvious that P t+1
Q (Stock II) = P t

Q(Stock II) = 0,
since

f t+1
score max(Stock II) = f tscore max(Stock II) < f tscore min(Q) < f t+1

score min(Q).

Thus, the probabilities of Q w.r.t. Stock II do not have to be updated. However, an update
w.r.t. Stock I is needed, since

0 < P t+1
Q (Stock I) < 1 and 0 < P t

Q(Stock I) < 1.

Another update of Q at time t+ 2 decreases its maximum score, such that f t+2
score max(Q) <

f t+1
score max(Q) (cf. Figure 13.2(c)). P t+2

Q (Stock III) = P t+1
Q (Stock III) = 1, since

f t+2
score min(Stock III) = f t+1

score min(Stock III) > f t+1
score max(Q) > f t+2

score max(Q).

Thus, the probabilities of Q w.r.t. Stock III do not have to be updated. Here again, an
update w.r.t. Stock I is performed, since

0 < P t+2
Q (Stock I) < 1 and 0 < P t+1

Q (Stock I) < 1.
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The above lemmata allow to reduce the number of objects that have to be considered
for the recomputation of the inverse ranking at time t + 1. Especially, if f tscore min(Q) ≤
f t+1
score min(Q)∧ f tscore max(Q) ≥ f t+1

score min(Q), then it is only needed to compute P t+1
q (X) for

those objects X ∈ D for which P t
Q(X) /∈ {0, 1}. For the remaining objects Z ∈ D \ {X},

it is necessary to update P t
Q(Z) and the inverse ranking probabilities considering the cases

outlined in Subsection 13.3.3. The effectiveness of this optimization scheme highly depends
on the degree of uncertainty of the objects. The experiments in Section 13.5 will show that
the number of objects that can be pruned from the computation of the inverse ranking can
be very large.

A very drastic change of the position of the query object may, in the worst case, cause
all probabilities P t

Q(X), X ∈ D to change. The incremental computation of Section 13.3

requires two steps: the removal of the effect of P t
Q(X) and the incorporation of P t+1

Q (X)
for any object X ∈ D that changed its probability of having a higher score than Q. In
contrast, a computation from scratch requires only one computation for each X ∈ D: the
incorporation of P t+1

Q (X). Therefore, it is wise to switch to a full recomputation of the

PIR if more than N
2

objects change their probability.

13.5 Experimental Evaluation

13.5.1 Datasets and Experimental Setup

The experiments that will be presented in the following Subsections 13.5.2 to 13.5.4 used
a synthetic dataset modeling a data stream with observations of two-dimensional objects.
The location of an objectX at time t is modeled by w observations of a Gaussian distributed
random variable X maintained in an array called sample buffer. For each X ∈ D, the mean
E(X ) follows a uniform [−10, 10]-distribution in each dimension. The probabilistic stream
S contains, for each X ∈ D, exactly m = 10 observations, which are randomly shuffled into
the stream. Once a new observation of an object X is reported by the stream, it is stored
in the sample buffer of X by replacing the least recently inserted one. Three parameters
were tuned in order to evaluate the performance of the incremental PIR method described
in Section 13.3: the database size N (default N = 10, 000, Subsection 13.5.2), the degree of
uncertainty of the objects, which is, in this chapter, reflected by the standard deviation σ
of uncertain observations belonging to the same object (default σ = 5, Subsection 13.5.3),
and the sample buffer size w (Subsection 13.5.4). For the scalability experiments, w was
set to 3. The evaluation of σ was performed with w = m = 10. An additional experiment
evaluates the influence of an uncertain query object on the performance of the incremental
PIR method (Subsection 13.5.5). Finally, Subsection 13.5.6 will examine the scalability
issues on a real-world dataset.

The proposed approach will be denoted by EISP (Efficient Inverse Stream Processing).
As a comparison partner serves the implementation of an algorithm based on the PBR
(abbreviated by PBR) as proposed by [214] that uses Equation (13.1) at each point of
time where the stream provides a new observation. An additional evaluation examines the
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(b) EISP vs. EISP-01.

Figure 13.3: Scalability of the PIR approaches (full processing).

effect of the strategy proposed in Section 13.3 to avoid the computations w.r.t. all objects
X with a probability P t

q (X) ∈ {0, 1} of having a higher score than the query observation q
(0-1-optimization). EISP-01 and PBR-01 will denote the versions of EISP and PBR,
respectively, that use the 0-1-optimization.

As the existing PIR solutions provided in [149, 158] are only designed for static data and
moreover semantically differ from the solution provided in this chapter (cf. Section 13.1),
they have not been considered as comparison partners for the experimental evaluation.

13.5.2 Scalability

The first experiment will evaluate the scalability of EISP, PBR, EISP-01 and PBR-01
w.r.t. the database size N . k was chosen to be equal to N , because if k is chosen to be
constant and N is scaled up, the number of objects that certainly have a higher score than
q will eventually reach k. In this case, the 0-1-optimization will immediately notice that q
cannot possibly be at one of the first k positions and will prune the computation. Then,
EISP-01 and PBR-01 will have no further update cost. The results are illustrated in
Figures 13.3 and 13.4.

Figure 13.3 illustrates the total time required to process the whole stream, i.e., all
m ·N object updates. It can be observed that all four algorithms show a superlinear time
complexity to process the whole stream. Using 0-1-optimization leads to an improvement
in the runtime. As the number of uncertain objects (i.e., the objects in the database for
which it is uncertain whether they have a higher score than q and, thus, cannot be removed
by the 0-1-optimization) increases as well as the number of certain objects, a linear speed-
up gain is achieved using the 0-1-optimization. These observations can be explained by the
runtime requirements of PBR and PBR-01 of O(N3) and that of EISP and EISP-01
of O(N2) to process the whole stream.
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Figure 13.4: Scalability of the PIR approaches (single update).

A more detailed evaluation of the update cost in each iteration is illustrated in Fig-
ure 13.4. Here, the average time required for an update is shown. The update cost of
both PBR and PBR-01 grows fast with N . This is explained by the quadratic cost of
O(N2) of the PBR at each update step (recall that k = N was chosen). On the other
hand, the update cost of O(N) of EISP is linear to the number of database objects in
this experiment (due to k = N). Here, the 0-1-optimization has a high influence on PBR,
but a smaller effect on EISP, especially for N ≤ 5, 000. The effect of the 0-1-optimization
may seem low for EISP, but, in the experiments, the total time required for an update
was measured; this includes the time required to fetch a new location from the stream,
compute its score, and recompute the total probability that the respective object has a
higher score than q. This overhead is naturally required for any approach.

13.5.3 Influence of the Degree of Uncertainty

The next experiment will examine the effect of the degree of uncertainty (i.e., the standard
deviation σ) on the distribution of the observations. Here, the total time required to process
the whole stream was examined. The results are depicted in Figures 13.5(a) and 13.5(b).
As PBR has to process all objects in each iteration of the inverse ranking, there is no
influence of σ when this method is used (cf. Figure 13.5(a)). The 0-1-optimization reduces
the runtime complexity working with low standard deviations, as, in this case, many objects
do not overlap with the score function and can therefore be neglected in each iteration.
However, with an increasing value of σ, the cost of PBR-01 approaches that of PBR,
as the uncertainty ranges are spread over a greater range of the data space. EISP and
EISP-01 outperform the other methods by several orders of magnitude. Figure 13.5(b)
shows that, for a small value of σ, there is a significant effect of the 0-1-optimization. This
becomes evident considering that the time overhead required to process the stream is more
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(c) Eval. of w, PBR vs. EISP, N = 1, 000.
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Figure 13.5: Runtime w.r.t. the standard deviation σ and the sample buffer size w.

than 7,000 ms in this experiment. The reason is that, for σ = 0, there exists no uncertainty,
and, thus, all objects always have a probability of either 0 or 1 of having a higher score
than q. Thus, Cases and 2 (cf. Section 13.3) are used in each update step and the PBR is
never required. For σ ≥ 10, most objects X have a probability 0 < P t

q (X) < 1 of having a
higher score than q. Thus, Case 3 is used in each iteration and Ct (the number of objects
for which P t

q (X) = 1) approaches 0.

13.5.4 Influence of the Sample Buffer Size

Next, the total stream processing time was evaluated w.r.t. the sample buffer size w.
Figures 13.5(c) and 13.5(d) illustrates that w has an impact on all inverse ranking methods.
Again, using PBR, the number of considered observations only influences the required
runtime if the 0-1-optimization is applied (cf. Figure 13.5(c)). If w increases, the probability
that an object X has both observations with a higher and smaller score than q increases,
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Figure 13.6: Runtime w.r.t. the probability of updating the query object (N = 1, 000).

i.e., it is uncertain whether fscore(q) > fscore(X). Figure 13.5(d) shows that, even for
w = 10, a relatively high performance gain is obtained using the 0-1-optimization, since
the observations remain in the extent of their probabilistic distribution. Thus, for many
objects X, fscore(q) > fscore(X) can be decided even for a large w.

13.5.5 Uncertain Query

Finally, this subsection evaluates the case that the query q is given as an uncertain stream
object, now denoted by Q. As described in Section 13.4, the whole inverse ranking may
have to be recomputed by the PBR method if a position update of Q occurs. For this
case, the performance of the adapted EISP method is tested.

For each time stamp t, a probability value for Q of being updated is varied. The
versions of PBR and EISP that use the 0-1-optimization are compared in Figure 13.6.
A value of 0 corresponds to the case that Q is certain, whereas a value of 1 assumes an
update of Q in each iteration and, thus, forces EISP-01 to always recompute the current
inverse ranking. It can be observed that the runtime required for processing the whole
stream when using EISP-01 increases linearly with a growing probability of the query
object of being uncertain. This effect is due to the fact that the number of updates of Q
and, thus, the number of complete recomputations have to be performed according to the
chosen probability value. As PBR-01 does not depend on the uncertainty of Q, because
it recomputes the inverse ranking in each iteration anyway, its curve defines an upper
asymptote to the curve of EISP-01.
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Figure 13.7: Scalability of the PIR approaches regarding full processing on the IIP dataset.

13.5.6 Scalability Evaluation on Real-World Data

IIP Dataset

The first experimental evaluation of the scalability on real-world data utilized the Inter-
national Ice Patrol (IIP) Iceberg Sightings Dataset2. This dataset contains information
about iceberg activity in the North Atlantic from 2001 to 2009. The latitude and longitude
values of sighted icebergs serve as two-dimensional positions of up to 6,216 probabilistic
objects, where each iceberg has been sighted at different positions. The stream consists of
up to ten observations for each iceberg which are ordered chronologically. Here again, w
is set to 3. Figure 13.7 indicates that the results obtained on real-world data are similar
to those on synthetic data. For the IIP dataset, the 0-1-optimization is very effective,
since the position of an iceberg has a very small degree of uncertainty. Many icebergs even
appear to hold their position over time.

NBA Dataset

The next set of experiments used the NBA dataset3, containing information about North
American basketball players. Each of the 3,738 records in this dataset corresponds to
the performance of one player in one season. In particular, each record contains a total
of 17 dimensions representing the number of games played, the number of points scored,
and other statistics from one given season between the years 1946 and 2006. For the
experiments, players are modeled by uncertain stream objects, using a sliding window
model of size w = 3, that is, a player is described by his performance in the last three
years. The probabilistic stream contains all records of the dataset. For simplicity, the used
score function fscore is simply the sum of all (normalized) attributes. In this scenario, the

2The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site (http:
//nsidc.org/data/g00807.html).

3The NBA dataset was derived from http://www.databasebasketball.com.

http://nsidc.org/data/g00807.html
http://nsidc.org/data/g00807.html
http://www.databasebasketball.com


160 13 Continuous Probabilistic Inverse Ranking on Uncertain Streams

0

5,000

10,000

15,000

20,000

25,000

30,000

0 1,000 2,000 3,000 4,000

ti
m
e
to

pr
oc
es
s
th
e
fu
ll
st
re
am

[m
s]

database size

EISP
EISP 01

PBR

PBR 01

Figure 13.8: Scalability of the PIR ap-
proaches regarding full processing on the
NBA dataset.
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semantics of a PIR query is to compute, for any given time, the rank of player Q w.r.t. all
NBA players.

First, the scalability of the PIR algorithm was evaluated using all 17 dimensions. It can
be observed from Figure 13.8 that the scalability is very similar to the IIP dataset, despite
of the increased dimensionality. This is further evaluated in Figure 13.9, where the number
of dimensions is scaled. For the approaches that do not utilize the 0-1-optimization, the
runtime appears to be constant in the number of dimensions. This can be explained by the
fact that the dimensionality only affects the computation of the score of an object. The
use of the sum of all dimensions leads to the theoretical expectation that the algorithm
should scale linearly in the number of dimensions, but the impact of this linear computation
can be neglected. It can also be observed that, for PBR-01, the runtime increases for low
dimensionality and then becomes constant for higher dimensionality. This can be explained
by the uncertainty of the individual dimensions: the first dimension represents the number
of games played by a player, which is a variable with a rather low deviation for each player.
Even if a player has a very volatile performance, the number of games he played may be
about the same. Therefore, the one-dimensional dataset has a rather low uncertainty,
and thus, a lower runtime (cf. Subsection 13.5.3). However, a player playing bad in the
first games may be replaced, and, thus, not play the full time, which is covered by the
second dimension that aggregates the number of minutes played in a year and has a higher
deviation. The third dimension has the highest uncertainty, as it describes the number of
points scored by a player in a year. After the third dimension, adding further dimensions
does not significantly increase the total deviation of the sum (i.e., the score) of a player. In
summary, increasing the dimensionality has no significant effect on the runtime, but may
increase the uncertainty of the object, thus, indirectly increasing the runtime.
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13.6 Summary

This chapter presented a general solution to efficiently answering continuous inverse rank-
ing queries on uncertain streams, extending the incremental approach of updating rank
probability distributions presented in Chapter 12. State-of-the-art approaches solving the
probabilistic inverse ranking query problem for static data have not been applicable for
stream data due to the originally quadratic complexity of the Poisson Binomial Recur-
rence. This chapter showed theoretically and experimentally that a linear update cost can
be achieved and, thus, the approach is applicable for stream databases.
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Chapter 14

Hot Item Detection in Uncertain
Data

14.1 Introduction

Beyond the relevance of similarity ranking in probabilistic databases, where efficient solu-
tions were given in Chapters 11 and 12, also data mining tasks are faced with the presence
of uncertainty. An important task is to rate the significance of uncertain objects. Chap-
ter 13 tackled the problem of probabilistic inverse ranking, where the ranking position
w.r.t. a given score function indicated the significance of a particular (uncertain) object
among peers. This chapter will focus on a different semantics to rate the significance of
objects. According to this semantics, an object is considered to be important if it shows
characteristics that are similar to these of a sufficiently high population of other objects in
the database.

The detection of objects which build dense regions with other objects within a vector
space is a foundation of several density-based data mining techniques, in particular density-
based clustering [90, 184], outlier detection and other density-based mining applications
[61, 143, 194]. A (certain) object x for which exists a sufficiently large population of other
objects in a database D that are similar to x is called a hot item. Intuitively, an item that
shares its attributes with many other items could be potentially of interest, as its shows a
typical occurrence of items in the database.

Application areas where the detection of hot items is potentially important exemplarily
include scientific applications, e.g., astrophysics (cf. Figure 14.1(a)), biomedical, socio-
logical and economic applications. In particular, the following applications give a good
motivation for the efficient detection of hot items:

• Detection of “hot” research topics: Given a large database of actual research papers
and articles, the task of this application is to identify those research articles address-
ing problems that might be relevant for a research community. A paper might be
relevant if there exist enough other papers which address a similar problem.

• Online shopping advertising: Online shopping advertising often profits from software
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hot spots

(a) Astrological hot items in terms
of interesting constellations.

hot spots in terms ofhot spots in terms of
drug offenses

(b) Hot item detection for crime defense ap-
plications.

Figure 14.1: Applications for hot item detection.

tools that extract items containing a high number of bids from online auction and
shopping websites, e.g., the Hot Item Finder 1 for eBay2. One can imagine that a
product which is quite similar to a lot of other products that already have a high
number of bids is a potential candidate for also becoming a good selling product. The
detection of such products could be very valuable for online shopping advertising.

• Pre-detection of criminal activities: After a soccer game, one might be interested in
the detection of larger groups of hooligans that should be accompanied by guards
in order to avoid criminal excesses. If we assume that the locations of all hooligans
are monitored, then it would be interesting which of these individuals have a lot
of other hooligans in their immediate vicinity. Another example is the detection of
outstanding crime, e.g., cases of drug abuse in areas with high population of drug
offences as depicted in Figure 14.1(b)3.

The applications mentioned above require special methods supporting the efficient search
in modern databases that have to cope with uncertain or imprecise data. This chapter will
propose the first approach addressing the retrieval of hot items in uncertain domains.

A hot item x has the property that the number of other items (objects) which are in
the proximity of x, i.e., which are similar to x, exceed a given minimum population value.
This chapter will give a general definition of hot items by relaxing the similarity predicate
between the objects.

Definition 14.1 (Hot Item) Given a database D with objects and a minimum population
threshold minItems. Furthermore, given a score function fscore : D × D → R

+
0 , which is

defined on pairs of objects in D, and a similarity predicate φε : R+
0 → {true, false}, where

φε ∈ {< ε,≤ ε,= ε,≥ ε,> ε} and ε ∈ R+
0 is a given scalar. An object x ∈ D is called hot

item, iff there exist at least minItems objects y ∈ D \ {x} which satisfy the predicate φε,

1http://www.hotitemfinder.com
2http://www.ebay.com
3Source: https://www.amethyst.gov.uk/crime_map/crimedrugs.htm

http://www.hotitemfinder.com
http://www.ebay.com
https://www.amethyst.gov.uk/crime_map/crimedrugs.htm
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hot item

not a hot item

(a) Hot items in certain data.

possible
hot item

(b) Hot items in uncertain data.

Figure 14.2: Examples of hot items.

formally

|{y ∈ D \ {x} : φε(fscore(x, y)) = true}| ≥ minItems ⇔ x is a hot item.

The value of the score function fscore reflects the degree of similarity of two objects w.r.t.
the predicate φε, where a small value indicates a high similarity, whereas a high value
indicates high dissimilarity. In particular, two objects x and y are considered to be equal if
fscore(x, y) = 0. For spatial data, this corresponds to the semantics of the distance between
x and y.

In the case of uncertain objects, an exact score cannot be determined, in particular if the
score relates to the object attributes which are assumed to be uncertain (cf. Figure 14.2).
Consequently, uncertain objects lead to uncertain scores, which in turn lead to uncertain
predicate results. Thus, the result of the predicate φε is no longer binary and, instead,
yields a probability value. This probabilistic predicate result can be estimated. Based on
this estimation, it is possible to compute, for each probabilistic object X of an uncertain
database, a probability value which reflects the likelihood that X is a hot item or not.

In the context of this chapter, hot items can be abstracted to objects that satisfy a
given similarity predicate together with a reasonably large set of other items. If the equality
predicate is assumed, i.e., φε (fscore(x, y)) := “fscore(x, y) = 0”, then a hot item x satisfies
the frequent item property, as x is equal to many other items and, thus, occurs frequently
in the database.

The detection of hot items can be efficiently supported by a similarity join query used
in a preprocessing step, in particular the distance-range self-join. Approaches for an effi-
cient join on uncertain data are proposed in [138]. The main advantage of this approach is
that discrete positions in space can efficiently be indexed using traditional spatial access
methods, thus allowing to reduce the computational complexity of complex query types.
The approach that will be proposed in this chapter exploits the similarity join approach
proposed in [138]. However, the cost of the probabilistic detection of hot items is origi-
nally highly CPU-bound, which will be demonstrated in the experimental evaluation. The
advantage of an I/O-cost-efficient approach for the preprocessing step only becomes no-
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ticeable when applying the methods in a way that the CPU cost less outbalance the overall
query cost.

The remainder of this chapter is organized as follows. Section 14.2 will formally in-
troduce the problem of probabilistic identification of hot items in uncertain databases.
The solution for the efficient computation of hot item probabilities can be found in Sec-
tion 14.3. A performance evaluation of the proposed approach will be given in Section 14.4.
Section 14.5 will conclude this chapter.

14.2 Problem Definition

14.2.1 Probabilistic Score

The identification whether an object is a hot item or not requires to know the neighborhood
of the object according to a given (similarity) score function. Assuming that the object
attributes that the score function relates to are uncertain, then the score result is uncertain,
too. Therefore, a probabilistic score function is required which is defined as follows: let
Pφε : D × D → [0, 1] be a probabilistic function defined on a pair of objects that returns
the likelihood that a given score w.r.t. both objects satisfies a given predicate φε. For
example, consider two spatially uncertain objects X and Y according to Definition 9.2 in
Chapter 9 that comply with the x-relation model [25]. The definition of the proximity of
an object is assumed to be given by a spatial distance range, where ε denotes the distance
parameter. Now, defining the score function fscore as the distance dist(X, Y ) between X
and Y and using the predicate φε (dist(X, Y )) := “dist(X, Y ) ≤ ε”, then Pφε(X, Y ) denotes
the probability that Y is within the ε-range of X and vice versa.

14.2.2 Probabilistic Hot Items

Based on the definitions given above, it is possible to determine hot items in uncertain
data in a probabilistic way. However, the problem of dependencies among the uncertain
attributes has to be solved. Though the assumption is made that the attributes of uncertain
objects are independent of each other, it is important to respect the mutual exclusiveness of
the values of an uncertain object attribute. For this reason, there is the need of a definition
of probabilistic hot items based on a conditional probability.

Definition 14.2 (Conditional Probabilistic Hot Item) Given a database D with un-
certain objects and a minimum population threshold minItems. Furthermore, a predicate
φε : R+

0 → {true, false} is assumed, which is defined on a probabilistic score function, where
φε ∈ {< ε,≤ ε,= ε,≥ ε,> ε} and ε ∈ R+

0 is a given scalar. Assuming the uncertain object
model of Definition 9.2 in Chapter 9, the probability that X is a hot item can be computed
as follows:

P (X is a hot item | X = x) =

P (|{Y ∈ D \ {X} : φε(fscore(X, Y )) = true}| ≥ minItems) =
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∑
SminItems ⊆ D \ {X}
|SminItems | ≥ minItems

 ∏
Y ∈SminItems

Pφε(X, Y ) ·
∏

Y ∈D\(SminItems∪{X})

(1− Pφε(X, Y ))

 ,

where SminItems contains at least minItems objects Y ∈ D \ {X} which satisfy the query
predicate φε.

The above definition gives rise to the following general definition of probabilistic hot
items which depends on the used uncertainty model. The probability P (X is a hot item)
of an object X being an (unconditionally) probabilistic hot item can be computed by
aggregating the conditional hot item probabilities over all possible observations x of X
multiplied with the probability that object X is represented by x, i.e.,∑

x∈X

P (X = x) · P (|{Y ∈ D \ {X} : φε(fscore(x, Y )) = true}| ≥ minItems) .

14.3 Hot Item Detection Algorithm

14.3.1 Initialization

Let D be a database with uncertain objects. Each object X ∈ D is examined w.r.t. the
hot item property. This computation can be split into the preprocessing step, which finds
candidates that match the predicate φε, and the query step, which detects the hot items.

14.3.2 Preprocessing Step

First, for each object Y ∈ D \ {X}, it is required to compute the probability that Y
satisfies a given predicate φε ∈ {< ε,≤ ε,= ε,≥ ε,> ε} w.r.t. object X, i.e., it is necessary
to compute Pφε(X, Y ). Obviously, only those objects Y ∈ D′ ⊆ D, for which the predicate
φε is satisfied with a probability greater than 0, i.e., Pφε(X, Y ) > 0, have to be taken into
account in order to compute the probability P (X is a hot item). Depending on the used
predicate φε, φε is usually selective, i.e., only a small number of N ′ objects ∈ D′ ⊆ D
satisfy the predicate φε(X, Y ) with a probability greater than 0. A quick search of those
objects which have to be taken into account can be efficiently supported by means of an
index structure, e.g., the R∗-tree [23]. In particular for the predicate φε := “ ≤ ε”, the
index-supported ε-range join [63] can be used to enhance the search as proposed in [53].
Here, approximate representations like the minimum bounding rectangle (MBR) of an
uncertain object are very appropriate to be used as index key for a filter step following the
multi-step query processing paradigm. A solution for the ε-range join on uncertain data
is proposed in [138], which can be used as a preprocessing step for the proposed algorithm
for the detection of hot items.
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14.3.3 Query Step

In the following, an approach will be introduced which efficiently computes the probability
that an object X ∈ D is a hot item. The proposed algorithm has quadratic runtime
or even needs linear time if minItems is assumed to be constant. The key idea of the
proposed approach is based on the following property. Given a set of j predicates Φ =
{ϕ1, ϕ2, . . . , ϕj} for which the probability P (ϕi) that the predicate ϕi ∈ Φ is true is known,
respectively. Now, the probability Pp,Φ that at least p predicates of Φ are true has to be
computed.

Lemma 14.1 If it is assumed that the predicate ϕi is true, then Pp,Φ is equal to the prob-
ability that at least p − 1 predicates of Φ \ {ϕi} are true. Otherwise, Pp,Φ is equal to the
probability that at least p predicates of Φ \ {ϕi} are true.

The above lemma leads to the following recursion that allows to compute Pp,Φ by extending
the Poisson Binomial Recurrence [147], as already done in the contexts of probabilistic
ranking in Chapters 11 and 12 and of probabilistic inverse ranking in Chapter 13:

Pp,Φ = Pp−1,Φ\{ϕi} · P (ϕi) + Pp,Φ\{ϕi} · (1− P (ϕi)), (14.1)

where
P0,∅ = 1 and Pp,Φ = 0 if p < 0 ∨ p > |Φ|.

Here, this technique is generalized for arbitrary probabilistic predicates. The solution
presented in this chapter extends this method to compute the probability that an uncertain
object X ∈ D is a hot item. Given an uncertain object X ∈ D, the value for minItems and
the set D′ ⊆ D of objects for which the probability that the predicate Pφε (fscore(X, Y ))
(Y ∈ D′) is true is greater than 0, i.e.,

∀Y ∈ D′ : Pφε (fscore(X, Y )) > 0.

The probability P (X is a hot item) is equal to the probability PminItems,D′,X that, for at
least minItems objects Y ∈ D′, the predicates φε(fscore(X, Y )) are true. With Lemma 14.1
and the dynamic-programming technique described in Equation (14.1), it is possible to
compute the probability PminItems,D′,X efficiently by

PminItems,D′,X =


PminItems−1,D′\{Y },X · Pφε (fscore(X, Y )) +
PminItems,D′\{Y },X · (1− Pφε (fscore(X, Y ))) if minItems > 0

1 if minItems = 0.

14.4 Experimental Evaluation

14.4.1 Datasets and Experimental Setup

This section will present the results of an experimental evaluation of the proposed methods
w.r.t. efficiency on artificial and real-world datasets. In the artificial ART dataset, each
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object is represented by a set of positions sampled from an individual five-dimensional
hyperrectangle R with a given size. The observations are uniformly distributed within the
rectangles. The rectangles are arbitrarily distributed within the object space. Each of the
1,500 objects of the two semi-real-world datasets SCI1 and SCI2 consists of a set of m = 10
observations taken from environmental time series, where each observation is described
by several attributes that correspond to different environmental sensor measurements of
one single day4. The attribute set of SCI1 describes temperature, humidity and CO
concentration, whereas SCI2 has a larger set of attributes (temperature, humidity, speed
and direction of wind as well as concentrations of CO, SO2, NO, NO2 and O3). Similarly
to Chapter 12, the probability for each observation xi of an uncertain object X was set to
1
10

, summing up in an overall probability of 1.

The following experiments compare two variants of the approach proposed in this chap-
ter, denoted by DPB and PHID. In contrast to PHID, DPB applies dynamic program-
ming on the complete database, i.e., D′ = D and, thus, does not require the preprocessing
step. The performance of PHID and DPB is compared to that of the brute-force solution
(BF) that simply applies the formulas given in Subsection 14.2.2. Furthermore, they are
compared to the bisection-based method (BSB) which was adapted to the method pro-
posed in Chapter 11. This method is able to significantly reduce the computational cost
than the brute-force method, but is still exponential. The proposed algorithm concentrates
on the evaluation of the CPU cost only. The reason is that the PHID approach is clearly
CPU-bound. The only I/O bottleneck is the initial computation of the likelihood that X is
in the ε-range of y, for each object X ∈ D and each observation y ∈ Y , where Y ∈ D\{X}.
This requires a distance-range self-join of the database, which can be performed by a nested-
block-loop join that requires O(N2) page faults in the worst case. In contrast, the CPU
time for the PHID approach is cubic: each call of the dynamic-programming algorithm
requires O(N ′2) time and has to be performed once for each observation in D′. This yields
computational cost of O(N ′3 ·m), where m is the number of observations per object, but
as m � N ′ can be assumed and, therefore, m can be regarded to be constant, an overall
computational cost of O(N ′3) is required.

14.4.2 Scalability Experiments

The first experiments relate to the scalability of the proposed approaches. The results
depicted in Figure 14.3 demonstrate how the runtime of the competing techniques is in-
fluenced by the database size. Figure 14.3(a) shows that, though the bisection-based ap-
proach has exponential runtime, it outperforms the brute-force approach by several orders
of magnitude. However, the dynamic-programming-based approaches DPB and PHID
are significantly more efficient than their competitors BF and BSB, since the latter have
exponential runtime. Furthermore, the preprocessing step of PHID obviously pays off.
The performance can be further improved by an order of magnitude when applying the

4The environmental time series have been provided by the Bavarian State Office for Environmental
Protection, Augsburg, Germany (http://www.lfu.bayern.de/).

http://www.lfu.bayern.de/
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Figure 14.3: Performance experiments.

dynamic-programming technique only on N ′ objects Y where the probability of the predi-
cate Pφε(fscore(X, Y )) is not 0, such that the query processing step reduces from O(N3) to
O(N ′3) with N ′ � N . The next experiment shows the scalability of PHID for different
values of ε. For a higher value of ε implying a lower selectivity, there are significantly
more candidates w.r.t. the predicate φε, resulting in higher computational requirements.
Here, the average time required to compute the hot item probability for an object was
measured. The results shown in Figure 14.3(b) demonstrate that PHID scales well, even
for very large databases. Figure 14.3(c) demonstrates the performance w.r.t. the minItems
value for different database sizes. Contrary to DPB and PHID, the BSB method is very
affected by the minItems value due to the expensive probability computation. The slight
increase of the DPB and PHID performances can be explained by the reduced number
of hot items with increasing minItems value. Finally, the performance is evaluated based
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on the real-world datasets SCI1 and SCI2 (cf. Figure 14.3(d)). Unlike the exponential
algorithms, DPB and PHID perform a full hot item scan of the database in reasonable
time, even for a relatively large database size.

14.5 Summary

This chapter proposed an efficient approach for the detection of probabilistic hot items, i.e.,
uncertain objects X for which there exists a sufficiently high population of other objects
which are similar to X. In particular, the proposed approach computes, for each object
X in an uncertain database, the probability that X is a hot item. Therefore, methods
were proposed that break down the high computational complexity required to compute
this probability. Theoretical and experimental proofs showed that the proposed approach
can efficiently solve the problem (in a cubic worst-case time complexity in the number of
objects that satisfy the query predicate), while the competing techniques have exponential
runtime.
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Chapter 15

Probabilistic Frequent Itemset
Mining in Uncertain Databases

15.1 Introduction

15.1.1 Uncertainty in the Context of Frequent Itemset Mining

Beyond the detection of hot items, association rule analysis is one of the most important
fields in data mining. It is commonly applied to market-basket databases for the analysis
of consumer purchasing behavior. Such databases consist of a set of transactions, each
containing the items a customer purchased. The most important and computationally
intensive step in the mining process is the extraction of frequent itemsets – sets of items
that occur in at least minSup transactions. It is generally assumed that the items occurring
in a transaction are known for certain. However, this is not always the case – as already
outlined in Part I –, due to several reasons:

• In many applications, the data is inherently noisy, such as data collected by sensors
or in satellite images.

• In privacy protection applications, artificial noise can be added deliberately [210].
Finding patterns despite this noise is a challenging problem.

• By aggregating transactions by customer, it is possible to mine patterns across cus-
tomers instead of transactions. This produces estimated purchase probabilities per
item per customer rather than certain items per transaction.

In such applications, the information captured in transactions is uncertain, since the exis-
tence of an item is associated with a likelihood measure or existential probability. Given
an uncertain transaction database, it is not obvious how to identify whether an item or
itemset is frequent because it cannot be generally said for certain whether an itemset ap-
pears in a transaction. In a traditional (certain) transaction database, the solution is to
simply perform a database scan and count the transactions that include the itemset. This
does not work in an uncertain transaction database.
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Customer Item Prob.

A Game 1.0
A Music 0.2
B Video 0.4
B Music 0.7

ID Transaction

tA (Game, 1.0); (Music, 0.2)
tB (Video, 0.4); (Music, 0.7)

Table 15.1: Example application of an uncertain transaction database.

World TransactionDB Prob.

W1 {Game}; {} 0.144
W2 {Game, Music}; {} 0.036
W3 {Game}; {Video} 0.096
W4 {Game, Music}; {Video} 0.024
W5 {Game}; {Music} 0.336
W6 {Game, Music}; {Music} 0.084
W7 {Game}; {Video, Music} 0.224
W8 {Game, Music}; {Video, Music} 0.056

Table 15.2: Corresponding possible worlds.

Dealing with such databases is a difficult, but interesting problem. While a näıve ap-
proach might transform uncertain items into certain ones by thresholding the probabilities,
this loses useful information and leads to inaccuracies. Existing approaches in the litera-
ture are based on expected support, first introduced in [80]. Chui et. al. [79, 80] take the
uncertainty of items into account by computing the expected support of itemsets. There,
itemsets are considered to be frequent if the expected support exceeds minSup. Effectively,
this approach returns an estimate of whether an object is frequent or not with no indica-
tion of how good this estimate is. Since uncertain transaction databases yield uncertainty
w.r.t. the support of an itemset, the probability distribution of the support and, thus,
information about the confidence of the support of an itemset is very important. This
information, while present in the database, is lost using the expected support approach.

Example 15.1 Consider a department store. To maximize sales, customers can be an-
alyzed to find sets of items that are all purchased by a large group of customers. This
information can be used for advertising directed to this group. For example, by providing
special offers that include all of these items along with new products, the store can en-
courage new purchases. Table 15.1 shows such information. Here, Customer A purchases
games every time he visits the store and music (CDs) 20% of the time. Customer B buys
music in 70% of her visits and videos (DVDs) in 40% of them. The store uses a database
that represents each customer as a single uncertain transaction, also shown in Table 15.1.

The following subsection will introduce the uncertain data model that will be assumed
in this chapter. Then, the problem definition will be given. First, an overview of the
frequently used notations in this chapter is valuable. These are listed in Table 15.3.
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Notation Description

W the set of all possible worlds
W a possible world instance W ∈ W
T an uncertain transaction database
N the cardinality of T
t a transaction t ∈ T
Tj a subset of T , limited to j transactions
I the set of all items
x an item x ∈ I
X an itemset X ⊆ I

P (x ∈ t) the probability that item x occurs in transaction t
S(X,W ) the support of X in world W
Pi(X) the probability that the support of X is i
P≥i(X) the probability that the support of X is at least i
Pi,j(X) the probability that i of the first j transactions contain X
P≥i,j(X) the probability that at least i of the first j transactions contain X

Table 15.3: Table of notations used in this chapter.

15.1.2 Uncertain Data Model

The uncertain data model used in this chapter is based on the Possible Worlds Seman-
tics [145] (cf. Definition 9.1 in Chapter 9) with existential uncertain items. Uncertain items
and uncertain transactions can be defined as follows.

Definition 15.1 (Uncertain Item) An uncertain item is an item x ∈ I whose presence
in a transaction t ∈ T is defined by an existential probability P (x ∈ t) ∈ (0, 1). A certain
item is an item where P (x ∈ t) ∈ {0, 1}. I is the set of all possible items.

Definition 15.2 (Uncertain Transaction Database) An uncertain transaction t is a
transaction that contains uncertain items. A transaction database T containing |T | = N
uncertain transactions is called an uncertain transaction database.

An uncertain transaction t is represented in an uncertain transaction database by the items
x ∈ I associated with an existential probability value P (x ∈ t) ∈ (0, 1]1. An example of an
uncertain transaction database is listed in Tables 15.1 and 15.2, which illustrate the store
example of Example 15.1. To interpret an uncertain transaction database, the possible
worlds semantics is applied. An uncertain transaction database generates possible worlds,
where each world is defined by a fixed set of (certain) transactions. A possible world is
instantiated by generating each transaction t ∈ T according to the occurrence probabilities
P (x ∈ t). Consequently, each probability 0 < P (x ∈ t) < 1 derives two possible worlds per
transaction: one possible world in which x exists in t, and one possible world where x does

1If an item x has an existential probability of 0, it does not appear in the transaction.
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not exist in t. Thus, the number of possible worlds of a database increases exponentially
in both the number of transactions and the number of uncertain items contained in it.

Each possible world W is associated with a probability that this world exists, P (W ).
Table 15.2 shows all possible worlds derived from Table 15.1. Returning to Example 15.1,
in world W6, both customers bought music, Customer B decided against a new video and
Customer A bought a new game.

It is assumed that uncertain transactions are mutually independent. Thus, in the
current scenario, the decision by Customer A has no influence on Customer B. This
assumption is reasonable in real-world applications. Additionally, independence between
items both within the same transaction as well as in different transactions is often assumed
in the literature [6, 79, 80]. This can be justified by the assumption that the items are
observed independently. In this case, the probability of a world W is given by

P (W ) =
∏
t∈T

(∏
x∈t

P (x ∈ t) ·
∏
x/∈t

(1− P (x ∈ t))

)
.

This assumption does not imply that the underlying instantiations of an uncertain trans-
action database will result in uncorrelated items, since the set of items having nonzero
probability in a transaction may be correlated. In Example 15.1, the probability of world
W5 in Table 15.2 is P (Game ∈ tA) · (1−P (Music ∈ tA)) ·P (Music ∈ tB) · (1−P (V ideo ∈
tB)) = 1.0 · 0.8 · 0.7 · 0.6 = 0.336.

In the general case, the occurrence of items may be dependent. For example, the deci-
sion to purchase a new music video DVD may mean that a customer is unlikely to purchase
a music CD by the same artist. Alternatively, some items must be bought together. If
these conditional probabilities are known, they can be used in the proposed methods. For
example, the probability that both a video and music are purchased by customer B is
P ({V ideo,Music} ∈ tB) = P (V ideo ∈ tB) · P (Music ∈ tB | V ideo ∈ tB).

15.1.3 Problem Definition

An itemset is a frequent itemset if it occurs in at least minSup transactions, where minSup
is a user-specified parameter. In uncertain transaction databases, however, the support of
an itemset is uncertain; it is defined by a discrete support probability distribution function
(SPDF ). Therefore, each itemset has a frequentness probability2 – the probability that it is
frequent. This chapter focuses on the problem of efficiently computing this SPDF (which
will be defined in Section 15.2.2) and extracting all probabilistic frequent itemsets.

Definition 15.3 (Probabilistic Frequent Itemset (PFI)) A Probabilistic Frequent
Itemset (PFI) is an itemset with a frequentness probability of at least τ .

The parameter τ is the user-specified minimum confidence in the frequentness of an itemset.

2Frequentness is the rarely used word describing the property of being frequent.
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It is now possible to specify the Probabilistic Frequent Itemset Mining (PFIM ) problem
as follows. Given an uncertain transaction database T , a minimum support scalar minSup
and a frequentness probability threshold τ , the objective is to find all probabilistic frequent
itemsets.

15.1.4 Contributions and Outline

This chapter makes the following contributions:

• A probabilistic framework will be proposed for frequent itemset mining in databases
containing uncertain transactions, based on the possible worlds model (cf. Defini-
tion 9.1 in Chapter 9).

• A dynamic computation method will be presented for computing the probability that
an itemset is frequent, as well as the entire SPDF of the support of an itemset, in
O(N) time, assuming that minSup is a constant. Without this technique, it would
run in exponential time in the number of transactions. Using the approach that will
be proposed in this chapter, the algorithm has the same time complexity as methods
based on the expected support [79, 80, 150]. However, the proposed approach yields
much more effectiveness, since it provides confidences for frequent itemsets.

• An algorithm will be proposed to mine all itemsets that are frequent with a prob-
ability of at least τ . Furthermore, an additional algorithm will be proposed that
incrementally outputs the uncertain itemsets in the order of their frequentness prob-
ability. This ensures that itemsets with the highest probability of being frequent
are output first. This has two additional advantages. First, it makes the approach
free of the parameter τ . Secondly, it solves the top-k itemsets problem in uncertain
databases.

The remainder of this chapter is organized as follows. Section 15.2 will present the proposed
probabilistic support framework. Section 15.3 will show how to compute the frequentness
probability in O(N) time. Section 15.4 will present a probabilistic frequent itemset mining
algorithm. Section 15.5 will present the proposed incremental algorithm. The experiments
will be presented in Section 15.6. Finally, Section 15.7 will conclude this chapter.

15.2 Probabilistic Frequent Itemsets

15.2.1 Expected Support

Previous work addressing the problem of frequent itemset mining in uncertain databases
was based on the expected support [79, 80, 150], which is defined as follows.

Definition 15.4 (Expected Support) Given an uncertain transaction database T , the
expected support E(X) of an itemset X is defined as E(X)=

∑
t∈T P (X ⊆ t).
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ID Transaction

t1 (A, 0.8); (B, 0.2); (D, 0.5); (F , 1.0)
t2 (B, 0.1); (C, 0.7); (D, 1.0); (E, 1.0), (G, 0.1)
t3 (A, 0.5); (D, 0.2); (F , 0.5); (G, 1.0)
t4 (D, 0.8); (E, 0.2); (G, 0.9)
t5 (C, 1.0); (D, 0.5); (F , 0.8); (G, 1.0)
t6 (A, 1.0); (B, 0.2); (C, 0.1)

Table 15.4: Example of a larger uncertain transaction database.

Considering an itemset frequent if its expected support is above minSup has a major
drawback. Uncertain transaction databases naturally involve uncertainty concerning the
support of an itemset. Considering this is important when evaluating whether an itemset
is frequent or not. However, this information is forfeited when using the expected support
approach. In the example shown in Table 15.4, the expected support of the itemset {D} is
E({D}) = 3.0. The fact that {D} occurs for certain in one transaction, namely in t2, and
that there is at least one possible world where {D} occurs in five transactions are totally
ignored when using the expected support in order to evaluate the frequency of an itemset.
Indeed, suppose minSup = 3; is it appropriate to call {D} frequent? And if so, how certain
can we even be that {D} is frequent? By comparison, consider itemset {G}. This also has
an expected support of 3.0, but its presence or absence in the transactions is more certain.
It turns out that the probability that {D} is frequent is 0.7 (cf. Subsection 15.2.3), and the
probability that {G} is frequent is 0.91. While both have the same expected support, we
can be quite confident that {G} is frequent, in contrast to {D}. An expected-support-based
technique does not differentiate between the two.

The confidence with which an itemset is frequent is very important for interpreting
uncertain itemsets. Therefore, concepts are required that allow to evaluate the uncertain
data in a probabilistic way. This section formally introduces the concept of probabilistic
frequent itemsets.

15.2.2 Probabilistic Support

In uncertain transaction databases, the support of an item or itemset cannot be represented
by a unique value, but must rather be represented by a discrete SPDF.

Definition 15.5 (Support Probability) Given an uncertain transaction database T and
the set W of possible worlds (instantiations) of T , the support probability Pi(X) of an
itemset X is the probability that X has the support i. Formally,

Pi(X) =
∑
W∈W

P (W ) · IS(X,W )=i,

where S(X,W ) is the support of itemset X in world W and Iz is an indicator variable that
is 1 if z = true and 0 otherwise.
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(a) SPDF of {D}. (b) Frequentness probabilities of {D}.

Figure 15.1: Probabilistic support of itemset {D} in the uncertain database of Table 15.4.

Intuitively, Pi(X) denotes the probability that the support of X is exactly i . The support
probabilities associated with an itemset X for different support values form the SPDF of
the support of X.

Definition 15.6 (Support Probability Distribution Function (SPDF)) The prob-
abilistic support of an itemset X in an uncertain transaction database T is defined by the
support probabilities of X (Pi(X)) for all possible support values i ∈ {0, . . . , N}. This
probability distribution is called Support Probability Distribution Fuction ( SPDF). The
following statement holds:

∑
0≤i≤N Pi(X) = 1.0.

Returning to the example of Table 15.4, Figure 15.1(a) shows the SPDF of itemset {D}.
The number of possible worlds |W| that need to be considered for the computation of
Pi(X) is extremely large. In fact, there are O(2N · |I|) possible worlds, where |I| denotes
the total number of items. The following Lemma shows how to compute Pi(X) without
materializing all possible worlds.

Lemma 15.1 For an uncertain transaction database T with mutually independent trans-
actions and any 0 ≤ i ≤ N , the support probability Pi(X) can be computed by

Pi(X) =
∑

T ′⊆T,|T ′|=i

(∏
t∈T ′

P (X ⊆ t) ·
∏

t∈T −T ′
(1− P (X ⊆ t))

)
, (15.1)

where the transaction subset T ′ ⊆ T contains exactly i transactions.

Proof. The transaction subset T ′ ⊆ T contains i transactions. The probability of a
world W where all transactions in T ′ contain X and the remaining |T − T ′| transactions
do not contain X is P (W ) =

∏
t∈T ′ P (X ⊆ t) ·

∏
t∈T −T ′(1 − P (X ⊆ t)). The sum of the

probabilities according to all possible worlds satisfying the above conditions corresponds to
the equation given in Definition 15.5. 2
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15.2.3 Frequentness Probability

The definition of the probabilistic support now allows to tackle the actual problem defini-
tion to compute the probability that an itemset is frequent, i.e., the probability that an
itemset occurs in at least minSup transactions.

Definition 15.7 (Frequentness Probability) Let T be an uncertain transaction data-
base and X be an itemset. P≥i(X) denotes the probability that the support of X is at
least i, i.e., P≥i(X) =

∑N
k=i Pk(X). For a given minimum support minSup ∈ {0, . . . , N},

the probability P≥minSup(X), which is called the frequentness probability of X, denotes the
probability that the support of X is at least minSup.

Figure 15.1(b) shows the frequentness probabilities of {D} for all possible minSup values
in the database of Table 15.4. For example, the probability that {D} is frequent when
minSup = 3 is approximately 0.7, while its frequentness probability when minSup = 4 is
approximately 0.3.

The intuition behind P≥minSup(X) is to have a confidence to rate an itemset as frequent.
With this policy, the frequentness of an itemset becomes subjective and the decision about
which candidates shall be reported to the user depends on the application. Hence, the
minimum frequentness probability τ is used as a user-defined parameter. Some applications
may need a low τ , while in other applications only highly confident results shall be reported
(high τ).

In the possible worlds model, it is known that P≥i(X) =
∑

W∈W,S(X,W )≥i P (W ). This

can be computed according to Equation (15.1) by

P≥i(X) =
∑

T ′⊆T ,|T ′|≥i

(∏
t∈T ′

P (X ⊆ t) ·
∏

t∈T −T ′
(1− P (X ⊆ t))

)
. (15.2)

Hence, the frequentness probability can be computed by enumerating all possible worlds
satisfying the minSup condition through the direct application of Equation (15.2). How-
ever, this näıve approach is very inefficient. It is possible to speed this up significantly.

Typically minSup � N and the number of worlds with support i is at most

(
N
i

)
.

Hence, enumeration of all worlds W in which the support of X is greater than minSup
is much more expensive than enumerating those where the support is less than minSup.
Using the following easily verified Corollary, the frequentness probability can be computed
exponentially in minSup � N .

Corollary 15.1

P≥i(X) = 1−
∑

T ′⊆T ,|T ′|<i

(∏
t∈T ′

P (X ⊆ t) ·
∏

t∈T −T ′
(1− P (X ⊆ t))

)
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Despite this improvement, the complexity of the above approach, called Basic in the
experiments, is still exponential w.r.t. the number of transactions. The bisection-based
approach that was proposed in Chapter 11 could achieve a reduction of this complexity,
but this was shown to have still exponential runtime requirements. Therefore, Section 15.3
will describe how this can be reduced to linear time.

15.3 Efficient Computation of Probabilistic Frequent

Itemsets

15.3.1 Efficient Computation of Probabilistic Support

This section will present a dynamic-programming approach which avoids the enumeration
of possible worlds in computing the frequentness probability and the SPDF. Later, in
Subsection 15.3.2, probabilistic filter and pruning strategies will be presented, which further
improve the runtime of the method. The key to the approach is to consider it in terms of
subproblems. First, appropriate definitions are needed:

Definition 15.8 (Dynamic Probability Computation) The probability that i of j trans-
actions contain itemset X is

Pi,j(X) =
∑

T ′⊆Tj ,|T ′|=i

∏
t∈T ′

P (X ⊆ t) ·
∏

t∈Tj−T ′
(1− P (X ⊆ t))

 ,

where Tj = {t1, . . . , tj} ⊆ T is the set of the first j transactions. Similarly, the probability
that at least i of j transactions contain itemset X is

P≥i,j(X) =
∑

T ′⊆Tj ,|T ′|≥i

∏
t∈T ′

P (X ⊆ t) ·
∏

t∈Tj−T ′
(1− P (X ⊆ t))

 .

It holds that P≥i,N(X) = P≥i(X), which denotes the probability that at least i transactions
in the entire database contain X. The key idea now is to split the problem of computing
P≥i,N(X) into smaller problems P≥i,j(X), j < N . This can be achieved as follows. Given a
set of j transactions Tj = {t1, . . . , tj} ⊆ T ; if transaction tj is assumed to contain itemset
X, then P≥i,j(X) is equal to the probability that at least i − 1 transactions of Tj \ {tj}
contain X. Otherwise, P≥i,j(X) is equal to the probability that at least i transactions of
Tj \ {tj} contain X. By splitting the problem in this way, the recursion in Lemma 15.2,
which provides information about these probabilities, can be used to compute P≥i,j(X)
by means of the paradigm of dynamic programming. This scheme, known as Poisson
Binomial Recurrence [147], has already been used in the context of probabilistic ranking in
Chapters 11 and 12, for solving the problem of probabilistic inverse ranking in Chapter 13
and for the context of detecting hot items in Chapter 14. Here, the dynamic-programming
technique is extended for the efficient computation of frequent itemsets in a probabilistic
way.
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Lemma 15.2

P≥i,j(X) = P≥i−1,j−1(X) · P (X ⊆ tj) + P≥i,j−1(X) · (1− Pj(X ⊆ tj)),

where
P≥0,j = 1 ∀j ∈ {0, . . . , N} and P≥i,j = 0 if i < 0 ∨ i > j.

Proof.

P≥i,j(X) =

j∑
k=i

Pk,j(X)
[214]
=

j∑
k=i

Pk−1,j−1(X) · P (X ⊆ tj) +

j∑
k=i

Pk,j−1(X) · (1− P (X ⊆ tj))

[P≥i,j=0 ∀i>j]
= P (X ⊆ tj) ·

j∑
k=i

Pk−1,j−1(X) + (1− P (X ⊆ tj)) ·
j−1∑
k=i

Pk,j−1(X)

= P (X ⊆ tj) ·
j−1∑
k=i−1

Pk,j−1(X) + (1− P (X ⊆ tj)) ·
j−1∑
k=i

Pk,j−1(X)

= P (X ⊆ tj) · P≥i−1,j−1(X) + (1− P (X ⊆ tj)) · P≥i,j−1(X).

2

Using this dynamic-programming scheme, the probability that at least minSup transactions
contain itemset X can be obtained by computing the cells depicted in Figure 15.2. In the
matrix, each cell relates to a probability P≥i,j, with j (the number of transactions) marked
on the x-axis, and i (the support) marked on the y-axis. According to Lemma 15.2, in order
to compute a P≥i,j, the probabilities P≥i−1,j−1 and P≥i,j−1 are required, that is, the cell to
the left and the cell to the lower left of P≥i,j. Knowing that P≥0,0 = 1 and P≥1,0 = 0 by
definition, the first task is to compute P≥1,1. The probability P≥1,j can then be computed
by using the previously computed P≥1,j−1 for all j. P≥1,j can, in turn, be used to compute
P≥2,j. This iteration continues until i reaches minSup, so that finally P≥minSup,N – the
frequentness probability (cf. Definition 15.7) – is obtained.

In each line (i.e., for each i) of the matrix in Figure 15.2, j only runs up to N−minSup+
i. Larger values of j are not required for the computation of P≥minSup,N .

Lemma 15.3 The computation of the frequentness probability P≥minSup requires at most

O(N · minSup)
[minSup�N ]

= O(N) time and at most O(N) space.

Proof. Using the dynamic computation scheme as shown in Figure 15.2, the number of
computations is bounded by the size of the depicted matrix. The matrix contains N ·minSup
cells. Each cell requires an iteration of the dynamic computation (cf. Lemma 15.2) which
is performed in O(1) time. Here, a matrix is used for illustration purpose only. The
computation of each probability P≥i,j(X) only requires information stored in the current line
and the previous line to access the probabilities P≥i−1,j−1(X) and P≥i,j−1(X) . Therefore,
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P minSup,N 1(X)support i P minSup,N(X)
P i,j (X) = 0, i>j

0
0
0
0minSup

P minSup 1,N 1(X)…start computation
with P (X)

|T|N

0
0

0
0
1

1 2 …
1 1 1 1 1 1 1 1 1 11 1 1 1 1 1

with P 1,1(X)

| |
P 0,j(X) = 1

Figure 15.2: Dynamic computation scheme.

only these two lines (of length N) need to be preserved requiring O(N) space. Additionally,
the probabilities P (X ⊆ tj) have to be stored, resulting in a total of O(N) space. 2

If an itemset is certain in some transactions, computation time can be saved. If a
transaction tj ∈ T contains itemset X with a probability of 0, i.e., P (X ⊆ tj) = 0,
transaction tj can be ignored for the dynamic computation because P≥i,j(X) = P≥i,j−1(X)
holds (cf. Lemma 15.2). If |T ′| is less than minSup, then X can be pruned since, by
definition, P≥minSup,T ′ = 0 if minSup > T ′. The dynamic computation scheme can also
omit transactions tj where the item has a probability of 1, because P≥i,j(X) = P≥i−1,j−1(X)
due to P (X ⊆ tj) = 1. Thus, if a transaction tj contains X with a probability of 1, then tj
(i.e., the corresponding column) can be omitted if minSup is reduced by one, to compensate
the missing transaction. The dynamic-programming scheme therefore only has to consider
uncertain items. This trick is called 0-1-optimization in the following.

15.3.2 Probabilistic Filter Strategies

Monotonicity Criteria

To further reduce the computational cost, this section will introduce probabilistic filter
strategies. These reduce the number of probability computations in the dynamic algorithm.
The probabilistic filter strategies exploit the following monotonicity criteria.

Lemma 15.4 If the minimum support i is increased, then the frequentness probability of
an itemset decreases, i.e.,

P≥i,j(X) ≥ P≥i+1,j(X).

Proof. P≥i+1,j(X)
Definition 15.7

= P≥i,j(X)− Pi,j(X) ≤ P≥i,j(X) 2

Intuitively, this result is obvious since the predicate “the support is at least i” implies “the
support is at least i+ 1”.
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|T|N
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P minSup k,N k(X) P minSup,N(X)

pruning criterion:
if P minSup k,N k(X) <
then stop computation

P minSup,N(X)

Figure 15.3: Visualization of the pruning criterion.

Lemma 15.5 The next criterion says that an extension of the uncertain transaction database
leads to an increase of the frequentness probability of an itemset, i.e.,

P≥i,j(X) ≤ P≥i,j+1(X).

Proof. P≥i,j+1(X)
Lemma 15.2

= P≥i−1,j(X) · P (X ⊆ tj+1) + P≥i,j(X) · (1 − P (X ⊆ tj+1))
Lemma 15.4

≥ P≥i,j(X) · P (X ⊆ tj+1) + P≥i,j(X) · (1− P (X ⊆ tj+1)) = P≥i,j(X) 2

The intuition behind this lemma is that one more transaction can increase the support of
an itemset. Putting these results together yields the following lemma.

Lemma 15.6

P≥i,j(X) ≥ P≥i+1,j+1(X)

Proof. P≥i+1,j+1(X)
Lemma 15.2

= P≥i,j(X) · P (X ⊆ tj+1) + P≥i+1,j(X)(1 − P (X ⊆ tj+1))
Lemma15.4

≤ P≥i,j(X) · P (X ⊆ tj+1) + P≥i,j(X)(1− P (X ⊆ tj+1)) = P≥i,j(X) 2

Now, the following part describes how these monotonicity criteria can be exploited to prune
the dynamic computation.

Pruning Criterion

Lemma 15.6 can be used to quickly identify non-frequent itemsets. Figure 15.3 shows the
dynamic-programming scheme for an itemset X to compute P≥minSup,N(X). Lemma 15.6
states that the probabilities P≥minSup−k,N−k(X), k ∈ {1, . . . ,minSup} (highlighted in Fig-
ure 15.3), are conservative upper bounds of P≥minSup,N(X). Thus, if any of the probabilities
P≥minSup−k,N−k(X), k ∈ {1, . . . ,minSup} is lower than the user-specified parameter τ , then
X can be pruned.
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15.4 Probabilistic Frequent Itemset Mining (PFIM)

Now, the techniques required to efficiently identify whether a given itemset X is an uncer-
tain frequent itemset are given. This section will show how to find all uncertain frequent
itemsets in an uncertain transaction database. Traditional frequent itemset mining is based
on support pruning by exploiting the anti-monotonic property of support: S(X) ≤ S(Y )
where S(X) is the support of X and Y ⊆ X. However, as stated in Subsection 15.2.2,
support in uncertain transaction databases is defined by an SPDF and itemsets are mined
according to their frequentness probability. It turns out that the frequentness probability
is anti-monotonic.

Lemma 15.7 ∀Y ⊆ X : P≥minSup(X) ≤ P≥minSup(Y ). In other words, all subsets of an
uncertain frequent itemset are also uncertain frequent itemsets.

Proof.

P≥i(X) =
∑
W∈W

P (W ) · IS(X,W )≥i,

since the probability is defined over all possible worlds. Here, Iz is an indicator variable
that is 1 if z = true and 0 otherwise. In other words, P≥i(X) is the relative number of
worlds in which S(X) ≥ i holds, where each occurrence is weighted by the probability of
the world occurring. Since world W corresponds to a normal transaction database with
no uncertainty, S(X,W ) ≤ S(Y,W ) ∀Y ⊆ X due to the anti-monotonicity of support.
Therefore,

IS(X,W )≥i ≤ IS(Y,W )≥i ∀W ∈ W, ∀Y ⊆ X

and, thus,

P≥i(X) ≤ P≥i(Y ), ∀Y ⊆ X.

2

The contrapositive of Lemma 15.7 can be used to prune the search space for uncertain
frequent itemsets. That is, if an itemset Y is not an uncertain frequent itemset, i.e.,
P≥minSup(Y ) < τ , then all itemsets X ⊇ Y cannot be uncertain frequent itemsets either.

The first proposed algorithm is based on a “marriage” of traditional frequent itemset
mining methods and the proposed uncertain itemset identification algorithms presented
in Section 15.3. In particular, a probabilistic frequent itemset mining approach will be
proposed that is based on the Apriori algorithm [10]. Like Apriori, the proposed method
iteratively generates the uncertain frequent itemsets using a bottom-up strategy. Each
iteration is performed in two steps: a join step for generating new candidates, and a
pruning step for computing the frequentness probabilities and extracting the uncertain
frequent itemsets from the candidates. The pruned candidates are, in turn, used to generate
candidates in the next iteration. Lemma 15.7 will be exploited in the join step to limit the
number of generated candidates and in the pruning step to remove itemsets that need not
be expanded.
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Algorithm 10 Incremental Algorithm

1: result ← []
2: AIQ ← new PriorityQueue() {initialize}
3: for all z ∈ I do
4: AIQ .add([z, P≥minSup(z)])
5: end for
6: while further results required do
7: X ← AIQ .getNext()
8: result .add(X) {add the next uncertain frequent itemset to result}
9: for all z ∈ I \ {X} do

10: AIQ .add([X ∪ {z},P≥minSup(X ∪ {z})])
11: end for
12: end while
13: return result

A drawback of Apriori is that it returns uncertain frequent itemsets in ascending order
of their size. Therefore, the following section will propose an incremental algorithm that
utilizes a priority queue w.r.t. the frequentness probability.

15.5 Incremental PFIM (I-PFIM)

15.5.1 Query Formulation

The probabilistic frequent itemset mining approach that will be presented in this section
allows the user to control the confidence of the results using τ . However, since the number
of results depends on τ , it may prove difficult for a user to correctly specify this parameter
without additional domain knowledge. Therefore, this section shows how to efficiently
solve the following problems, which do not require the specification of τ :

• Top-k uncertain frequent itemsets query: return the k itemsets that have the highest
frequentness probability, where k is specified by the user.

• Incremental ranking query: successively return the itemsets with the highest fre-
quentness probability, one at a time.

15.5.2 The PFIM Algorithm

In the incremental algorithm (cf. Algorithm 10), an Active Itemsets Queue (AIQ) is kept
that is initialized with all one-item sets (line 4). The AIQ is sorted by frequentness
probability in descending order. Without loss of generality, itemsets are represented in
lexicographical order to avoid generating them more than once. In each iteration of the
algorithm, i.e., with each call of the function getNext() on the AIQ , the first itemset X
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in the queue is removed (line 7). X is the next most uncertain frequent itemset, because
all other itemsets in the AIQ have a lower frequentness probability due to the order on
AIQ , and all supersets of X (which have not yet been generated) cannot have a higher
frequentness probability due to Lemma 15.7. After X is added to the result set, it is refined
in a candidate generation step (line 9). This step creates all supersets of X obtained by
adding single items z to the end of X, in such a way that the lexicographical order of
X∪{z} is maintained. These are then added to the AIQ after their respective frequentness
probabilities are computed (cf. Section 15.3). The user can continue calling getNext()
until he or she has all required results. During each call of getNext(), the size of the AIQ
increases by at most |I|. The maximum size of the AIQ is 2|I|, which is no worse than the
space required to sort the output of a non-incremental algorithm.

15.5.3 Top-k Probabilistic Frequent Itemsets Query

However, in many applications, relatively few top uncertain frequent itemsets are required.
For instance, the store in Example 15.1 may want to know the top-100. Top-k highest
frequentness probability queries can be efficiently computed by using Algorithm 10 and
constraining the length of the AIQ to k−h, where h is the number of highest frequentness
probability items already returned. Any itemsets that “fall off” the end can safely be
ignored. The rationale behind this approach is that, for an itemset X at position p in the
AIQ , p− 1 itemsets with a higher frequentness than X exist in the AIQ by construction.
Additionally, any of the h itemsets that have already been returned must have a higher
frequentness probability. Consequently, the top-k algorithm constrains the size of the
initial AIQ to k and reduces its size by one each time a result is reported. The algorithm
terminates once the size of the AIQ reaches 0.

15.6 Experimental Evaluation

15.6.1 Overview

This section will present an evaluation of the proposed algorithm. Subsection 15.6.2 will
give efficiency results obtained using the different methods of computing the probabilistic
support. Then, Subsection 15.6.3 will discuss the performance and utility of the proposed
PFIM algorithms. In all experiments, the runtime was measured in milliseconds (ms).

15.6.2 Evaluation of the Frequentness Probability Computations

The proposed frequentness probability computation methods were evaluated on several
artificial datasets with varying database sizes N and densities. The density of an item
denotes the expected portion of transactions in which an item may be present (i.e., where its
existence probability is in (0, 1]). The probabilities themselves were drawn from a uniform
distribution. The density is directly related to the degree of uncertainty of an item. If not
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Figure 15.4: Runtime evaluation w.r.t. N .

stated otherwise, the settings used a database consisting of 10,000 to 10,000,000 uncertain
transactions with 20 items and a density of 0.5. The frequentness probability threshold τ
was set to 0.9. The following notations are used for the proposed frequentness probability
computation algorithms:

• Basic: basic probability computation (cf. Subsection 15.2.3)

• Dynamic: dynamic probability computation (cf. Subsection 15.3.1)

• Dynamic+P: dynamic probability computation with pruning (cf. Subsection 15.3.2)

• DynamicOpt: dynamic probability computation utilizing 0-1-optimization (cf. Sub-
section 15.3.1)

• DynamicOpt+P: 0-1-optimized dynamic probability computation method with
pruning
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Scalability

Figure 15.4 shows the scalability of the probability computation approaches when the num-
ber of transactions N is varied. The runtime of the Basic approach increases exponentially
in minSup as explained in Subsection 15.2.3, and is therefore not applicable for a N > 50 as
can be seen in Figure 15.4(a). The approaches Dynamic+P and DynamicOpt+P scale
linearly as expected when using a constant minSup value. The U-Apriori approach which
considers the expected support [80] was also evaluated in the first experiment, denoted
as Expected. This approach achieves a constant performance gain compared to Dy-
namic+P and DynamicOpt+P, but shows the same runtime complexity. Nevertheless,
the trade-off between computational cost and result quality is not satisfying (cf. Subsec-
tion 15.2.1).

The 0-1-optimization has an impact on the runtime whenever there is some certainty
in the database. The performance gain of the proposed pruning strategies depends on
the used minSup value. In Figures 15.4(b) to 15.4(d), the scalability of Dynamic and
Dynamic+P is shown for different minSup values expressed as percentages of N . It is
notable that the time complexity of O(N · minSup) becomes O(N2) if minSup is chosen
relative to the database size N . Also, it can be observed that the higher minSup, the
higher the difference between Dynamic and Dynamic+P; a higher minSup causes the
frequentness probability to fall overall, thus, allowing earlier pruning.

Effect of the Density

Next, the effectiveness of the proposed pruning strategy is evaluated w.r.t. the density.
minSup is important here too, so results are reported for different values in Figure 15.5.
The 0-1-optimization works well as long as the density of the data is below minSup, as
in this case, no item is considered to be frequent. With increasing density, the items are
present in more transactions. Thus, the effectiveness of the 0-1-optimization decreases.
The pruning works well for datasets with low density and has no effect on the runtime
for higher densities. The reason is straightforward; the higher the density, the higher
the probability that a given itemset is frequent and, thus, cannot be pruned. Regarding
the effect of minSup; a larger minSup value decreases the probability that itemsets are
frequent and therefore increases the number of computations that can be pruned. The
break-even point between pruning and non-pruning in the experiments is when the density
is approximately twice the minSup value, since, due to the method of creating the datasets,
this corresponds to the expected support. At this value, all itemsets are expected to be
frequent and cannot be pruned. Overall, with reasonable parameter settings, the proposed
pruning strategies achieve a significant speed-up for the identification of uncertain frequent
itemsets.

Effect of minSup

Figure 15.6 shows the influence of minSup on the runtime when using different densities,
assuming N = 10, 000. The runtime of Dynamic directly correlates with the size of the
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Figure 15.5: Runtime evaluation w.r.t. the density.
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Figure 15.7: Effectiveness of AP vs. IP.

dynamic computation matrix (cf. Figure 15.2). A low minSup value leads to few matrix
rows which need to be computed, while a high minSup value leads to a slim row width.
The total number of matrix cells to be computed is minSup · (N − minSup + 1), with a
maximum at minSup = N+1

2
. As long as the minSup value is below the expected support

value, the approach with pruning shows similar characteristics; in this case, almost all
item(set)s are expected to be frequent. However, the speed-up due to the pruning rapidly
increases for minSup above this break-even point.

15.6.3 Evaluation of the PFIM Algorithms

Experiments for the probabilistic frequent itemset mining algorithms were run on a subset
of the real-world dataset accidents 3, denoted by ACC. It consists of 340,184 transactions
and 572 items whose occurrences in transactions were randomized; with a probability of
0.5, each item appearing for certain in a transaction was assigned a value drawn from a
uniform distribution in (0, 1]. Here, AP is used to denote the Apriori-based and IP for
the incremental algorithm (cf. Sections 15.4 and 15.5).

Top-k queries were performed on the first 10,000 transactions of ACC using a minSup =
500 and τ = 0.1. Figure 15.7(a) shows the result of IP. The frequentness probability of
the resulting itemsets is monotonically decreasing. In contrast, AP returns uncertain
frequent itemsets in the classic way; in ascending order of their size, i.e., all itemsets of
size 1 are returned first, etc. While both approaches return probabilistic frequent itemsets,
AP returns an arbitrary frequentness probability order, while IP returns the most relevant
itemsets first.

Next, ranking queries were performed on the first 100,000 itemsets (Figure 15.7(b)). In
this experiment, the aim was to find the h-itemset X with the highest frequency probability

3The accidents dataset [98] was derived from the Frequent Itemset Mining Dataset Repository
(http://fimi.cs.helsinki.fi/data/).

http://fimi.cs.helsinki.fi/data/
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of all h-itemsets, where h ∈ {2, 3, 4}. Measuring the number of itemsets returned before
X, it can be observed that the speed-up factor for ranking (and, thus, for top-k queries) is
several orders of magnitude and increases exponentially in the length of requested itemset
length. The reason is that AP must return all frequent itemsets of length h−1 before pro-
cessing itemsets of length h, while IP quickly ranks itemsets in order of their frequentness
probability, therefore leading to higher-quality results delivered to the user much earlier.

15.7 Summary

This chapter transferred the concepts of efficiently solving the problem of similarity ranking
in probabilistic databases to the problem of probabilistic frequent itemset mining, where
the basic task is to find itemsets in an uncertain transaction database that are (highly)
likely to be frequent. It could be theoretically and experimentally shown that the proposed
dynamic computation technique computes the exact support probability distribution of an
itemset in linear time w.r.t. the number of transactions instead of the exponential runtime
of a non-dynamic computation. Furthermore, it was demonstrated that the proposed
probabilistic pruning strategy allows to prune non-frequent itemsets early, leading to a
large performance gain. In addition, an iterative itemset mining framework was introduced
which reports the most likely frequent itemsets first.
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Chapter 16

Probabilistic Frequent Pattern
Growth for Itemset Mining in
Uncertain Databases

16.1 Introduction

16.1.1 Apriori and FP-Growth

It was shown in Chapter 15 that the use of the expected support [79, 80] has significant
drawbacks, yielding misleading results. The proposed alternative was based on computing
the entire probability distribution of itemsets’ support. This was achieved in the same
runtime as the expected support approach by employing the Poisson Binomial Recurrence
technique (PBR) [147]. Chapter 15 adopted an Apriori-like approach, which is based on
an anti-monotonic Apriori property [10] (i.e., if an itemset X is not frequent, then any
itemset Y ⊇ X is not frequent) and candidate generation. However, it is well-known that
Apriori-like algorithms suffer a number of disadvantages. First, all candidates generated
must fit into the main memory and the number of candidates can become prohibitively
large. Secondly, checking whether a candidate is a subset of a transaction is not trivial.
Finally, the entire database needs to be scanned multiple times. In uncertain databases,
the effective transaction width is typically larger than in a certain transaction database
which in turn can increase the number of candidates generated and the resulting space and
time costs.

In certain transaction databases, the FP-Growth Algorithm [104] has become the estab-
lished alternative. By building an FP-tree – effectively a compressed and highly indexed
structure storing the information in the database –, candidate generation and multiple
database scans can be avoided. However, extending this idea to mining probabilistic fre-
quent patterns in uncertain transaction databases is not trivial. Previous extensions of
FP-Growth to uncertain databases used the expected support approach [6, 117]. This is
much easier, since these approaches ignore the probability distribution of support.

This chapter will introduce the Probabilistic Frequent Pattern Tree, which compresses
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ID Transaction

t1 (A, 1.0); (B, 0.2); (C, 0.5)
t2 (A, 0.1); (D, 1.0)
t3 (A, 1.0); (B, 1.0); (C, 1.0); (D, 0.4)
t4 (A, 1.0); (B, 1.0); (D, 0.5)
t5 (B, 0.1); (C, 1.0)
t6 (C, 0.1); (D, 0.5)
t7 (A, 1.0); (B, 1.0); (C, 1.0)
t8 (A, 0.5); (B, 1.0)

Table 16.1: Uncertain transaction database.

probabilistic databases and allows the efficient extraction of the existental probabilities
required to compute the support probability distribution (SPDF) and the frequentness
probability. Additionally, the ProFPGrowth algorithm will be proposed for mining all
probabilistic frequent itemsets without candidate generation.

The basic terms that will be used in this chapter include the following: an uncertain item
x ∈ I, where I denotes the set of all possible items, is defined according to Definition 15.1
in Chapter 15. According to Definition 15.2, an uncertain transaction t contains uncertain
items; an uncertain transaction database T contains |T | = N uncertain transactions. The
table of notations given in Chapter 15 is also valid in the context of this chapter.

An example of a small uncertain transaction database is given in Table 16.1; this
exemplary database will serve as a running example in this chapter. For each transaction
ti (1 ≤ i ≤ 8), each item x is listed with its probability of existing in ti. Items with an
existential probability of 0 can be neglected. For simplicity, the consideration of other
customers is omitted in this example.

16.1.2 Contributions and Outline

The problem definition, similar to Chapter 15, is the following. Given an uncertain trans-
action database T , a minimum support scalar minSup and a frequentness probability
threshold τ , the objective is to find all probabilistic frequent itemsets. Addressing this
problem, this chapter makes the following contributions:

• The Probabilistic Frequent Pattern Tree (ProFP-tree) will be introduced, which is
the first FP-tree type approach for handling uncertain or probabilistic data. This
tree efficiently stores a probabilistic database and enables an efficient extraction of
itemset occurrence probabilities and database projections.

• The ProFPGrowth algorithm will be proposed, which is based on the ProFPTree and
which mines all itemsets that are frequent with a probability of at least τ without
using expensive candidate generation.
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• Finally, an intuitive and efficient method based on Generating Functions [154] will be
introduced for computing the probability that an itemset is frequent and the entire
SPDF of an itemset in O(N) time, assuming minSup is a constant. Using the pro-
posed approach, the algorithm that computes these probabilities has the same time
complexity as the approach based on the PBR, which was presented in Chapter 15,
but it is much more intuitive and, thus, offers various advantages, as will be shown.

The rest of this chapter is organized as follows. Section 16.2 will present the ProFP-tree;
furthermore, it will be explained how the ProFP-tree is constructed. Additionally, the
concept of conditional ProFPTrees will briefly be introduced. Section 16.3 will describe
how probability information is extracted from a (conditional) ProFP-tree. Section 16.4 will
introduce the Generating Function approach for computing the frequentness probability
and the SPDF in linear time. Section 16.5 will describe how conditional ProFP-trees are
built. Section 16.6 will describe the ProFP-Growth algorithm by drawing together the
previous sections. The experimental evaluation will be presented in Section 16.7. Finally,
Section 16.8 will conclude this chapter.

16.2 Probabilistic Frequent-Pattern Tree (ProFP-tree)

16.2.1 Components

This section will introduce a prefix-tree structure that enables the fast detection of proba-
bilistic frequent itemsets without the costly candidate generation or multiple database scans
that plague Apriori-style algorithms. The proposed structure is based on the Frequent-
Pattern tree (FP-tree [104]). In contrast to the FP-tree, the ProFP-tree has the ability
to compress uncertain transactions. If a dataset contains no uncertainty, it reduces to the
(certain) FP-tree.

Definition 16.1 (ProFP-tree) A Probabilistic Frequent Pattern Tree (ProFP-tree) is
composed of the following three components:

1. Uncertain Item Prefix Tree (UIPT): A root labeled “null” pointing to a set of
prefix trees, each associated with uncertain item sequences. Each node n in a prefix
tree is associated with an (uncertain) item and consists of five fields:

• n.item denotes the item label of the node. Let path(n) be the set of items on the
path from root to n.

• n.count is the number of certain occurrences of path(n) in the database.

• n.uft, denoting “uncertain-from-this”, is a set of transaction IDs (TIDs). A
transaction t is contained in uft if and only if n.item is uncertain in t (0 <
P (n.item ∈ t) < 1) and P (path(n) ⊆ t) > 0.

• n.ufp, denoting “uncertain-from-prefix”, is also a set of TIDs. A transaction t
is contained in ufp if and only if n.item is certain in t (P (n.item ∈ t) = 1) and
0 < P (path(n) ⊆ t) < 1.



196 16 Probabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases

Figure 16.1: The ProFPTree generated from the uncertain
transaction database given in Table 16.1: UIPT and IHT.

(1, B)→ 0.2
(1, C)→ 0.5
(2, A)→ 0.1
(3, D)→ 0.4
(4, D)→ 0.5
(5, B)→ 0.1
(6, C)→ 0.1
(6, D)→ 0.5
(8, A)→ 0.5

Table 16.2: UILT.

• n.node-link links to the next node in the tree with the same item label if there
exists one.

2. Item Header Table (IHT): This table maps all items to the first node in the UIPT.

3. Uncertain Item Lookup Table (UILT): This table maps (TID, item) pairs to
the probability that item appears in tTID for each transaction tTID contained in a uft
of a node n with n.item = item.

The two sets, uft and ufp, are specialized fields required in order to handle the existential
uncertainty of itemsets in transactions associated with path(n). Here, two sets are needed
in order to distinguish where the uncertainty of an itemset (path) comes from. Generally
speaking, the entries in n.uft are used to keep track of existential uncertainties where the
uncertainty is caused by n.item, while the entries in ufp keep track of uncertainties of
itemsets caused by items in path(n)− n.item, but where n.item is certain.

Figure 16.1 illustrates the ProFP-tree of the example database of Table 16.1. Each
node of the UIPT is labeled by the field item. The labels next to the nodes refer to the
node fields count : uft ufp. The dotted lines denote the node-links. The UILT is illustrated
in Table 16.2.

The ProFP-tree has the same advantages as a FP-tree. In particular, it avoids re-
peatedly scanning the database, since the uncertain item information is efficiently stored
in a compact structure. Secondly, multiple transactions sharing identical prefixes can be
merged into one with the number of certain occurrences registered by count and the un-
certain occurrences reflected in the transaction sets uft and ufp.
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16.2.2 ProFP-Tree Construction

The ProFP-tree construction algorithm is illustrated in Algorithm 11. Further illustration
is provided by the example database of Table 16.1 and by the corresponding ProFP-tree in
Figure 16.1. The (uncertain) items in the transactions are assumed to be lexicographically
ordered, which is required for prefix tree construction.

First, the root of the UIPT labeled null is created (line 1). Then, the uncertain
transactions are read, one at a time. While scanning the first transaction t1, the first
branch of the tree can be generated (line 4), leading to the first path composing entries of
the form

(item, count , uft , ufp, node-link).

In the example of Table 16.1, the first branch of the tree is built by the following path:

〈root , (A, 1, [], [], null), (B, 0, [1], [], null), (C, 0, [1], [], null)〉.

The entry “1” in the field uft of the nodes associated with B and C indicates that items
B and C are uncertain in t1.

The pseudocode of the insertion of a transaction t into the tree is further illustrated in
Algorithm 12. The necessary steps for updating the node entries which come along with
the insertion of t are illustrated in the pseudocode of Algorithm 13.

Next, the second transaction t2 is scanned and the tree structure is updated accordingly.
The itemset of transaction t2 shares its prefix with the previous one, therefore we follow
the existing path in the tree (Algorithm 12, line 3) starting at the root. Since the first
item in t2 is existentially uncertain, i.e., it exists in t2 with a probability of 0.1, count
of the first node in the path is not incremented. Instead, the current transaction t2 is
added to uft of this node (Algorithm 13, line 8). The next item in t2 does not match
with the next node on the path and, thus, it is needed to build a new branch leading to
the leaf node n (Algorithm 12, line 5) with the entry (D, 0, [], [2], null). Although item D
is existentially certain in t2, count of n is initialized with 0, because the itemset {A,D}
associated with the path from the root to node n is existentially uncertain in t2, due to
the existential uncertainty of item A. This case in indicated by setting the uncertainty
flag u flag . Hence, transaction t2 is added to the uncertain-from-prefix (ufp) field of n
(Algorithm 13, line 5). The resulting tree is illustrated in Figure 16.2(a).

The next transaction to be scanned is transaction t3. Again, due to matching prefixes,
it is required to follow the already existing path 〈A,B,C〉1 while scanning the (uncertain)
items in t3. The resulting tree is illustrated in Figure 16.2(b). Since the first item A
is existentially certain, count of the first node in the prefix path is incremented by one
(Algorithm 13, line 3). The next items B and C, are registered in the tree in the same
way by incrementing the count fields. The rationale for these count increments is that
the corresponding itemsets are existentially certain in t3. The final item D is processed
by adding a new branch below the node C, leading to a new leaf node with the fields
(D, 0, [3], [], ptr), where the link ptr points to the next node in the tree labeled with item

1For illustration purposes, we use the item fields to address the nodes in a path.
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Algorithm 11 ProFP-tree Construction.

Require: T , minSup
1: create the root (null) of an UIPT T
2: initialize IHT and UILT
3: for all ti ∈ T do
4: insertTransaction(ti, i, T.root , 0)
5: end for
6: return T

Algorithm 12 insertTransaction(t, id, n, u flag)

Require: transaction t, TID id, node n, u flag
1: for all x ∈ t do
2: if n has a child n′ with n′.item = x then
3: updateNodeEntries(t, id, x, n′, u flag) {follow existing path}
4: else
5: create new child n′ of T {create new branch}
6: updateNodeEntries(t, id, x, n′, u flag)
7: if x /∈ IHT then
8: IHT .insert(x, ptr(n′))
9: else

10: insert n′ into the link list associated with x
11: end if
12: if P (x ∈ t) < 1 then
13: UILT.insert(id, x, P (x ∈ t))
14: end if
15: n← n′

16: end if
17: end for

Algorithm 13 updateNodeEntries(t, i, x, n, u flag)

Require: transaction t, TID i, item x, node n, u flag
1: if P (x ∈ t) = 1 then
2: if u flag = 0 then
3: n.count ← n.count + 1
4: else
5: n.ufp.insert(i)
6: end if
7: else
8: n.uft .insert(i)
9: u flag ← 1

10: end if
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(a) After inserting t1 and t2. (b) After inserting t1, t2 and t3.

Figure 16.2: Uncertain item prefix tree after insertion of the first transactions.

label D. Since item D is existentially uncertain in t3, the count field is initialized with
0 and t3 is registered in the uft set. The UIPT is completed by scanning all remaining
transactions in a similar fashion.

Whenever a new item x is inserted into the tree structure, it is also inserted in the IHT
with a pointer to the corresponding node (Algorithm 12, line 8). Otherwise, the link list
associated with x is updated (line 10).

16.2.3 Construction Analysis

The construction of the ProFP-tree requires a single scan of the uncertain transaction
database T . For each processed transaction t ∈ T , it is needed to follow and update or
construct a single path of the tree, of a length equal to the number of items in t. Therefore,
the ProFP-tree is constructed in linear time w.r.t. the size of the database.

Since the ProFP-tree is based on the original FP-tree, it inherits its compactness prop-
erties. In particular, the size of a ProFP-tree is bounded by the overall occurrences of the
(un)certain items in the database and its height is bounded by the maximum number of
(un)certain items in a transaction. For any transaction t in T , there exists exactly one
path in the UIPT starting below the root node. Each item in the transaction database
can create no more than one node in the tree and the height of the tree is bounded by the
number of items in a transaction (path). As with the FP-tree, the compression is obtained
by sharing common prefixes.

The following part will show that the values stored at the nodes do not affect the bound
on the size of the tree. In particular, with the following Lemma, it is possible to bound
the uncertain-from-this (uft) and uncertain-from-prefix (ufp) sets.
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Lemma 16.1 Let T be the UIPT generated from an uncertain transaction database T .
The total space required by all the TID sets (uft and ufp) in all nodes in T is bounded
by the total number of uncertain occurrences (entries in transactions with an existential
probability in (0, 1)) in T .

The rationale for the above lemma is that each occurrence of an uncertain item (with
existential probability in (0, 1)) in the database yields at most one TID entry in one of the
TID sets assigned to a node in the tree. In general, there are three update possibilities for
a node n: if the current item and all prefix items in the current transaction t are certain,
there is no new entry in uft or ufp, as count is incremented. t is registered in n.uft if and
only if n.item is existentially uncertain in t, while t is registered in n.ufp if and only if
n.item is existentially certain in t, but at least one of the prefix items in t is existentially
uncertain. Therefore, each occurrence of an item in T leads to either a count increment or
a new entry in uft or ufp.

Finally, it should be clear that the size of the UILT is bounded by the number of
uncertain (> 0 and < 1) entries in the database.

This section showed that the ProFP-tree inherits the compactness of the original FP-
tree. The following section will show that the information stored in the ProFP-tree suffices
to retrieve all probabilistic information required for probabilistic frequent itemset mining,
thus proving completeness.

16.3 Extracting Certain and Uncertain Support Prob-

abilities

The certain FP-Growth approach easily achieves the extraction of the support of an itemset
X by summing up the support counts along the node links for X in a suitable conditional
FP-tree. The probabilistic case, however, requires the SPDF of X. For that, it is first
needed to determine both the number of certain occurrences as well as the probabilities
0 < P (X ⊆ ti) < 1. Both can be efficiently obtained using the ProFP-tree. To obtain
the certain support of an item x, it is needed to follow the node links from the IHT and
to accumulate both the counts and the number of transactions in which x is uncertain-
from-prefix. The latter is counted, since we are interested in the support of x and by
construction, transactions in ufp are known to be certain for x. To find the set of TIDs in
which x is uncertain, follow the node links and accumulate all transactions that are in the
uncertain-from-this (uft) list. The pseudocode of this process can be found in Algorithm 14.

Example 16.1 By traversing the node list, it is possible to compute the certain support
for item C in the ProFP-tree in Figure 16.1 by 2 + |∅| + 0 + |{t5}| + 0 + |∅| = 3. There
is one transaction (t5) in which C is uncertain-from-prefix. Similarly, it can be observed
that the only transactions in which C is uncertain are t1 and t6. The exact appearance
probabilities in these transactions can be obtained from the UILT. By comparing this to
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Algorithm 14 Extract Probabilities for an Item: extractProbs(x, T )

Require: item x, ProFP-tree T
1: {compute the certain support count and retrieve the uncertain TIDs (UTIDs)}
2: count ← 0, UTIDs ← ∅
3: for all n ∈ T reachable from IHT [x] do
4: count ← count + n.count
5: count ← count + |n.ufp|
6: UTIDs ← UTIDs ∪ n.uft
7: end for
8: return count , UTIDs

Algorithm 15 Extract Probabilities for an Itemset X: computeProbabilities(X, UTIDs)

Require: itemset X, list of TIDs with uncertain support UTIDs
1: {compute the existential probabilities of an itemset X}
2: probs ← []
3: for all t ∈ UTIDs do
4: p← Πx∈XUILT [t,x]
5: probs .add(p)
6: end for
7: return probs

Table 16.1, it can be observed that the tree allows to obtain the correct certain support and
the TIDs where C is uncertain.

To compute the support of an itemset X = {x1, . . . , xk}, the conditional tree for items
x2, . . . , xk is used and the certain support as well as the uncertain TIDs are extracted for
x1. The construction of conditional ProFP-trees will be discussed in Section 16.5.

By using the conditional tree, the above method computes the certain support of X
and retrieves the set of TIDs in which itemset X is uncertain. To compute the probabil-
ities P (X ⊆ t) : 0 < P (X ⊆ t) < 1, the assumption of independence among uncertain
transactions is exploited (cf. Algorithm 15). Thus, it is possible to multiply the probabil-
ities P (x ∈ t) for each x ∈ X. The retrieval of P (x ∈ t) is an O(1) lookup in the UILT.
Moreover, if additional information is given on the dependencies between items, this can
be incorporated here.

The above part described how the certain support and all probabilities P (X ⊆ t) : 0 <
P (X ⊆ t) < 1 can be efficiently extracted from the ProFPTree. Section 16.4 will show
how this information is used to compute the SPDF of X.
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16.4 Efficient Computation of Probabilistic Frequent

Itemsets

This section will present a linear-time technique for computing the probabilistic support of
an itemset using Generating Functions (GFs) as proposed in the context of probabilistic
ranking in [154]. The problem is as follows:

Definition 16.2 Given a set of N mutually independent but not necessarily identically
distributed Bernoulli variables Xi = P (X ⊆ ti) ∈ {0, 1}, 1 ≤ i ≤ N , compute the probability
distribution of the random variable S =

∑N
i=1Xi.

A naive solution would be to count, for each 0 ≤ i ≤ N , all possible worlds in which
exactly i transactions contain itemset X and accumulate the respective probabilities. This
approach, however, shows a complexity of O(2N). In Chapter 15, an approach was proposed
that achieves an O(N) complexity using the PBR. Generally, a runtime complexity of O(N)
is asymptotically optimal, since the computation involves at least O(N) computations,
namely P (X ⊆ ti) ∀1 ≤ i ≤ N . The following subsection proposes a different approach
that, albeit having the same linear asymptotical complexity, has other advantages.

Consider the function

FN(x) =
N∏
i=1

(aix+ bi) .

The coefficient ci of xi in FN(x) is given by

ci =
∑
|β|=i

∏
j:βj=1

aj
∏
j:βj=0

bj,

where β = 〈β1, . . . , βN〉 is a Boolean vector, and |β| denotes the number of 1s in β. Now
consider the following Generating Function:

F j =
∏

t∈{t1,...,tj}

(P (X ⊆ t) · x+ (1− P (X ⊆ t))) =
∑

i∈{0,...,j}

ci · xi

The coefficient ci of xi in the expansion of F j is the probability that X occurs in exactly
i of the first j transactions; that is, the probability that the support of X is i in the first
j transactions, since F j contains at most j + 1 nonzero terms. From

F j = F j−1 · (P (X ⊆ tj) · x+ (1− P (X ⊆ tj))),

it can be observed that F j can be computed in O(j) time, given F j−1. Since the basic
case F0 = 1 · x0 = 1 is given by definition, the conclusion is that FN can be computed
in O(N2) time, if j = N . To reduce the complexity to O(N), the fact can be exploited
that it is only needed to consider the coefficients ci in the Generating Function F j where
i < minSup, since
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• the frequentness probability of X is defined as P (X is frequent)
= P (S(X) ≥ minSup)) = 1− P (S(X) < minSup) = 1−

∑minSup−1
i=0 ci and

• a coefficient ci in F j is independent of any ck in F j−1 where k > i. That means in
particular that the coefficients ck, k ≥ minSup are not required to compute the ci,
i < minSup.

Thus, keeping only the coefficients ci where i < minSup, F j contains at most minSup coeffi-
cients, leading to a total complexity of O(minSup · N) (O(N) as typically
minSup � N , cf. Chapter 15) to compute the frequentness probability of an itemset.

Example 16.2 As an example, consider itemset {A,D} from the running example database
in Table 16.1. Using the ProFP-tree (cf. Figure 16.1), we can efficiently extract, for each
transaction ti, the probability P ({A,D} ∈ ti), where 0 < P ({A,D} ∈ ti) < 1, and also the
number of certain occurrences of {A,D}. Itemset {A,D} certainly occurs in no transaction
and occurs in t2,t3 and t4 with a probability of 0.1, 0.4 and 0.5, respectively. Assuming that
minSup = 2 yields the following:

F1 = F0 · (0.1x+ 0.9) = 0.1x1 + 0.9x0 = 0.1x1 + 0.9

F2 = F1 · (0.4x+ 0.6) = 0.04x2 + 0.42x1 + 0.54x0 ∗= 0.42x1 + 0.54x0 = 0.42x1 + 0.54

F3 = F2 · (0.5 + 0.5x) = 0.21x2 + 0.48x1 + 0.27x0

∗
= 0.48x1 + 0.27x0 = 0.48x1 + 0.27

Thus, P (S({A,D}) = 0) = 0.27 and P (S({A,D}) = 1) = 0.48. This yields
P (S({A,D}) ≥ 2) = 1 − P (S({A,D}) < 2) = 1 − 0.48 − 0.27 = 1 − 0.75 = 0.25.
Thus, {A,D} is not returned as a frequent itemset if τ is greater than 0.25. Equations
marked with ∗ exploit that it is only needed to compute the ci where i < minSup. The
coefficients where i ≥ minSup can, thus, be neglected.

At each iteration of computing F i, it can be checked whether 1−
∑

i<minSup ci ≥ τ . If that
is the case, the computation can be stopped; then, the conclusion is that the respective
itemset (for which F is the Generating Function) is frequent. Intuitively, the reason is that
if an itemset X is already frequent considering the first i transactions only, X will still be
frequent if more transactions are considered. This intuitive pruning criterion corresponds
to the pruning criterion of Lemma 15.5 proposed in Chapter 15 for the approach that
utilizes the PBR.

The Generating Function technique can be seen as a variant of the PBR. However,
using GFs instead of the complicated recursion formula provides a much cleaner view on the
problem. In addition, using GFs, the SPDF can be updated easily if a transaction ti changes
its probability of containing an itemset X. That is, if the probability p = P (X ⊆ ti)
changes to p′, then it is simply possible to obtain the expanded polynomial by dividing
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Algorithm 16 Conditional Tree Construction: buildConditionalProFPTree(TX , w, Nw)

Require: conditional ProFPTree TX , item w, set of nodes Nw where item = w
1: TX∪{w} ← clone of the subtree of TX reachable from the IHT for w
2: for all n ∈ TX∪{w} \ Nw do
3: n.count ← 0, n.uft ← ∅, n.ufp ← ∅
4: end for
5: propagate(TX∪{w}, w)
6: return TX∪{w}

the old SPDF by px+ (1− p) (using polynomial division) to remove the effect of ti and by
multiplying p′x+ (1− p′) to incorporate the new probability of ti containing X. That is,

F̂ i(x) =
F i(x)

(px+ 1− p)
· (p′x+ 1− p′),

where F̂ i is the Generating Function of the SPDF of X in the changed database containing
the modified transaction t′i instead of ti.

16.5 Extracting Conditional ProFP-Trees

This section will describe how conditional ProFP-trees are constructed from other (po-
tentially conditional) ProFP-trees. The method for doing this is more involved than the
analogous operation for the certain FPGrowth algorithm, since it is needed to ensure that
the information capturing the source of the uncertainty remains correct, i.e., whether the
uncertainty at that node comes from the prefix or from the present node. Recall from
Section 16.3 that this is required in order to extract the correct probabilities from the tree.
A conditional ProFP-tree for itemset X (TX) is equivalent to a ProFP-tree built on only
those transactions in which X occurs with a nonzero probability. In order to generate
a conditional ProFP-tree for itemset X ∪ {w} (TX∪{w}) where w occurs lexicographically
prior to any item in X, the starting point is the conditional ProFP-tree for X. When
X = ∅, TX is simply the complete ProFP-tree (cf. Algorithm 16). Here, let Nw be the
set of nodes n with n.item = w (these are obtained by following the links from the IHT ).
Line 3 initializes the needed structures count , uft and ufp of all nodes /∈ Nw.

Then, TX∪{w} is constructed by propagating the values at the nodes n (i.e., n.count ,
n.uft and n.ufp) with n.item = w upwards in the corresponding path and accumulating
these at the nodes n′ closer to the root. The propagation loop for each n ∈ Nw is listed in
Algorithm 17. Having propagated the values for one occurrence of n, n itself is removed
from TX∪{w} (line 7).

The values for every node n′ on the path from n to the root in TX∪{w} are computed
according to Algorithm 18. Let n′old denote the corresponding node in TX . The sets n′old .uft
and n′old .ufp are assumed to be available in n′ and are, respectively, denoted by uftold and
ufpold . Examples are illustrated in Figure 16.3 for three instances of a transaction t. Here,
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Algorithm 17 Value Propagation: propagate(T , w)

Require: ProFPTree T , item w
1: for all n ∈ T accessible from IHT for w do
2: n′ ← n.parent
3: while n′ 6= null do
4: n′.cumulateValues(n)
5: n′ ← n′.parent
6: end while
7: remove n from T
8: end for

Algorithm 18 Cumulation of Values: cumulateValues(n)

Require: node n with conditioning item
1: count ← count + n.count
2: uft ← uft ∪ n.uft
3: for all t ∈ n.ufp do
4: if ufpold .contains(t) then
5: ufp ← ufp ∪ {t}
6: else if uftold .contains(t) then
7: uft ← uft ∪ {t}
8: else
9: count ← count + 1

10: end if
11: end for

the values for every node n′old are shown to the left of the respective node, whereas the
updated values of n′ are shown to the right.

If t is certain, then n′.count = n.count (line 1, e.g. Figure 16.3(a)). If t is uncertain,
then n′.uft = n.uft , since the conditioning is performed on an item that is uncertain in
this transaction and, hence, any node on this path in the final conditional tree will also
be uncertain for this transaction (line 2, e.g. Figure 16.3(b)). If the currently collected
transaction for n is uncertain from the prefix (i.e., t ∈ n.ufp), it is needed to determine
whether the item n′.item caused this uncertainty. If the corresponding node n′old in TX
contained transaction t in its ufp (i.e., n′old .item was not uncertain in t), then t is also in
n′.ufp (line 5, e.g. node labeled with C in Figure 16.3(c)). If n′old .item was uncertain in
t, then n′old in TX would have t listed in its uft , and this must also remain the case for
the conditional tree (line 7, e.g. node labeled with B in Figure 16.3(b)). If t ∈ n′.ufp is
neither in n′old .ufp nor in n′old .uft in TX , then it must be certain for n′.item, and n′.count
is incremented (line 9, e.g. node labeled with A in Figure 16.3(b)). Thus, it is possible
to avoid storing all transactions for which an item is certain. This is a key idea in the
proposed ProFP-tree.
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llnull

A1 [] [] 1 [] []

B1 [] [] 1 [] []

C1 [] [] 1 [] []C

D

1 [] []

1 [] []

1 [] []

D1 [] []

(a)

llnull

A1 [] [] 0 [1] []

B0 [1] [] 0 [1] []

C0 [] [1] 0 [1] []C

D

0 [] [1]

0 [1] []

0 [1] []

D0 [1] []

(b)

llnull

A1 [] [] 1 [] []

B0 [1] [] 0 [1] []

C0 [] [1] 0 [] [1]C

D

0 [] [1]

0 [] [1]

0 [] [1]

D0 [] [1]

(c)

Figure 16.3: Examples for conditioning a ProFP-tree to item D, where (a) t={(A, 1);
(B, 0.5); (C, 1); (D, 1)}, (b) t={(A, 1); (B, 0.5); (C, 1); (D, 0.5)} and (c) t={(A, 1); (B, 0.5);
(C, 1); (D, 1)}

16.6 ProFP-Growth Algorithm

The above part has now described the three fundamental operations of the ProFP-Growth
algorithm: building the ProFPTree (Section 16.2), efficiently extracting the certain support
and uncertain transaction probabilities from it (Section 16.3), computing the frequentness
probability and determining whether an item(set) is a probabilistic frequent itemset (Sec-
tion 16.4) and the construction of the conditional ProFPTrees (Section 16.5). Together
with the fact that probabilistic frequent itemsets possess an anti-monotonicity property
(Lemma 15.7 in Chapter 15), a similar approach to the certain FPGrowth algorithm can
be used to mine all probabilistic frequent itemsets. Since, in principle, this is not substan-
tially different from substituting the corresponding steps in FP-Growth, further details will
be omitted.

16.7 Experimental Evaluation

16.7.1 Datasets and Experimental Setup

This section will present performance experiments using the proposed probabilistic frequent
itemset mining algorithm, in the following denoted as ProFP-Growth, and will compare
the results to the incremental Apriori-based solution (denoted as ProApriori) that was
presented in Chapter 15. It will also be analyzed how various database characteristics
and parameter settings affect the performance of ProFP-Growth. While the runtime
experiments in Chapter 15 evaluated the approaches that compute the frequentness proba-
bilities, the runtime measurements here aim at evaluating the requirements of the complete
algorithms that mine frequent itemsets. It is important to note that the performance of
ProApriori is independent of the chosen strategy (which were denoted by AP and IP in
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Chapter 15). AP returns all frequent items in an Apriori manner (in ascending order
of their size), while IP utilizes a priority queue w.r.t. the frequentness probability. Both
approaches, however, generate the same candidate set of potentially frequent itemsets, but
in a different order.

All experiments were performed on an Intel Xeon with 32 GB of RAM and a 3.0
GHz processor. The major part of the experiments used artificial datasets with a variable
number of transactions and items. Each item x has a probability P1(x) of appearing for
certain in a transaction, and a probability P0(x) of not appearing at all in a transaction.
With a probability of 1 − P0(x) − P1(x), item x is therefore uncertain in a transaction.
In this case, the probability that x exists in a transaction is picked randomly from a
uniform (0, 1) distribution. The sum of the probabilities of uncertainty and certainty,
which is [1− P0(x)− P1(x)] + P1(x) = 1− P0(x), corresponds to the density evaluated in
Chapter 15. Here, the certain and uncertain occurrences will be examined separately (cf.
Subsection 16.7.4).

For the scalability experiments that will be presented in Subsections 16.7.2 and 16.7.3,
the number of items and transactions was scaled, and P0(x) = 0.5 and P1(x) = 0.2 were
chosen for each item (yielding a density of 0.5). We measured the runtime required to mine
all probabilistic frequent itemsets that have a minimum support of 10% of the database
size with a probability of a least τ = 0.9.

16.7.2 Effect of the Number of Transactions

The first experiment scaled the number of transactions and used 20 items (cf. Figure 16.4(a)).
In this setting, ProFP-Growth significantly outperforms ProApriori; the latter suffers
from the overhead of computing the frequentness probability for all generated candidates.
The time required to build the ProFP-tree w.r.t. the number of transactions is illustrated
in Figure 16.4(b). The observed linear runtime indicates a constant time required to insert
a transaction into the tree. This is expected, since the maximum height of the ProFP-tree
is equal to the number of items. Finally, the size of the ProFP-tree was evaluated for this
experiment, shown in Figure 16.4(c). The number of nodes in the ProFP-tree increases and
then plateaus, as the number of transactions increases. This is because new nodes have
to be created for those transactions where a suffix of the transaction is not yet contained
in the tree. As the number of transactions increases, the overlap between transaction pre-
fixes increases, requiring fewer new nodes to be created. It is expected that this overlap
increases faster if the items are correlated. Therefore, the next experiment evaluates the
size of the ProFP-tree on subsets of the real-world dataset accidents2, denoted by ACC. It
consists of 340, 184 transactions and a reduced number of 20 items whose occurrences in
transactions were randomized; with a probability of 0.5, each item appearing for certain
in a transaction was assigned a value drawn from a uniform distribution in (0, 1]. The
number of transactions from ACC was varied up to the first 300, 000. As can be seen in

2The accidents dataset [98] was derived from the Frequent Itemset Mining Dataset Repository (http:
//fimi.cs.helsinki.fi/data/).

http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/
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(a) Total runtime. (b) Tree generation.

(c) Tree size (synthetic). (d) Tree size (ACC ).

Figure 16.4: Scalability w.r.t. the number of transactions.

(a) Runtime. (b) Tree size.

Figure 16.5: Scalability w.r.t. the number of items.
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(a) Varying P1(x) (1− P0(x)− P1(x) fixed). (b) Varying 1− P0(x)− P1(x) (P1(x) fixed).

Figure 16.6: Effect of (un)certainty on the ProFP-tree size and uncertain item lookup
table.

Figure 16.4(d), there is more overlap between transactions, since the growth in the number
of nodes used is slower (compared to Figure 16.4(c)).

16.7.3 Effect of the Number of Items

The next experiment scaled the number of items using 1, 000 transactions. The runtimes for
5 to 100 items can be seen in Figure 16.5(a), which shows the expected exponential runtime
inherent in FIM problems. It can clearly be seen that the ProFP-Growth approach vastly
outperforms ProApriori, since the latter has to cope with an exponentially increasing
number of candidates. Figure 16.5(b) shows the number of nodes used in the ProFP-tree.
Except for very few items, the number of nodes in the tree grows linearly.

16.7.4 Effect of Uncertainty and Certainty

In this experiment, the number of transactions was set to N = 1, 000 and the number of
items was set to 20; the parameters P0(x) and P1(x) were varied. First, the probability that
items are uncertain (1− P0(x)− P1(x)) was fixed at 0.3. P1(x) was successively increased
from 0 (which means that no items exist for certain) to 0.7 (cf. Figure 16.6(a)). It can be
observed that the number of nodes initially increases. This is what would be expected, since
more items existing in T increases the nodes required. However, as the number of certain
items increases, an opposite effect reduces the number of nodes in the tree. This effect is
caused by the increasing overlap of the transactions – in particular, the increased number
and length of shared prefixes. When P1(x) reaches 0.7 (and thus P0(x) = 0), each item is
contained in each transaction with a probability > 0, and, thus, all transactions contain the
same items with nonzero probability. In this case, the ProFP-tree degenerates to a linear
list containing exactly one node for each item. The size of the UILT is constant, since the
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Figure 16.7: Effect of minSup.

expected number of uncertain items is constant at 0.3 · N · |I| = 0.3 · 1, 000 · 20 = 6, 000.
In Figure 16.6(b), P1(x) was fixed at 0.2, and P0(x) was successively decreased from 0.8 to
0, thus increasing the probability that items are uncertain from 0 to 0.8. Here, a similar
pattern can be observed as in Figure 16.6(a) for the number of nodes, for similar reasons.
As expected here, the size of UILT increases as the number of uncertain items increases.

16.7.5 Effect of the Minimum Support

Finally, the minimum support threshold minSup was varied using an artificial database of
10, 000 transactions and 20 items. Figure 16.7 shows the results. For low values of minSup,
both algorithms have a high runtime due to the large number of probabilistic frequent
itemsets. It can be observed that ProFP-Growth significantly outperforms ProApriori
for all settings of minSup. If minSup increases to a level where only few frequent itemsets
are present, the candidate generation overhead of ProApriori is no more significant.
The unsteadiness in the curves can be explained with implementing issues w.r.t. garbage
collection.

16.8 Summary

The problem of Probabilistic Frequent Itemset Mining has two components; efficiently
computing the support probability distribution and the frequentness probability, and effi-
ciently mining all probabilistic frequent itemsets. To solve the first problem in linear time,
this chapter proposed a different method to Chapter 15 based on Generating Functions.
To solve the second problem, this chapter proposed the first probabilistic frequent pattern
tree and pattern growth algorithm, which achieved superior results to the approach of
Chapter 15.
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Part IV

Conclusions
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Chapter 17

Summary

17.1 Preliminaries

This thesis presented methods for similarity processing – i.e., similarity-based querying
and mining – in multi-observation data, which is defined by objects consisting of multiple
occurrences with two key properties: temporal variability and uncertainty. Part I provided
an introduction to Knowledge Discovery in Databases, to common similarity query types
and to the term of multi-observation data.

Part II addressed the key property of temporal variability by considering data objects
with a temporal ordering of multiple observations in the context of time series analysis,
where many applications are faced with the existence of periodic patterns. Chapter 3
motivated the challenges for periodic pattern analysis in time series and the need of query
acceleration techniques, followed by a review of related work in Chapter 4. Section 17.2 will
summarize the research contributions provided in this part. These contributions contain
publications in the field of activity recognition [39, 197, 198], and of the support of the data
mining process by tools [41] (Subsection 17.2.1). Since similarity models for time series
are often based on feature extraction methods, efficient processing of similarity queries can
be supported by indexes structures for potentially high-dimensional feature spaces. The
contributions in this direction [32, 33, 40] will be reviewed in Subsection 17.2.2.

In Part III, the key property of uncertainty was addressed, where existential dependen-
cies among multiple observations of a data object pose diverse challenges. Similarity pro-
cessing techniques coping with the presence of incomplete and uncertain information were
introduced. Chapter 9 motivated the challenges with the presence of uncertain data, fol-
lowed by a review of related work in Chapter 10. Section 17.3 will now summarize the con-
tributions for the research area of probabilistic databases. These contributions contain ap-
proaches for efficient processing of probabilistic ranking and inverse ranking [43, 44, 45, 49],
which will be reviewed in Subsection 17.3.1, as well as for relevant problems in probabilistic
data mining [46, 47, 48], which will be summarized in Subsection 17.3.2.
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17.2 Temporal Variability (Part II)

17.2.1 Time Series Analysis

Part II presented an approach of analyzing periodic time series in the context of activity
recognition. The challenge with working on time series data emerges from the temporal
characteristics of sequentially ordered observations. Therefore, similarity processing on
time series data requires dedicated similarity measures that capture these characteristics.
An introduction to time series analysis and in particular to the need of activity recognition
was given in Chapter 3, followed by a review of related work in the area of time series
similarity and activity recognition in Chapter 4.

Chapter 5 presented the time series analysis framework Knowing [41]. Knowing allows a
fast integration of data mining techniques into the development process, so that information
and data can be managed and processed more effectively. The application scenario of
activity recognition utilizes the integration of Knowing for medical monitoring purposes.

Chapter 6 [39] provided an effective solution for activity recognition, which has been
implemented and evaluated by the use of the Knowing framework. The approach emerged
from the application scenario of [197, 198] and processes periodic time series that are col-
lected from accelerometers. The proposed solution extends existing methods by integrating
additional processing steps, such as a reconstruction of the data peaks and a reclassifica-
tion step as well as a utilization of suitable features to improve the classification results.
The experimental part showed an improved recognition quality in comparison with existing
work.

17.2.2 Indexing of High-Dimensional Feature Spaces

The similarity model of the activity recognition approach provided in Chapter 6 is based
on feature extraction methods and classification. Thus, efficient processing of similarity
queries in the context of similarity-based classification can be supported by indexing solu-
tions for potentially high-dimensional spaces.

Chapter 7 [40] addressed the variant of indexing the full-dimensional space for k-nearest
neighbor queries and extended a prior technique for high-dimensional feature spaces based
on vertically decomposed data. The proposed techniques support the vertical decompo-
sition and a better approximation of vectors in the high-dimensional feature space, while
they do not depend on a particular distribution of the data. Combining the techniques
of the partitioning the data space and tightening the distance bounds using minimum
bounding rectangles, the resulting approach achieves superior performance to prior work.

In some cases, only subsets of attributes chosen at query time may be relevant for
the similarity of feature vectors. Thus, finding similar objects in the high-dimensional
space can be reduced to subspaces at query time. To address this problem, Chapter 8 [32,
33] proposed and studied index-based solutions for supporting k-nearest neighbor queries
queries in arbitrary subspaces of a multidimensional feature space. Therefore, two different
approaches were studied. One of the main problems this chapter addressed was how to
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schedule the available information from the various dimensions in order to obtain good
distance approximations of the objects for an early pruning of candidates. The evaluation
showed that the proposed solutions perform superior to the competitors.

17.3 Uncertainty (Part III)

17.3.1 Probabilistic Similarity Ranking

In Part III, efficient solutions for querying and mining uncertain objects in probabilistic
databases were proposed and studied. In particular, the problem of probabilistic similarity
ranking, including the variant of probabilistic inverse ranking, as well as two different
mining tasks for uncertain data could be enhanced by extending a technique of dynamic
programming.

Chapter 11 [45, 49] provided a variety of semantics to compute an unambiguous re-
sult for the problem of similarity ranking in spatially uncertain databases. Furthermore,
several methods were introduced within a framework that break down the high computa-
tional complexity required to compute the rank probability distribution, i.e., the probabil-
ity of an uncertain object to appear on different ranking positions w.r.t. the distance to a
query object. Although the first (divide-and-conquer-based) approach achieves a significant
speed-up compared to the näıve solution incorporating each possible database instance, its
runtime is still exponential in the database size. Utilizing a dynamic-programming tech-
nique called Poisson Binomial Recurrence, this complexity could be reduced to a quadratic
runtime.

The solution proposed in Chapter 12 [43] achieved a significant improvement of the
runtime complexity of computing the rank probability distribution, overall yielding a linear
complexity in the database size under specific assumptions. The concepts of incrementally
computing the probabilities were theoretically and empirically proved to be superior to
all existing approaches, as an improved variant of the Poisson Binomial Recurrence was
introduced.

Chapter 13 [44] presented a solution to efficiently answering continuous inverse ranking
queries on uncertain streams, further extending the technique of dynamic programming pre-
sented in Chapter 12. State-of-the-art approaches solving the probabilistic inverse ranking
query problem for static data have not been applicable for stream data due to the originally
quadratic complexity of the Poisson Binomial Recurrence. Chapter 13 theoretically and
experimentally showed that a linear cost for probability updates can be achieved, which
makes the approach applicable for uncertain stream databases.

17.3.2 Probabilistic Data Mining

In addition to the solutions for probabilistic similarity ranking, two mining problems were
tackled in the context of uncertain data, further extending the dynamic-programming
approach.
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Chapter 14 [48] proposed an efficient approach for the detection of probabilistic hot
items, i.e., objects for which there exists a sufficiently high population of other objects
which are similar to this object. In particular, the proposed approach computes, for each
object in an uncertain database, the probability to be a hot item. Therefore, methods
were proposed that break down the high computational complexity required to compute
this probability. Theoretical and experimental proofs showed that the proposed approach
can efficiently solve the problem in polynomial time, while the competing techniques have
exponential runtime.

Chapter 15 [46] transferred the concepts of efficiently solving the problem of similarity
ranking in probabilistic databases to the problem of probabilistic frequent itemset min-
ing, where the basic task is to find itemsets in an uncertain transaction database that are
(highly) likely to be frequent. It could be theoretically and experimentally shown that the
proposed dynamic computation technique computes the exact support probability distribu-
tion of an itemset in linear time w.r.t. the number of transactions instead of the exponential
runtime of a non-dynamic computation. Furthermore, it was demonstrated that the pro-
posed probabilistic pruning strategy allows to prune non-frequent itemsets early, leading
to a large performance gain. In addition, an iterative itemset mining framework was in-
troduced which reports the most likely frequent itemsets first. Finally, Chapter 16 [47]
solved the problem of probabilistic frequent itemset mining without the expensive step of
generating candidates. Therefore, the first probabilistic frequent pattern tree and pattern
growth algorithm were introduced that are based on the full probabilistic information.
To compute the support probability distribution in linear time, Chapter 16 proposed a
different method to Chapter 15 based on the intuitive Generating Functions.
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Chapter 18

Future Directions

18.1 Temporal Variability (Part II)

18.1.1 Time Series Analysis

Part II introduced an approach of similarity processing on time series motivated by the
application scenario of activity recognition. This solution provides various potentials for
further examination and analysis.

Future work with the Knowing framework, which was presented in Chapter 5, includes
the integration of more well-known data mining frameworks and the extension of the data
mining GUI for faster testing of machine learning techniques.

While the effectiveness of the solution presented in Chapter 6 was the main focus and
could be proved in the experiments, the efficiency of the approach is still an open issue for
future work. Commonly used acceleration techniques including dimensionality reduction
and feature transformation were performed in order to reduce the computational effort
of the classification step. Overall, suggesting a cost model for each step of the activity
recognition process would be very valuable, as it is planned to incorporate the algorithm
in the firmware on the accelerometer provided by the Sendsor GmbH. This should in par-
ticular include a trade-off evaluation regarding the classification accuracy and the required
runtime of the feature selection step, which is currently performed via forward-backward
search, as well as for the peak reconstruction and the reclassification step. The current
experiments provided in Chapter 6 comprise five activity classes (walking, running, cycling,
in-line skating and elliptical trainer). An important goal here is to evaluate additional ac-
tivity classes like, for example, swimming or climbing stairs. Also, the evaluation then has
to be performed on larger datasets. In addition, future work could include a hierarchical
classification of activities w.r.t. activity intensities, as a user may, for example, want to
distinguish between slow, medium and fast walking. For this purpose, the evaluated activ-
ity classes would be divided into several subclasses, e.g., a low, medium and high intensity
of walking can be defined according an ordinal scale by slow, moderate or fast velocity. A
definition of intensity in the context of activity analysis is given in [11], where the concrete
value of the intensity is based on the Metabolic Expenditure of Task (MET). In order to
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simplify the process of analyzing the intensity, accelerometers provide an acceptably rep-
resentative basis for measuring the intensity of activities [59]. An objective definition of
intensity in the context of physical activity is, in general, bound to several parameters,
such as body mass [69]. In order to exploit useful intensity information from accelerometer
data only, a parameter-free solution could be a meaningful goal.

18.1.2 Indexing of High-Dimensional Feature Spaces

The potentials for the indexing approaches of high-dimensional feature spaces will be sug-
gested in the following.

For future work of the BeyOND approach presented in Chapter 7, a reasonable plan is to
further evaluate the trade-off between split level (i.e., storage overhead) and pruning power.
For one more split, the memory consumption increases exponentially in the dimensionality.
If the gained pruning power does not increase by a particular threshold, a higher split level
would not be necessary. Regarding the use of minimum bounding rectangles, more accurate
information about potential pruning power gain could be obtained by considering the vector
distribution within a subcube or a minimum volume decrease. The limitation threshold of
minimum bounding rectangles is also an issue for further experiments. Furthermore, the
pruning power is expected to have a direct impact on the processing time. Nevertheless,
a comparison of the examined approaches in terms of efficiency could also be valuable.
Also, the impact of the parameter k that determines the number of nearest neighbors
could be examined. Finally, a suitable resolve order of the dimensions depending on the
query vector could be examined. The prior approach [85] showed that, for particular data
characteristics, additional assumptions on the resolve order could increase the pruning
power significantly. Nevertheless, this would introduce another restriction and, thus, the
solution could no more be generalized to any type of data. Another aim is at finding
solutions to abandon the restriction that the minimum and maximum values of the feature
vectors need to be known in advance.

As the prior approach [85] also provides methods for weighted queries and, thus, solves
the problem for similarity search in subspaces implicitly, BeyOND could also be adapted in
this direction. An additional evaluation could then be augmented by additional comparison
partners that solve k-nearest neighbor queries in subspaces, e.g., the Partial VA-file [136]
and the approaches that were presented in Chapter 8 [32, 33]. For the latter, a more
extensive evaluation is also a potential for future work. In particular for the bottom-
up approach, further heuristics could be studied that are based on the obtained results.
Regarding the performance of both presented solutions, a trade-off approach between the
bottom-up approach and the top-down approach could be investigated, since the bottom-
up approach supports the lower-dimensional case, whereas the top-down approach performs
better with higher dimensionality. Moreover, future work could include to perform a broad
evaluation to study the impact of different data characteristics on all existing approaches
for subspace similarity search.
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18.1.3 Further Remarks

As already stated above, an analysis and an evaluation of the runtime requirements for
the process of activity recognition is an important part of potential future work. Here,
the impact of acceleration techniques should also be examined. The most effective used
classifier, which was Näıve Bayes, proved to achieve a recognition result of high quality.
Nevertheless, the need for a more efficient solution should take further methods into account
that have not been considered so far. The current 15-dimensional feature vectors that
represented the activity segments in Chapter 6 may be high-dimensional enough in order
to accelerate queries by the approach of Chapter 7. The suggested indexing methods for
subspace queries of Chapter 8 also promise to provide good quality and can apply if a user
wants to examine arbitrary combinations of features. Using similarity-based classification
methods, such as k-nearest neighbor classification, the activity recognition process could
be accelerated significantly.

Classical segmentation and indexing techniques for time series, such as iSAX [65, 189]
and the TS-tree [16], have not been examined in this work. In order to provide alternative
solutions for activity recognition, an application of these techniques could be useful. How-
ever, since the current solution, which is working with a traditional segmentation scheme
and a feature-based representation of the segments, provides excellent results, it has to be
examined whether completely different approaches apply in this case.

18.2 Uncertainty (Part III)

18.2.1 Probabilistic Similarity Ranking

Part III investigated efficient solutions for probabilistic ranking approaches in uncertain
databases. The potentials for further research in this direction are the following.

The problem of probabilistic similarity ranking has been extensively studied in Part III.
As the solution provided in Chapter 11 could be improved by follow-up work, the logical
consequence is to suggest approaches for future work based on Chapter 12. Regarding the
dynamic-programming approach, this method is currently only applicable to the discrete
uncertainty model based on the ULDB model. Possible future work could include an
extension of the concepts to further uncertainty models. For continuous uncertainty, this
has been addressed by the solution provided in [34]. Further work has recently shown that
the approach can also be applied to semantically different starting positions in uncertain
data, e.g., in fuzzy object databases [38].

The inverse ranking framework proposed in Chapter 13 can be easily adapted to tackle
further variants of inverse ranking queries on streams; for example the probabilistic thresh-
old inverse ranking query, that returns exactly those ranking positions for which the prob-
ability that the query object is on this rank at a particular time is greater than a user-
specified parameter τ , as proposed in [158]. A further aspect of future work of is to develop
an approximate approach, which efficiently copes with continuous data models. The idea
is to derive, for each database object, a lower and an upper bound of the probability that
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this object has a higher score than the query object. Using these approximations, it is
possible to apply the concept of Uncertain Generating Functions [34] in order to obtain
an (initial) approximated result of a probabilistic inverse ranking query, which guarantees
that the true result is bounded correctly. The problem at hand is to update the Uncertain
Generating Functions efficiently when an update is fetched from the stream.

18.2.2 Probabilistic Data Mining

Finally, future work in the context of the presented probabilistic mining solutions comprises
the following tasks.

The detection of hot items, which was performed in Chapter 14, is a preliminary stage
to probabilistic variants of density-based clustering. The approach is able to compute the
probability of an uncertain object of being a probabilistic core point. However, further
relevant steps of the clustering task, such as the computation of density-reachability and
density-connectivity of objects, have not been addressed here. Thus, potential for future
work lies in the integration of the probabilistic hot item detection approach in proba-
bilistic variants of clustering methods, in particular DBSCAN [90] and OPTICS [14]. For
both problems, there exist respective solutions with FDBSCAN [140] and FOPTICS [141].
However, the models used to determine the probabilistic density neglect the mutual exclu-
siveness of observations. The missing conditional probability in the mentioned approaches
leads to approximate results only, which disqualifies these approaches from the accurate
detection of hot items. The hot item problem has been applied to static data in this work.
Similarly to the problem of continuous probabilistic inverse ranking, one could imagine
that objects change their uncertain positions over time. Then, the incremental variant of
the used dynamic-programming technique can be utilized, as proposed in Chapter 12 in
order to efficiently cope with position updates.

At the current state of Chapters 15 and 16, the minimum support is chosen to be
a small constant. With this assumption, a linear runtime complexity in the number of
transactions can be achieved. With the introduction of an approximate approach, a solution
of linear complexity can even be provided if the minimum support is chosen relative to the
database size. A solution which approximates the support probability distribution based on
standard parametric distributions like Gaussian or Poisson was recently published in in [31],
which provides a trade-off solution between approximation quality and efficiency. Possible
future plans with this model-based approach are to use it for other problems of mining
uncertain data, e.g., for clustering. Also, for probabilistic frequent itemset mining, different
approximation techniques, such as sampling, are planned to be examined. Moreover, here
as well, an update of frequentness probabilities of items could be regarded by considering
the problem of probabilistic frequent itemset mining for streams. Here, transaction updates
cause items to gain or lose the state of being frequent. It could be examined how the
techniques applied in this work, namely the Poisson Binomial Recurrence or the Generating
Functions, support efficient updates in a continuous environment, evaluating them against
existing approaches in this field.
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18.3 Combining the Key Properties

While both Part II and Part III focused on the consideration of one key property of multi-
observation data, the general case with both key properties, a combination of these two
properties – temporal variability and uncertainty – has been neglected in this thesis. A
very essential conclusion that has to be made here is that, in general, the two key properties
coexist and, thus, do not exclude each other. There are various research directions dealing
with this coexistence. Publications in the field of time series analysis often also include
uncertain time series, for example [5]. In this work, however, the observations at different
points in time are assumed to be independent, which is not a realistic assumption.

Working not only with observation values, but, for example, with observed spatial
locations, as also considered in some contributions of Part III, leads to the work with
uncertain trajectories – finally generalized as uncertain spatio-temporal data. Recent work
in this direction includes [30, 88, 89], where most common query types have been addressed
under the incorporation of statistical models.

Thus, a final goal for future work of this thesis is to examine the way of correctly
integrating uncertainty under consideration of dependencies into temporal evolutions of
multi-observation data as defined in the first chapter. With this, both key properties can
be considered at the same time; an exemplary question here may be “Could uncertain
similarity ranking be a valuable task for activity recognition?”. The goal is, finally, still to
find appropriate solutions of answering such queries with high quality and efficiency.
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18 Cumulation of Values: cumulateValues(n) . . . . . . . . . . . . . . . . . . 205
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bilistic similarity ranking in uncertain databases. IEEE Transactions on Knowledge
and Data Engineering, 22(9):1234–1246, 2010.

[44] T. Bernecker, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Continuous in-
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spatio-temporal data. In Proceedings of the 21st ACM Conference on Information
and Knowledge Management (CIKM), Maui, HI, pages 395–404, 2012.

[89] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Querying uncertain
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[135] H.-P. Kriegel, P. Kröger, P. Kunath, and M. Renz. Generalizing the optimality of
multi-step k-nearest neighbor query processing. In Proceedings of the 10th Interna-
tional Symposium on Spatial and Temporal Databases (SSTD), Boston, MA, pages
75–92, 2007.
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Mißbichler, Christian Mönnig, Henri Palleis, Sascha Petrak, Stephan Picker, Benjamin Sauer, Andreas

Schneider, Nepomuk Seiler, Alexander Stautner, Sebastian Steuer, Sarah Tausch, Alice Thudt, Yuliya

Tsukanava, Christian Walonka, Larissa Wiesner, Fabian Daniel Winter, Guilin Yang, Stefan Zankl, Xuan

Zheng, Philipp Zormeier, Irina Zueva



253

About the Author

Thomas Bernecker was born on December 14, 1980 in München, Germany. He finished his
secondary education at the Wilhelm-Hausenstein-Gymnasium in München in 2000. In the
following year, he fulfilled his alternative civilian service at the Blindeninstitutsstiftung in
München.

In 2001, he began studying computer science and applied statistics at the Ludwig-Maximili-
ans-Universität (LMU) München. During his studies, he was working at
O2/Telefónica in München as a working student. In 2007, he successfully finished his
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