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ABSTRACT 
 
 

 With the growing national dissemination of the electronic health record (EHR), 

there are expectations that the public will benefit from biomedical research and discovery 

enabled by electronic health data.  Clinical data are needed for many diseases and 

conditions to meet the demands of rapidly advancing genomic and proteomic research.  

Many biomedical research advancements require rapid access to clinical data as well as 

broad population coverage.  A fundamental issue in the secondary use of clinical data for 

scientific research is the identification of study cohorts of individuals with a disease or 

medical condition of interest.  The problem addressed in this work is the need for 

generalized, efficient methods to identify cohorts in the EHR for use in biomedical 

research. 

 To approach this problem, an associative classification framework was designed 

with the goal of accurate and rapid identification of cases for biomedical research:  

 (1) a set of exemplars for a given medical condition are presented to the   

 framework,  

 (2) a predictive rule set comprised of EHR attributes is generated by the   

 framework, and  

 (3) the rule set is applied to the EHR to identify additional patients that may have  

 the specified condition.   



 

 iv

Based on this functionality, the approach was termed the ‘cohort amplification’ 

framework. 

 The development and evaluation of the cohort amplification framework are the 

subject of this dissertation.  An overview of the framework design is presented.  

Improvements to some standard associative classification methods are described and 

validated.  A qualitative evaluation of predictive rules to identify diabetes cases and a 

study of the accuracy of identification of asthma cases in the EHR using framework-

generated prediction rules are reported.  The framework demonstrated accurate and 

reliable rules to identify diabetes and asthma cases in the EHR and contributed to 

methods for identification of biomedical research cohorts.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Capture everything, we’ll sort it out later.” 
 

T. Allan Pryor, Ph.D. (1937 - 2009) 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

 Although domain experts are vital to the oversight of any disease case 

identification algorithm, the translation of the clinical and health care encounter 

characteristics of a phenotype to EHR data specifications can be improved.  The cohort 

amplification framework may leverage the expert’s time by providing information on the 

EHR data which best distinguishes disease exemplars. 

 
Problem Statement 

 The problem addressed in this work is the need for generalized and computable 

methods to identify cohorts in the EHR for biomedical research.  With the growing 

national dissemination of the electronic health record (EHR), there are expectations for 

enhanced secondary use of the EHR for purposes of biomedical research.1, 2  Such 

functionality was explicitly defined as an objective in the developing national standards 

for meaningful use of the EHR.3, 4  Clinical data are needed for many different diseases 

and conditions to meet the demands of rapidly advancing genomic and proteomic 

research.5, 6  Other biomedical research to improve the general health status requires 

expeditious access to clinical data as well as general coverage of the population.7, 8  To 

use the electronic health record data for research purposes, the first step is often the 

identification of study cohorts of individuals with a disease or medical condition of 



 

 

2

interest.  Ideally, generalized criteria may be established for identification of cohorts in 

the EMR.   This enables researchers to design studies that might be applied across the 

population for broad attribution of results, pooling of subjects and equitable access.  The 

efficiency of biomedical research is improved when cohort identification logic can be 

shared and can be applied directly to the EHR. 

 BIOINFOMED, a study group funded by the European Commission (EC) 

addressed issues and challenges in correlating essential genotype information with 

expressed phenotype information.9,10  They reported that genomic and proteomic data 

must be integrated with electronic health record data, which can be used as expressed 

phenotype information.  Further, they reported that to obtain new knowledge, the 

phenotypes, genotypes and proteotypes of many patients from all over the world must be 

combined.  To make this possible, descriptions of the phenotypes must be standardized.  

They proposed structured clinician entry or computerized interpretation of EHR content, 

including free text, or a combination of methods. 

 
Current Solutions 

 Validated automated logic to identify disease-based cohorts in the medical record 

in the U.S. commonly uses International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9-CM) codes.  ICD morbidity codes have been recorded in 

hospital records in the U.S. since 1944.  They were originally collected for the systematic 

analysis of causes of morbidity and mortality.  This followed a long tradition of 

international disease classification efforts begun before 1785, now formalized under the 

World Health Organization as the International Classification of Diseases (ICD).11  ICD 

is intended as a classification for clinical, general epidemiological and many health 
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management purposes, while explicitly not intended for financial applications.12  In 1983, 

ICD-9-CM codes began to be used to determine reimbursement from healthcare payors in 

the inpatient setting in the United States.  Consequently, ICD codes in the U.S. were 

expanded and detail added in the International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9-CM).13  Subsequently, ICD-9-CM codes were used in the 

ambulatory setting to qualify the CPT procedure codes14 submitted for reimbursement.   

 ICD-9-CM based algorithms to identify disease-based cohorts have variable 

accuracy rates.15-21  Federal Health Insurance Portability and Accountability Act 

(HIPAA) guidelines for diagnostic coding have become complex, change several times 

per year, and require training for correct use.22  In addition, the ICD-9-CM codes in the 

EHR are typically bound to billing processes.  This leads to consistent recommendations 

that the use of ICD-9-CM codes to identify cohorts for biomedical research should be 

validated.17, 23-25   

 There is a general expectation that automated algorithms to identify disease-based 

cohorts can be improved by using additional EHR data rather than just ICD-9-CM codes 

alone.  Logic to identify cohorts from clinical and administrative data in the EHR are 

usually defined by domain experts and analysts based upon specification and analysis of 

attributes in the EHR and/or billing claims data for particular diseases.26-29  Such 

processes are often time-consuming for the experts.  Such a process to identify phenotype 

cohorts from the EHR was described by Starren:30 

 
 Define Phenotype → Translate Definition to Data →  Analyze Data → 

  →  Identify Subjects →  Validate Algorithm → [repeat]  
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The expert’s role shifts to refinement of the machine-generated knowledge instead of 

specifying and analyzing data definitions: 

 
 Define Phenotype Exemplars 

 → Develop Rules Predictive of Exemplars of the Phenotype from EHR Data 

  →  Rule refinement  

  →  Identify Subjects →  Validate Algorithm → [repeat] 

 
 Natural language processing (NLP) of health care providers’ free-text 

documentation, a rich source of information in the EHR, is an active and promising area 

of research for purposes of disease case identification.31-35  The cohort amplification 

framework is complementary to NLP methods and processes in providing domain 

knowledge as well as opportunities to combine coded and free-text data.   

 Cases might also be identified if diseases or conditions of interest were 

documented by clinicians in the coded Problem List structure of the standard EHR.36-39 

However, at this time, notation in Problem Lists is not commonly integrated into the 

routine data/work flow of clinical practices.40, 41 

  
The Cohort Amplification Framework 

 A novel approach to identify cohorts in the EHR for biomedical research purposes 

was conceptualized, developed and evaluated.  Design of the cohort amplification 

framework was motivated by the need to find phenotype cohorts in the EHR for 

genomics research at the University of Utah.  The use case required the identification of 

many disease-related phenotypes of interest to researchers to support high-throughput 

familial clustering processes.42, 43  The design accommodated these needs with a set of 
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software components and processes that did not require reprogramming for a new disease 

or condition and required minimal domain expert input to generate classification rules for 

the disease.  This development work resulted in a collection of original Java components 

and Structured Query Language (SQL) database procedures. 

 The general use case for the design was:   

(1) A set of exemplars for a given medical condition are identified by a set of 

known rules, such as ICD-9-CM based rules. 

(2) A clinical profile (predictive rule set) is generated from the exemplars’ EHR 

data using the framework.  

(3) The predictive rule set is applied to the entire patient population in the EHR to 

identify additional patients that may have the specified condition.   

 
Exemplars 

 The FW takes two exemplar cohorts – referred to as cases and controls - as input.  

The framework generically exposes patterns in the EHR data that distinguish the 

exemplars with the condition of interest from exemplars without the condition.  Although 

the scope of cohort amplification supported by the framework includes any medical 

condition for which health care services are typically sought, the term ‘disease’ is usually 

used throughout this dissertation.  The condition of interest may be a syndrome or a 

subtype or subgroup of a disease.  Exemplars of a disease may be specified by a set of 

known rules, such as ICD-9-CM based rules or could be a researcher’s current list of 

known cases.  Those without the condition are referred to as ‘controls’.  The control 

exemplars may be negative for the condition of interest, or they may represent any 

contrasting cohort such as those with less severe disease status, if two subtypes of one 
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disease are compared.  The size and the representativeness of the exemplars will affect 

the quality of the prediction rules that are generated.  Given the large number of data 

elements used in the framework, both disease and control exemplar samples of at least 

1,000 are recommended for generation of reliable rules. 

 
EHR Data 

 The framework is distinguished by core candidate data attributes based on 

nationally required EHR observation categories.  The core data attributes were based on 

requirements specified for the certification of ambulatory medical records by the 

Certification Commission for Health Information Technology.44 This was the 

certification requirement for an EHR according to Centers for Medicare & Medicaid 

Services (CMS) when development of the framework commenced.  Subsequently, the 

Health Information Technology for  Economic and Clinical Health (HITECH) Act, which 

was part of the American Recovery and Reinvestment Act of 2009, authorized oversight 

for the national certification standards for EHRs.4  The new standards designed for 

‘meaningful use’ of the EHR also include the framework’s core data attributes3, 45.  The 

core attributes are typically populated in an EHR as a by-product of health care delivery 

and documentation processes. 

 There is no technical limitation to adding disease or site-specific content, but the 

focus of this research is standardized content for generalized application.  The list of 

candidate data attributes are easily modified in one component using SQL, by design.  

Data observation categories used in the framework for this research are: 

• Diagnosis and procedure codes (ICD-9-CM codes) 

• Provider and ambulatory clinic procedure codes (CPT codes) 14 



 

 

7

• Provider specialty (local codes) 

• Lab observations (CPT codes) 

• Lab observations with results coded as ‘Abnormal’ 

• Imaging procedures (CPT codes) 

• Medication list (FirstDataBank pharmacologic/chemical groups and ingredients)46 

• Age > 64 (true) 

• Female gender (true) 

 Support for attribute concept hierarchies was developed in order to address 

varying layers of granularity in native EHR data.  Attributes from the EHR observations 

may be mapped to concepts at higher levels of abstraction.  The framework uses a simple 

map of subsumption (‘Apple is a Fruit’) relations from an EHR attribute to a higher or 

subsuming concept.  This functionality was treated at a very basic level in order to 

generate reasonable rules, given the degree of data granularity encountered during 

development.  Semantic ontologies are the state-of-the-art knowledge engineering 

solutions to the variable granularity and relatedness of many concepts represented by 

native EHR data.  Such comprehensive ontologies are highly valued as informatics 

infrastructure for many applications.  They were out of the scope of the framework 

development reported.  The framework development did prove the need for a semantic 

ontology in order to derive useful association rules directly from the EHR. 

 Given the possible candidate attributes per the national certification standards, 

iterative and detailed analysis of the EHR data content available in the study setting was 

conducted.  Potential candidate data were analyzed for availability, consistency, quality 

and usefulness.  Analysis included descriptive statistics and interaction with data 
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stewards and domain experts.  An approach to combine data across dimensions for 

presentation to the classification algorithm as a unified data set was challenging.  The 

resulting methods were generalizable to many different categories of EHR data but 

represented the data at a very high level of abstraction.  This enabled a core data set and 

methods that could accommodate multiple diseases or conditions and that could be used 

in any EHR setting. The design was modular and extensible to allow future 

enhancements. 

 
Predictive Rule Set 

 Initially, proven associative classification methods were used to generate the 

predictive rule sets.47-49  During development, rule sets were generated and evaluated 

repeatedly from different random samples.  Rule sets were not as reliable as desired.  

Innovative methods to improve the generality of rule sets were developed.  These 

improved the reliability.  The development and research reported in the subsequent 

chapters focuses on the generation and testing of predictive rules sets. 

   

Development/Research Setting 

  The cohort amplification framework was developed using data from a large, 

integrated health care delivery organization with a mature enterprise-wide, longitudinal 

EHR.  The Intermountain Healthcare Enterprise Data Warehouse (EDW) provided the 

EHR data for secondary use that enabled this work.  The EMR data of adult patients who 

visited an Intermountain Medical Group (IMG) central region Family Practice or Internal 

Medicine clinic at least once in 2005-2006 and at least once in 2007-2008 provided the 

target population for development and evaluation.  This provided 106,250 eligible 
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patients.  Adult primary care50 patients were chosen for the target population as Family 

Practice and Internal Medicine were visited by patients with a broad spectrum of 

conditions, and primary care was more frequently visited (~65% of adult patients in 

2008) than any other IMG specialty among patients with diabetes and asthma.  Primary 

care comprised 47% of all IMG adult ambulatory visits in 2008. 

 The required 2005-2006 visit was a ‘diagnosis period’ for the study.  The required 

2007-2008 visit was the ‘data mining period’ for the study.   Two-year periods were used 

as this was the duration for many validated ICD-9-CM based algorithms to identify 

diabetes or asthma.  A minimum of one visit in each of the study periods was required to 

provide a minimal amount of continuity of data.   This requirement did not appear to 

create a biased study population.  The average age and number of ambulatory visits/year 

were similar to the averages for Intermountain Healthcare ambulatory adult visitors. 

 Disease exemplars were identified from the coded Problem List during the 

diagnosis period.  Using cases with previously documented disease, the classification 

rules were trained on their data in 2007-2008, the data mining period.  Use of the 

Problem List has been integrated into the workflow in the central region IMG primary 

care setting.  About 65% of all eligible patients have a coded Problem List.  The Problem 

List was selected to identify disease exemplars because it includes both patients who 

present for treatment of the study disease, who are generally assigned an ICD-9-CM 

code, and those who present for other problems, in which case the study disease may not 

be assigned an ICD-9-CM code.  The goal was to predict disease status, regardless of 

whether treatment was sought for that disease in the surveyed time period. 
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 The disease-negative or control exemplars were generated from a random sample 

of all 106,250 eligible patients that had no evidence of the study disease by ICD-9-CM 

codes during the five-year period:  2003-2008 and no codes for the disease in the 

Problem List.  The controls were not matched to cases on other demographic or risk 

factors because the prediction rules need to distinguish the cases from among all other 

patients in the EHR.  Expected associations, such as a higher average age among diabetes 

cases, are absorbed into the associative classification rules-generation processes. 

            IRB approval was granted for this research from both the University of Utah and 

Intermountain Healthcare.  The cohort amplification framework requires no protected 

health information. 

 
Organization of the Manuscript 

            Associative classification was the approach used to develop prediction rules to 

identify new cases.  Associative classification is described in Chapter 2, with emphasis 

on specific aspects relevant to this work.  An overview of the functional processes of the 

cohort amplification framework and an evaluation of prediction rules generated for 

diabetes are presented in Chapter 3.  Rules generated to identify diabetes mellitus were 

compared qualitatively to EHR-based rules published from other settings.  The rules’ 

accuracy was evaluated on test data.  Chapter 3 was previously published.  The 

development of rules to identify asthma, including original enhancements to the standard 

associative classification methods, is described in Chapter 4.  Rule sets to identify 

asthma, generated by the both the standard and the improved methods, are compared on 

accuracy and generality.  A comparative study of the accuracy of framework-generated 
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rules to identify asthma cases in the EHR is reported in Chapter 5.  Chapter 6 contains a 

summary discussion of this research. 
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CHAPTER 2 
 
 

ASSOCIATIVE CLASSIFICATION 
 
 
 Associative classification (AC) is a data mining approach that uses two basic 

strategies.  One is the deterministic and exhaustive generation of association rules 

between a predetermined outcome attribute and all other attributes, individually and 

combined, in a data set of training cases.  Associations are co-occurrences of attributes 

within the same case.  Exhaustive means that all associations are considered.  The other 

strategy is classification, a general machine-learning task to assign a group status to cases 

in the target population based on patterns generated from training data with known group 

membership.  Algorithms for classification – ‘classifiers’ -  may be generated by many 

diverse methods including decision trees, Bayesian networks, statistical models, neural 

networks, support vector machines, covering rules, associative classification, and 

others.1,2  In associative classification, the classifier is generated by the rigorous selection 

of a concise, general and accurate predictive subset of association rules from the 

exhaustive set of associations. 

 Data mining is one of the activities in the process of discovering knowledge from 

the large stores of data in databases.  Fayyad et al. defined knowledge discovery from 

databases (KDD) as the “nontrivial process of identifying valid, novel, potentially useful, 

and ultimately understandable patterns in data.”3  KDD has evolved from several fields 
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including machine learning, databases, statistics, artificial intelligence, high performance 

computing, and data visualization.  KDD has a unique goal within all of these, to find 

understandable patterns in the data that yield useful or interesting knowledge.  The steps 

in the KDD paradigm are: 

• Develop an understanding of the problem. 

• Develop an understanding of the data. 

• Prepare the data. 

• Apply data mining methods. 

• Evaluate and apply the discovered knowledge.  

 The data mining and evaluation stages may cycle back for a deeper understanding 

of the problem or the data.4  Practically, the process is re-entered at any of the steps and 

flows downward.  The steps are a ‘best practice’ model.   Each is critical to a worthwhile 

project, but knowledge engineers accomplish them with different emphasis and methods.   

KDD is not a scientific method.  It does not necessarily involve a specific hypothesis 

about the pattern-discovery outcomes, although it is purposed toward generating 

hypotheses for further scientific study.  Rather, KDD is a disciplined approach and a 

collection of proven methods to provide useful knowledge from existing data 

repositories.  

 Han and Kamber1 describe data mining as an evolution of the powerful databases 

that have become pervasive in the last decades.  Powerful computers and advanced 

services for data analysis, coupled with volumes of data collected and stored in databases, 

led to increased interest in machine learning and pattern recognition.  The data were 
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available for mining for golden nuggets of new knowledge and useful information.  They 

elaborated on the steps of KDD above: 

• Preparation of the data includes  

o Gathering data from multiple sources.  

o Removal of outliers and inconsistent data.  

o Attribute selection and transformation. 

o Input to the data mining programs. 

• Application of data mining methods includes 

o Selection of methods and algorithms. 

� More than one method may be applied on the same data. 

• Evaluation of the knowledge includes 

o Presentation of results to the users 

� Visualization techniques. 

� Knowledge representation techniques. 

 Witten and Frank2 described data mining as the search, discovery, and expression 

of patterns in the data.  The data come from databases and are usually large data sets.  

The processes to find patterns are automated or semiautomated with computers.  The 

patterns discovered should be meaningful or useful.  They should help us understand the 

data and/or make predictions from them.  They elaborated the KDD steps further: 

• Preparation of the data includes explicit handling of missing values in the training 

data.  Most data mining methods function under the assumption that missing 

values are random.  If missing values are correlated with other data, appropriate 

assumptions should be accommodated in the preprocessing.  Interestingly, they 
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give an example of missing medical tests as highly correlated with disease since 

doctors do not order them if they were not related.  They comment that the 

nonexistence of a test may be as predictive as the actual values.  This foreshadows 

results reported in this research. 

• Evaluation of the knowledge includes a broad array of methods.  Data mining 

algorithms and their specific result are a ‘theory’ over the training data, and thus 

evaluation may take a philosophical tone.  The entire KDD process must 

essentially be evaluated in context.  The normative method for evaluation of 

classifiers is validation of the results on repeated random samples of the training 

and test data with descriptive and statistical measures of the accuracy of results. 

 The selection of the training data is an important aspect of the evaluation of 

knowledge gained in KDD.  The larger the number of training cases, the more the 

reliability of results might be assumed.  However, generalization of the results to a wider 

population depends upon the cases that were used for training.  The selection of the 

training cases was noted as a critical step in machine learning.5  Selection of training data 

is often a pragmatic choice, given domain-specific issues in accessibility of data.  

Competitor businesses may not agree to pool their data so training may describe only one 

company’s experience.  In health care, training data may be limited to one provider 

organization due to data security and privacy concerns.  Even within one health care 

organization, there are stringent policies for protection of medical records such that the 

process of obtaining access to data is a significant additional process step.6 

 There are many categorizations of data mining methods.  They can be categorized 

by the purpose of the knowledge that is sought:  one purpose is classification.1  The 
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purpose of classification is to assign a ‘case’, the object to be classified, to a group, using 

the available data that describes the case.  Most classification data mining methods 

generate a ‘classifier’ from training data that has an explicit group ‘label’.  The group 

label is called a ‘class’.  This is called ‘supervised’ machine learning:  the classifier was 

trained on data where the class was previously assigned.  The purpose of the classifier is 

to ‘classify’ a new case, in which the class is not known from the data.  Classifiers use 

many different algorithms to perform classification.  They may be categorized by their 

approach to generating a classifier (Bayesian network, decision tree, neural network, and 

others), and further categorized on different algorithms employed to actually engage the 

data, render a classifier and apply the classifier to a new case.  Associative classification 

is one type of approach, which is implemented using various algorithms. 

 Associative classification (AC) may also be called classification by association, 

classification association rule mining, and other derivative terms.  It was also described 

as affinity analysis.7  The concept was first described by Bayardo8 as a “brute-force 

technique for mining classification rules from large data sets.”  He introduced the idea of 

association rules between a predetermined class attribute and all other attributes as 

classifiers.  It was called ‘brute force’ because of the exhaustive generation of 

associations.  However, Liu et al.9 are usually credited with the introduction of a more 

proper associative classification algorithm because they also used strategies to select the 

rules most likely to be predictive from all the association rules.  The exhaustive set of 

associations captures the patterns that are unique to the training data, known as ‘noise’, as 

well as those more generally representative of a larger target population.   
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 To generate classification rules from association rules, there must be a 

‘hypothesis’ for the selection of general rules over rules more specific to the training 

sample.  Classification rule discovery is an inductive task, predictive of the future, 

whereas association rule discovery is a deductive task, descriptive of the present.10  The 

main strengths of AC are the global view of all associations in the training data and the 

use of combined attributes for pattern discovery.  The main weakness is the generation of 

a large number of associations, which reflect the noise in the training data as well as the 

reliable associations. 

 Thabtah11 described the steps in associative classification as: 

(1) Discovery of associations among the training data attributes. 

(2) Generation of association rules between the class and other attributes. 

(3) Ranking and pruning of weak rules to form a classifier. 

(4) Prediction on test data and evaluation of the classifier’s accuracy. 

 In this chapter, an overview of association rule mining using the Apriori 

algorithm (steps 1 and 2 above) is presented.  Improved methods for constraining and 

pruning association rules to form useful classifiers are an ongoing topic of computer 

science research.  A novel pruning approach was developed in this research.  Therefore, 

the background on associative rule classifiers (steps 3 and 4 above) are covered in more 

detail.  Concept hierarchies in association rule mining and applications of associative 

classification in biomedical research are summarized. 

 A small example data set was created (Table 2.1) to clarify the technical 

explanations in this chapter. The data set will be referred to as the ‘Disease Prediction’ 

data. 
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Association Rule Mining 

 The foundational methodology of association rule mining (ARM) was first 

described by Agarwal et al.12  Their approach was seminal in that all associations were 

measured between the attributes in a data set, configuring each individual attribute as a 

rule consequent and all remaining attributes as a candidate for union in the rule 

antecedent: 

 
 Given the rule, ‘If A, then C’:  ‘A’ is the antecedent, and 

                                                              ‘C’ is the consequent. 

 
 The problem domain was retail sales, and the objective was to discover 

purchasing patterns and express them as association rules.  The rules were described as 

qualitative and deductive, as opposed to quantitative methods.  Quantitative methods 

generate predictive models using an inductive approach.  The methods vary greatly in 

their approaches to pattern finding, i.e., statistical regression analysis, Euclidean 

geometry, and Bayesian probabilities.  Generally, they sequentially process the training 

data to build and test a predictive pattern that best fits the data.  In distinction, ARM finds 

and reports all patterns found in the training data.  The ARM approach was targeted at an 

uncontrolled setting, where many interdependencies coexist in the data.  Domain 

knowledge was not a requirement to deduce the patterns, but may certainly be required to 

interpret and refine them for prediction. 

 The fundamentals of ARM were established.  The attributes in the model were 

called ‘items’, and the combination or association of items, ‘itemsets’.   The itemsets of 

interest were limited to those that occurred frequently in the training data set.  The user 
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would specify the minimum frequency of interest.  In the Disease Prediction data (Table 

2.1), if a minimum frequency of occurrence over all training cases was specified as 30%, 

then all of the attributes are ‘frequent’ items.  The frequent 2-item itemsets are ‘DrugA & 

TestC’, ‘DrugA & Class.PosDisease’, and ‘TestC & Class.PosDisease’.  There is only 

one frequent 3-item itemset:  ‘DrugA & TestC & Class.PosDisease’.  Once all of the 

frequent itemsets are found, the rules are formed.  In association mining, all frequent 

items in an itemset are permuted as the antecedents or consequents of rules.  The rule ‘If 

DrugA & TestC, then Class.PosDisease’ would be one of the rules generated.  All rules 

are then evaluated by a user-specified threshold for a measure of precision:  the 

likelihood that the rule consequent occurred, given that the rule antecedent occurred.  

Since the rule consequent occurred in 30% of the cases and the antecedent occurred in 

40%, the likelihood is 75%.  These are the basic pattern-discovery methods for 

association rule mining. 

 In a subsequent paper, the Apriori algorithm was described.13  The algorithm 

accomplished the same objectives for ARM as described but improved the computing 

efficiency.  ARM, without constraints and smart computer programming algorithms, is of 

exponential complexity in the number of attributes.  Much of the computer science 

literature on ARM deals with more efficient computing techniques.  The size of the 

solution space is significant for its computing requirements as well as the large number of 

association rules that may be generated.  Recall that one of the goals of data mining is 

understandable rules.  The authors of Apriori acknowledged that ‘application-dependent’ 

constraints are necessary features of an association rule discovery system. 
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 The Apriori ARM algorithm can be constrained to one specified attribute as the 

consequent of all rules.  In this case, all other attributes are candidates to form the rule 

antecedent.  For simplicity, assume that each attribute represents an item, and thus its 

value exists or it does not exist.  Only the attributes that exist are populated in the data.  

This was the representation of retail purchase data used in the presentation of the Apriori 

algorithm.  The Disease Prediction data (Table 2.1) also use this representation.  Assume 

that the desired minimum frequency of interest is ‘n’, and the desired precision of the rule 

given the antecedent is ‘m’.  Apriori scans the data set, counts all attribute occurrences, 

and enumerates those attributes that occur among n% of the records.  These are the 

frequent items.  The next step is to find frequent two-item itemsets.  Only frequent items 

can possibly combine to form frequent two-item itemsets.  The combined itemset cannot 

occur more frequently than any one of its members.  The two-item itemsets are combined 

into frequent three-item itemsets and this process repeats until there are no more frequent 

itemsets.  After all frequent itemsets have been enumerated, the candidate rules are 

formed from the one specified consequent attribute and all other members of its frequent 

itemsets as the antecedents.  All such frequent rules are then reduced to the set in which 

the precision of the rule is greater than or equal to ‘m’.  

 The publication of the Apriori algorithm concluded with the need for two 

extensions:   support for concept taxonomies and handling of discrete and continuous 

attributes.   Current applications of ARM generally support discrete attributes.  

Continuous attributes must be discretized.  The values of discrete attributes are 

considered as the items to be associated.  Other methods to perform association rule 

mining have been developed subsequent to its introduction with the Apriori algorithm.  
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They mainly address improvements to computing complexity but may also include 

alternate methods to evaluate the precision of rules.  ARM, by definition, is an exhaustive 

data scan for associations, given a frequent itemset threshold. 

 
Association Rule Classifiers 

 Associative classification is a specialization of association rule mining and one of 

the data mining approaches used to generate classifiers.  Freitas10 presented a thorough 

discussion of the additional requirements for association rules to be considered as 

classifiers.  The Disease Prediction data (Table 2.1) show an attribute ‘Class’ with the 

values ‘PosDisease’ and ‘NegDisease’.   AC must be constrained to the classifying 

attribute as the only rule consequent, in order to form rules predictive for the class.  

Another requirement is that the accuracy of the classification rules must be evaluated on 

test data.  The more important differences are theoretical.  The task of classification is 

inductive and nondeterministic.  A classification hypothesis is generated from training 

data, and its predictive success is estimated on test data.  Two major problems arise:  (1) 

Overfitting or underfitting the classification hypothesis to the training data is a main 

concern in classification.  ARM generates all rules, given constraints, over the training 

data.  (2) All classifiers have an inductive bias:  explicit or implicit criteria that influence 

the classifier to favor one hypothesis over another.  The methods and the configuration of 

the classifier form the bias for one hypothesis to be preferred over another.  Further, the 

bias is known to be domain-dependent:  the classification methods must interact with a 

specific data set to form a classifier.  ARM is deductive and deterministic.  Both 

problems are addressed in AC by various constraints, pruning methods (algorithmic 

identification and elimination of weaker rules), and use of class-specific definitions of 
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frequency for the selection of frequent itemsets.  AC cannot be constrained and pruned 

for overfitting/underfitting avoidance or inductive bias in a general set of methods to suit 

all domains and data sets.  However, such tuning can be customized for unique domains.  

The Pruning Methods section of this chapter presents general and domain-focused 

pruning methods used in health care data. 

 AC has been shown to perform as well as or better than decision trees, rule 

induction methods, and the naïve Bayes classifier on benchmark classification data sets.9, 

14-20  The potential advantages of association classification over other classifiers are: 

• AC discovery is global:  all interesting association rules are discovered and then 

pruned to a more concise and general set. 

• Combinations (union) of attributes are used for pattern discovery.  

• AC was designed for application in noisy, highly dimensional and interdependent 

data such as the operational transactions of an enterprise. 

• Multiple hierarchical concept levels (taxonomies) can be mined for patterns in 

mixed or matched models. 

• Missing values can be configured to participate in the discovered associations or 

not, at the discretion of a domain expert.  If included, missing items participate in 

associations in the same way as a nonmissing item. 

• Generated rules are understandable to users. 

o Rules are independent and can be modified by users or joined with other 

rule sets. 
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o Rules are amenable to interpretation as queries against the database mined, 

being “if-then” statements over arguments that represent attributes in the 

database. 

 AC has attracted researchers in the data mining and machine learning 

communities since it was first described in 1998.  There were 66 academic publications 

on ‘associative classification’ in Scopus21 for 2008-2009, which was higher than the 

previous two years at 42.  PubMed22 only listed 4 publications, all in recent years, but 

listed 83 publications on association mining since 2001.   The keyword “data mining” 

was added to the Medical Subject Headings (MeSH)23 in 2010, which suggests the 

growth of data mining research, in general, in the health care field. 

 
Interestingness Metrics 

 ‘Interestingness’ is a key data mining term. In classification, the hypothesis is 

guided and evaluated by a method’s interestingness metrics and their thresholds, if 

specified for the application.  Many statistical, mathematical and heuristic interestingness 

metrics have been used in data mining.  Interestingness has at least three interpretations.  

One is the objective thresholds and parameters that are used to configure a data mining 

algorithm.  Many, if not most, algorithms include user-specified parameters that bound 

the algorithm’s functionality.   For example, a statistical Type 1 error threshold is 

common in algorithms that use statistical comparisons over the mined data.  In ARM, the 

frequency and precision thresholds for rule generation are examples.  These are all 

considered ‘interestingness’ metrics because they constrain the algorithm’s results to 

those perceived as useful by the user.  A second interpretation is the criteria used to 

evaluate classification results.  In health care applications, the sensitivity and specificity 
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of a classifier may be used to compare two classifiers.  A third interpretation is the 

subjective concept of true interestingness of the knowledge generated.  These metrics or 

outcomes depend upon the goals of the consumers of the knowledge.24, 25  Data mining is 

an engineering task and not a scientific method.  Interestingness is an applied term and 

has been used somewhat ambiguously, although it is fundamentally an expression of the 

heuristic bias or merit of a data mining approach.  In the following review, objective 

interestingness metrics used in association rule mining and associative classification will 

be explored. 

 Geng and Hamilton26 surveyed interesting metrics for data mining and 

synthesized them into five objective criteria:  conciseness, generality/coverage, 

reliability, peculiarity, and diversity.  The first three are common to associative 

classification and germane to this research.  Concise rules are valuable because they are 

more understandable to domain experts who may subjectively evaluate and refine the 

classifier.27  Webb and Brain28 provided rigorous proof for the preference of a more 

general rule to a more specific one, given all other evidence was equal.  General rules and 

concise rules are intuitively related.  A more general rule covers more of the training 

cases than a less general rule, since that is what defines a ‘general’ rule.  Concise rules 

are the smallest set of rules that, together, achieve the best accuracy on test data.  

Therefore, assuming all other effects are equal, a set of more general rules should be a 

smaller or more concise set than a set of less general rules.  Reliability is the accuracy of 

a set of rules that form a classifier.  Measures of accuracy in AC commonly include 

‘confidence’, a term that was described above by the synonymous term ‘precision’ to 
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constrain and rank the rules.  There are also measures of the predictive accuracy of the 

classifier on test data.  

 
Measures of Generality 

 To generate prediction rules from the association rules, the most concise set of 

rules without loss of accuracy is desirable.  General rules are more comprehensive and 

cover more of the dataset.  Assuming general rules comprise the concise rule sets, the 

metrics for measuring generality will be addressed.  The most commonly used measure of 

generality in AC is the concept of ‘support’.  Support is a statistical measure of the 

frequency or likelihood of the occurrence of a rule.  The concept of frequent itemsets in 

the Apriori algorithm uses a minimum support threshold to define ‘frequent’.  As 

presented in the Association Rule Mining section, the minimum frequency of occurrence 

specified by the user forms a lower bound on the attributes and rules that will be 

considered ‘interesting’.  This is a constraint used to guide the generation of an 

associative classifier.  Assuming the rule antecedent is ‘A’ and the consequent is ‘C’, 

then 

 
 support (A → C)  =  support (A U C)1  =  count (A & C) / 

        count (training cases) 

  

 support (DrugB → Class.PosDisease) =  2 / 10 =  20% 

 (from Table 2.1) 

 
 Support is used to define the minimum threshold to allow large itemsets to 

participate in ARM, and is used in AC to rank rules.  Gu et al.29 introduced a 
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specialization of support for associative classification in the health care environment.  

When mining health care data to classify a specific disease, the nondiseased population is 

usually greater so class sizes are often unbalanced.  The common interestingness metrics 

fail to capture many interesting rules for the rarer class.  A specialization of support was 

defined to represent support for each class fairly, regardless of the sample sizes.  Such 

adjustments were recommended in order to apply association rules to prediction tasks10 

and were proven to be very effective in finding useful rules for rarer classes.30  The local 

support (LSUP) for each class was defined as the support for the rule for the class.  It also 

expresses the probability, based on the data, that the rule occurs when the class occurs.  

This metric is derived by dividing the support for the rule by the support for the class. 

 
 LSUP (Ci)  =  support (A → Ci) /  = Probability ((A U Ci) | Ci)    

   support (Ci) 

 
 LSUP (DrugB → Class.PosDisease) =  20% / 50% =   40% 

 (from Table 2.1) 

 
 When mining a database directly, as in the reported application, one can adjust for 

the differences in prevalence of the two classes by using the local support metric.  

However, most off-the-shelf association rule mining software packages use the support 

metric and not the local support metric.  In the case of a binary classifier, another way to 

approach the problem is to draw a balanced sample from the database so that the two 

classes are evenly distributed.  When sample sizes are large, there are no statistical 

restrictions to the use of balanced random samples from unequal reference population 

sizes in terms of representativeness.  A colorful analogy was drawn to illustrate this 
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concept:  a small spoonful of soup sampled from different sized pots will give the cook 

the same quality of information from each, provided the soups were stirred.31    

 With balanced sample sizes, the local support metric is roughly twice the support 

metric for each class of a binary classifier: 

 
 LSUP (Ci) =  support (A → Ci) / 0.5 

 
Thus, local support and support can be approximated from each other, given a binary 

classifier. 

 
Measures of Accuracy 

 Precision, or the likelihood that a rule consequent occurs given the rule antecedent 

occurs, was presented in the section on Association Rule Mining.  This measure of 

precision is commonly called ‘confidence’ in association rule mining and associative 

classification.  Confidence is used to define a user-specified minimum threshold to 

constrain the association rules that may be formed from the candidate frequent itemsets.  

After all frequent itemsets are found which satisfy the support interestingness metric, 

potential rules must satisfy the confidence or precision interestingness metric.  

Confidence is also used in the pruning processes as explained in the Pruning Methods 

section.  In AC, confidence is a measure of the likelihood (the probability based on the 

given data) of a particular class occurring as the rule consequent, given the rule 

antecedent.  This metric is derived by dividing the support for the rule by the support for 

the rule antecedent.  The rule consequents, by definition in AC, are assignments to one of 

the class outcomes.  The rule antecedents may occur in any or all class outcomes. 
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 confidence (A → Ci)  =  support (A → Ci) / 

     support (A )           = Probability((A U Ci) | A ) 

 confidence (DrugB → Class.PosDisease) =  20% / 30% = 67% 

 (from Table 2.1) 

 
 Gu et al.29 also introduced a specialization of confidence for situations where 

class sizes are unbalanced.  Confidence is weakened for a rarer class by the ‘support (A)’ 

term in the denominator above.  If the larger class is represented 10:1 for a disease with 

10% prevalence, then ‘support (A)’ has 10:1 counts for the antecedent favoring the larger 

class of a binary classifier.  As the ratio of larger class to rarer class grows, it can be seen 

the denominator in the formula above grows and thus confidence for Ci decreases.  The 

exclusiveness (EXCL) metric was defined and proven to normalize the confidence metric 

for each class fairly.  It was defined for the binary classifier (Ci, Cj) as: 

 
 Exclusiveness (Ci) = LSUP (A → Ci) /  

    LSUP (A → Ci) + LSUP (A → Cj) 

  
 Just as most off-the-shelf association rule mining software packages use the 

support metric rather than local support, they use confidence and not exclusiveness.  In 

the case of the binary classifier and balanced class sizes, confidence and exclusiveness 

for a rule are equal.  Referring to the conversion formula from local support to support 

when sample sizes are balanced given above: 

 
   LSUP (Ci) =  support (A → Ci) / 0.5 

 Inversely:  support (A → Ci) =  (.5) LSUP (Ci) 
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 confidence (Ci) =  exclusiveness (Ci)  

                                     =  (.5) (LSUP (A → Ci) /  

                                            (.5) (LSUP (A → Ci) + (.5) LSUP (A → Cj) 

    =  support (A → Ci) / 

                                            support (A → Ci) + support (A → Cj) 

    =  support (A → Ci) / 

                                            support (A) 

 
 In the denominator of the final equation, the total support for A was distributed 

across the two possible rule consequents for A.  Added together, they comprise the total 

support for A.  Thus, exclusiveness and confidence can be approximated from each other, 

given a binary classifier. 

 Table 2.2 shows the magnitude of difference of the support versus local support 

and confidence versus exclusiveness metrics for a binary classifier of disease with 10% 

prevalence between a hypothetical balanced versus representative class sampling 

strategy.  The local support and exclusiveness are normalized and independent of the 

underlying prevalence in a representative sample.  The support and confidence are 

affected by the differences in prevalence in the representative sampling strategy.  The 

framework used balanced sample sizes to approximate the local support and 

exclusiveness from support and confidence metrics. 

 Measures of predictive accuracy in association classification are the same as those 

used for many other classifiers.  The results of classification are commonly viewed in a 

‘confusion matrix’,32 as described in Table 2.3.  Further, the confusion matrix may be 

repeated multiple times on separate random samples of the mined data, using different 
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cases for the training and test sets for each run.  With repeated samples, the accuracy 

metrics can be evaluated statistically.  This evaluation approach is called cross-

validation.2  The metrics used in this research to evaluate predictive accuracy are 

sensitivity and specificity because these are commonly used in the health care domain.  

More specifically, they were used to evaluate other classification algorithms that will be 

compared to AC classification in this research.  The sensitivity and specificity metrics are 

independent of the sample proportion.  Sensitivity is the proportion of the classified 

population determined to be positive by a reference standard and classified as positive. 

 
 Sensitivity = True Positives /  

                                  True Positives + False Negatives 

 
 Specificity is the proportion of the same classified population determined to be 

negative by the same reference standard and classified as negative. 

 
 Specificity = True Negatives / 

                                  True Negatives + False Positives 

 
        Sensitivity and specificity are inversely related in all but the two boundary 

examples:  all cases classified correctly or all incorrectly.  This is demonstrated in Table 

2.4.  The possible outcomes that occur for positive determinations by the binary classifier 

are ‘true positive’ (TP) or ‘false positive’ (FP).  The possible outcomes that occur for 

negative determinations by the binary classifier are ‘true negative’ (TN) or ‘false 

negative’ (FN).  The binary classifier must generate a positive or a negative 

determination for each case.  Assume that initially the sensitivity is zero, and the 
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specificity is 100%.  That is, no true positives have been identified and no true negatives 

have been misidentified.  As cases are classified as positive, a true positive case will 

increase the sensitivity, and a false positive will decrease the specificity.  At each 

positive classification determination, either the sensitivity or the specificity metric is 

affected in the opposite direction.  Once all cases are classified, the sensitivity will have 

increased from zero, and the specificity will have decreased from 100%.  The cumulative 

TP and FP proportions are reflected in receiver operator characteristic (ROC) curves, 

which permit visualization of the tradeoff between the two plotted on an X-Y axis.33  

Both a high sensitivity and a high specificity are desirable, in general.  However, 

depending upon the purpose of the application of a classifier and the user’s subjective 

interestingness preferences, a higher sensitivity or a higher specificity may be the 

preferred accuracy outcome. 

 
Pruning Methods 

  Since associative classification (AC) is a specialization of association rule mining 

(ARM), it inherits the limitations of ARM.  A large number of rules are generated since 

attributes are often highly correlated and, therefore, associated. The high correlation of 

attributes follows from direct mining of operational data, which is one of the fundamental 

objectives of ARM.  The global nature of rule discovery casts a net for all potential 

interesting patterns, but many redundant rules are discovered as well as rules that reflect 

idiosyncrasies of the training data (overfitting).  Therefore, it is necessary to apply 

‘pruning’ methods to eliminate (prune) redundant and weak class association rules in 

order to develop a general and accurate associative classifier.  Association rules have no 

basis for preference of one set of rules over another, other than the support and 
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confidence thresholds.  Multiple sets of rules might predict the class equally well on the 

training data.  Pruning methods address the rigorous ranking and selection of class-

constrained association rules in order to generate a concise, general and accurate 

classifier. 

 Thabtah34 provided a recent review of the main pruning approaches used in AC.  

The initial AC model, known as ‘classification by association’ (CBA),9 is still accepted 

and used as a benchmark for new AC methods.  CBA was based on the Apriori algorithm 

for rules discovery.  Subsequently a model, known as ‘classification based on multiple 

association rules’ (CMAR)20 was introduced.  CMAR is also a classic benchmark for AC 

methods.  CMAR uses a different strategy for rules discovery, accommodating some of 

its pruning methods earlier in that step.  Accuracy using CMAR was shown to be 

equivalent to CBA. 

 
CBA Pruning Methods 

 CBA uses the database coverage method.  More than one rule may cover the 

same case to be classified.  The rules discovered by association rule mining are ranked in 

order of confidence, then support.  Processing the rules in ranked order, the training cases 

that meet the rule are removed from further consideration by a subsequent rule.  If no 

case meets a rule, the rule is pruned.  This continues until all training cases have been 

covered or all rules were tested.  Cases left uncovered are assigned to the class with the 

highest frequency in the training data.   The database coverage method seeks the most 

accurate rules, by rank, and eliminates less accurate rules that cover the same cases. 

 An optional method is pessimistic error pruning, originally defined for decision 

trees.  The method assesses if the error rate for the majority class at a node in the tree is 
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less or equal to the classification error of its branch nodes.  If so, the branch node is 

pruned.  This method has not been implemented in AC as popularly as a similar method, 

redundancy pruning, described below.  They both compare the gain in accuracy from a 

parent node to a child node, and prune the child node if it does not improve accuracy.  A 

parent node is a more general rule than its child nodes and covers at least the same cases 

covered by the child node’s rule. 

 
CMAR Pruning Methods 

 CMAR uses the redundancy pruning method.  Redundancy pruning is 

implemented before the rules are ranked.  Multi-attribute rules that cover the same or 

fewer cases and do not improve the confidence of a more general rule, e.g., a subset of 

the multi-attribute rule, are redundant.  If rule ‘Ra’ was met, then rule ‘Ra U Rb’ is 

redundant unless its confidence is greater.  Rule ‘Ra U Rb’ (child rule) cannot have more 

support than ‘Ra’ (parent rule).  At most, it can have equal support.  The redundancy 

pruning method results in fewer, more general rules. 

 CMAR applies a chi-square test to prune rules before the rules are ranked.  If the 

rule antecedent and the rule consequent are not positively correlated, the rule is pruned.  

This pruning method must be provided in the data mining software or programmed to use 

with statistical tables for the significance of the chi-square scores. 

 CMAR also uses a variation on the database coverage method in CBA.  The rules 

are ranked by confidence and support.  The rules are tested for coverage in the training 

data in ranked order, as in CBA.  The difference is that a threshold on the number of 

times a case may be covered is set.  A covered case can be re-covered multiple times, 

generating several potential rules that may cover one case.  In the classification step, if all 
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rules that cover a new case agree on the class, the class is assigned.  If there is 

disagreement among the consequent among the set of classification rules that cover a new 

case, a normalized chi-squared test is used to assign the most accurate class.  This 

pruning step was meant to overcome the problem of favoring only one most confident 

rule.  Other slightly less or equally accurate rules may have higher support, and thus 

serve as better classifiers.  The overall confidence of the ranked rules and the user-

specified threshold on the number of rules that can cover each case will vary the effects 

on accuracy. 

 The pruning methods from CBA and CMAR are objective, general and effective 

methods.  Pruning methods may be mixed from among these and may also be combined 

with other approaches.35, 36  New pruning approaches may be compared with one or more 

of these basics.27, 34  Pruning may have a domain-specific rationale.  The two objectives 

are to remove redundant and misleading rules for the classification task at hand. 

 Pruning methods often include the ranking of rules.  Most AC pruning algorithms 

that depend upon rule ranking use confidence (descending), support (descending) and 

then cardinality (ascending).  The cardinality ranking supports rules that are more 

general.  Thabtah37 proposed and tested two additional rankings:  the frequency 

(descending) of the rule consequent, then precedence of the antecedent in the training 

data.  These slightly improved the average accuracy on highly dense datasets.  Rule 

preference affects the accuracy of the classifier.  Improvements in rule ranking was listed 

as one of the interesting research directions in associative classification.38 

 The purposes of pruning may be accomplished by constraints on the rules 

generation process.  Ordonez et al.36 introduced a constraint on the number of attributes 
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that may participate in the association rule antecedent of an associative classifier for heart 

disease.  After assessment of the impacts of the constraint at sizes from one to five, they 

used a limit of four attributes per rule antecedent in the rules discovery process for the 

classifier.  Because the high dimensionality in medical data results in many associations, 

this constraint disabled many redundant rules from forming in the first place.  It is 

straightforward to constrain the size of the large itemsets in the Apriori algorithm, as they 

are generated in cycles of ascending size.  This has the effect of global redundant rule 

pruning, given that additional attributes after the specified size do not add accuracy to the 

model.  This constraint also enables the Apriori algorithm to generate associations at 

lower support levels since the computing complexity is reduced to a small exponent.  

 
Concept Hierarchies 

 Concept hierarchies have been discussed in the ARM literature since its 

inception.13  With the objective of ARM to discover rules in large databases directly, the 

fine granularity of data comprising an enterprise’s operational transactions might obscure 

the interesting patterns.  For example, in the medical data domain, there could be many 

drug formulations in the same therapeutic class that might each exhibit very similar 

association patterns but may each be diluted by low support.  Assume that the drug 

formulations are stored in the training dataset, but they can be linked to a therapeutic 

class in a taxonomy.  If the associations with the therapeutic class rather than the 

formulations were exposed, there may be greater support for an interesting association at 

the therapeutic class level. 
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 Using the Disease Prediction data (Table 2.1), assume that DrugA and DrugB are 

both used to treat the disease and share the same therapeutic class.  Individually, the only 

interesting rule selected would be: 

 
 DrugA →  Class.PosDisease   confidence 4/5 = 80%, support 40% 

 
 A more interesting rule would be generated from the therapeutic class containing 

both: 

 
 DrugA or DrugB →  Class.PosDisease confidence 5/6 = 83%, support 50%  

 
 Operational data are often categorized into larger concepts for analysis and 

reports in an enterprise data warehouse.  A data element may belong to multiple 

categories.  In the drug ingredient example, there may be taxonomy of drug ingredients.  

A formulation may belong to a therapeutic class and have one or more ingredients.  The 

optimal concept level is generally unknown when the rules discovery task commences. 

 Han and Fu39, 40 described approaches to managing multiple concept levels in 

association rule mining.  Initially, Han emphasized user interaction to resolve the 

complex, domain-specific concept levels.  Subsequently, methods were developed to 

encode the concept levels into the transaction data.  The original methods were difficult 

to accomplish technically and supported only hierarchical concepts.  A transaction item 

could belong to a taxonomy of concepts; like ‘chocolate milk’ is ‘2% milk’ is ‘milk’.  

Methods for associating the concept levels ranged from associating across one level at a 

time to cross level associations.  There was thought toward varying support and 

confidence thresholds by level, and a pruning technique to recognize and disallow a rule 
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to contain an item and its conceptual ancestor (‘2% milk’ and ‘milk’).  The technology 

frontier has advanced considerably in the past decade.  Current research and development 

in data mining includes linking of the entire knowledge discovery lifecycle to domain-

specific ontologies.  Two recent projects describe association mining with semantic links 

to the Unified Medical Language System (UMLS) ontologies for data selection, pattern 

mining, data visualization and to provide some guidance normally provided by domain 

experts.41, 42  The linkage of databases to semantic networks opens up a completely new 

dimension to knowledge discovery. 

 The data mining software package used in this work was the Waikato 

Environment for Knowledge Analysis (WEKA) toolkit.2  It does not offer tools to 

accomplish even a simple concept taxonomy linkage as described above.  In the research 

reported in subsequent chapters, associative classification using multiple concept levels 

was implemented with a simple set of mappings from EHR-stored data to more general 

concepts for the purpose of aggregating very granular data.  Cross-level associations were 

allowed.  The more general concept was ranked higher and, therefore, less general 

concepts were pruned.  The research focus was the effect of aggregations on results and 

not the technologies used.  The data mining methods and linkages to accommodate the 

complex semantic relationships of stored health care data were beyond the scope of this 

research. 

 
Applications in Biomedical Research 

 Longitudinal electronic health records (EHR) are a perfect setting for association 

rule mining.  The longitudinal EHR covers both ambulatory and hospital care.  At this 

time, an EHR contains records of care for a particular healthcare delivery system only.  
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The EHR contains highly dimensional data.  There are many choices of disease labels, 

treatments and diagnostic test ‘items’ attached to a patient encounter.  The large set of 

possible ‘items’ are sparsely populated in each patient record.  The patient typically has a 

different set of ‘items’ at each encounter.  There is noise among these data.  The health 

care providers who assign the ‘items’ sometimes make intelligent guesses about 

diagnosis and treatment, and these may prove to be mistakes in terms of the true disease 

status.  There are also individual and group provider biases in the ‘item’ choices, such as 

medications prescribed for a particular indication.  The patient may attend another health 

care facility, so there may be an incomplete record of care.  However, there is a rich 

tapestry of associated ‘items’ that describe patterns across many patients’ encounters.  

Further, the ‘items’ reflect the decision making of providers, which form dimensions of 

interest.  For example, given incomplete individual patient data, the patterns may emerge 

for differences in treatments given by primary care practitioners versus treatments given 

by specialists.  Association rule mining describes multidimensional aggregate patterns, 

and, therefore, may provide new knowledge from sparsely populated, noisy and 

incomplete electronic health records. 

 Researchers have applied various association rule mining approaches to an 

assortment of problems using electronic health records (EHR) and secondary, anonymous 

patient data repositories.  McAullay et al.35 developed a framework for end users to mine 

the predictive attributes for adverse drug events directly from EHR data.  They used static 

and sequential association rule methods, developing a classification model focused on 

rare events.  Ordonez et al.36 developed methods for association mining over a 

cardiovascular clinical database to classify heart disease.  Li et al.43 developed an 
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association rule mining method based on frequent itemsets and relative risk to discover 

risk patterns in EHR data.  They applied the method to risk of hospital admission from 

the emergency department (ED) based on data routinely collected in the ED.  

Mahamaneerat et al.44 used ‘Domain Concept Mining’ to discover clinically meaningful 

associations in the 2005 Nationwide Inpatient Sample (n = 8,000,000 admissions).  

Elfangary and Atteya45 used association rules to discover novel patterns in an inpatient 

nephrology clinical data system.  They reported that the patterns were expressed in a 

manner that physicians could understand, and the mined rules were accepted by 

nephrology specialists.  Wright and Sittig46 used association rule mining to develop 

content for order sets in an ambulatory computerized physician order entry system.  Tai 

and Chiu47 applied association rule mining to study comorbidities of attention deficit 

disorder in the National Health Insurance Database of Taiwan.  They generated new 

knowledge on developmental delay and associations with progression to other psychiatric 

illnesses. 

 Associative classification has not been applied to the problem of generating rules 

to identify cohorts of patients with particular conditions from secondary EHR data.  

Secondary data are those collected for patient care purposes and subsequently used for 

other legal, ethical and beneficial purposes.48, 49  Although the task is to classify patients 

who have or have had a particular condition or disease from those who have not, this 

problem and solution space are unique from the problem of predicting disease for health 

care purposes.  Some conceptual differences are listed below: 

• Identifying cohorts with disease Predicting disease for care 

• QI, research, public health  Patient care decision support 
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• Data by-product of care processes Concurrent operational care data 

• Enterprise data warehouse  EHR transaction repository 

• As accurate as possible   Exacting accuracy required 

• Validation of cohort prediction  Validation of patient prediction  

• Accept available input data  Input data desired from workflow 

• Retrospective data view   Concurrent data view 

• Deductive knowledge value  Inductive knowledge value 

• Target user is not a clinician  Target user is a clinician 

 These differences are not absolute.  They are listed to point out distinctions in a 

primary patient care use case and a secondary data use case for identification of disease 

status.  The secondary data consumer must abide the quality of data that are available 

from the care processes that have already occurred, sometimes years earlier.  Association 

rule mining is well suited to the task.  The data mining method will expose the patterns 

that are there.  Associative classification will expose the patterns associated with a health 

condition or disease state, provided there are representative training cases where the 

disease status can be inferred.  If the disease statuses were accurately known for a large 

population of patients, one might question the need to develop a classifier.  That is not the 

case.  Patient records have not been consistently and accurately labeled for diseases 

treated, and less so for comorbidities.  The current research describes and evaluates an 

associative classification framework to identify cohorts of patients with particular 

conditions from secondary EHR data. 
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Table 2.1  ‘Disease Prediction’ Data Set Example 
 

DrugA DrugB TestC Class
Case 1 Yes Yes PosDisease
Case 2 Yes Yes PosDisease
Case 3 Yes Yes PosDisease
Case 4 Yes Yes PosDisease
Case 5 Yes Yes PosDisease
Case 6 NegDisease
Case 7 NegDisease
Case 8 NegDisease
Case 9 Yes Yes Yes NegDisease
Case 10 NegDisease

Attributes

 
 
 
Table 2.2  Associative Classification Interestingness Metrics 
in Representative and Balanced Class Samples 
 

Rule + Rule -
Class 1 160 40 200
Class 2 90 1710 1800

250 1750 2000 2000

8
80
64
94

Rule + Rule -
Class 1 800 200 1000
Class 2 50 950 1000

850 1150 2000 2000

40
80
94
94

Hypothetical Disease with 10% Prevalence

Representative Sample Sizes

EXCL (Rule + -> Class 1)

LSUP (Rule + -> Class 1)
Confidence (Rule + -> Class 1)
EXCL (Rule + -> Class 1)

Balanced Sample Sizes

Support (Rule + -> Class 1)

Support (Rule + -> Class 1)
LSUP (Rule + -> Class 1)
Confidence (Rule + -> Class 1)
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Table 2.3  Confusion Matrix:  Classification Accuracy Metrics 
 

Pos Neg 

Pos
True 
Positive

False 
Positive

Positive 
Predictive 
Value 
(PPV)

 TP / 
TP+FP

Neg
False 
Negative

True 
Negative

Sensitivity Specificity

 TP / TP+FN  TN / TN+FP

Reference Standard 

Classification 
Algorithm
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Table 2.4  Derivation of Sensitivity and Specificity Metrics 
 

Case #

Classifi- 
cation 
Result

Cumulative 
TP Count Sensitivity

Cumulative 
FP Count Specificity

0% 100%
1 TP 1 12.5
2 FP 1 87.5
3 TN
4 TP 2 25.0
5 FN
6 TP 3 37.5
7 TN
8 TN
9 FP 2 75

10 TN
11 TP 4 50.0
12 TN
13 TP 5 62.5
14 FP 3 62.5
15 TP 6 75.0
16 TN

Reference 
Standard 
Positive (TP + FN) 8 Sensitivity

Cum TP 
Count / 8 75.0%

Reference 
Standard 
Negative (TN + FP) 8 Specificity

1 - (Cum FP 
Count / 8) 62.5% 
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Abstract 
With the growing national dissemination of the electronic health record (EHR), there are 
expectations that algorithms to identify disease-based cohorts for health services research will be 
deployable across health care organizations.  Toward that goal, a novel associative classification 
framework was designed to generate prediction rules to identify cases similar to the exemplar 
cases on which it was trained.  It processes exemplars for any medical condition without 
modification.  The framework is distinguished by core candidate data attributes based on common 
EHR observation categories, application of associative classification methods to cull disease-
specific attributes and predictive rules from the core attributes, and support for attribute concept 
hierarchies to manage the various layers of granularity in native EHR data.  The framework 
processes and an evaluation of prediction rules generated to identify diabetes mellitus are 
presented. 
 
Introduction 
Functionality to identify disease-based cohorts has been explicitly defined as an objective in the 
developing national standards for meaningful use of the EHR.3  A framework (FW) was developed 
to generate prediction rules to identify research cohorts for various medical conditions using a 
generalized approach from coded EHR content.  The general use case for the design was:   (1) a 
set of exemplars for a given medical condition are identified, (2) a clinical profile (predictive rule 
set) is generated from the exemplars’ EHR data using the FW, and (3) the rules are applied to the 
entire patient population in the EHR to identify additional patients with the specified condition.  
Since the objective was to identify new cases based on data patterns of known cases, it was called 
a ‘cohort amplification’ framework. 
 
Background 
Algorithms have been developed from EHR data, including standard diagnosis and procedure 
codes, to identify disease cohorts for research.  A typical process was described by Starren:30  (1) 
define a cohort by clinical characteristics, (2) translate to EHR data, (3) analyze the data, (4) 
identify subjects, (5) validate the algorithm, and (6) iterate.  The FW may leverage the experts’ 
time by providing information on EHR data content and distinguishing features among cohort 
exemplars early in the process: (1) define characteristics, (2) identify exemplars of the cohort, (3) 
expose EHR data availability and predictive value for exemplars, and then formulate an algorithm, 
validate and iterate. 
 
Natural language processing (NLP) of free-text provider documentation, a rich source of 
information in the EHR, is an active and promising area of research for purposes of disease case 
identification 31.  The FW complements NLP efforts with domain knowledge and an opportunity 
to combine evidence. 
 
The FW was developed from data in a large, integrated health care delivery organization with a 
mature enterprise-wide, longitudinal EHR.  The Intermountain Healthcare Enterprise Data 
Warehouse provided the EHR data for secondary use that enabled development.  Three diseases 
were selected for the focus of development:  diabetes mellitus (DM), asthma, and clinical 
depression.  These diseases are significant health problems and have established health care 
guidelines, which provided a source of domain knowledge for development and testing of the FW.  
IRB approval was granted for this research from both the University of Utah and Intermountain 
Healthcare.  Study data contained no protected health information. 
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Methods 
1.  Description of the Cohort Amplification Framework  
 
The cohort amplification FW was designed to meet the use case depicted above the dashed line in 
Figure 1.  The processes and their implementation artifacts are depicted below the dashed line.  
Each process is described below: 
 
EHR attribute selection 
The basis of the candidate attribute categories was coded attributes defined by a national EHR 
certification organization as content requirements for ambulatory EHRs.44  There were no 
technical limitations to adding disease or site- specific content, but the FW focus was standardized 
content for generalized application.  Data used in the FW included diagnosis and procedure codes, 
provider and ambulatory clinic procedure codes,  clinical lab tests performed, lab tests coded as 
abnormal, imaging procedures performed, medications in the EHR Medication List, and other 
demographic and encounter features.  Exemplar patient attributes were populated once for each 
unique coded observation that occurred.  Continuous observations were discretized as binary 
attributes:  ‘age > 47 = true.’  There was no treatment for missing values.  Attributes represented 
data that were populated in the EHR.  An implicit attribute was the ‘class’ designation, which was 
generated from the exemplar lists, e.g., case or control.  A class attribute is a fundamental of 
associative classification, serving as the consequent of all rules. 
 

 
Figure 1 – Cohort Amplification Framework 
 
Attributes from the EHR observations were mapped to concepts at higher levels of abstraction.  
The FW used a simple map of ‘is-a’ relations from an EHR attribute to a list of abstract concepts.  
When an attribute was instanced, all mapped concepts were also instanced.  For example, URINE 
MICROALBUMIN and SERUM ALBUMIN were mapped to ALBUMIN.  The FW considered 
all three  as attributes to generate prediction rules from cross-level associations.86  
 
The initial step in associative classification was applied to all EHR and derived attributes.  A Java 
component developed for the FW was used.  A data set containing attributes at a specified 
frequency of occurrence among disease cases was transferred to the data mining software. 
 
Associative classification mining in the Waikato Environment for Knowledge Analysis  
The next step was to use the Waikato Environment for Knowledge Analysis (WEKA) toolkit for 
association mining.52  The Apriori algorithm constrained to the class attribute consequent was 
used.47  Thabtah60 described the steps in associative classification (AC) as discovery of 
associations among the training attributes, generation of rules associating other attributes with the 
class attribute,  ranking and pruning rules to form a predictive rule set, and testing it on unseen 
data.  WEKA Apriori was used for discovery and generation of the class association rules.  The 
single attribute rules input from the EHR were selected according to standard AC interestingness 
metrics specialized for this application.  In AC, the most common measures of interestingness are 
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‘support’ – the frequency of a rule in the data set – and ‘confidence’ – the likelihood of a 
particular class occurring, given the rule.  These metrics only describe the training data from 
which they were generated.  
 
In the FW, ‘local support’ for the disease class (LSUP), rather than support, was used.  This is the 
frequency of the rule (a single attribute or a combination) among the disease case exemplars.  For 
example, if 82% of DM exemplars have the attribute ‘Abnormal_HbA1c’, the LSUP is 82.  A 
specialization of confidence was used:  ‘exclusiveness.’  Exclusiveness of the disease class 
(EXCL) is its local support divided by the sum of both the disease and the control classes’ local 
support.  For example, if the LSUP of ‘Abnormal_HbA1c’ among control exemplars is 0.6, then 
the EXCL is 82/(82+0.6) = 99 (expressed as a percentage).76 
 
The WEKA Apriori association program was modified to use a variable threshold on the 
maximum number of attributes combined in a rule antecedent.  Exponential combinations of 
attributes can accrue, if unbounded.83  Antecedents with three or more attributes did not contribute 
to predictive accuracy in testing of configuration choices for the DM data presented.  Constraining 
the number of attributes per rule also enabled the Apriori algorithm to run in the available 
processor memory (16 Gb.) at the desired minimum support threshold (2.5%). 
 
Prune weak rules 
The next step was to prune weak rules.  Association rules must be pruned (generalized) for 
prediction purposes.  The most concise set of rules without loss of accuracy is desirable.59  Three 
pruning methods were implemented in Java components using the interesting attribute sets and 
metrics from WEKA.  Redundant rule pruning48 and database coverage pruning49 were performed.  
An additional pruning method was developed to improve the generality of rules in this EHR data 
setting.  The methods are not detailed in this overview.  Functionally, configuration choices in the 
new pruning method were designed for specification on an application basis:  the desired 
specificity threshold for the prediction rule set, the minimal number of pruning data set cases each 
rule must cover, and the minimum positive predictive value (PPV) of each rule on pruning set 
cases.  PPV is the proportion of case coverage by the rule to the total coverage by the rule. 
  
The new pruning method was also designed to manage multiple concept levels in the candidate 
rules.  Higher order concept levels were preferred, given two concept levels for the same attribute.  
For example, a drug observation represented by an ingredient, ‘Insulin’, was mapped to a drug 
class, ‘Antihyperglycemic.’  If both presented as single attributes in the final pruning process, 
‘Insulin’ was pruned. 
 
The final pruned rule set was executed against a separate test database.  The sensitivity and 
specificity of the prediction rule set on test data was calculated. 
 
Domain knowledge 
The final pruned rules should be examined for concordance with domain knowledge.  Evaluation 
of the machine-generated knowledge and iteration of the process steps are cornerstones of 
knowledge discovery from data mining.54  
 
2.  Qualitative Evaluation of the Cohort Amplification Framework 
 
Three parameters for successful prediction rules were defined for this evaluation:  (1) accuracy on 
test data, (2) consistency with domain knowledge, and (3) conciseness and generality.  Training 
and test data were sampled from the EHR data of adult patients who visited an Intermountain 
Medical Group (IMG) Family Practice (FP) or Internal Medicine (IM) clinic in Salt Lake County 
at least once in 2005-2006 and at least once in 2007-2008.  DM case exemplars were a random 
sample of those with DM coded in the Problem List prior to 2007.  Control exemplars (CTLs) 
were a random sample of those with no Problem List DM codes prior to 2009 and no ICD-9-CM 
DM codes assigned during 2004-2008.  The sample sizes were 4,001 DM cases and 4,019 CTLs.  
The data mining timeframe was 2007-2008. 
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Four data sets for evaluation were generated in two random, stratified, two-fold cross-validation 
runs using the Knowledge Flow interface in WEKA.  Each of the 8,020 patient records was 
randomly assigned in each of two runs.  Each fold numbered ~2000 records for training data, 
~1000 for pruning data, and ~1000 for test data.  EHR attributes were selected if they had a 
frequency of at least 5% among cases:  there were 472 qualified attributes for the study 
population.  The main 3-digit ICD-9-CM code for DM (250) was not used. 
 
The AC processes were configured as follows:  The maximum number of attributes per rule 
antecedent was 2.  The Apriori minimum support threshold was 0.025; minimum confidence 0.95.  
The specificity threshold was 98, chosen because no viable rules were ranked below 98 in the 
pruning data.  Rules with pruning data set case counts < 3 and PPV < 80 were pruned.  The 
prediction rules generated in the pruning step were evaluated for each of the four sets. 
 
Results 
The sensitivity, specificity and their 95% confidence intervals for each set and the average are 
shown in Table 1.  For a common ICD-9-CM algorithm to identify DM (1 inpatient or 2 outpatient 
codes/2 years), sensitivity (average = 95.8%) was higher than those reported in two large studies:  
72% and 80%.26, 95  Specificity (average = 98.8%) was the same as those reported:  98% and 99%. 
 
SAM- 
PLE FOLD SENS Lo CI Hi CI SPEC Lo CI Hi CI

1 1 95.6 94.1 96.7 98.9 98.1 99.4
1 2 95.8 94.4 96.9 98.7 97.8 99.2
2 1 96.4 95.1 97.4 98.0 96.9 98.7
2 2 95.4 93.9 96.5 99.5 98.8 99.8

AVG 95.8 98.8  
Table 1 – Sensitivity and Specificity of Rule Sets 
                 with Confidence Intervals (CI) 
                 
The single attributes that participated in any of the four rule sets are shown in Table 2.  These were 
contrasted with single attributes from three published projects that described the identification of 
DM cases from EHR data.96-98  Other than ICD-9-CM codes, all three used elevated laboratory 
glucose assay results that were consistent with national diagnosis guidelines.  One used elevated 
HbA1c results, and one used both HbA1c test orders and elevated results.  One used all 
antihyperglycemic medications, one used all but metformin, and one used only three classes:  
metformin, insulins, and sulfonylureas (insulin release stimulants).  In contrast, the FW did not 
select laboratory glucose assays but identified additional laboratory parameters that discriminated 
DM patients.  Laboratory glucose assays were done in 94% of cases, but an abnormal value 
resulted in only 19% of cases, with exclusiveness of only 87%.  The blood glucose measured by 
professional glucometers during office visits was more predictive.  Tests for blood glucose, urine 
microalbumin and HbA1c were nearly as predictive as their respective abnormal results.   
Metformin, insulins and insulin release stimulants were found to be the strongest rules among 
antihyperglycemics as was noted by Wilke.98  The novel strong rule ‘Diabetic supplies (Pharm 
orders)’ was formed by an aggregate concept over several pharmacy orderables including home 
glucometers, lancets, test strips, diabetic ulcer preparations, and other blood monitoring supplies.  
This rule identified additional DM patients beyond the lab test and medication rules in all sets. 
 
The FW brings a new dimension to disease identification rules with combined attributes (Table 3).  
Metformin is known to generate false positives because it may be used in pre-diabetic conditions.  
However, it is the most common medication for DM.  Table 3 shows metformin combined with 
several other attributes, as it did not form a strong enough rule alone.  The combination with an 
HbA1c test and with a diagnosis or medication for dyslipidemia was consistent across rule sets.  
Both HbA1c tests and abnormal HbA1c results were strong single attributes, but they combined 
with other laboratory tests and attributes to form even stronger rules. 
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The conciseness and generality of the rules is shown in Table 3.  Each set had 10 or 11 rules.  
Eight rules (bold font) were shared in 3 or 4 sets.  Since each set started with ~2,000 rules after 
redundancy pruning, the generality of these machine-generated rules was encouraging.  The rules 
can be further generalized based on the FW’s exposure of patterns in the data, coupled with 
domain knowledge.  For example, separate rule sets can be generated using only HbA1c tests or 
abnormal HbA1c, as these two single attributes cancelled each other out in the pruning and test 
data.  Similarly, urine microalbumin, abnormal urine microalbumin and blood or urine albumin 
covered many of the same cases.  The final step in the FW processes, refinement and iteration, was 
not implemented for this evaluation. 
 
Category                                     
Attribute Description LSUP EXCL

# OF 
SETS

Dyslipidemia
Hmg Coa Reductase Inhibitors 72 79 3
ICD9 272 Disord lipoid metab 82 71 2
Diabetic supplies & services
Diabetic supplies (Pharm orders) 40 100 4
Antihyperglycemics
Insulin Release Stimulant 46 100 4
Insulin Response Enhancer 38 99 2
Insulins 31 100 4
Metformin 64 98 4
Diabetes-related laboratory tests
Glycosylated Hemoglobin (HbA1c) 94 96 4
ABN Glycosyl Hemoglobin (HbA1c) 82 99 4
Microalbumin, Urine 81 97 2
ABN Microalbumin, Urine 62 98 1
Creatinine, Urine 78 96 2
Glucose, Glucometer (Prof) 45 95 3
ABN Glucose, Glucometer (Prof) 42 96 1
Creatinine, Blood or Urine 81 90 4
Albumin, Blood or Urine 81 97 3
Demographic
Age > 47 86 62 1 
Table 2 - Single Attributes in All Rule Sets 
 
 

Sample  
1       
Fold 1

Sample  
1       
Fold 2

Sample  
2       
Fold 1

Sample  
2       
Fold 2

MICROALB_URINE & HbA1c 1 1
ABN_HbA1c & Albumin 10 1 1
Metformin & HbA1c 2 2 2 2
ABN_HbA1c & Creatinine 3 5 6
ABN_MICROALB_URINE & HbA1c 3
Disord_lipoid_metabol & Metformin 11 3
Insulin_Releas_Stimulators 4 4 4 3
Insulin_Resp_Enhancers 9 4
Insulins 5 7 10 6
Hmg_Coa_Reductases & 
ABN_HbA1c 5
Metformin & Hmg_Coa_ 
Reductases 6 9 5
Metformin & Age_GT_47 6
GLUC_GLUCOMETER & 
ABN_HbA1c 7 10 11
DiabSupplies_Pharmacy 8 8 7 7
CREAT_URINE & HbA1c 8
CREAT_URINE & ABN_HbA1c 8
Metformin & Albumin 9
ABN_GLUC_GLUCOMETER & 
ABN_HbA1c 9
Metformin & Creatinine 10 
Table 3 – Order of Rules in All Rules Sets 
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Discussion 
The cohort amplification FW offers potential for an efficient generalized approach to derive cohort 
identification rules from EHR data.  The strength of the approach is its ability to discover the 
patterns in the trail of data left by health care providers, who use an incalculable amount of 
professional knowledge to make diagnostic and treatment decisions.  The framework indirectly 
taps into that knowledge.  For diseases and conditions with less organized or shared care 
guidelines, the trail may not be as straightforward as it is for DM.  On the other hand, patterns of 
care for DM are so consistent that one must discard the stronger, dominant attributes to expose 
potential novel associations.  The merit of the rules is based upon many factors including the 
representativeness of the exemplars, the availability of candidate EHR data elements, the coverage 
of relevant evidence for a disease in the EHR (i.e., smoking history), and the strength of class 
association patterns found. 
 
The highly correlated, sparsely populated EHR attributes are well suited to associative 
classification methods.  There are known limitations in the AC methodology.  No causal or 
inductive reasoning is used to form associations.  There are many unexamined correlations among 
the attributes.  Over-fitting rules to exemplars used for training can limit accuracy in the prediction 
task.  Pruning weaker rules to gain a concise, general set of prediction rules helps to minimize this 
problem.  A limitation with the reliability and generalizability of prediction rules is that the 
interestingness metrics, on which rule generation is based, may vary by health care setting, data 
quality, and choice of exemplars. 
 
The FW was designed to be modular and extensible.  There are many potential improvements to 
the processes and algorithms in the FW.  These include linkage to standardized terminologies and 
concept hierarchies, support for sequential patterns, and evaluation of other methods for more 
efficient association, rule discovery and pruning.  Further research on portability across 
organizations would inform our assumption of standardized EHR content.  Further study of the 
reliability and accuracy of the cohort amplification framework applied to asthma is in progress. 
 
Conclusion 
The cohort amplification framework processes and rules generated for identification of DM were 
presented.  Evaluation results were successful. 
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CHAPTER 4 
 
 

RANKING AND PRUNING METHODS DEVELOPED FOR THE  
 

COHORT AMPLIFICATION FRAMEWORK 
 
 

Introduction 
 
 In this chapter, the process for generating associative classification rules for the 

identification of asthma cases is presented.  The best set of rules was selected on their 

generality and accuracy across ten random training/testing samples.  Novel ranking and 

pruning methods were used to generate the classification rules.  The ranking and pruning 

methods will be described and results compared to a standard method of ranking and 

pruning association rules, known as classification by association.1  Methods for 

evaluating generality and accuracy are described.  The best rules were used in a study of 

the accuracy of identification of asthma cases in a random sample of the EHR, which is 

reported in Chapter 5. 

 
Background 

 Ranking and pruning are critical methods to generate an associative classifier.  In 

association rule mining, a deterministic and deductive task has been performed.  An 

exhaustive set of all associations in the training data, given the constraints, are generated.  

Classification rule discovery is an inductive task, predictive of associations in data not yet 

seen.  Rigorous ranking and pruning strategies are used to select a concise, general and 
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accurate predictive subset of association rules from the exhaustive set.  General and 

concise rules go hand-in-hand because general rules, by definition, cover more cases.  

Therefore, fewer rules are needed.  Both accurate and general rules are preferred in most 

ranking and pruning strategies.  More accurate and more general rules help avoid 

overfitting to the training data.  Rules that are more accurate are more highly associated 

and less likely to be artifacts.  Rules that are more general are more representative of the 

theoretic target population represented by the training data.   

In associative classification, the goal is to take the association rules and form a 

classifier.  To develop the associative classifier, first association rule mining is used to 

discover the rules with the class as the consequent, and then ranking and pruning is 

performed over those rules to form the subset of classifying rules.  Further, their 

predictive accuracy must be evaluated on test data.2  A benefit of associative 

classification is that the ranking and pruning processes and interim results are 

understandable.  The entire process of developing an associative classifier is transparent.  

This enables understanding of the knowledge generated, development of domain specific 

ranking and pruning strategies, and the ability to revise the input data or configuration 

parameters in order to improve the next version of the classifier. 

Associative classifiers were also proven in some studies to be as accurate as the 

classic classification methods.  Chapter 2 contains an extensive literature review on 

associative classification.  Of particular relevance to the pruning strategies described and 

compared in this chapter, Chapter 2 details the classic pruning methods.   
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Methods 

Rules Development 

 The study population was described in Chapter 1.  In summary, the population 

sampled for all studies reported in this dissertation was adult patients who had at least 

two health care visits to Intermountain Medical Group family practice or internal 

medicine ambulatory clinics in Salt Lake County at least twice during a four year period, 

2005-2008.  The electronic health records (EHR) of this study population, as stored in the 

Intermountain Health Care Enterprise Data Warehouse, were the source for all data.  The 

EHR covers all health care given by Intermountain employed providers as well as some 

documentation of health care visits to providers affiliated with Intermountain.   

 During development of the cohort amplification framework, the number of 

disease-positive training cases required to generate reliable rules was analyzed.  Training 

set sizes of approximately 1,000 showed too much variability, while sizes of 

approximately 2,000 were as consistent as sizes of 4,000.  In order to generate disease 

exemplar training sets of size ~2,000 with ~1,000 each for pruning and testing of the 

association rules, 3,938 subjects with active asthma coded in the Problem List prior to the 

year 2007 were selected as the disease exemplars.  The asthma codes were developed by 

and for the clinicians using the Problem List.  An approximately equal sized control 

group of 3,948 subjects was randomly selected among the target population having no 

codes for asthma in the Problem List or the hospital or ambulatory encounter records 

during the years 2004-2008. For the intended purpose of classification of asthma cases 

versus no asthma in the EHR data, the control group was defined broadly in order to 
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represent all adult patient records without evidence of asthma.  The training sample sizes 

are balanced so that differences between them are normalized for rules discovery. 

 A description of the core candidate electronic health record data used in the 

cohort amplification framework was presented in Chapter 1.  Direct coded observations, 

aggregate concepts and derived concepts were used from the following EHR data 

sources:  

• Diagnosis and procedure codes (ICD-9-CM codes) 

• Provider and ambulatory clinic procedure codes (CPT codes) 3 

• Provider specialty (local codes) 

• Lab observations (CPT codes) 

• Lab observations with results coded as ‘Abnormal’ 

• Imaging procedures (CPT codes) 

• Medication list (FirstDataBank pharm/chemical groups and ingredients) 4 

• Age > 64 (true) 

• Female gender (true) 

 Single attributes were selected using Apriori association mining methods for 

frequent one-item sets.  This was accomplished in a Java class designed to accept a list of 

observation codes for each exemplar.  The output was a WEKA file containing the 

attributes that met a frequency threshold of 5% among diseases exemplars.  In other 

words, attributes that were populated in less than 5% of the disease exemplars were 

pruned.  A distinction that runs through the entire process of rules generation in the 

cohort amplification framework is a focus solely on rules that predict the disease class 

versus a comparison class.  There were 414 one-item attributes selected for association 



 

 

63

mining in WEKA and then further ranking, pruning, and testing to form an associative 

classifier.    

 The process of one-item attribute selection using the Apriori algorithm from the 

EHR required manual curation of the attributes.  The EHR query swept all observation 

codes within the categories listed.  Some observation codes were not germane to the 

rules, such as Healthcare Common Procedure Coding System (HCPCS) codes that are 

stored with the CPT codes.  This process was run twice, on both halves of a randomized 

split of the entire data set with a balance of disease and control exemplars.  The 

differences in the frequencies of the 414 one-item attributes were compared by a Paired t 

test.  The differences were not statistically significant (2 tailed p value = .71, 95% 

confidence interval of the difference -0.08 to 0.12).  At sample sizes of ~2,000, the 

frequencies of one-item attributes discovered in the EHR data among asthma exemplars 

were stable.  These two transfers from the EHR to a format suitable for data mining were 

used for the remainder of the rules discovery processes.  Randomly selected examples 

from the 414 one-item attributes are shown in Table 4.1. 

 The 3,938 cases and 3,948 controls were randomly sampled ten times into training 

sets of 1,969 asthma exemplars and 1,974 control exemplars.  The Waikato Environment 

for Knowledge Analysis (WEKA) Knowledge Flow user interface5, 6 was used to 

randomly split the subjects into two sets, stratified on the exemplar status.  One, the 

training set, was used to generate the association rules using the Apriori algorithm7 in 

WEKA version 3.6.2 on a computer with 16 Gb of memory.  The other set was for 

pruning and testing and was stored in a local SQL Server Express database by a 

Knowledge Flow component.  Both sets had an equal number of cases and controls.  The 
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work flow is shown in Figure 4.1.  This process was repeated ten times to generate ten 

random training/pruning/testing samples. 

 The first five samples were analyzed for the maximum number of attributes to 

combine in the antecedents of the association rules.  Since the Apriori algorithm is 

exponential in computing complexity with respect to the number of combinations 

performed, the lowest maximum number of attributes which achieves accurate rules is 

best.8  Redundant rules are not formed, and lower minimum support thresholds can be 

reached by the Apriori algorithm.  The five samples were consistently more accurate, by 

sensitivity and specificity on test data, when combinations were constrained at three 

attributes versus two.  This computing complexity is estimated as (414)3.  On the other 

hand, the best rules by rank, sensitivity gain, specificity loss, and agreement across 

samples had one or two attribute rule antecedents.  In addition, rules having one or two 

attribute antecedents are more general rules, and therefore, preferred.  Four-attribute 

combinations are of estimated computing complexity (414)4, which is difficult to 

accommodate in computer memory for WEKA Apriori association mining.  To 

accomplish it, the frequency threshold for the algorithm must be set higher.  The trade-off 

in frequency to gain four- attribute antecedents with low rank and low generality was not 

attempted.  The lowest frequency among disease exemplars that was reached with the 

three attribute maximum was 8%.  A comparison with rules generated at a two attribute 

maximum, which reached 5% frequency among disease exemplars, showed that no rules 

were missed by losing attributes with only 5-7% frequency among disease exemplars. 

 Five more samples with three attribute association rules were generated.  The ten 

sets of random samples of the exemplar data, each with candidate rules generated with a 
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maximum of three attribute rule antecedents in WEKA, were then used to create 

associative classification rules using ranking and pruning methods developed for the 

cohort amplification framework.  The methods are shown to perform better than classic 

ranking and pruning methods for this application.  One best set of rules to identify asthma 

cases in the EHR was selected from the rules generated in the ten random samples.  

 
Ranking and Pruning 

 The Apriori algorithm implemented in WEKA was used to perform the 

association rule mining step, constrained to a maximum of three attributes per rule 

antecedent and constrained to the exemplar status or ‘class’ as the rule consequent.  The 

minimum frequency or support was set at 8% for the disease class (4% overall).  WEKA 

provided an output file with all frequent-item sets with their total count and their class 

count.   In the framework, three downstream associative classification pruning steps were 

implemented using the output.  Ranking and pruning were performed on separate training 

data from the set used to create the rules. 

 
Redundant Rule Pruning  

 Classification based on multiple association rules (CMAR)9, a classic associative 

classification model, introduced the redundancy pruning method.  Redundancy pruning is 

implemented before the rules are ranked.  Multiattribute rules that cover the same or 

fewer cases and do not improve the confidence of a more general rule, e.g., a subset of 

the multi-attribute rule, are redundant.  If rule ‘Ra’ was met, then rule ‘Ra U Rb’ is 

redundant unless its confidence is greater.  Rule ‘Ra U Rb’ (child rule) cannot have more 
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support than ‘Ra’ (parent rule).  At most, it can have equal support.  The redundancy 

pruning method results in fewer, more general rules. 

 In the framework, a Java class parsed the WEKA output file and created a 

directed acyclic graph of the single attribute relations to their combinations and 

calculated and stored the local support and exclusiveness metrics for each.  Local support 

is the frequency of occurrence in the disease class, and exclusiveness is the normalized 

likelihood of the disease class occurring as the rule’s consequent.10  The exclusiveness 

metric is equal to the confidence metric for equal training sample sizes.  Although the 

exclusiveness metric is not representative of the population to which the rules will be 

applied, its relative values are consistent with the confidence metric and valid for ranking 

purposes.  The Java class pruned redundant rules and generated an output file with the 

remaining rules and their metrics for the next pruning steps. 

 
Database Coverage Pruning 

 The initial associative classification model, known as ‘classification by 

association’ (CBA), introduced the database coverage method.1  More than one rule may 

cover the same case to be classified.  The rules discovered by association rule mining are 

ranked in order of confidence, then support.  Processing the rules in ranked order, the 

training cases that meet the rule are removed from further consideration by a subsequent 

rule.  If no case meets a rule, the rule is pruned.  This continues until all training cases 

have been covered or all rules were tested.  Cases left uncovered are assigned to the class 

with the highest frequency in the training data.   The database coverage method seeks the 

most accurate rules, by rank, and eliminates less accurate rules that cover the same cases.

 Database coverage was implemented in the framework on the set of rules pruned 
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for redundancy.  In the EHR data used in the framework, as is true in transaction data in 

general, there are naturally co-occurring attributes in the data because they describe the 

same processes.  This was one of the main assumptions of the original association rule 

mining approach, but it leaves a conundrum for associative classification rules.  Small 

differences in rank can generate different sets of rules over samples of the same training 

data.  This is because selected rules in rank order will cover others that follow, which will 

be pruned if all their cases were previously covered.  The varying rules might predict the 

class equally well on the test data, but inconsistent rule sets are not appreciated by users.  

Otherwise, the associative classification rules are quite amenable to domain expert 

understanding.  Since one of the goals of the framework is to generate understandable as 

well as concise, general and accurate classifiers, a new ranking algorithm was developed 

to overcome this inconsistency. 

 
Framework Ranking and Pruning Improvements 

 The ranking was based on the principle of generality and also requires 

specification of a lower bound on the acceptable specificity for the set of rules.  

Sensitivity and specificity are trade-offs for accuracy of the rules.  The threshold could be 

placed on either.  However, it made more sense to specify the tolerance for incorrect 

classification, depending upon the intended application of the rules.  An abbreviated 

example is shown in Table 4.2.  With the rules ranked according to CBA, the specificity 

is calculated on a pruning data set.  The rules at or above the specificity threshold are 

reranked according to their absolute frequency (descending) among disease exemplars in 

the pruning data set.  Within absolute frequency, rules are ranked by exclusiveness 

(descending), then cardinality (ascending).  The CBA database coverage pruning 
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algorithm is executed on this reranked subset of rules, with further constraints to avoid 

over-fitting.  Rules that covered less than five disease exemplars were pruned, rather than 

the CBA algorithm’s acceptance of a rule that classified even one case.  Rules with a 

positive predictive value (PPV) less than 70 on the pruning data set were pruned. 

 The reranking by absolute frequency among disease exemplars promotes 

generality of the rules.  The higher ranking of more frequent attributes also results in 

attributes of more general concept levels covering all cases of any child concept levels.  

The duplicative and less general attribute will be pruned from the rules.  Since the rules 

most likely to cover disease exemplars are executed first, it was hypothesized that fewer, 

more frequent rules would be generated.  Pruning lower ranked rules was hypothesized to 

reduce misclassifications, resulting in better accuracy.  The requirement for a rule to 

cover at least five disease exemplars also supports generality.  The PPV constraint 

supports accuracy.  Generality will be measured by conciseness of the rule sets based on 

the number of rules.  Accuracy will be measured by the specificity of the rule sets.  

 Rules that survive pruning become the rule sets for each of the ten training sets.  

The sensitivity and specificity of the rules sets were assessed on test data set aside for 

each of the ten training sets.  The pruning methods developed for the framework were 

compared to the CBA methods on conciseness and sensitivity.  Conciseness is defined as 

the total count of rules in the set.  The framework pruning method was based on a 

threshold set on the specificity derived by CBA pruning methods and was the point at 

which the two processes deviated.  The specificities after the framework pruning process 

were usually improved above the thresholds, even though the subsequent specificity was 

measured on separate test data.  Specificity and sensitivity are bound, moving in opposite 
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directions.  For comparison of accuracy, the framework rule set sensitivity will be 

compared to the CBA sensitivity at the same specificity.   

 
 

Selection of the Best Rules 

 The best rules were selected from the ten training sets to identify asthma cases in 

the EHR based on their consensus across samples (generality) and their accuracy.  It was 

preferable to take a general set of rules from all ten training sets than to take the rules 

from one set, which performed well on the test data.   The ratio of the average sensitivity 

gain to the average specificity loss of the rule was calculated on test data.  The order of 

each rule in its rule set influences the actual contribution to sensitivity and specificity.  

Higher ordered rules cover more cases and leave fewer for subsequent rules to classify.  

There may be further bias in the uncovered cases.  The stronger associations execute first 

and the weaker lower ordered rules get the left-over cases.  The ratio of average 

sensitivity gain to average specificity loss is independent of the order and is an index of 

correct prediction to misclassification for each rule on the test data. 

 
Results 

 The five most accurate training sets on test data are shown in Table 4.3.  These 

had both the best sensitivity and the best specificity.  The remaining five sets are shown 

in Table 4.4.  For each ordered rule in each training set, the accruing sensitivity and 

specificity loss (the false positive accrual as a percentage of the true negatives) are shown 

as well as the contribution by each rule. 

 Table 4.5 shows the generality and accuracy measures for the ten training sets.  

The number of rules and sensitivity are shown for the rule sets pruned by framework 
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methods and pruned by CBA.  The specificity attained by the framework methods is 

shown.  The sensitivities for both methods are reported at this specificity.  Conciseness of 

the rules was dramatically improved with the framework pruning methods.  At a constant 

specificity, the sensitivity in the framework pruning methods was higher in seven training 

sets, equal in one, and slightly lower than the CBA pruning method sensitivity.  The 

average sensitivity using framework pruning was 58.2%.  The average for CBA pruning 

was 56.4%.  The difference in the sensitivity over the ten training sets was statistically 

significant (p = .028, 95% confidence interval 0.24-3.3) by a paired t test.  The 

framework pruning methods resulted in a modest improvement in accuracy. 

 The ten sets generated a fairly consistent sets of rules (Table 4.6).  The rules 

shown in italicized font were covered by a more general rule in the collection.  Usually 

these were three-attribute rules that were covered by a two-attribute rule.  However, 

‘Asthma Procedures’ (CPT 94010, BREATHING CAPACITY TEST; CPT 94640, 

AIRWAY INHALATION TREATMENT) was a conceptual subset of ‘Other Pulmonary 

Procedures’ (CPT 94010; CPT 94640, CPT 94240, RESIDUAL LUNG CAPACITY; 

CPT 94060, EVALUATION OF WHEEZING,BRONCHODIL RESPN PRE&POST 

DILAT; CPT 94720, MONOXIDE DIFFUSING CAPACITY).  No general-specific pair 

was generated in the same rule set since the ordering by absolute frequency forced the 

more general concept first.  The more general rule of a pair was preferred for the best set. 

 Rules were selected for the best set if the average sensitivity gain to average 

specificity loss ratio was 4 or greater because the most consistent rules, those that 

occurred in at least four rule sets, had a ratio greater than 4.  This ratio corresponds to an 
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80% likelihood that the rule, given its order, improved the overall accuracy of 

classification on test data. 

 The best rules are shown in Table 4.7.  They will be used in Chapter 5 to 

classify asthma cases in a random sample from the study population. 

 
Discussion and Conclusions 

 The processes used to generate a set of associative classification rules to identify 

asthma cases in the electronic health record were described.   An overview of the cohort 

amplification framework processes and workflow was described in Chapter 3.  In this 

chapter, the focus was the ranking and pruning processes developed for the framework in 

order to gain more general rules than were generated using the classic CBA methods.  

Compared to CBA, the framework ranking and pruning strategies improved both 

generality and accuracy of the rules on test data.     

 Improvements in rule ranking was listed as one of the interesting research 

directions in associative classification.11  Rule preference affects the accuracy of the 

classifier.  Two novel ranking approaches were introduced in this study.  The calculation 

of the sensitivity and specificity of the CBA-ranked rules on training data presented a 

metric that is familiar in the application domain.  Secondly, rules at or above a lower 

bound on the acceptable specificity, a parameter setting for the application at hand, were 

re-ranked according to the absolute frequency at which the rule was satisfied in the 

pruning data set.  This forced the most general rules to execute first.  This not only solved 

the problem of generating rules that are more consistent across training samples, it also 

automated the selection of the most general concept if multiple concept hierarchies were 
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present.  The rules ‘Asthma Procedures’ and ‘Other Pulmonary Procedures’, discussed in 

the Results section, are examples of the latter.  

 More conservative pruning strategies than those in CBA were used.  Pruning may 

have a domain-specific rationale.  The two objectives are to remove redundant and 

misleading rules for the classification task at hand.  Redundant rule pruning was used as 

described in the classic CMAR method.   Since the candidate EHR data represented 

routine processes of health care, the data were inherently highly associated.  To avoid 

over-fitting in this domain, higher thresholds were set on the number of training cases 

covered (generality) and the positive predictive value (accuracy) of each rule.  As a 

further step to avoid over-fitting, a separate slice of the training data was used to perform 

the ranking and pruning steps than the training data used to generate the rules. 
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Table 4.1  Random Examples of 414 EHR Candidate Attributes 
                 Frequencies Among Asthma Exemplars 
 
Attribute 

Sample 1 Sample 2
c82947_GLUC_BLD_LAB__QUANT 79 78
c84520__UREA_NITROGEN_ASSA 78 77
c84295__SERUM_SODIUM_ASSAY 78 77
c84075_ASSAY_ALKALINE_PHOS 71 70
c82247_BILIRUBIN__TOTAL_BI 71 70
isFemale_NO_DESCRIPTION__ 67 66
c85025_COMPLETE_CBC_W_AUTO 67 65
c80061_LIPID_PANEL_LIPID_P 61 59
GT_5_FF_Vis_Per_Yr_NO_DES 59 57
age_GT_47_NO_DESCRIPTION_ 59 60
c80061A__ABN_LIPID_PANEL__ 58 57
c84443_ASSAY_THYROID_STIM_ 57 56
c85025A__ABN_COMPLETE_CBC_ 54 54
Urinalysis__by_dip_stick__L186 53 52
c3000250272_Analgesics__Narcotic 47 46
c272_Disord_lipoid_metabol 46 46
c401_Essential_hypertensio 45 46
c3000253044_Fluticasone__H 44 45
c90658_FLU_VACCINE__3_YRS_ 39 40
c3000250264_Antidepressant 38 37
c3000252433_Salmeterol__Hi 32 33
c3000508986_Proton_Pump_In 31 31
c461_Acute_sinusitis__LSup 31 28

Frequency (%)
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Table 4.2  Example of Specificity Based Pruning (control sample size = 987) 
 

Rule CBA Rank
Control 
Count

Cumulative 
Control 
Count Specificity

Absolute 
Frequency 
Disease 
Exemplars

ALLERGY_SRVC AND Glucocorticoid 
AND Other_Pulmonary_Procedure 1 3 3 99.7 71
Salmeterol AND Diagnostic_Radiology 2 3 6 99.4 81

Glucocorticoid AND Albuterol AND 
Allergic_rhinitis 3 2 8 99.2 70
Leukotriene_Receptor AD Albuterol 4 0 8 99.2 85
Albuterol AND Montelukast 5 0 8 99.2 83
Salmeterol AND 
Need_for_prophylactic_vac 6 4 12 98.8 132
Salmeterol AND FLU_VACCINE 7 1 13 98.7 137
Albuterol AND Salmeterol 8 0 13 98.7 126
Antihistamines AND Salmeterol 9 1 14 98.6 123
Salmeterol AND 
IMMUNZATN_ADMIN 10 0 14 98.6 122
Salmeterol AND Hmg_Coa_Reducta 12 0 14 98.6 94
Salmeterol AND Oth_and_unspecified 13 0 14 98.6 109
Albuterol AND Fluticasone AND 
isFemale 14 0 14 98.6 118

Albuterol AND ABN_LIPID_PANEL 
AND isFemale 15 2 16 98.4 106
Leukotriene AND age_GT_47 AND 
isFemale 16 1 17 98.3 99 
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Table 4.3  Five Most Accurate Rule Sets of the Ten Training Sets 
 

Set R ule
R ule  

Orde r

Sen si - 
tiv ity  

Ac c ru al

S e ns . 
Ga in 
Th is  
R ule

S p ec i- 
fici ty 

A cc rua l

Sp ec . 
L os s 
T his  
R ul e

1 c30 00252 433_S a lm ete ro l 1 3 2.5 3 2.5 9 9 .0 1 .0
c30 0 02 50 3 86 _ G luco co rticoid AND  
c30 0 02 52 4 25 _ A lb utero l 2 4 4.2 1 1.7 9 8 .3 0 .7
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 5 0.8 6.6 9 8 .0 0 .3
c30 0 02 50 3 86 _ G luco co rticoid AND  
Asth m aPro ce du re s_cp t9 4 01 0 4 5 4.2 3.4 9 7 .9 0 .1
c30 0 02 52 4 25 _ A lb utero l AN D 
c82 9 47 _G LU C _B L D _L AB __ Q U AN T 5 5 7.0 2.8 9 7 .3 0 .6
BetaAd ren e rgH ic3N o tA lb u tO_ L 32 6 5 8.7 1.7 9 7 .3 0 .0

2 c30 00252 433_S a lm ete ro l 1 3 1.9 3 1.9 9 9 .3 0 .7
c30 0 02 50 3 86 _ G luco co rticoid AND  
c30 0 02 52 4 25 _ A lb utero l 2 4 4.1 1 2.2 9 8 .7 0 .6
c30 0 02 50 3 86 _ G luco co rticoid AND  
Asth m aPro ce du re s_cp t9 4 01 0 3 4 8.3 4.2 9 8 .3 0 .4
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 4 5 3.6 5.3 9 7 .9 0 .4
BetaAd ren e rgH ic3N o tA lb u tO_ L 32 5 5 5.7 2.1 9 7 .9 0 .0
c30 0 02 52 4 25 _ A lb utero l AN D 
c78 0 _G en er al_sym p to m s 6 5 7.7 2.0 9 7 .2 0 .7
c30 0 02 50 3 86 _ G luco co rticoid AND  
Oth e r_Pu lm on a ry_ P roce d ure  AN D  is Fem ale 7 5 8.0 0.3 9 6 .9 0 .3

3 c30 00252 433_S a lm ete ro l 1 3 3.9 3 3.9 9 9 .3 0 .7
c30 0 02 50 3 86 _ G luco co rticoid AND  
c30 0 02 52 4 25 _ A lb utero l 2 4 5.0 1 1.1 9 8 .5 0 .8
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 5 2.0 7.0 9 7 .9 0 .6
c30 0 02 50 3 86 _ G luco co rticoid AND  
Asth m aPro ce du re s_cp t9 4 01 0 4 5 4.8 2.8 9 7 .4 0 .5
c30 0 02 52 4 25 _ A lb utero l AN D isFe m a le 5 5 7.2 2.4 9 7 .0 0 .4
BetaAd ren e rgH ic3N o tA lb u tO_ L 32 6 5 8.9 1.7 9 6 .9 0 .1
c82 9 47 _G LU C _B L D _L AB __ Q U AN T A N D  
Asth m aPro ce du re s_cp t9 4 01 0 A ND  
ast hm aC om orb ids_ 47 3 7 5 9.1 0.2 9 6 .8 0 .1
c30 0 02 52 4 25 _ A lb utero l AN D 
Urin alysis_ _b y_d ip _ stick 8 5 9.8 0.7 9 6 .8 0 .0

4 c30 00252 433_S a lm ete ro l 1 3 3.3 3 3.3 9 8 .7 1 .3
c30 0 02 50 3 86 _ G luco co rticoid AND  
c30 0 02 52 4 25 _ A lb utero l 2 4 4.5 1 1.2 9 8 .0 0 .7
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.9 5.4 9 7 .6 0 .4
c30 0 02 50 3 86 _ G luco co rticoid AND  
Asth m aPro ce du re s_cp t9 4 01 0 4 5 3.1 3.2 9 7 .1 0 .5
c30 0 02 52 4 25 _ A lb utero l AN D isFe m a le 5 5 5.2 2.1 9 6 .4 0 .7
BetaAd ren e rgH ic3N o tA lb u tO_ L 32 6 5 7.1 1.9 9 6 .4 0 .0
c30 0 02 52 4 25 _ A lb utero l AN D 
c85 0 25 A __ AB N _C OM P L ETE_ CB C 7 5 7.4 0.3 9 6 .4 0 .0
c84 4 43 _AS SA Y_ TH YRO ID _S T IM  AN D 
Asth m aPro ce du re s_cp t9 4 01 0 8 5 8.7 1.3 9 5 .8 0 .6

5 c30 00252 433_S a lm ete ro l 1 3 1.0 3 1.0 9 8 .9 1 .1
c30 0 02 50 3 86 _ G luco co rticoid AND  
c30 0 02 52 4 25 _ A lb utero l 2 4 3.7 1 2.7 9 8 .1 0 .8
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.0 5.3 9 7 .5 0 .6
c30 0 02 50 3 86 _ G luco co rticoid AND  
Oth e r_Pu lm on a ry_ P roce d ure 4 5 3.4 4.4 9 6 .9 0 .6
c30 0 02 52 4 25 _ A lb utero l AN D 
Urin alysis_ _b y_d ip _ stick 5 5 5.4 2.0 9 6 .4 0 .5
BetaAd ren e rgH ic3N o tA lb u tO_ L 32 6 5 7.6 2.2 9 6 .3 0 .1
Asth m aPro ce du re s_cp t9 4 01 0 A ND  
V04 _N e ed _ fo r_p ro ph yla ctic_va cc ine 7 5 8.1 0.5 9 5 .8 0 .5  
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Table 4.4  Five Least Accurate Rule Sets of the Ten Training Sets 
 

S et R ule
R ule  

Orde r

S en si - 
tiv ity  

Ac c ru al

S e ns . 
Ga in 
Th is  
R ule

S p ec i- 
fici ty 

A cc rua l

S p ec . 
L os s 
T his  
R ul e

6 c30 00252 433_S a lm ete ro l 1 3 1.0 3 1.0 9 9 .1 0 .9
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c30 0 02 52 4 25 _ A lb utero l 2 4 2.7 1 1.7 9 8 .2 0 .9
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.1 6.4 9 8 .0 0 .2
c30 0 02 50 3 86 _ G luco co rticoid A ND  
O th e r_P u lm on a ry_ P roce d ure 4 5 2.5 3.4 9 7 .3 0 .7
c30 0 02 52 4 25 _ A lb utero l A N D isFe m a le 5 5 4.9 2.4 9 6 .7 0 .6
B etaA d ren e rgH ic3N o tA lb u tO_ L 32 6 5 7.1 2.2 9 6 .7 0 .0
c30 0 02 52 4 25 _ A lb utero l A N D 
c82 9 47 _G LU C _B L D _L A B __ Q U A N T A N D  
GT _5 _F F_ V is_ P er _Y r 7 5 7.5 0.4 9 6 .5 0 .2

7 c30 00252 433_S a lm ete ro l 1 3 2.1 3 2.1 9 9 .0 1 .0
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c30 0 02 52 4 25 _ A lb utero l 2 4 3.5 1 1.4 9 8 .5 0 .5
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.5 6.0 9 7 .9 0 .6
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c82 9 47 _G LU C _B L D _L A B __ Q U A N T A N D  
O th e r_P u lm on a ry_ P roce d ure 4 5 2.6 3.1 9 7 .3 0 .6
c30 0 02 52 4 25 _ A lb utero l A N D 
c82 9 47 _G LU C _B L D _L A B __ Q U A N T A N D  5 5 3.9 1.3 9 7 .1 0 .2
B etaA d ren e rgH ic3N o tA lb u tO_ L 32 6 5 6.0 2.1 9 7 .0 0 .1
c30 0 02 53 0 44 _ Flut ica son e  A N D 
c78 2 _S ym p to m s_in volv in g _sk in  A N D 
GT _5 _F F_ V is_ P er _Y r 7 5 6.5 0.5 9 6 .5 0 .5
c2_ A L LE R GY  S E R V IC E  A ND  
O th e r_P u lm on a ry_ P roce d ure 8 5 7.1 0.6 9 6 .4 0 .1

8 c30 00252 433_S a lm ete ro l 1 3 1.4 3 1.4 9 9 .2 0 .8
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c30 0 02 52 4 25 _ A lb utero l 2 4 3.5 1 2.1 9 7 .9 1 .3
c30 0 02 50 3 86 _ G luco co rticoid A ND  
O th e r_P u lm on a ry_ P roce d ure 3 4 8.0 4.5 9 7 .0 0 .9
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 4 5 4.1 6.1 9 6 .4 0 .6
c30 0 02 52 4 25 _ A lb utero l A N D isFe m a le 5 5 6.7 2.6 9 5 .7 0 .7
c30 0 02 52 4 25 _ A lb utero l A N D 
GT _5 _F F_ V is_ P er _Y r 6 5 7.9 1.2 9 5 .4 0 .3
B etaA d ren e rgH ic3N o tA lb u tO_ L 32 7 5 8.3 0.4 9 5 .4 0 .0

9 c30 00252 433_S a lm ete ro l 1 3 0.8 3 0.8 9 9 .0 1 .0
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c30 0 02 52 4 25 _ A lb utero l 2 4 2.2 1 1.4 9 7 .9 1 .1
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.6 7.4 9 7 .2 0 .7
c30 0 02 52 4 25 _ A lb utero l A N D 
c82 9 47 _G LU C _B L D _L A B __ Q U A N T 4 5 1.4 1.8 9 6 .5 0 .7
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c82 9 47 _G LU C _B L D _L A B __ Q U A N T 
O th e r_P u lm on a ry_ P roce d ure _ L2 6 5 5 5.8 4.4 9 5 .5 1 .0
B etaA d ren e rgH ic3N o tA lb u tO_ L 32 6 5 8.3 2.5 9 5 .4 0 .1

1 0 c30 00252 433_S a lm ete ro l 1 3 1.1 3 1.1 9 8 .5 1 .5
c30 0 02 50 3 86 _ G luco co rticoid A ND  
c30 0 02 52 4 25 _ A lb utero l 2 4 2.8 1 1.7 9 7 .6 0 .9
c30 0 02 50 6 52 _ Le u kot rie n e_ Re c_ A ntag 3 4 9.7 6.9 9 6 .7 0 .9
c30 0 02 50 3 86 _ G luco co rticoid A ND  
O th e r_P u lm on a ry_ P roce d ure 4 5 3.3 3.6 9 5 .9 0 .8
S eru m E lect roly tes  A ND  
A sth m aP ro ce du re s_cp t9 4 01 0 5 5 4.3 1.0 9 4 .6 1 .3
c30 0 02 52 4 25 _ A lb utero l A N D 
c85 0 25 A __ A B N _C OM P L E TE _ CB C 6 5 5.8 1.5 9 4 .4 0 .2
B etaA d ren e rgH ic3N o tA lb u tO_ L 32 7 5 7.6 1.8 9 4 .4 0 .0  
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Table 4.5  Generality and Accuracy of Rules 
                  Sensitivity Compared at Framework Specificity 
 

Set
Number 
of Rules

Speci- 
ficity

Sensi- 
tivity

Number 
of Rules

Sensi- 
tivity

1 6 97.3 58.7 33 53.2
2 7 96.9 58.0 52 57.1
3 8 96.8 59.8 52 58.6
4 8 95.8 58.7 48 55.5
5 7 95.8 58.1 57 57.5
6 7 96.7 57.1 61 54.7
7 8 96.4 57.1 54 57.9
8 7 95.4 58.3 70 58.3
9 6 95.4 58.3 45 53.5
10 7 94.4 57.6 61 57.7

Average Sensitivity:  58.2 56.4

Paired t Test of Sensitivity Differences in Sets
     95% Confidence Interval:
     2-tailed p value:

0.24 - 3.3
0.03

Framework Pruning CBA Pruning
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Table 4.6  All Rules Over Ten Training/Validation Sets 
 

R u le

N u m . 
o f 
R u le  
S e ts

L o c a l 
S u p - 
p o r t

A v g  
S e n s i -  
t i v i ty

A v g  
S p e c i-  
f i c i ty

R a tio  
S en s .  
to  
S p ec .

c 3 0 0 0 2 5 2 4 3 3 _ S a lm e t e r o l _ _ H i 1 0 3 2 3 1 .9 1 .0 3 1 . 9
c 3 0 0 0 2 5 0 3 8 6 _ G l u co c o r ti c o i d  
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l _ _ H i c3 1 0 2 5 1 1 .7 0 .8 1 4 . 1
c 3 0 0 0 2 5 0 6 5 2 _ L e u k o t r i en e _ R e c _ A n ta g 1 0 2 0 6 .2 0 .5 1 1 . 8
B e ta A d r e n e r g H i c 3 N o tA lb u t O r S a lm e r o l 1 0 9 1 .9 0 .0 4 6 . 5

c 3 0 0 0 2 5 0 3 8 6 _ G l u co c o r ti c o i d  A N D  
O t h e r _ P u lm o n a r y _ P r o c ed u r e _ L 2 6 4 2 1 4 .0 0 .8 5 . 3
c 3 0 0 0 2 5 0 3 8 6 _ G lu c o c o r t i c o i d  A N D  
A s th m a P ro c e d u re s_ c p t 9 4 0 1 0 4 1 8 3 .4 0 .4 9 . 1
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l _ _ H i c3  A N D  
i sF em a le 4 2 0 2 .4 0 .6 4 . 0

c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l _ _ H i c3  A N D  
c 8 5 0 2 5 A _ _ A B N _ C O M P L E T E _ C B C 2 1 7 0 .9 0 .1 9 . 0
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l _ _ H i c3  A N D  
U r i n a l y s is _ _ b y _ d ip _ s ti c k 2 1 6 1 .4 0 .3 5 . 4
c 3 0 0 0 2 5 0 3 8 6 _ G lu c o c o r t i c o i d  A N D  
c 8 2 9 4 7 _ G L U C _ B L D _ L A B _ _ Q U A N T  A N D  
O t h e r _ P u l m o n a ry _ P ro c e d u re 2 1 8 3 .8 0 .8 4 . 7
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l_ _ H ic 3  A N D  
c 8 2 9 4 7 _ G L U C _ B L D _ L A B _ _ Q U A N T 2 2 2 2 .3 0 .7 3 . 5

c 2 _ A L L E R G Y _ S E R V IC E  A N D  
O t h e r _ P u lm o n a r y _ P r o c ed u r e _ L 2 6 1 9 0 .6 0 .1 6 . 0
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l_ _ H ic  A N D  
c 8 2 9 4 7 _ G L U C _ B L D _ L A B _ _ Q U A N T  A N D  
G T _ 5 _ F F _ V is _ P e r _ Y r_ N O _ D E S 1 1 7 0 .4 0 .2 2 . 0
c 3 0 0 0 2 5 2 4 2 5 _ A lb u te r o l _ _ H ic 3  A N D  
c 8 2 9 4 7 _ G L U C _ B L D _ L A B _ _ Q U A N T  A N D  
i sF e m a le 1 1 7 1 .3 0 .2 6 . 5
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l_ _ H ic 3  A N D  
G T _ 5 _ F F _ V is _ P e r _ Y r 1 1 9 1 .2 0 .3 4 . 0
c 3 0 0 0 2 5 2 4 2 5 _ A lb u t e r o l_ _ H ic 3  A N D  
c 7 8 0 _ G e n e ra l _ s ym p to m s 1 1 4 2 .0 0 .7 2 . 9
c 8 2 9 4 7 _ G L U C _ B L D _ L A B _ _ Q U A N T  A N D  
A s th m a P ro c e d u re s_ cp t9 4 0 1 0  A N D  
a s th m aC o m o rb id s _ 4 7 3 1 9 0 .2 0 .1 2 . 0
c 3 0 0 0 2 5 0 3 8 6 _ G lu c o c o r t i c o i d  A N D  
O t h e r _ P u l m o n a ry _ P ro c e d u re _ L 2 6  A N D  
i sF e m a le 1 1 5 0 .3 0 .3 1 . 0
S e ru m E l ec t ro l y te s  A N D  
A s th m a P ro c e d u re s_ cp t9 4 0 1 0 1 1 8 1 .0 1 .3 0 . 8
c 8 4 4 4 3 _ A S S A Y _ T H Y R O ID _ S T IM _  A N D  
A s th m a P ro c e d u re s_ cp t9 4 0 1 0 1 1 3 1 .3 0 .6 2 . 2
A s th m a P ro c e d u re s_ cp t9 4 0 1 0  A N D  
V 0 4 _ N ee d _ f o r_ p ro p h yla c t i c _ v a c c in e 1 1 1 0 .5 0 .5 1 . 0
c 3 0 0 0 2 5 3 0 4 4 _ F lu ti c a so n e  A N D  
c 7 8 2 _ S ym p to m s_ i n v o lv i n g _ s k in  A N D  
G T _ 5 _ F F _ V is _ P e r _ Y r 1 8 0 .5 0 .5 1 . 0 
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Table 4.7  Best Rules Selected Among Ten Training Sets 

 Rule 
Number Rule Data Source

1 Salmeterol Med ingredient
2 Glucocorticoid AND Albuterol Med class
3 Leukotriene Receptor Antagonist Med class

4
Beta Adrenergic Agent Not Albuterol or 
Salmeterol Med class

5
Glucocorticoid AND 
Other_Pulmonary_Procedure Med class, CPT aggregate*

6 Albuterol AND Female Med ingredient, Demographic feature

7
Allergy_S pecialis t_Visit AND 
Other_Pulmonary_Procedure Visit feature, CP T aggregate

8 Albuterol AND Abnormal_CBC Med ingredient, Lab abnormalit y

9
Albuterol AND 
Urinalys is_by_dip_stick Med ingredient, Lab order

*  Breathing capacity test, airwa y inhalat ion treatment, pulse oximetry, monoxide 
diffusing capacity, residual lung capacity, bronchodilator response evaluation  
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CHAPTER 5 
 
 

ACCURACY OF COHORT AMPLIFICATION FRAMEWORK 
 

RULES TO IDENTIFY ASTHMA CASES IN THE EHR 
 
 

Introduction 

 The proposed value of the general disease cohort amplification framework was to 

learn the rules from known cases and apply them to identify additional cases.  A 

validation study of the rules generated for asthma was performed to test the accuracy of 

the rules to identify new cases in the EHR.  Validation is a recommended step in the 

application of framework rules in an EHR setting because it is a standard practice when 

introducing any new algorithm to identify cases for research.  The specific objectives of 

such validation studies may vary.  There may be use-case specific requirements for proof 

of accuracy.  Various reference standards may be available or preferred.  The current 

study was not intended for generality of the design.  The purpose was to demonstrate the 

value of a set of predictive rules generated by the cohort amplification framework to 

identify additional asthma cases in the same EHR setting. 

 The accuracy of the rules was tested on a random sample of 992 subjects in the 

original study population, described in Chapter 1.  These subjects were not used to 

generate the rules.   The validation set subjects were classified as positive or negative 

according to a composite reference standard developed for this study.  The rules were 
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executed against the validation set.  Accuracy was assessed by sensitivity and specificity 

of the rules.  A practical value of the rules was explored by evaluation of the sensitivity 

gain when rules were combined with a validated ICD-9-CM based algorithm to identify 

cases. 

 There was no existing gold standard for identification of asthma patients in the 

study population or the resources to generate one.  A composite reference standard (CRS) 

was developed from a combination of two imperfect but accepted standards and clinician 

review of provider documentation of care.  The CRS consisted of various versions of 

asthma documentation in the EHR.  By design, the framework used standard EHR 

content generated by routine health care delivery processes and documentation.  Rules to 

identify additional cases used the same EHR content.  Therefore, the reference standard 

positives for the validation study were patients who were considered to have asthma 

according to the medical records.  The three components of the composite reference 

standard were asthma Problem List codes, asthma ICD-9-CM codes, or statements 

interpreted as a probable diagnosis of asthma in the clinical text documentation in the 

Intermountain Healthcare EHR.   

 Because the prevalence of asthma was estimated to be 11 % in the study 

population, approximately 89 % of the test set was expected to be negative.  Many of the 

positive cases were determined by the coded evidence.  There were not resources to 

review the clinical text documents of all those with no coded evidence of asthma to find 

the additional asthma cases.  Text mining was used to select the most likely positive cases 

among those with no coded evidence.  The likely cases were reviewed by clinicians.  The 
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text mining method was validated, and the expected error in the composite reference 

standard was estimated accordingly. 

  
Background 

 
Reference Standards 

  
 The evaluation of the accuracy of a diagnostic test or predictive algorithm in 

clinical and epidemiologic research requires a standard for comparison.  The perfect 

standard is commonly called a ‘gold’ standard and is always preferred for research 

purposes.  However, there are often circumstances that prevent the use of a gold standard.  

The gold standard level of proof may be autopsy or an invasive test that cannot ethically 

be performed on all subjects.  The restrictions may be costs and resources associated with 

a thorough clinical review of cases or issues with access to the definitive records.  In 

research situations where a less than perfect standard of comparison must be used, the 

standard is called a ‘reference’ standard.  Methods that accommodate imperfect reference 

standards have been reported in the statistical and epidemiologic literature.  Two recent 

review articles offered guidelines for appropriate methods.1, 2  A composite reference 

standard was used to evaluate the accuracy of framework-generated rules to identify new 

asthma cases in the EHR because it enabled the use of multiple sources of evidence found 

in the electronic medical records.  Statistical adjustment of one component of the 

composite reference standard was used to accommodate known error in the text mining 

methods used to select the most likely potential positives for manual review by clinical 

experts.  
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Composite Reference Standards 

 The composite reference standard was described for situations when multiple 

imperfect reference standards may be combined to form a better, although still imperfect, 

reference standard.  The composite reference standard is an empirical methodology to 

leverage the available evidence.    The level of proof stands on the acceptability of the 

combined evidence to consumers of the research. 

 Alonzo and Pepe3, 4 described the composite reference standard (CRS) for binary 

outcomes: positive or negative. It is a staged approach in which one reference standard is 

applied.  Cases not covered are then subjected to another reference standard.  The 

examples of the use of this methodology were situations in which the first reference 

standard had good specificity, e.g., provided a believable level of proof that a positive 

determination was truly positive.  However, the first reference standard had unacceptable 

sensitivity.  Examples were diagnostic tests that would have been routinely applied if 

there were a clinical suspicion for the positive outcome and were not practical or ethical 

to apply when there was no evidence.  Those that are covered by the first reference 

standard are considered resolved.  The subsequent reference standard may be considered 

the ‘resolver’.  The generic model is diagrammed in Table 5.1.      

 Other than enabling the evaluation of a new test where no gold standard exists, 

the CRS provides a straightforward, deterministic reference standard based on observable 

evidence.  Several sources of evidence can be used, which is a practical approach to the 

sparse nature of many observations in the electronic health record.  In addition to the 

common clinical workflow of performing diagnostic tests differentially based on prior 

evidence, the evidence may simply not be stored in a consistent manner.  For example, 
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some providers may document a diagnosis using structured data and others may 

document via dictated textual notes only.  The CRS provides for a statistically unbiased 

comparison of a new test.  No statistical manipulations are required. 

 
Statistical Adjustment for Reference Standards  

with Known Error Estimates 

 In the case where there are imperfect reference standards with quantifiable error, 

there are statistical methods to adjust the sensitivity and specificity metrics for the new 

test.  Staquet’s equations 5 estimate the sensitivity and the specificity of a new test when a 

reference standard is imperfect but with known sensitivity and specificity and the new 

test and the reference standard are otherwise independent.  With reference to Table 5.2, 

the equations are   

 
 SENSITIVITY NEW TEST  =  (A + C) specificityRS  – C /  
 Equation 5.1 
                    N (specificityRS – 1) + (A + B) 
 

 SPECIFICITY NEW TEST  = (B + D) sensitivityRS  – B / 
 Equation 5.2 
      N (sensitivityRS) – (A + B) 
 
  
 The equation for sensitivity was given in Equation 2.8, and the equation for 

specificity in 2.9.  Staquet’s adjustment can be applied to either the sensitivity or the 

specificity or both.  Table 5.3 shows a hypothetical confusion matrix for a new test for a 

disease with 10% prevalence with the assumption that the reference standard is perfect.  

Table 5.4 shows the adjusted specificity under the assumption that the sensitivity of the 

reference standard was 85% but the specificity was perfect.  The cell contents of Table 

5.4 show the logic and the adjusted specificity of the effect of Equation 5.2 on Table 5.3.  
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Since the specificity of the reference standard was perfect, the sensitivity was not 

adjusted, as follows from Equation 5.1. 

  Application of Staquet’s adjustment has often been reported in the 

literature and was recently reported to be the preferred adjustment when contrasted with 

two other methods.6 

 
Reference Standards for Asthma 

Diagnosis of Asthma 

 An expert panel, commissioned by the National Asthma Education and 

Prevention Program  Coordinating Committee and coordinated by the National Heart, 

Lung, and Blood Institute of the National Institutes of Health, developed guidelines for 

asthma assessment, treatment and control.7  They defined asthma as a “common chronic 

disorder of the airways that is complex and characterized by variable and recurring 

symptoms, airflow obstruction, bronchial hyperresponsiveness, and an underlying 

inflammation.”  Airway obstruction or narrowing, with subsequent airflow interference, 

is the dominant event leading to the typical clinical symptoms:  wheezing, breathlessness, 

chest tightness, cough and mucous production.  The bronchoconstriction may occur 

quickly, in response to variety of allergens or irritants.  These symptoms require and 

respond to bronchodilator therapy.  Airway inflammation is variable in intensity, cellular 

biology, and response to therapy and may distinguish asthma subtype phenotypes.  As the 

disease progresses, swelling of the airways, hypersecretion of mucus and structural 

changes may occur and may not respond to treatment.  Permanent structural changes are 

associated with a progressive loss of lung function. 
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 What causes asthma?  The complex disease has been characterized by abnormal 

immune system physiology, genetic predisposition, higher frequency among women in 

adult onset asthma, allergies and/or exposure to allergens, and certain respiratory viruses.  

Less well established environmental associations include tobacco smoke, air pollution, 

occupations, and diet.  Current treatment can control symptoms but not prevent 

progression to the individual’s underlying severity of asthma.  In the opinion of the 

Expert Panel, there is insufficient evidence to recommend any specific strategies to 

prevent the development of asthma. 

 The Panel provided recommendations to establish a diagnosis of asthma.  The 

clinician should assess for episodic symptoms and partially reversible airflow obstruction 

and exclude alternative diagnoses.  Methods to establish the diagnosis are detailed 

medical history and physical exam focused on the upper respiratory tract, chest, and skin.   

Spirometry is required to demonstrate obstruction and assess reversibility.  Reversibility 

is determined either by an increase in forced expiratory volume of ≥12% from baseline or 

by an increase ≥10% of predicted forced expiratory volume after inhalation of a short-

acting bronchodilator.  Additional studies should be performed as necessary to exclude 

alternate diagnoses. 

 In primary care, asthma may be suspected based on symptoms and history.  

Patients presenting with symptoms of airway obstruction are uncomfortable, and the 

provider may try drug therapy to open their airways.  The suspicion of asthma may not be 

resolved in the medical record. Even if the trial is successful symptomatically, a reliable 

diagnosis of asthma should be supported by spirometry.  A lack of objective testing and 

follow-up to determine asthma according to practice guidelines has been described.8-10  
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Incorrect diagnosis of asthma was studied in several European primary care settings.11-14  

A substantial rate of misdiagnosis of COPD as asthma among those greater than forty 

years of age has been reported.15 Airway obstruction of unknown etiology may be 

diagnosed as ‘reactive airway disease’ and treated with the same medications as for 

asthma.  This nonspecific diagnosis may prevent an appropriate workup to determine if 

the adult patient has asthma.16, 17 

 
Gold Standard for Asthma 

 The gold standard for asthma diagnosis is, by definition, the expert consensus 

criteria to diagnose asthma.7  The problem with the gold standard was described in a 

verification study of administrative disease codes to identify pediatric asthma cases using 

a gold standard based on the Canadian Asthma Consensus Report as reflected in the 

medical record.  The criteria “had to be modified to reflect the cursory level of 

information available based on chart abstraction.”18  Some studies claim the acceptance 

of encounter diagnosis codes as reference standards.19, 20  The Problem List has been used 

as a reference standard.  Others have used methods of inferring a diagnosis of asthma 

from the clinical documentation.  

 
ICD-9 based reference standard 

 The ICD-9-CM category ‘493 Asthma’ and all subclassifications were used in the 

reported reference standards for asthma.  The ICD-9-CM Official Guidelines for Coding 

and Reporting 21 address the overlap in COPD, asthma and bronchitis.  Generally, the 

coding should follow the terms that were documented by the treating clinician.  The 

guidelines contain some arbitrariness for coding acute exacerbations of asthma comorbid 
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with chronic obstructive bronchitis or COPD as the primary code, while the bronchitis or 

COPD would be primary in a nonacute episode.  The ICD-9-CM index defines ‘Asthma, 

unspecified’ as an asthma subclassfication.  Coders may use ‘493.9’ to code ‘reactive 

airway disease’ in adults.  There is inherent uncertainty in the ICD-9-CM codes as a 

reference standard for asthma. 

 Three ICD-9-CM algorithms to ascertain asthma among adult patients using 

ambulatory ICD-9-CM codes were considered for this study.  Blais et al.22 validated 392 

family practice subjects coded as asthma in the ambulatory, fee-for-service billing 

records against provider documentation.  They estimated that approximately 77% of the 

ambulatory asthma diagnoses in the population-based billing system were provided by 

family physicians.  Sensitivity was 85.5% and specificity was 88% for at least two 

asthma codes in a one-year period.  Lix et al.23 validated 529 subjects coded as asthma in 

ambulatory and inpatient encounters against population-based health surveys.  Sensitivity 

fell between the 95% confidence interval from 43.9% to 51.3%.  Specificity fell between 

97.3% and 98.3% for algorithms for at least two ambulatory or one inpatient asthma code 

in a five-year period.  Cases identified by inpatient-only codes contributed little to the 

population studied (0.1%). 

 Specificity was the important metric for the components of the composite 

reference standard developed for this study.  The specificity may have been 

underestimated in the Blais study.  They discussed the limitation of incomplete medical 

documentation and did not report the exact statements required to substantiate a diagnosis 

of asthma.  At face value, it appears they required a diagnostic statement, which others 

have found to be insufficient.  The Lix study validated the billing claims by the patient’s 
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independent report of having asthma in a population-based survey in the coverage area.  

In that context, the low sensitivity is not surprising, as patients may not have had an 

asthma-related visit during the five years or the asthma may have been comorbid with 

and coded as other respiratory illness.  The rigorous study investigated several algorithms 

over varying time periods.  The five-year period was consistent with the duration of 

evidence used for the other components of the reference standard for this study.  An  

algorithm requiring two asthma codes was substantiated by Pacheco et al.,10 who found 

that at least two asthma-related events were required to accurately classify asthma 

patients.  The Lix algorithm for two visits over five years was selected as the reference 

standard for ICD-9-CM codes for the current study. 

 
Problem List 

 Although Problem List in the EHR is known to be incomplete, it has been shown 

to be reliable at >98% specificity.24, 25  Szeto et al.25 studied the accuracy of the 

ambulatory Problem List compared to chart review for 148 patients attending a general 

medicine clinic at a Veterans Administration (VA) hospital.  Sensitivity ranged from 42 

to 81%, while specificity ranged from 98 to 100%.  The Problem List has been used as a 

reference standard for positive disease in recent studies.26-28  An algorithm to identify 

asthma cases for genomewide association studies in the Electronic Medical Records and 

Genomics (eMERGE) network29 described the Problem List codes for asthma as a 

medical diagnosis of asthma.10 

 The literature supports high specificity of an asthma diagnosis in the Problem 

List.  It is consistent with the expected specificity using the ICD-9-CM algorithm selected 

for this study.  Further, and more importantly, the uncertainties of the asthma diagnosis 
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have been noted.  A coded entry for asthma in the Problem List may be incorrect by 

validation standards, but asthma may have been suspected at some visit and used for 

treatment decisions by the provider.  In addition, notation in the EHR Problem List is 

considered part of the legal medical record. 

 
Expert Review of Clinical Documentation 

 Various methods to review the clinical documentation for an asthma diagnosis 

have been reported.  Wilchesky et al.30 used trained study personnel to review a five year 

period in each chart and record whether asthma, as well as 25 other medical conditions, 

were present or absent.  Blais et al.22 reported study nurse review of the chart for a 

diagnosis of asthma.  Neither reported further on the words or conditions constituting an 

asthma diagnosis.  Three studies published criteria to determine asthma from the clinical 

documentation as shown in Table 5.5.18, 31, 32  Review of clinical documents is time 

consuming, and the cost of labor can be high.  Only one of these studies18 used physician 

reviewers.  Two used nurses, one used medical records technicians, and one used trained 

abstractors. 

 
Text Mining 

 Text mining methods were used to limit the number of cases requiring expert 

review of the clinical documentation.  Cohen and Hersh33 described text mining as a way 

to examine the relationships of specific information both within and between documents.  

Text mining techniques used in the current study were information extraction, 

specifically named entity recognition, and data mining.34  Named entity recognition 

identifies the terms of interest in the text.   Named entity recognition can be difficult to 
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accomplish, given that the terms may have multiple meanings, may consist of multiple 

words and may be misspelled.  Misspellings in the clinical documentation are reportedly 

in the range of 10%.35  In the current study, the named entities searched for a direct 

mention of ‘asthma’ in the clinical documents were singular terms and rarely used with a 

different meaning.  In text mining, conventional data mining methods may be applied to 

text features.  A text feature of interest for the current study was the frequency of 

documents having a named entity for asthma for each subject.  The Oracle data mining 

manual presented the use of frequencies of named entities to characterize documents and 

the exploration of their patterns as a common text mining task.36 

 
Methods 

 The study was designed to evaluate the sensitivity and specificity of rules 

generated by a general disease classification framework to identify asthma cases in the 

electronic health record.  The validation set consisted of 992 randomly selected subjects 

from the target population as described in Chapter 1.  The validation subjects were 

assigned as positive or negative for asthma.  A small number of negative cases had 

‘possible’ asthma, which did not meet the criteria for ‘probable’ asthma.  The rules were 

executed against the 2007-2008 EHR data content for the validation subjects.  The 

sensitivity, specificity, and their 95% confidence limits were described for the rules and 

for the union of subjects identified by either the rules or the ICD-9-CM algorithm used in 

the study.  
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Framework Generated Rules 

 The rules to identify new asthma cases were generated using the cohort 

amplification framework.  This associative classification framework was designed to use 

generalized EHR candidate data and processes to generate prediction rules to classify 

multiple health conditions in the EHR.   The framework was described in Chapter 3.  The 

development of the rules used in the current study was presented in Chapter 4.  The rules 

were selected from ten sets of rules generated on separate random samples of the training 

data based on the individual rule’s generality and accuracy. 

 The rules are expressed as attributes or combinations of attributes present in the 

EHR during the two year data mining period, 2007-2008.  The expressed rules represent 

the full rule syntax:  ‘if <attributes> is true, then classify as an asthma case’.  The rules 

are shown in Table 5.6. 

 
Validation Set 

 The validation set (n=992) were randomly selected from the target population 

described in Chapter 1 and were not used in the development of the rules.  The validation 

set were annotated as probable asthma cases or negative for asthma.  The validation cases 

were classified from the available coded evidence for disease in the electronic health 

record as well as expert review of the clinical documents to determine additional 

probable asthma patients that may not have been coded as such.  The negative group 

included those with suggested evidence not meeting the coded standards or the 

documentation criteria (Table 5.5).  The validation set was created and classified before 

the rules were executed.  The rules were executed against data for subjects in the 

validation set during the years 2007-2008. 
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Composite Reference Standard for the Study 

 The three components of the composite reference standard (CRS) for positive 

disease were Problem List codes, ICD-9-CM codes, or statements indicating asthma in 

the clinical text documents as interpreted by physicians expert in the diagnosis of asthma.  

CRS negative disease was determined if there was no coded evidence, and either 

physicians determined asthma was not probable from clinical documentation or asthma 

was not mentioned more than once in five years of clinical notes.  The composite 

reference standard is shown in Table 5.7.   

 The validated ICD-9-CM based algorithm used was two ambulatory visits or one 

inpatient visit, including emergency department, over a two year period, 2007-2008.23  

Either the ICD-9-CM based evidence or an active coded Problem List entry for asthma 

determined a positive case, but did not resolve whether the case was negative.  The 

‘Resolver’ was the Clinical Text Documentation.  Assignments were made to probable or 

negative asthma status based on statements about asthma in clinical text documents 

stored for study patients in the Intermountain Enterprise Data Warehouse (EDW) over a 

five-year period, 2004-2008. 

 A text mining approach was used to identify clinical documents with mentions of 

asthma terms and to develop a probability-based classifier to distinguish the most likely 

cases for further manual review to identify asthma cases without coded evidence.   

Details of the development and verification of the text mining approach are described in 

Appendix A.  The result was a simple Bayes rule classifier based on the total number of 

clinical documents with mentions of asthma, including ten variations of the term and its 

common misspellings, per subject over a five year period.  The model demonstrated a 
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probability of 1.3% that a subject with zero or one documents containing the ten asthma 

terms was likely to have asthma.  It was developed on 10,448 random subjects from the 

target population described in Chapter 1.  The Bayes negative asthma status prediction 

model is shown in Table 5.8.  Verification of the model’s prediction of negative asthma 

status was conducted by manual review of a convenience sample of 160 test subjects 

(2%) with zero or one clinical documents containing asthma terms.  The verification 

process used a liberal interpretation of a single probable asthma statement as an error.  

The error rate was 2.5%. 

 The ‘negative asthma status’ prediction model was populated with data from the 

validation set with similar results (Table 5.9).  Thirteen percent of the predicted negative 

asthma status validation subjects’ clinical documents were reviewed by an independent 

nurse reviewer.  Clinical document review methods are described in Appendix B.  The 

error rate was 1%.  Seventy-eight percent of the validation sample was covered by the 

negative asthma status prediction model, with an estimated chance of falsely labeling a 

positive case as a negative one of 1-2.5%.  Assuming the highest error estimate (2.5%) 

and using Staquet’s adjustment, the composite reference standard has an estimated 

sensitivity of 87% (Table 5.10).  Assuming the lowest estimate (1%), the estimated 

sensitivity is 94% (Table 5.11). 

Cases in the resolver component of the composite reference standard with more 

than one document with an asthma term (n=98) were manually reviewed (Appendix B) in 

two stages.  First, expected mentions among negative cases were screened out (n=52).  

These consisted of hypothetical statements about the disease such as “at risk for”, 

references about someone else and the disease such as in “family history of”, or 
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assertions that the patient did not have asthma.37, 38  Cases with a statement concerning 

the possibility of a diagnosis or history of asthma were reviewed by physician experts 

(n=46).  Of these, 28 subjects were judged as probable asthma cases.  For purposes of this 

study, the composite reference standard was assumed to have perfect specificity.  Codes 

or statements defined as positive for the reference standard were accepted as a provider’s 

best judgment at the time, given the uncertainty and misdiagnosis of asthma previously 

described. 

 
Statistical Analysis 

 The sensitivity and specificity with 95% confidence intervals were computed for 

the classification of the validation data using the framework rules.  Standard algorithms 

for sensitivity (Equation 2.8) and specificity (Equation 2.9) were used, reporting both 

adjusted and nonadjusted specificity, and the 95% confidence intervals were computed 

using the Wilson score method.39  This sensitivity was also computed and reported for the 

cases covered by either the framework or the validated ICD-9-CM algorithm.  The 

specificity was not affected by the ICD-9-CM algorithm.  The ICD-9 algorithm was a 

component of the positive reference standard, and its absence did not determine a 

negative case.  The purpose of the joint sensitivity statistic was to evaluate the 

contribution of the framework rules beyond cases known by a validated ICD-9-CM based 

identification algorithm.   

 Frequencies of occurrence of the single attributes that formed the rules as well as 

some interesting profile characteristics among composite reference standard positives and 

negatives and true positives, false negatives, true negatives and false positives classified 

by the framework rules were described.  Differences in the frequencies between CRS 
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positives and negatives were calculated with 95% confidence intervals using 

Newcombe’s method.  Confidence intervals that include zero are not statistically 

significant differences.40  Ratios of the frequencies, also known as risk ratios, with 95% 

confidence intervals based on the Cox-Hinkley-Miettinen-Nurminen method,41  were also 

calculated for some asthma comorbidities. 

 
Results 

 The sensitivity of the framework generated rules was 54% with 95% confidence 

interval 46.0% to 62.4%.  The most conservatively adjusted specificity, under the 

assumption that the error in the negative asthma prediction model was 1%, was 97.1% 

with 95% confidence interval 95.8% to 98.1% (Table 5.12).  When cases identified by the 

ICD-9 algorithm of two asthma codes over five years were combined with cases 

identified by the rules, the sensitivity was 83% (76.2% to 88.6%) (Table 5.13).  The 

specificity was unchanged.  Using the ICD-9 algorithm alone, the sensitivity was 70% 

(62.2% to 77.3%) (Table 5.14).  The rules alone did not identify as many CRS positive 

cases as two ICD-9 codes over five years alone.  However, it did contribute an additional 

13% of the CRS positive cases.  The difference in the proportions contributed by both 

versus by ICD-9 codes alone was statistically significant, with the 95% confidence 

interval of the difference from 3.1% to 22.7%. 

 Table 5.15 shows the sequential rules, the number of true positives (TP) and false 

positives (FP) covered, and the Positive Predictive Value (PPV) of each rule.  Subjects 

often met multiple rules.   Table 5.16 shows the number of subjects that met each 

combination of rules, with no distinction as to the classification accuracy.  This shows 

how the rules clustered.  The first covering rules are the focus of analysis because they 
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perform the classification.  Table 5.15 shows that two of the nine rules covered no CRS 

positives, one had no unique coverage, and five rules had poor (< 70%) positive 

predictive value on the validation data.  

 The diagnosis of asthma may be confounded by other respiratory problems that 

may be  comorbid with asthma or mistaken as asthma:  bronchitis, sinusitis, rhinitis and 

chronic airway obstruction (COPD).7  All of these conditions were found to be more 

frequent among the CRS positive subjects (Table 5.17).   Since similar medications may 

be used as well, frequencies among these respiratory problems among the true positive 

(TP), false negative (FN), true negative (TN), and false positive (FP) rule classifications 

were explored and are shown in Table 5.18.  Bronchitis and COPD appeared most 

frequently among the incorrect classifications.  Sinusitis, acute bronchitis and allergic 

rhinitis occurred with false negative classifications more frequently than false positives.  

Chronic bronchitis occurred equally with both.  COPD occurred with false positive 

classifications more frequently than false negatives. 

 Differences in demographic, health care encounter and EHR documentation 

characteristics between the composite reference standard (CRS) positives and negatives 

are shown in Table 5.19.  Characteristics with no statistically significant difference are 

italicized.  There is virtually no difference in the ages.  There are more females (64.5% 

vs. 53.5%) in the positive group than the negative.  The positives have more obesity 

(7.2% vs. 5.2%) and more pain (14.5% vs. 10%), as documented by ICD-9 codes, but 

neither was a statistically significant difference.  Positives appear to have more health 

problems as evidenced by statistically significant differences in those with more than six 

ambulatory provider visits in one year (58% vs. 40.7%) and at least one emergency 
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department visit over two years (31.2% vs. 18.9%).  Positives were more likely to have a 

populated Problem List (79% vs. 66.3%) or Medication List (97.8% vs. 90.6%) in the 

electronic health record.  Since all subjects had at least two visits to Primary Care during 

the study period, where providers typically use the Medication and Problem Lists, this 

may reflect more patients among the negatives with acute or short term problems, such as 

the common cold or health checkups, that providers have no need to track in the Problem 

List.  Similarly, the negatives may be less likely to have any prescribed medications.  The 

CRS asthma-positive group were no older, but were generally less healthy and more 

likely to be female than the CRS asthma-negative group.   

 Table 5.20 shows how these characteristics aligned with the classification 

outcomes:  TP, FP, TN, and FN.  Obesity documented in ICD-9 codes was associated 

more frequently with true and false positive classifications compared to the overall 

classification distribution.  ICD-9 codes for pain, more than six health ambulatory 

provider visits in one year, and at least one emergency department visit over two years 

were associated with true positive predictions.  Female gender was associated with false 

negative classifications.  

 The associative classification metrics used to generate the rules may also provide 

new knowledge about the targeted disease or condition.  Some previously described 

associations – allergies, eczema, gastric esophageal reflux disease (GERD),42 sleep apnea 

7  - and unexpected associations between asthma and other medical conditions were noted 

in the training data.  Associations that persisted in the validation data between CRS 

positive and CRS negative subjects are shown in Table 5.21.   The first group contains 

GERD and allergy-related attributes.  These attributes all had statistically significant 
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differences in their frequencies between CRS positives and negatives.  They also had risk 

ratios, the ratio of proportions, with 95% confidence intervals greater than unity.  The 

second group contains sleep disorder, often related to obesity (Table 5.19), along with 

diabetes, hypertension, and cardiac problems.  Diabetes and hypertension were not found 

to be highly associated with asthma in either the training data or the validation data, but 

they were included here because they are also known to be related to obesity and cardiac 

problems.  Both cardiac symptoms and cardiologist visits were significantly higher 

among CRS asthma subjects even though their age was no different from the CRS 

negative subjects.  The third group shown is arthritis and fibromyositis or neuritis ICD-9 

codes along with a higher frequency of narcotic analgesics use.  The ICD-9 codes defined 

by the National Arthritis Workgroup43 were combined to form the arthritis grouping.  

ICD-9 729 covers unspecified rheumatism, fibrositis, myalgia, myositis, neuritis and 

other inflammatory conditions of related tissues.  This was interesting because 

fibromyalgia syndrome – characterized by arthritis, generalized muscular pain, sleep 

disorders, and other associations discovered among the asthma subjects – also occurs 

more often in women but has not been described as a comorbidity with asthma.  The CRS 

positive asthma group had a significantly higher proportion of women (64.5% versus 

53.5%), as described above.  The use of narcotic analgesics could not be explained by 

any other associations in the data other than the pain inherent in the inflammatory joint 

and muscle conditions included in this group.  The fourth group shows associations 

among an ICD-9 code for nonspecific findings on imaging and other diagnostic 

procedures, and the use of antipsychotic medications.  The use of antidepressant 

medications was higher among the CRS positive subjects, but the stronger association 
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was the combination of antidepressant and antipsychotic agents.  These are often used 

together in more severe cases of clinical depression. 

 
Discussion and Conclusions 

 The accuracy results showed that the cohort amplification process was successful 

in learning patterns among a standard EHR-based data set using exemplars of a target 

cohort to identify additional members of the cohort directly in the EHR.  Asthma was one 

of the first medical conditions chosen to test the cohort amplification process.  A fair 

amount of difficulty in identifying asthma cases using retrospective EHR data was 

described in this chapter.  The inaccuracy of the classification rules reflect some of the 

same problems:  uncertain diagnoses, misdiagnoses due to confounding respiratory 

problems, similar treatments and medications used in related respiratory problems, and 

the episodic nature of the disease itself.  Nonetheless, the rules learned on exemplar data 

of subjects with asthma noted in the Problem List were useful in identifying additional 

asthma subjects beyond those that could be identified using the ICD-9 codes in the EHR. 

 Further analysis of the number of subjects that met each rule demonstrated poor 

predictive value by five of the nine rules (Table 5.15).  This could be due in part to an 

incorrect reference standard.  The reference standard developed for asthma was flawed by 

the same problems in discerning true asthma cases from retrospective EHR 

documentation, even when interpreted by experts.  In a real-world application of the 

cohort amplification framework, the false positive and false negative cases may be 

further reviewed by experts.  Those resources were beyond the scope of this study.  

Reference standards for validation of retrospective case identification methods for 

secondary uses of the EHR are a difficult problem.  If a good reference standard exists, it 
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implies there is already a case identification method.  As the expectations for secondary 

use expand with the wider adoption of the EHR in practice and the promise of 

standardized health care data, computer-based methods to ascertain cases must be used.  

Perhaps ‘triangulation’ strategies will prove successful, in which machine learning and 

classification methods use coded data and natural language processing to compare 

evidence from multiple sources in the EHR and focus expert review on the marginal 

cases.  A repository of such evidence may also prove useful so it does not have to be 

rediscovered and clinicians may authenticate or reject a machine generated disease label.  

 Another plausible reason for the poorer predictive value than was generated from 

the training data is the variation that may exist among exemplars as compared to the 

population of true cases in the EHR.  In this study, the asthma exemplars were drawn 

from those coded in the Problem List.  Frequencies of rule component attributes were 

checked between CRS positive cases that were also coded in the Problem List (PL) 

(n=60) versus the entire group (n=138).  The largest differences found were a lower 

proportion of female subjects (57% versus 64%) and less use of albuterol (17% versus 

25%) in the PL group.  Smaller differences in other rule components and a similar 

distribution of differences in demographic and comorbidity characteristics showed the 

expected sampling variation and perhaps some bias of an exemplar cohort.  

Unfortunately, we cannot assess the differences before the rules are generated so two 

remedies are suggested.  First, the standard processes for knowledge discovery from 

databases include refinement and iteration of the machine-learning steps.  In actual 

application, one may correct for the less useful rules or biases discovered in the training 

data and repeat the rules generation.  Secondly, more conservative criteria for the 
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selection of rules was used in the cohort amplification rule pruning methods than in the 

classic methods.  With the pattern-learning focus on disease processes described by 

highly related EHR data, the pruning constraints may need to be tightened.  For example, 

for the rules used in this study, a minimum of five training cases had to be covered by a 

rule or it was pruned.  In addition, rules were pruned if the positive predictive value on 

the training data was less than 70%.   The results of this study suggest that differences in 

the exemplar and target populations as well as random variation may necessitate stricter 

pruning criteria and thus more general rules.  

 The analysis of false positives and false negatives among the subjects with 

associated respiratory problems was useful.  There did not appear to be remarkable 

differences in the distribution of classification outcomes for subjects with sinusitis or 

allergic rhinitis.  However, bronchitis, in particular chronic bronchitis, and chronic 

obstructive pulmonary disease (COPD), with or without comorbid asthma, resulted in 

less accurate classification by the rules.  These conditions are known to be confounders in 

asthma diagnosis and case finding.  For some research purposes, cases with these 

complications have been excluded.10  For many purposes, such as clinical quality 

improvement, they may be important to capture because patients may be at higher risk.  

In this study, less than 5% of the validatation cohort had evidence of chronic bronchitis or 

COPD.  These may need focused expert review or development of a classifier using 

specific EHR data and methods relevant to this problem. 

 Other demographic, general health and comorbidity characteristics presented in 

the results may provide knowledge to improve the identification of cases.  The rules may 

be refined and reiterated based on the additional domain information directly or further 
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domain analysis may be inspired.  A suggested increase in false positive classifications 

correlated with the ICD-9 code for obesity might invoke further review of the data for 

these subjects.  The same may be said for the higher frequency of female subjects with a 

false negative classification.  For purposes of this study, a benefit of the associative 

classification method was shown.  The frequencies of all attributes and attribute 

combinations that are used to form the rules are exposed in the training data.  In this 

study, selected attributes of interest in the training data were generated and described for 

the validation set to help understand the classification outcomes. 

 Another benefit of the associations exposed by this classification method is the 

potential for serendipitous knowledge discovery.  In this study, focused on the 

development of rules to identify asthma, several associations that appeared in the training 

data and persisted in the validation data were described.  These characterized some 

known comorbidities of asthma, such as gastric reflex disease, sleep disorder and 

symptoms of skin (allergic reactions).  However, associations with cardiac problems, 

arthritis and other inflammatory conditions of the connective tissue have not been 

described as comorbidities with asthma.  They may not be.  The associations discovered 

among existing data do not imply causality nor rule out a shared dependency on some 

other causal factor.  However, the associations reported in Table 5.21 were originally 

noted in the training data and persisted in the validation data as statistically significant 

associations among asthma-positive cases compared to asthma-negative cases.  Further 

review of these associations with domain experts is planned. 
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Table 5.1  General Composite Reference Standard 

→ → → Positive Negative
  +

  +
  -

  +
  +

  -
Negative

Final Determination shown as ‘+’ or ‘-‘ above

Reference 
Standard 1

Reference 
Standard 2

Positive
Not 
Covered Resolver 

New 
Test Positive

 

 
 
Table 5.2  Reference for Equations 5.1 and 5.2 
 
  Reference Standard 

(RS) 

+               - Total 

New Test        +  A 
True Pos 

C 
False Pos 

 

- 
B 

False Neg 
D 

True Neg 
 

Total   N 
Sensitivity  TP/(TP+FN)   

Specificity   TN/(TN+FP)  
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Table 5.3  Unadjusted Sensitivity and Specificity   
 
 Reference Standard 

(RS) 
+               - Total 

New Test        +  90  40 108 

- 10 860 892 
Total 100    900 1000 

Sensitivity  
90/100 
= .90 

  

Specificity  
 860/900 

= .96 
 

 
 
Table 5.4  Adjusted Specificity from Table 5.3 
                 Given SensitivityRS=.85, SpecificityRS =1 
 
  Reference Standard 

(RS) 
New Test         +               0.15 Pos 

Missed 
- Total 

 +  90 (-16) 24 130 
 - 10  (-2) 858 870 
 Total   100  (-18) 882 1000 

Sensitivity  
90/100 
= .90 

  

Specificity  
 858/882 

= .97 
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Table 5.5  Criteria to Determine Asthma in Clinical Documents 
 

First 
Author Asthma Definition

Used 
This 
Study

Vollmer Probable
2 or more asthma care (AC) visits x
Single AC visit and prior history x
Single AC visit for active symptoms
SingleAC visit and response to meds x
Possible
Patient reported history only x
Uncorroborated emergency diagnosis
Suspected with no clear resolution x

Twiggs Definite
Clinical dx and 2+ visits acute wheezing x
Possible
Asthma symptoms + history allergy, wheezing x

To 2 visits for wheezing x
1 visit wheezing + risk factor x
1 visit wheezing + response meds x  
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Table 5.6  Asthma Identification Rules 
 
Rule 
Number Rule Data Source

1 Salmeterol Med ingredient
2 Glucocorticoid AND Albuterol Med class
3 Leukotriene Receptor Antagonist Med class

4
Beta Adrenergic Agent Not Albuterol or 
Salmeterol Med class

5
Glucocorticoid AND 
Other_Pulmonary_Procedure Med class, CPT aggregate*

6 Albuterol AND Female Med ingredient, Demographic feature

7
Allergy_Specialist_Visit AND 
Other_Pulmonary_Procedure Visit feature, CPT aggregate

8 Albuterol AND Abnormal_CBC Med ingredient, Lab abnormality

9
Albuterol AND 
Urinalysis_by_dip_stick Med ingredient, Lab order

* Breathing capacity test, airway inhalation treatment, pulse oximetry, monoxide 
diffusing capacity, residual lung capacity, bronchodilator response evaluation  

 
 
Table 5.7  Diagram of the Composite Reference Standard 
 

→ → → Positive Negative
  +

  +
  -

  +
  +

  -
Final Determination shown as ‘+’ or ‘-‘ above

Frame- 
work 
Rules

Positive

Negative

Problem List or 
ICD-9-CM codes

Clinical Text 
Documents

Positive Negative 
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Table 5.8  Negative Asthma Status Prediction Model Test Data 
 

Named 
Entity 
Count

Coded 
Evidence 
case count

Likelihood 
Coded 
Evidence

Conditional 
Probability 
Coded 
Evidence

No Coded 
Evidence 
case count

Likelihood 
No Coded 
Evidence

Conditional 
Probability 
No Coded 
Evidence

Likelihood 
NE count

0-1 103 0.010 0.013 8037 0.769 0.987 0.779
2+ 1057 0.101 0.458 1251 0.120 0.542 0.221
Totals 1160 0.111 9288 0.889 1.000 
 
 
Table 5.9  Negative Asthma Status Prediction Model Validation Data 
 

Named 
Entity 
Count

Coded 
Evidence 
case count

Likelihood 
Coded 
Evidence

Conditional 
Probability 
Coded 
Evidence

No Coded 
Evidence 
case count

Likelihood 
No Coded 
Evidence

Conditional 
Probability 
No Coded 
Evidence

Likelihood 
NE count

0-1 8 0.008 0.010 784 0.783 0.990 0.798
2+ 102 0.102 0.510 98 0.098 0.490 0.202
Totals 110 0.110 882 0.881 1.000 
 
 
Table 5.10  Adjusted Sensitivity Composite Reference 
        Standard w/ 2.5% NEG prediction error 
 

POS NEG
Coded 110
Reviewed 28
Reviewed 70
0-1 NE 
Asthma 784
Prob Pos | 
0-1 NE ~ 
2.5% (+20) (-20)
TOTAL 158 834
Sensitivity 0.87
Specificity 1.00

Truth Assumption 
for this Study

NEG

POS

Composite 
Reference 
Standard

 
 
 



 

 

111

Table 5.11  Adjusted Sensitivity Composite Reference 
        Standard w/ 1% NEG prediction error 
 

POS NEG
Coded 110
Reviewed 28
Reviewed 70
0-1 NE 
Asthma 784
Prob Pos | 
0-1 NE ~ 
1% (+9) (-9)
TOTAL 147 845
Sensitivity 0.94
Specificity 1.00

Truth Assumption 
for this Study

Composite 
Reference 
Standard

POS

NEG

 
 
 
Table 5.12  Sensitivity and Specificity of Framework Rules 
 

POS NEG

POS 75 29

NEG 63 825

TOTAL 138 854

54.3 % 46.0 - 62.4

96.6

97.1 95.8 - 98.1

97.8

Frame- 
work 
Rules

Sensitivity

Specificity

Specificity Adjust. 2.5% Error CRS

95% Confi- 
dence Interval

*The most conservative adjustment was used.

*Specificity Adjusted 1% Error CRS

Composite Reference 
Standard
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Table 5.13  Sensitivity of Framework Rules OR 2 ICD-9 Codes 
 

POS NEG

POS 115 29

NEG 23 825

TOTAL 138 854

83.3 % 76.2 - 88.6

FW Rules 
OR 2+ 
ICD9 
Codes

95% Confi- 
dence Interval

Sensitivity

Composite Reference 
Standard

 
 
 
Table 5.14  Sensitivity of 2 ICD-9 Codes Over Five Years 
 

POS NEG

POS 97 NA

NEG 41 NA

TOTAL 138 NA

70.3 % 62.2 77.3

95% Confi- 
dence Interval

Sensitivity

2+ ICD9 
Codes

Composite Reference 
Standard
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Table 5.15  First Ordered Rule Met by True Positives and False Positives  
                    and Positive Predictive Value (PPV) of the Rule  
 

True 
Positive 

n=75

False 
Positive 

n=29

Rule 
Number Rule

Number 
Met 
Rule

Number 
Met 
Rule

PPV   
(%)

1 Salmeterol 41 6 87.2

2 Glucocorticoid AND Albuterol 17 2 89.5
3 Leukotriene Receptor Antagonist 5 2 71.4

4
Beta Adrenergic Agent Not Albuterol 
or Salmeterol 3 3 50.0

5
Glucocorticoid AND 
Other_Pulmonary_Procedure 5 6 45.5

6 Albuterol AND Female 3 7 30.0

7
Allergy_Specialist_Visit AND 
Other_Pulmonary_Procedure 1 0 100.0

8 Albuterol AND Abnormal_CBC 0 3 0.0

9
Albuterol AND 
Urinalysis_by_dip_stick 0 0  
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Table 5.16  Number of Subjects Meeting Each Rule 
 
N u m b e r  
o f C a s e s

R u l e  
1

R u l e  
2

R u l e  
3

R u le  
4

R u le  
5

R u l e  
6

R u l e  
7

R u l e  
8

R u le  
9

8 9 5          
1 8  x x x         

3   x x x        
2    x x x       
2  x x x   x x x       
3     x x x      
1  x x x    x x x      
2    x x x  x x x      
1  x x x   x x x  x x x      

1 0      x x x     
3  x x x     x x x     
1   x x x    x x x     
2  x x x  x x x    x x x     
1    x x x   x x x     
3  x x x   x x x   x x x     
2     x x x  x x x     
1  x x x    x x x  x x x     
3       x x x    
1   x x x     x x x    
1  x x x  x x x     x x x    
1    x x x    x x x    
1  x x x  x x x   x x x   x x x    
1   x x x    x x x  x x x    
2        x x x   
1      x x x   x x x   
2  x x x     x x x   x x x   
1   x x x    x x x   x x x   
1    x x x   x x x   x x x   
1  x x x   x x x   x x x   x x x   
2         x x x  
1   x x x       x x x  
2       x x x   x x x  
1   x x x     x x x   x x x  
1   x x x  x x x  x x x   x x x   x x x  
1   x x x    x x x  x x x   x x x  
1  x x x  x x x  x x x   x x x  x x x  x x x  x x x  
1       x x x    x x x
1  x x x  x x x     x x x    x x x
2  x x x  x x x  x x x    x x x    x x x
1   x x x    x x x  x x x    x x x
1  x x x  x x x    x x x  x x x    x x x
1         x x x  x x x
1  x x x  x x x       x x x  x x x
1     x x x     x x x  x x x
1  x x x  x x x   x x x     x x x  x x x
1  x x x  x x x  x x x   x x x    x x x  x x x
4       x x x   x x x  x x x
3   x x x     x x x   x x x  x x x
1  x x x  x x x     x x x   x x x  x x x
1   x x x   x x x   x x x   x x x  x x x
1   x x x  x x x  x x x   x x x   x x x  x x x
1  x x x  x x x    x x x  x x x   x x x  x x x
1   x x x  x x x   x x x  x x x   x x x  x x x
1  x x x  x x x  x x x   x x x  x x x   x x x  x x x
1   x x x  x x x   x x x   x x x  x x x  x x x
1       x x x  x x x  x x x  x x x  
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Table 5.17  Respiratory Comorbidities 
        Composite Reference Standard (CRS) Positives Versus Negatives 
 

Low 
Bound

High 
Bound

Associated Respiratory Conditions
Number of Subjects 138 854

ICD 461_Acute_sinusitis 27.5 20.0 7.5 0.2 15.9 1.4
ICD 466_Acute_bronchitis 26.1 8.7 17.4 10.5 25.5 3.0
ICD 473_Chronic_sinusitis 5.1 2.2 2.8 0.0 7.9 2.3
ICD 477_Allergic_rhinitis 21.0 8.2 12.8 6.5 20.5 2.6
ICD 490_Bronchitis_NOS 11.6 5.0 6.6 1.9 13.1 2.3

ICD 491_Chronic_bronchitis 4.3 1.1 3.3 0.8 8.1 4.1
ICD 496_Chron_airways_obstruction 5.8 2.6 3.2 0.1 8.5 2.3

Relative 
Risk

Prcnt 
CRS 
POS 
with 

Attri- 
bute

Prcnt 
CRS 
NEG 
with 
Attri- 
bute

Differ- 
ence in 
Propor- 

tions

95% Confi- 
dence Interval of 

Difference

 
 
 
Table 5.18  Classification Frequencies of Subjects with Associated Respiratory  
        Conditions 
 

Associated Respiratory Conditions

Number 
w/ 

Attribute
Prcnt 

True Pos

Prcnt 
False 
Pos

Prcnt 
True 
Neg

Prcnt 
False 
Neg

ICD 461_Acute_sinusitis 209 12.4 3.8 78.0 5.7
ICD 466_Acute_bronchitis 110 21.8 8.2 59.1 10.9
ICD 473_Chronic_sinusitis 26 19.2 0.0 73.1 7.7
ICD 477_Allergic_rhinitis 99 21.2 4.0 66.7 8.1
ICD 490_Bronchitis_NOS 59 22.0 5.1 67.8 5.1
ICD 491_Chronic_bronchitis 15 20.0 20.0 40.0 20.0
ICD 496_Chron_airways_obstruction 30 23.3 23.3 50.0 3.3 
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Table 5.19    Demographic, Encounter and EHR Documentation Characteristics 
                   Composite Reference Standard (CRS) Positives versus Negatives 
 

Low 
Bound

High 
Bound

Demographic/ Encounter/ Documentation
Number of Subjects 138 854

Age Greater Than 47 57.2 57.1 0.1 -8.8 8.9
Female 64.5 53.5 11.0 0.9 18
ICD 278 Obesity and other alimentation 7.2 5.2 2.1 -1.5 8
ICD9 codes for pain* 14.5 10.0 4.5 -1.4 10.8
6+ Ambulatory Provider visits/year 58.0 40.7 17.3 8.0 25.5
Emergency department visit 31.2 18.9 12.3 4.5 20.7
Populated Problem List 79.0 66.3 12.7 4.8 19.8
Populated Medication List 97.8 90.6 7.2 2.5 9.4

*        Pain, migraine, pain and symptoms associated with female organs

95% Confi- 
dence Interval 
of Difference

Prcnt 
CRS 
POS 
with 
Attri- 
bute

Prcnt 
CRS 
NEG 
with 
Attri- 
bute

Differ- 
ence in 
Propor- 
tions

 
 
 
Table 5.20   Classification Frequencies of Subjects by Demographic, Encounter  
                    and EHR Documentation Characteristics 
 

Demographic/ Encounter/ 
Documentation

Number 
w/ 

Attribute
Prcnt 

True Pos

Prcnt 
False 
Pos

Prcnt 
True 
Neg

Prcnt 
False 
Neg

Age Greater Than 47 567 8.1 3.4 82.8 5.8
Female 546 8.1 3.3 80.4 8.2
ICD 278 Obesity and other 
alimentation 54 14.8 5.6 75.9 3.7
ICD9 codes for pain 105 13.3 0.9 79.7 5.7
6+ Ambulatory Provider Visits 
in One Year 428 12.6 3.7 77.6 6.1
Emergency department visit 204 13.7 3.4 75.3 7.3
Populated Problem List 675 9.2 3.7 80.1 7.0
Populated Medication List 909 8.3 3.2 82.0 6.6

TOTAL DISTRIBUTION 992 7.6 2.9 83.2 6.4 
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Table 5.21  Significant Comorbidity and Symptom Associations with Asthma  
 

Low 
Bound

High 
Bound

Low 
Bound

High 
Bound

Significant Comorbidity & 
Symptom Associations
ICD 530 GERD or Proton 
pump inhibitors 43.5 23.9 11.1 28.4 1.4 2.3
ICD 787 Symptoms 
digestive system 20.3 12.8 4.0 18.0 1.1 2.3
ICD 782 Symptoms of skin 26.1 10.7 8.4 23.5 1.7 3.4
Allergy Specialist Visit 6.5 0.6 2.8 11.3 4.0 31.2
ICD 327 Organic sleep 
disorder 13.8 6.9 1.6 13.7 1.2 3.2
ICD 250 Diabetes mellitus 17.4 14.2 -2.8 10.7 0.8 1.8
ICD 401 Essential 
hypertension 42.8 35.5 -1.80 15.7 1.0 1.5
CARDIOLOGY Visit 22.5 14.3 1.5 16.1 1.1 2.2
ICD 785 Symptoms cardio 
system 15.2 6.8 3.0 15.5 1.4 3.5

Arthritis (ICD 715, 716, 719, 
726, 727, 728)** 48.6 33.0 6.7 24.3 1.2 1.8
ICD9 729 Fibromyositis, 
Neuralgia, CFS 23.9 15.9 1.1 16.1 1.1 2.1
Narcotic Analgesics 48.6 33.5 6.4 24.1 1.2 1.7
ICD 793 Nonspecific 
abnormal findings 12.3 7.4 0.4 12.0 1.0 2.7
Antipsychotic meds 18.1 10.8 1.1 14.6 1.1 2.5
Antipsychotic & 
antidepressant meds 8.7 4.0 0.8 10.7 1.2 4.0

Prcnt 
CRS 
NEG 
with 
Attri- 
bute

Difference in 
Proportions      
95% Confi-   

dence Interval 

Ratio of 
Proportions*      
95% Confi-   

dence Interval 

Prcnt 
CRS 
POS 
with 

Attri- 
bute

* Ratio of Proportions also known as Relative Risk
** National Arthritis Workgroup definition  
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Table 5.22  Document Types Used in Text Mining 
                    Having Frequency > 5% Among Evidence Sample 
 

Docu- 
ment 
Type 

Count

%  Cases 
w/ 1 o r 
More 
Docu- 

ments of 
Type

%  Cases 
w ith 1  or 

More 
Docu- 

ments of 
Type w/ 
Entities 

Docu- 
m ent 
Type  

Count

%  Cases 
w/ 1  or 
More 
Docu- 

m ents of 
Type

% Cases 
with  1 or 

More 
Docu- 

m ents of 
Type w/ 
Entit ies 

P rogress No te 1075 100.0 90 .7 4584 99.5 25.1
Lab Annotation 836 77.7 0 .4
XR Chest 2 V iews Fron tal Lat 606 56.3 3 .9 1384 30.0 0.3
Emergency Department Report 599 55.7 33 .1 1807 39.2 2.1
Letters 583 54.2 3 .2 2184 47.4 0.1
Urgent Care Note 561 52.1 39 .0 2004 43.5 9.7
History and Physical Repo rt 502 46.6 20 .7 1701 36.9 1.8
S urgical Pathology Report 501 46.6 0 .0
Emergency Dept V is it Note 487 45.3 9 .9 1284 27.8 0.0
Radio logy Annotation 463 43.0 0 .5 1506 32.7 0.0
Operative Report 448 41.6 0 .3
P hysic ian  Order 438 40.7 0 .9 1550 33.6 0.0
Discharge Summary 345 32.0 10 .4 903 19.6 0.0
Endoscopy Procedure Repo rt 342 31.8 2 .6 1287 27.9 0.0
Consultation Report 310 28.8 8 .1 975 21.1 1.2
X/Ray Report 275 25.5 0 .6 687 14.9 0.0
Outside M edical Information 243 22.6 0 .0
Fo rmal Le tter 240 22.3 2 .4 735 15.9 0.1
Echo Repo rt 231 21.4 0 .8
Laboratory Report 196 18.2 0 .0
P ulmonary Function Study Rep 192 17.8 1 .2
Ox imetry Report 166 15.4 1 .1 330 7.1 0.0
XR Chest Fron tal 1 V iew 152 14.1 0 .2 377 8.1 0.0
Bone M ineral Density (DEXA) 139 12.9 0 .7 498 10.8 0.0
P olysomnography Report 110 10.2 3 .3 231 5.0 0.1
M RI Bra in W O W Cnt 103 9.5 0 .1
Outpatient Clinic Report 102 9.4 2 .7 376 8.1 0.0
Comprehensive Eye Exam Rep 100 9.3 3 .6 434 9.4 0.0
Addendum Report 97 9 .0 0 .3
CT Ang io Chest 88 8.1 0 .2 138 2.9 0.0
Endoscopic Report 86 8 .0 1 .0
History/Physical - Pre-Op Rep 86 8.0 3 .4 270 5.8 0.0
Cardiac Catheter ization Report 77 7 .1 0 .3 212 4.6 0.0
XR Chest 1 V iew P ortable 75 6.9 0 .0
NM  Myocard S PECT Ex Rest 66 6.1 0 .0
P rogress No tes - Ortho  Surg 62 5.7 0 .9 177 3.8 0.0

CLINICAL NOTES:   Jan 1, 2004 - Dec 31, 2008. 
Named  Entities: ASTHM A, ASTHMATIC, ASTHMATICUS, ASTHAM , ASTHM , 

AS THM AS, ASTHMATICS, AS THAM A, ATHM A, ASHTMA

Clinical Docum ent Type Evidence Samp le No Evidence Sam ple
n = 1 ,075 n =  4,607
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Table 5.23  WEKA Bayesian Network Model Annotated for Cumulative Counts 
        Coded Evidence Asthma Conditioned on Named Entity Counts Asthma 
 
 

Named 
Entity Count

Coded 
Evidence 
case count

Likelihood 
Coded 
Evidence

Conditional 
Probability 
Coded 
Evidence

No Coded 
Evidence 
case count

Likelihood 
No Coded 
Evidence

Conditional 
Probability 
No Coded 
Evidence

Likelihood 
NE count

0 30 0.003 0.005 5984 0.573 0.995 0.576
1 73 0.007 0.034 2053 0.196 0.966 0.203

Cum 0-1 103 0.010 0.013 8037 0.769 0.987 0.779
2 81 0.008 0.098 746 0.071 0.902 0.079
3 79 0.008 0.228 268 0.026 0.772 0.033
4 80 0.008 0.415 113 0.011 0.585 0.018
5 70 0.007 0.603 46 0.004 0.397 0.011
6 69 0.007 0.711 28 0.003 0.289 0.009

Cum 7+ 678 0.065 0.931 50 0.005 0.069 0.070
7 thru 24 515 0.049 0.912 50 0.005 0.088 0.054
25 + 163 0.016 1.000 0 0.000 0.000 0.016
Totals 1160 0.111 9288 0.889 1.000  
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Table 5.24  Clinical Document Review Search Terms 
 

 

ASTHMA-RELATED TERMS 

WHEEZE OR WHEEZES OR WHEEZING OR DYSPNEA 

OR COUGH OR COUGHS OR COUGHED OR COUGHING 

OR BRONCHITIS OR ALLERGIC OR AIRWAY OR BRONCHIAL 

OR BREATHING OR BREATHLESS OR BREATH OR BREATHLESSNESS  

OR ALBUTEROL OR SALMETEROL OR MONTELUKAST 

OR FEV OR SPIROMETRY OR EXPIRATORY 

OR INHALER OR BRONCHODILATOR OR BRONCHODILATER  

OR BRONCHOSPASM OR BRONCHOPROVOCATION 

 

MEDICAL ASSESSMENT TERMS 

P OR ASSESSMENT OR PLAN OR PROBLEM OR PROBLEMS OR PRESENTING 

OR PRESENTS OR PRESENTED OR IMPRESSION OR HISTORY OR DIAGNOSIS 

OR DIAGNOSES OR DX OR CHIEF OR COMPLAINT OR TRIAGE OR STATUS 

OR SUGGESTS OR SUGGESTED OR SUGGESTING 

OR TROUBLE OR TROUBLED OR REPORTS OR REPORTED  

OR INDICATION OR INDICATIONS OR SUSPECT 

OR SYMPTOM OR SYMPTOMS OR FINDING OR FINDINGS 

OR PROBABLE OR PULMONARY OR RESPIRATORY 
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Appendix A 
 

Text Mining Methods to Predict 
 

Negative Asthma Status 
 

 Approximately 11% prevalence of asthma was expected in the study population.  

Most of the positive cases were identified by coded evidence for asthma, leaving 

approximately 90% of the remaining validation set to be assessed for uncoded cases of 

asthma.  Text mining methods were developed to identify the most likely cases for 

manual review.  The Intermountain Enterprise Data Warehouse (EDW) stores all clinical 

documents for hospital and ambulatory visits.  These are parsed by an Oracle text 

indexing program,44 and each word is indexed.  The process of searching for particular 

words or phrases, called ‘named entities’, is a common method described in the text 

mining literature.33, 45  The frequency of each test subject’s clinical documents having 

named entities for asthma over a five-year period were derived for a test sample 

(n=10,448).  A probability-based classification rule was modeled on the frequencies and 

coded evidence for asthma using machine-learning methods.  A simple Bayes rule 

classifier demonstrated a 1.3% error rate in the prediction of negative asthma on 78% of 

the test cases, having zero or one named entity for asthma over five years.  The result was 

validated on a convenience sample of 2% (n=160), which demonstrated an error rate of 

2.4%. 

 The named entities to represent asthma were based on the UMLS Unified Medical 

Language System® (UMLS)® Metathesaurus® terms for asthma.  The terms may have 

been more expansive but were covered by the words:  ‘ASTHMA’, ‘ASTHMAS’, 

‘ASTHMATICUS’, and ‘ASTHMATIC’.  ‘ALLERGIC BRONCHITIS’ was the only 
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UMLS term not used because  it was not used in the study population.  Six commonly 

occurring misspellings were added:  ‘ASTHAM’, ‘ASTHM’, ‘ASTHMAS’, 

‘ASTHMATICS’, ‘ASTHAMA’, ‘ATHMA’, and ‘ASHTMA’.  These terms were the 

ones used at least 0.01 % (.0001) as frequently as the primary term ‘ASTHMA.’  These 

were the ten named entities used to search the clinical text. 

 All clinical text documents were searched for the named entities over a five-year 

period (2004-2008) for a random sample of study subjects (n = 10,488).  These were 

divided into a subset with coded evidence of asthma (n = 1,075), referred to as the 

‘evidence’ sample, and a random subset of half those with no coded evidence (n = 4,607), 

the ‘no evidence’ sample.  Coded evidence was defined as at least two ICD-9-CM 

ambulatory or one inpatient/ED code or an active Problem List code over the five-year 

period.  There were 1,130 document types used.  Intermountain Healthcare did not have 

standardized document type names, and several types could be functionally similar.  The 

document types with at least one named entity for either sample (n = 161) were reviewed 

for appropriateness of document type and relative density of named entity mentions 

among the no evidence to evidence samples.  Appropriateness was determined by 

whether this was a document type generally authored by providers of healthcare, who 

customarily document either disease status or elicit/request and record patient disease 

history in order to perform their clinical services.  Five types were removed:  ‘Message 

Log Notes’, ‘Nursing Notes’, ‘Lab Req – not a part of the Medical Record’, ‘Mental 

Status Exam’ and ‘Emergency Department Triage Note.’  Message Log Notes may be 

authored by nonclinical staff.  The Emergency Dept Triage Note was a preliminary, 

admitting record and was authenticated as a longer, final Emergency Dept Visit Note.  
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The others were not considered typical sources of diagnostic or patient history 

observations and contained only 1-3 named entity mentions in total. 

 Progress Notes were the most frequently used document type among study 

subjects.  All of the evidence sample and 99.5% of the no evidence sample had at least 

one Progress Note.  Progress Notes usually documented an ambulatory clinic visit.  The 

average number of Progress Notes per case during this period was 22 for the evidence 

sample and 15 for the no evidence sample.  The average number of Progress Notes with 

named entities per case was 10 for the evidence sample and 0 for the no evidence sample.  

Multiple Progress Notes per case gave the most opportunity for the expected mentions 

among negative cases:   hypothetical statements about the disease such as “at risk for”, 

historical diagnosis statements, references about someone else and the disease such as in 

“family history of”, or a negation of the disease diagnosis.37, 38  Among no evidence 

cases, 25.1% had at least one named entity mention in a Progress Note (Table 5.22).  This 

rate was then used as a heuristic measure of the expected density of mentions among no 

evidence cases for a document type.  Samples of cases with document types with a higher 

density than 25% among no evidence cases were reviewed.  Nine document types 

contained templated text or other reasons for a higher density of mentions of asthma 

among noncases and were removed.  There were finally 147 document types used for the 

subject-level counts of documents and named entities.  The document types occurring for 

more than 5% of the evidence sample are shown in Table 5.22, with the frequencies of 

cases having at least one instance of the document type and among those, the frequencies 

of cases having at least one named entity for asthma in that document type. 
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 Next the individual asthma named entity counts were analyzed using attribute 

selection and classification methods in WEKA.46  Two separate random samples (n = 

~10,000) of cases from the study population were generated.  The two samples were used 

for both training and testing of the other.  Document counts and counts of documents 

with a named entity over the five year period, 2004-2008, were computed for each case 

over the 147 document types.  Only one count per document type per day was allowed 

because there were occasional duplicate or redundant document instances in the EDW.  

One count of the total number of documents and one count for documents containing at 

least one named entity for asthma were stored in the study database. The count of 

documents with named entities divided by the count of documents was computed for 

each case as a density function and populated for training cases in the study database.  

The class attribute was coded evidence of disease versus no coded evidence.  The four 

attributes were analyzed in WEKA using the Bayesian network classifier.  The Bayesian 

network classifier was selected for its ability to learn the best structure and expose the 

probability tables.46  Attribute selection methods in WEKA consistently agreed upon the 

named entity count as the best attribute, and the wrapped Bayesian network selection 

method preferred it as a single attribute.  The attributes in the model were reduced to the 

named entity counts and the class (outcome).  The final model was essentially a simple 

Bayes rule classifier. 

 The WEKA Bayesian network model was recreated in Excel to show the most 

predictive discretizations of the named entity counts.  The model is shown in Table 5.23.  

The classifier demonstrated a 1.3% error rate in the prediction of negative asthma status 

on 78% of the cases, having zero or one named entity for asthma.  The result was 
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validated on a convenience sample of 2% randomly selected cases with zero (n=100) or 

one (n=60) named entities.  Of the zero named entities sample, there was one case 

documented as ‘azthma’.  Of the one named entity sample, there were four cases with 

statements of possible asthma.  Asthma status was not further ascertained in the 

validation.  The error rate was 2.4%.   

 Accordingly, for the study composite reference standard, cases requiring 

resolution by review of the clinical documentation were determined negative if they had a 

named entity count of zero or one.  Cases with 2+ named entities were manually 

reviewed if they were not already determined positive by the coded evidence in the 

composite reference standard.  The simplified version of the negative asthma status 

prediction model is shown in Table 5.8. 
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Appendix B 
 

Clinical Document Review Procedures 
 
 The Intermountain Enterprise Data Warehouse (EDW) stores all clinical 

documents for hospital and ambulatory visits.  These are parsed by an Oracle text 

indexing program,44 which stores each word in an index.  The process of searching the 

indexed words for ‘named entities’ is a common method described in the text mining 

literature.33, 45  Three groups of named entities were defined for this study for different 

purposes.  The first was used for both clinical document review and development of the 

negative asthma status prediction model.  The other two were defined for clinical 

document review only. 

 The first group was asthma terms.  The named entities used to represent asthma 

were based on the Unified Medical Language System® (UMLS)® Metathesaurus®.  The 

terms were more expansive but were covered by the words:  ‘ASTHMA’, ‘ASTHMAS’, 

‘ASTHMATICUS’, and ‘ASTHMATIC’.  ‘ALLERGIC BRONCHITIS’ was the only 

UMLS term not used because was not used in the study population.  Six commonly 

occurring misspellings were added:  ‘ASTHAM’, ‘ASTHM’, ‘ASTHMAS’, 

‘ASTHMATICS’, ‘ASTHAMA’, ‘ATHMA’, and ‘ASHTMA’. 

 The second group consisted of terms that describe symptoms, medications, and 

comorbidities associated with asthma.  This group was generated from the literature on 

asthma symptoms, diagnosis and treatment.  The asthma-related terms are shown in Table 

5.24.  The third group consisted of terms used by clinicians in their documentation to 

state assessments, impressions, diagnoses, plans and included almost all direct medical 

care documents.  These terms were found by iterative queries against a set of known 
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clinical documents while adding to the search terms from documents not found.  The 

medical assessment terms are shown in Table 5.24. 

 Reports were developed to query and display variable length snippets of text 

around named entity search terms as well as the full text with the search terms 

highlighted for each clinical document selected.  This enabled fast, direct access to the 

documents and the specific statements in the documents containing the named entities.  

The reports were easily modified and ran in a public domain SQL query application.  

This enabled the nurse reviewers to perform the reviews on their desktop computers with 

no protected health information removed or stored from the EDW repository. 

 A 13% random sample of the 784 validation set subjects having zero or one 

clinical document with an asthma term and not resolved by the coded evidence were 

reviewed.  One experienced nurse volunteer used the asthma-related search terms to 

attempt to find clinical documents for 60 subjects with zero asthma terms.  Two subjects 

had documentation suggestive of asthma but no definitive statement or further evidence.  

For those with an unconfirmed suggestion, a search was done using the medical 

assessment terms to display diagnostic statements.  In this manner, the suspicious 

subject’s full documentation was efficiently displayed in reverse chronologic order.  It 

gave focus to the assessment statements as one line listings and the ability to toggle to the 

complete document with highlighted search terms.  Forty-two subjects with one clinical 

document with an asthma term were similarly reviewed.  For these, the first step was to 

search and review the asthma terms in the one clinical document.  If these statements 

implied a negative asthma status, the subject’s review was negative.  If asthma was 

suggested, the review process continued with the asthma-related terms as described 
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above.  One missed asthma case was ascertained from an asthma diagnosis statement and 

a history of asthma medications. 

 All validation subjects with more than one clinical document having asthma terms 

and not resolved by the coded evidence (n=101) were reviewed.  In the first stage, the 

asthma terms were searched and reviewed as described above.  If these statements 

implied a negative asthma status, the subject’s review was negative (n=60).  If asthma 

was suggested (n=41), the relevant document snippets were copied to a temporary 

spreadsheet, carefully excluding any protected health information as snippets were 

transferred.  The asthma-related search terms followed by the medical assessment search 

terms were used as needed to include as definitive an asthma picture as possible.  These 

de-identified case abstracts were shared with one asthma medical expert.  He labeled each 

one as definite or probable asthma versus negative or unlikely asthma versus asthma by 

history only.  The criteria used to decide a probable asthma status are shown in Table 5.5.  

Five borderline case abstracts were reviewed by a second asthma medical expert.  One 

status was changed.
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CHAPTER 6 
 

SUMMARY 
 

 In this dissertation, the purposes and design of the framework were presented.  

The framework was evaluated on two diseases.  The framework-generated rules to 

identify diabetes were similar to the rules generated by domain experts but also added 

useful knowledge to refine them.  Rules to identify asthma added to the sensitivity of a 

validated algorithm based on ICD-9-CM codes.  The framework required no domain 

knowledge to find these patterns.  The machine-learned patterns quantified specific EHR 

data uniquely associated with a disease.  This knowledge is best used in conjunction with 

the specialized knowledge of domain experts to refine and strengthen the identification of 

cases. 

 Observations that have not been identified by experts in existing disease-

identification algorithms were exposed.  In the diabetes identification rules, capillary 

blood glucose testing by glucometers was performed more often, was abnormal more 

often, and served as a better observation type to identify patients with diabetes in the EHR 

than glucose measured in venous blood in a clinical laboratory.  Laboratory-based 

glucose values are the standard for diagnosis of diabetes, have been proven more accurate 

than glucometer results,1 and consequently were specified as one of the criteria to identify 

diabetes in the expert-based algorithms reviewed.  
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 There are many potential predictive combinations in the EHR data.  Combinations 

of attributes are rarely seen in expert-generated algorithms.  There were many 

combinations with the bronchodilator, albuterol, in the asthma rules.  This was because 

albuterol was a frequent and associated medication, but it was not strong enough alone to 

form an accurate rule.  Albuterol is used for other bronchopulmonary problems.  

Albuterol and an inhaled glucocorticoid are found together in expert-generated rules to 

identify asthma.  However, albuterol and female gender was a novel combination, even 

though it was known that more women than men are seen for adult asthma. 

 The rules may refine the observations within categories.  For example, instead of 

a list of all antihyperglycemic drugs, the rules identified specific chemical/ therapeutic 

classes as separate rules.  Some were stronger than others.  Insulin was very strong.  

Metformin was not strong enough to form a single-attribute rule.  It was known that 

Metformin can have false positives, yet there are algorithms to identify diabetes that 

include all antihyperglycemic medications.  Since treatments constantly change, the 

framework process was useful in identifying exactly which medications were in common 

usage during the time period of interest.  In fact, it identified them so well it picked up a 

decreased frequency from one year to the next when a particular diabetes drug was the 

subject of an FDA warning for potential adverse events.  

 There were three assumptions underlying the design for the cohort amplification 

framework, and all three were validated in this work: 

• Patterns learned from exemplars drawn from known cases may be used to 

identify other unknown cases.  Some bias must be anticipated since the known 

cases were identified in some manner, and others were not.  In this 
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dissertation, the proof of concept was demonstrated by other asthma cases 

identified from known cases from the coded Problem List in the electronic 

health record. 

• Knowledge discovery methods over a common set of EHR data could expose 

patterns for multiple diseases and conditions.  A highly abstracted set of 

candidate EHR data, modeled on the derived data types used in some existing 

disease identification algorithms2-4 and drawn from the standard data 

categories required for certification of an EHR, was shown to generate rules 

consistent with disease-specific processes of care. 

• The transaction records of medical care process and documentation could 

provide patterns from the data in the EHR that may be used to identify 

particular disease cases.  Patterns or rules learned by the computer from the 

candidate EHR data used were shown to identify unseen cases of asthma in 

the EHR. 

 The framework classification rules can be analyzed for other purposes.  They do 

not have to be applied in prediction.  Interesting trends were seen in the rules when 

comparison groups were created, such as two different clinical specialties.  There were 

aggregate differences in the choice of medications.  It could be seen that practice patterns 

were different. 

 Finally, the rules may expose interesting associations that were not expected.  The 

main objective of this work was to apply database knowledge discovery methods to 

generate classification rules.  Comorbidities were found among the asthma cases 

identified by the framework rules that were not described in the clinical literature.  Their 
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physiologic connection had been described.  The associations were with other 

inflammatory diseases of the joints and other connective tissue. 

 
Why Associative Classification? 

 Associative classification (AC) has not been widely used in health care data.   

Association rule mining (ARM) was reported more often in the health care literature.  In 

Chapter 2, some examples of health care applications of AC and ARM were presented.  It 

was pointed out that the use of these approaches is growing, as are machine learning 

methods in general, in health care data.  Association mining was developed for retail 

sales problems and has been informally called market basket analysis.  It is widely used 

for business purposes and has continued research, development and improvement as 

reported mainly in the computer science literature.  ARM was developed to find patterns 

among broad and inter-related transaction data, directly from databases without domain 

expertise.  

 At the onset of this research, various classification methods were investigated.  

Associative classification accommodated the broad but sparse data best.  Many other 

methods could not process data with so many missing values.  In the framework, missing 

values were considered unpopulated EHR observations and participated in patterns by 

their absence.  Naïve Bayes accepted the sparse data but was not able to predict as 

accurately as AC.  This assessment was based on raw results from WEKA prior to the 

improvement of accuracy developed in the framework.  Rule-learners, such as Ripper,5 

found similar rules but were not transparent nor popularly used and studied like AC.  

ARM, as implemented in WEKA, provided the interim metrics of the Apriori algorithm.  
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This enabled access to the ARM frequent item sets from which downstream pruning, 

testing and knowledge discovery were accomplished.   

 
Contributions to Associative Classification Methods 

 Ranking and pruning methods were introduced to improve the generality of the 

rules as generated using classic ranking and pruning methods.  These methods not only 

improved the generality but also the accuracy of the rules. There was a serendipitous 

benefit in these methods, which used a final frequency sort, to reduce the final rule set to 

the highest concept level of attributes participating in multiple concept levels. 

 The framework used balanced sample sizes.  This enabled interestingness metrics 

that discriminated the data characteristics of the disease exemplars no matter what their 

prevalence in the EHR.  These were normalized metrics used to focus the rules to identify 

one class only.  By design, one set of exemplars represented a disease or condition of 

interest.  The other represented controls without the condition.  Since the goal was to 

generate rules to identify cases with the condition, it was practical to leverage one-class 

rules.  The evaluation of the merit of the rules was based on sensitivity and specificity.  

Sensitivity and specificity are not affected by prevalence. 

 
Significance to Biomedical Informatics 

 The development and validation of the framework are significant in the field of 

biomedical informatics because they demonstrate a successful application of machine 

learning in the electronic health record.  Development of the framework included 

modification of associative classification methods to address the unique data content in 

the EHR.  Data mining methods have not been applied to their potential in the EHR.  This 
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work suggested that standard methods developed for other industries might need to be 

optimized for the health care data environment.  Further, the methods support high-

throughput phenotypic cohort identification for genomic research.  The framework does 

not generate definitive phenotyping algorithms but exposes and quantifies generalized 

EHR data toward that purpose. 

 
Opportunities for Further Research 

 The framework should be evaluated in other diseases and EHR settings.  Diabetes 

and asthma are well characterized as medical diagnoses, with standard diagnostic and 

treatment patterns.  The current research was conducted in a health care delivery 

environment with mature EHR systems and programmatic efforts to train and support 

providers to use the EHR.  Care documentation for diabetes and asthma was also focused 

on in recent years for institutional clinical quality improvement goals.  Evaluation of 

classifiers for medical conditions where standards of care are not well defined would 

further test the contributions of the framework.  It would also be useful to test the 

reliability of rules for diabetes and asthma in other health care settings.  Are the rules 

overfit to the care setting or more general across settings?  Is there value in seeking rules 

that generalize across settings or is it reasonable to use rules suited to each setting? 

 The framework exposes the frequency and strength of associations among EHR 

data elements to build the classifiers, so the differences in raw data among settings can be 

explored.   It can be applied to the problem of testing differences between settings, 

provider groups or time periods.  A study is underway to test differences in EHR 

observations between two large provider organizations, using the framework to identify 
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observations associated with type 2 diabetes mellitus as a step in attribute selection for 

further statistical analysis.   

 The framework approach can be extended to attributes from other databases, 

including population and behavior data that may or may not be linked to EHR data.  In 

addition, the broad and highly abstract view of EHR data used in this research can be 

focused for particular medical conditions, including data that are more detailed.  

Association rule mining was called a “brute force” method of knowledge discovery 

because it discovers all associations in the attributes presented, then applies various 

metrics and operator-provided thresholds to measure and select the interesting ones.  

Therefore, it provides an opportunity to explore very general problem domains.   

Interesting associations may be refined and constrained to particular focus areas using 

these methods.  The approach can also be used with other knowledge discovery methods 

that model relations that are more complex but usually require a more focused problem 

domain.   

 This research demonstrated success of a high throughput, generalized approach to 

learn classifiers for two medical conditions from the EHR data of exemplars of those 

conditions.  Its potential application to identify, or amplify, health related cohorts was 

posed as an improvement in the efficiency of conducting biomedical research.  These 

methods can also be applied to improve identification of cases for chronic disease 

registries.  Registries support care management activities as well as health services 

research toward improved health care delivery and patient outcomes.  The cohort 

amplification rules are well suited to this task in theory.  Specificity and sensitivity are 

acceptance thresholds set in the rules generation process.  This enables a range of 
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potential accuracy.  In the population of registries, cases may be identified on a scale of 

uncertainty.  Future research includes the development and evaluation of the framework 

for this purpose. 

 
Limitations of this Research 

 
 Existence/nonexistence of EHR observations over an arbitrary time period was 

the data type of all candidate data used in the framework.  This gave a broad but shallow 

pattern search.  This was intended as a first look at patterns for exemplar conditions, 

given data that are generally populated in the EHR.  The intent was to apply the 

framework to better understand the data content as well as to find useful patterns in this 

superficial view.  With a better understanding of actual patterns in stored data for 

particular conditions, a deeper, condition-specific data set might be designed for further 

machine learning approaches.  Useful patterns for disease case identification were found 

in the two conditions studied in this work, diabetes and asthma.  In other conditions, the 

shallow data patterns may not. 

 Administrative codes (ICD-9-CM and CPT) were used in the framework.  There 

are known problems with their reliability and validity as addressed in Chapter 1.  At this 

time, the administrative codes in the EHR are the most comprehensive disease 

documentation available.  The ICD-9-CM codes for the target conditions were removed 

from the candidate data because they would have dominated the rules.  They were used to 

associate comorbidities.  In the short term, while ICD-9-CM codes are widely used for 

cohort identification, the framework rules may augment or validate these algorithms with 

additional rules.  As better data become available, for example by use of NLP to extract 

coded clinical data, the candidate data for the framework can be modified.  
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 The query to gather EHR data can be streamlined to better automate the current 

process.  The current process generated attributes that had to be manually removed.  Most 

of the superfluous attributes were administrative in nature, redundant or simply useless to 

the problem at hand.  An example of the latter is common medical specialties visited 

frequently by all patients.  This is to be expected when mining patterns directly from a 

transaction database.  The least number of candidate attributes is best since computer 

memory consumption is large for Apriori rule mining. 

 A minimum of one thousand training records from disease and control exemplars 

was necessary to find reliable patterns.  This number of exemplars may be difficult to 

find.  If patterns were proven reliable across institutions, training data could be shared for 

less prevalent training cases. 
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