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Abstract. Uncertain sequence databases are widely used to model data
with inaccurate or imprecise timestamps in many real world applica-
tions. In this paper, we use uniform distributions to model uncertain
timestamps and adopt possible world semantics to interpret temporal
uncertain database. We design an incremental approach to manage tem-
poral uncertainty efficiently, which is integrated into the classic pattern-
growth SPM algorithm to mine uncertain sequential patterns. Extensive
experiments prove that our algorithm performs well in both efficiency
and scalability.
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1 Introduction

Sequential pattern mining (SPM) provides inter-transactional analysis for times-
tamped data and mines frequent patterns in sequence databases. However, it is
very common that timestamps of events might be inaccurate or imprecise in
real applications. And temporal uncertainty is usually caused by the following
reasons:

– The exact time of an event is often unavailable. For example, in temperature
monitoring sensor networks, temperatures are measured periodically. The
exact time of a sudden temperature change is unknown, and it can only be
inferred from raw data probabilistically.

– Temporal uncertainty arises when data are collected in different temporal
scales. For example, a handhold GPS device may update the position every
10 minutes; while a GPS on a fast-moving vehicle may report every 5 sec-
onds. And the temporal relationship is uncertain between two events within
different granularities.

– Temporal uncertainty can also be caused by aggregation operations on tem-
poral scales. For example, an economic indicator may be aggregated from
weekly or monthly data to represent high level abstracted information in this
time period.
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– Temporal uncertainty is also used to protect privacy and confidentiality.
Precise time information in monitoring data usually is not released if there
is a potential to identify individuals. Therefore, uncertainty is introduced to
original time points, which is unquantifiable and unknown by the data user.

A time series T = {t, (t + 1), . . . , (t + n)} that bounds a set of consecutive
timestamps is used to model an uncertain event time in probabilistic temporal
databases, where it assumes that all events are defined within the same discrete
time domain. However, this model becomes inaccurate and inconvenient when
data are actually collected in different time scales. Instead, we use uniform dis-
tributions to represent uncertain timestamps in our model, which do no rely on
any discrete time domain.

It is very important to carefully manage temporal uncertainty in SPM prob-
lems; otherwise, the mined patterns might be inaccurate. Possible world seman-
tics is widely used to interpret probabilistic databases; however, it also brings
efficiency and scalability challenges to uncertain SPM problems. Therefore, in
this paper, we propose an efficient SPM algorithm in temporal uncertain se-
quence databases. Our main contributions are listed as follows:
(1) We model uncertain timestamps by uniform distributions. And we use pos-
sible world semantics to interpret this type of temporal uncertainty.
(2) We develop a novel approach to manage temporal uncertainty in the process
of mining uncertain sequential patterns by a pattern-growth algorithm.
(3) We conduct extensive experiments to demonstrate the efficiency and scala-
bility of our algorithm.

2 Related Works

Data mining in uncertain databases has been an active area of research recently.
A lot of traditional database and data mining techniques have been extended
to be applied to uncertain data [1]. Particularly, Muzammal and Raman pro-
posal the SPM algorithm in probabilistic database using the expected support
as the measurement of pattern frequentness [10]; however, expected support
has inherent weakness in mining high-quality sequential patterns[12]. Zhao et
al. measure pattern frequentness using possible world semantics and propose a
pattern-growth uncertain SPM algorithm [14, 15]. Miliaraki et al use approxi-
mation with probabilistic guarantee to improve the efficiency of uncertain SPM
problem [9]. A dynamic programming approach is used to mine probabilistic
spatial-temporal frequent sequential patterns [8]. However, these methods are
all designed for sequence databases with accurate timestamps.

Dyreson and Snodgrass introduced probabilistic temporal databases which
models uncertain timestamp by a set of time points with equal probabilities [4].
Zhang et al. proposed a pattern recognition algorithm in temporal uncertain
streams[13]; while pattern queries in temporal uncertain sequences is studied in
[16]. However, our work distinguishes from the above in that we use uniform
distributions to represent uncertain timestamps, which is more flexible in mod-
eling data collected from different scales. Meanwhile, the above works focused on
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sid	eid	 T	 I	
1	 1	 [100,103]	 {A,C}	
1	 2	 [102,105]	B	
2	 1	 [160,163]	A	
2	 2	 [162,164]	B	
2	 3	 [163,166]	B	
2	 4	 [167,168]	C	

Fig. 1. An example of uncertain database

sid	eid	 t	 I	
1	 1	 102.5	 {A,C}	
1	 2	 103.9	 B	
2	 1	 163	 A	
2	 2	 162	 B	
2	 3	 165	 B	
2	 4	 166	 C	

Fig. 2. An example of a possible world

matching patterns in one sequence, while the SPM problem is more complicated
because it mines patterns from a large number of uncertain sequences so that
their techniques cannot be directly employed.

3 Problem statement

3.1 Temporal Uncertain Sequence Database

A temporal uncertain sequence database contains a collection of uncertain se-
quences, and an uncertain sequence is a set of temporal uncertain events. A
temporal uncertain event is represented by e = 〈sid, eid, T, I〉. Here sid is the
sequence-id, eid is the event-id and 〈sid, eid〉 identifies a unique event. Note that
events are not guaranteed to be ordered by their eids. An uncertain timestamp
T is modeled by a uniform distribution T ∼ U(t−, t+), where [t−, t+] is the range
of T . I is an itemset that describes the content of event e.

Fig. 1 shows an example of temporal uncertain database. A sequence is a list
of events that are associated with the same sid and an event identified by sid = i
and eid = j is denoted by eij . For example, e11 = 〈1, 1, {[100, 103]}, {A,C}〉
indicates that event {A,C} occurs at time T , where T ∼ U(100, 103) is uniformly
distributed within 100 and 103.

3.2 Temporal Possible Worlds

We use possible world semantics to interpret temporal uncertain databases. Tem-
poral possible worlds of an uncertain database D are generated by instantiating
all possible values of each uncertain timestamp. Fig. 2 shows an example a tem-
poral possible worlds that are instantiated from the uncertain database in Fig.
1, in which the time point of an event is randomly drawn from the corresponding
uncertain timestamps.

It is widely assumed that uncertain sequences in D are mutually independent,
which is known as the tuple-level independence [7, 1] in probabilistic databases.
Meanwhile, event time are also assumed to be independent of each other [3, 5,
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6, 14], which can be justified by the fact that events are often observed indepen-
dently in real applications. Thus, the probability density function (pdf) of the
possible words can be computed by Equation (1).

f(w) =

m∏
i=1

f(di) =

m∏
i=1

ni∏
j=1

f(Tij = tij) (1)

Where di is a sequence in the database D and eij is an event in di. m = |D|
is the number of sequences in D and ni = |di| is the number of events in di. Let
Tij ∼ U(t−ij , t

+
ij) be the uncertain time of event eij , then its pdf f(Tij = tij) is

shown in Equation (2).

f(Tij = tij) =

{
1

t+ij−t
−
ij

, t ∈ [t−ij , t
+
ij ]

0 , otherwise
(2)

3.3 Uncertain Sequential Pattern Mining Problem

A sequential pattern α = 〈X1 · · ·Xn〉 is supported by a sequence β = 〈Y1 · · ·Ym〉,
denoted by α � β, if and only if there exists integers {k1, . . . , kn} so that we
have Xi.I ⊆ Yki .I (∀i ∈ [1, n]) and l ≤ Yki+1 .t− Yki .t ≤ h (∀i ∈ [1, n− 1]). Here
l = mingap is the minimal time gap constraint between two adjacent events of
α and h = maxgap is the maximal time gap constraint.

In deterministic databases, a sequential pattern s is frequent if and only if it
satisfies sup(s) ≥ ts, where sup(s) is the total number of sequences that support
s and ts is the user-defined minimal threshold. However, In an uncertain database
D, the frequentness of s is probabilistic and it can be computed by Equation
(3).

P (sup(s) ≥ ts) =

∫
sup(s|w)≥ts

f(w)dw (3)

Where w is a possible world in which s is frequent and f(w) is the pdf of w.
The SPM problem in temporal uncertain databases can be defined as follows.

Given a minimal support ts, a minimal frequentness probability threshold tp, a
minimal time gap l and a maximal time gap h, find every probabilistic frequent
sequential pattern s in a temporal uncertain database, which has P (sup(s) ≥
ts) ≥ tp.

4 Solution

4.1 Frequentness Probability

Suppose D = {d1, . . . , dn} is a temporal uncertain database and s is a sequential
pattern. Because d1, . . . , dn in D are mutually independent, the probabilistic
support of s in D, denoted by sup(s), can be computed by Equation (4).
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sup(s) =

n∑
i=1

sup(s|di) (4)

Where sup(s|di) (∀i ∈ [1, n]) is a Bernoulli random variable, whose success
probability is P (sup(s|di) = 1) = P (s � di).

sup(s) is a Poisson-Binomial random variable, since it is the sum of n inde-
pendent but non-identical Bernoulli random variables. And the probability mass
function (pmf) of sup(s) is P (sup(s) = i) = pi, where pi is the probability that
the support of s in D equals to i (i ∈ [1, |D|]). Here we adopt the Fast Fourier
Transform (FFT) technology in [14] to compute the pmf of sup(s) in O(nlogn)
time . Thereafter, the frequentness probability of s is computed by Equation (5).

P (sup(s) ≥ ts) =
∑
i≥ts

pi = 1−
∑
i<ts

pi (5)

Where, ts is the minimal support threshold and pi = P (sup(s) = i) (i ∈ [1, n])
is the probability that the support of s in D equals to i. Given the minimal
frequentness probability threshold tp, s is probabilistically frequent if and only
if P (sup(s) ≥ ts) ≥ tp.

4.2 Support Probability

We first define the minimal possible occurrence of a sequential pattern s in an
uncertain sequence d.

Definition 1. Given a sequential pattern s and an uncertain sequence d, a sub-
set d′ of d (e.g. d′ ⊆ d) is called a minimal possible occurrence of s if and only
if (1) P (s � d′) > 0; (2) ∀d′′ ⊂ d′, P (s � d′′) = 0.

For example, in Fig. 1, {e21, e22} and {e21, e23} are two minimal possible oc-
currences of the sequential pattern 〈A,B〉 in the sequence s2; while {e21, e22, e23}
is not a minimal occurrence of 〈A,B〉. Then the support probability P (s � d)
can be computed by Equation (6), since event timestamps are independent.

P (s � d) =

N∑
i=1

P (s � osi) (6)

Here osi (i = 1, . . . , N) are N minimal possible occurrences of s, and the
computation of P (s � osi) is discussed in section 4.3.

4.3 Probability of satisfying time constraints

Let os = {ek1 , . . . , ekn} be a minimal possible occurrence of sequential pattern
s = 〈s1, . . . , sn〉. Suppose Ti is the uncertain time of the event eki , then P (s �
os), denoted by P (〈T1 · · ·Tn〉), is the probability that T1, · · · , Tn satisfy time
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constraints l ≤ Ti+1 − Ti ≤ h, ∀i ∈ [1, n). Here l is the minimal time gap
between two adjacent timestamps and h is the maximal time gap.

A naive approach of computing P (〈T1 · · ·Tn〉) is to use the chain rule, which
is shown in Equation (7).

P (〈T1 · · ·Tn〉) =

∫
· · ·
∫

l≤ti−ti−1≤h

f(Tk1 = t1, . . . , Tkn = tn)dt1 · · · dtn

=

∫
· · ·
∫

l≤ti−ti−1≤h

f(tn|t1 · · · tn−1) · · · f(t2|t1)f(t1)dt1 · · · dtn
(7)

However, this method is usually too complex in practice. Therefore, we design
a new approach to compute P (〈T1 · · ·Tn〉) efficiently.

Basic case. We first consider the basic case of two uncertain timestamps X ∼
U(x−, x+) and Y ∼ U(y−, y+). Given time constraints mingap = l, maxgap =
h, P (〈XY 〉) can be computed in Equation (8).

P (〈XY 〉) =

∫ min(y+,x++h)

max(y−,x−+l)

∫ min(x+,y−l)

max(x−,y−h)

1

(x+ − x−)(y+ − y−)
dxdy (8)

Equation (8) is decomposed into p deterministic cases, if [y−, y+] is divided
into p disjoint subintervals by the endpoints {x+ + l, x− + l, x+ + h, x− + h} as
[y−, y+] =

⋃
[y−i , y

+
i ],∀i ∈ [1, p]. Here Yk ∼ U [y−k , y

+
k ] is a uniformly distributed

random variable, and P (〈XY 〉) can be computed by Equation (9).

P (〈XY 〉) =

p∑
k=1

P (〈XYk〉)P (Y = Yk) (9)

Where P (Y = Yk) = (y+k − y
−
k )/(y+ − y−). We use a geographic method to

compute P (〈XYk〉) in O(1) time, which is shown in Equation (10).

P (〈XYk〉) =
Sk

Ak
=

(1/2) ∗ (L1 + L2) ∗H
(y+k − ylk)(x+ − x−)

(10)

Where, Ak is the area of the rectangle defined by the 2-dimensional uniform
distribution of X and Yk, and Sk is the area within Ak which satisfies the time
constraints. Here H = y+k − y

−
k , L1 and L2 are computed as follows.

L1 = max(0, L′1), L′1 = min(y−k − l, x
+)−max(y−k − h, x

−)

L2 = max(0, L′2), L′2 = min(y+k − l, x
+)−max(y+k − h, x

−)

Fig. 3(a) shows an example of computing P (〈XY 〉) with l = 0 and h = 5,
where X ∼ U[60, 63] and Y ∼ U[62, 68]. There two endpoints {63, 65} within
the range of Y , which divide [62, 68] into three disjoint subintervals as [62, 68] =
[62, 63] ∪ [63, 65] ∪ [65, 68].
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60 62 64 66 68 70
59

60

61

62

63

64

65

66

67

68

69

70

X

Y

y=x

y=x+5

S3

S2

S1

Y3

Y2

Y1

(a) compute P (〈XY 〉)

62 64 66 68 70 72
61

62

63

64

65

66

67

68

69

70

71

72

Y

Z

Y1 Y2 Y3

y=x

y=x+5

Z1

Z2

Z3

(b) compute P (〈XY Z〉)

Fig. 3. An example of compute the probability of satisfying time constraints

Let Y1 ∼ U[62, 63], Y2 ∼ U[63, 65] and Y3 ∼ U[65, 68], then we have

P (Y = Y1) =
1

6
P (〈XY1〉) =

S1

A1
=

2.5

3
P (〈XY1〉 ∩ Y1) =

2.5

18

P (Y = Y2) =
2

6
P (〈XY2〉) =

S2

A2
=

6

6
P (〈XY2〉 ∩ Y2) =

1

3
(11)

P (Y = Y1) =
3

6
P (〈XY3〉) =

S3

A3
=

4.5

9
P (〈XY3〉 ∩ Y3) =

1

4

Thereafter, P (〈XY 〉) =
∑3

i=1 P (〈XYi〉 ∩ Yi) = 0.72.

General case. Given uniformly distributed uncertain timestamps T1, . . . , Tn,
suppose the range of Tn is divided into p sub-partitions as [t−n , t

+
n ] =

⋃p
i=1[t−ni

, t+ni
],

and Tni
∼ U(t−ni

, t+ni
) is a uniform distributed random variable, then we can com-

pute P (〈T1 · · ·Tn〉) by Equation (12).

P (〈T1, . . . , Tn〉) =

p∑
i=1

P (〈T1, . . . , Tni
〉) ∗ P (Tn = Tni

)

=

p∑
i=1

P (〈T1, . . . , Tni
〉 ∩ Tni

)

(12)

Where P (〈T1 · · ·Tni〉) can be computed by Equation (13).

P (〈T1, . . . , Tni〉) =

q∑
j=1

P (
〈
T1, . . . , T(n−1)j

〉
)P (
〈
T(n−1)jTni

〉
)P (T(n−1)j )

=

q∑
j=1

P (
〈
T(n−1)jTni

〉
)P (
〈
T1, . . . , T(n−1)j

〉
∩ T(n−1)j )

(13)

Let s′ = 〈s1, . . . , sn−1〉 be a sequential pattern by removing the last element of
s = 〈s1, . . . , sn〉. In SPM process, we have already computed P (

〈
T1, . . . , T(n−1)j

〉
∩
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T(n−1)j ) in searching s′. Thus, we can save and reuse these values when we search
pattern s, in order to avoid repeated computation.

Given another uncertain time Z ∼ U[65, 70], Fig. 3(b) shows the process
of computing P (〈XY Z〉) by reusing previous computational results. First, we
compute potential end points by the ranges of Y1, Y2 and Y3 as follows.

z11 = y−1 + l = 62, z12 = y+1 + l = 63, z13 = y−1 + r = 67, z14 = y+1 + h = 68

z21 = y−2 + l = 63, z22 = y+2 + l = 65, z23 = y−2 + r = 68, z24 = y+2 + h = 70

z31 = y−3 + l = 65, z32 = y+3 + l = 68, z33 = y−3 + r = 70, z34 = y+3 + h = 73

Therefore, the range of Z is divided into three disjoint sub-partitions as
[65, 70] = [65, 67] ∪ [67, 68] ∪ [68, 70]. Let Z1 ∼ U[65, 67], Z2 ∼ U[67, 68] and
Z3 ∼ [68, 70]. Here we take the computation of P (〈XY Z1〉) in Equation (14) as
an example.

P (〈XY Z1〉) =

3∑
i=1

P (〈XYi〉 ∩ Yi)P (〈YiZ1〉) (14)

Where P (〈XYi〉 ∩ Yi) is already computed in Equation (11). Referring to Equa-
tion (10), we can compute P (〈Y1Z1〉) = 1, P (〈Y2Z1〉) = 1, P (〈Y3Z1〉) = 1/3.
Thereafter, we have P (〈XY Z1〉) = 1 ∗ 1

6 ∗
2.5
3 + 1 ∗ 2

6 ∗
6
6 + 1

3 ∗
3
6 ∗

4.5
9 = 0.5555.

Similarly, we can compute P (〈XY Z2〉) = 0.6111 and P (〈XY Z3〉) = 0.3333.
Therefore, we arrive to the final result P (〈XY Z〉) = 0.4 ∗ 0.5555 + 0.2 ∗ 0.6111 +
0.4 ∗ 0.3333 = 0.4777.

4.4 Uncertain SPM Algorithm

We integrate our uncertain management approach into the classic SPM algo-
rithm PrefixSPan[11]. There are two major modifications to the original Pre-
fixSpan in our uncertain SPM algorithm.
(1) We project the database by minimal possible occurrences. Suppose os =
{ek1

, . . . , ekn
} is a minimal possible occurrence of s in sequence d. The projec-

tion of d w.r.t. os, denoted by d|os , eliminates any event ei in d if P (ei.T ≥
ekn .T + mingap) = 0. A projected database D|s = {d1|o1,...,op , . . . , dt|o1,...,oq}
is a collection of projected sequences, where di|o1,...,op = {di|o1 , . . . , di|op} is a
set of p projected sequences of di w.r.t. to the minimal occurrences o1, . . . , op of
s in di. For example, in Fig. 1, if we set mingap = 1 and let s = 〈AB〉, then
D|s = {d2|o1,o2}, where d2|o1 = {e23, e24} and d2|o2 = {e24}.
(2) We save intermediate computational results for each minimal possible occur-
rence. Let os = {ek1 , . . . , ekn} be a minimal possible occurrence of s in d and
Ti = eki

.T ∀i ∈ [1, n]. Suppose the range [t−n , t
+
n ] of Tn is divided into k subin-

tervals [t−n , t
+
n ] =

⋃
[t−ni

, t+ni
] (∀i ∈ [1, k]), then we compute pi = P (〈T1, . . . , Tni

〉)
by Equation (12) and save the results in the form as T (os) = {[t−n1

, t+n1
] :

p1, . . . , [t
−
nk
, t+nk

] : pk}. Therefore, we can reuse T (os) in searching longer se-
quences.

We adopt the pattern-growth approach to search new patterns in Algorithm
1. We first mine frequent items inD|s, denoted by I = {i1, i2, ..., in}. This process
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ALGORITHM 1: USPM(s,D|s)

Input: sequential pattern s, uncertain projected database D|s,
minsup = ts, minprob = tp

Output: L: a set of frequent sequential patterns
Find all frequent items I = {i1, i2, ..., in} in D|s
if D|s = φ or I = φ then

return L
end
foreach item i ∈ I do

s′ = s+ {i}
for di|o1,...,on ∈ D|s do

for di|oj ∈ di|o1,...,on do
construct a projected sequence di|os′ from di|oj
compute T (os′) from T (osj ) in di by Equation (12) and Equation (13)

end
compute the support probability P (s′ � di) by Equation (6).

end
use FFT to compute the Poisson Binomial distribution of sup(s′)
if P (sup(s′) ≥ ts) ≥ tp then

L = L ∪ {s′};
USPM(D|s′ , s′);

end

end

is straightforward because it does not need to consider temporal uncertainty. A
candidate pattern s′ = s+ {i} is generated for each i ∈ I. Then, we extract all
minimal possible occurrences of s′ and construct their projected databases. For
each minimal possible occurrence os′ of s′, we compute and save its probability
of satisfying time constraints by Equation (12) and Equation (13).

We compute the support probability of s′ in each uncertain sequence by
Equation (6). Thereafter, we adopt the FFT technique in [14] to compute the
Poisson Binomial distribution of the overall support sup(s′). The frequentness
probability is computed in Equation (5), by which we can determine if s′ is a
probabilistic frequent sequential pattern. The searching process stops until no
frequent patterns are mined.

5 Evaluation

5.1 Synthetic data generation

We use the IBM market-basket data generator [2] to generate synthetic sequence
datasets in different scales with the following parameters: (1)C : number of se-
quences; (2)T : average number of transactions/itemsets per data-sequence; (3)L:
average number of items per transaction/itemset per data-sequence; (4)I : num-
ber of different items.
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Fig. 4. Scalability of uSPM in synthetic uncertain datasets
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Fig. 5. Effect of parameters in synthetic uncertain datasets

To add temporal uncertainty, we replace a point-value timestamp t in the
original synthetic datasets by a uniform distribution in [(1 − r) ∗ t, (1 + r) ∗ t],
where r is randomly drawn from the uniform distribution U(0, 1). We name
the generated synthetic dataset by parameters. For example, the dataset named
T4L10I1C10 indicates that T = 4, L = 10, I = 1 ∗ 1000 and C = 10 ∗ 1000.

Our uncertain sequential pattern mining algorithm is called uSPM for short.
Recall from Section 4.3 that a naive method to compute the probability of an
occurrence satisfying time constraints is to directly evaluate Equation (7) us-
ing chain rule. This naive method is implemented and abbreviate as NV . We
compare uSPM with NV to evaluate the performance of our algorithm. All the
experiments were done in the desktop with Intel(R) Core (TM) Duo CPU @
2.33GHz and 4GB memory.

5.2 Scalability and efficiency

In Fig. 4, we compare the running time of uSPM and NV on synthetic datasets
with different scales, where we set minsup = 0.5%, minprob = 0.7, mingap = 1,
and maxgap = 10. We initially have C = 10 000, T = 4, I = 10 000 and L = 2.
In Figigure 4(a), C varies from 1 000 to 100 000; In Fig. 4(b), T varies from 5
to 30; In Fig. 4(c), L varies from 2 to 10; and In Fig. 4(c) I varies from 500 to
10 000.

In Fig. 4, we observe the following phenomenons: (1) uSPM is significantly
faster than NV under every setting of the parameters, which proves the effective-
ness of our temporal uncertainty management approach. (2) The running time
increases with the increment of C, T , L, as the increment of these parameters
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Fig. 6. Performance of uSPM in real stock dataset

generates larger synthetic datasets. (3) The running time drops slightly with the
increment of I, because there are less repeated items in sequences when I is set
to a larger value.

Fig. 5 compares the running time of uSPM and NV with different of user-
defined parameters in the dataset T4L2I10C10. We initially set minsup = 0.2%,
minprob = 0.7, mingap = 1, and maxgap = 10. In Fig. 5(a), minsup decreases
from 0.8% to 0.1%; in Fig. 5(b), minprob varies from 0.4 to 0.9; and maxgap
varies from 5 to 80 in Fig. 5.

In Fig. 5, we observe that: (1) The running time of uSPM increase with the
decrement of minsup; however, the performance is relatively stable to the varia-
tions of minprob. The probabilistic support of a sequential pattern is bounded to
its expected value (Chernoff bound) so that the frequentness of a large number
of patterns become deterministic. This explains why the running time of uSPM
does not fluctuate significantly in Fig. 5(b). (3) The running time of uSPM in-
creases when we set a larger value to maxgap. This is intuitive because a larger
maxgap indicates a less strict constraint of sequential patterns.

We also apply uSPM to a real world stock market dataset. The prices for
882 stocks are extracted from Shanghai Stock Exchange Center in 16 weeks
from 12-03-2012 to 03-24-2013. Each stock corresponds to a sequence. We define
three events such as price going up (+), going down (−) and no change (0). An
uncertain event is aggregated from consecutive events. For example, if price goes
up at time 1, 2 and 3, then we aggregate them to form an uncertain event ([1,3],
+).

Here we set minprob = 0.7, mingap = 1 and maxgap = 5. Fig. 6(a) shows
that the running time of uSPM in the stock dataset increases with the decrement
of minsup. As we only define three distinct events, there are many repeated items
in sequences; however, uSPM still significantly outperforms NV in this dataset.
In Fig. 6(b), we can see that the number of frequent sequential patterns in the
stock dataset increases significantly when we decrease the value of minsup from
10% to 2%. And a mined pattern 〈+,−,+,−〉 from this dataset reveals that
stock prices are fluctuated in general during the time when data are collected,
which is consistent with intuitive observations.
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6 Conclusion

In this paper, we study the problem of mining probabilistic frequent sequential
patterns in databases with temporal uncertainty. We design an incremental ap-
proach to manage temporal uncertainty efficiently and integrate it into classic
pattern-growth SPM algorithm. The experimental results prove that our algo-
rithm is efficient and scalable.
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