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Abstract— Mining frequent itemsets is one of the popular task in data mining. There are many applications like location-based services, sensor 

monitoring systems, and data integration in which the content of transaction is uncertain in nature. This initiates the requirements of uncertain 

data mining. The frequent itemsets mining in uncertain transaction databases semantically and computationally differs from techniques applied 

to standard certain databases. The goal of proposed model is to deal with the problem of extracting frequent itemsets from evolving databases 

using Possible World Semantics (PWS). As evolving databases contains exponential number of possible worlds mining process can be modeled 

as Poisson Binomial Distribution (PBD). In this proposed work apriori-based PFI mining algorithm and approximate incremental mining 

algorithm are developed. An approximate incremental mining algorithm can efficiently and accurately discover frequent itemsets. Also, focus is 

on the issue of maintaining mining results for uncertain databases. 

Keywords- Approximate incremental mining algorithm, Apriori-based PFI mining algorithm, Evolving Database, Frequent Itemsets. 
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I. INTRODUCTION  

 The databases used in many important applications are 

often uncertain [1]. The locations of users obtained through 

RFID and GPS systems are not precise due to measurement 

errors. Fig. 1 shows an online marketplace application, which 

carries probabilistic information. The purchase behavior 

details of customers jack and mary are given. The value with 

each item represents the chance that a customer may buy that 

item in the near future. Users browsing histories provides 

probability    values. For example, if jack visited the 

marketplace 10 times in the previous week, out of which video 

products were clicked six times, the marketplace may 

conclude that jack has a 60 percent chance of buying videos. 

The mining of evolving data has recently attracted research 

attention. Many algorithms for finding frequent item sets (i.e., 

sets of attribute values that appear together frequently in 

tuples) for evolving databases are developed. These algorithms 

can be applied to two uncertainty models: attribute uncertainty 

and tuple uncertainty, every tuple is associated with a 

probability to indicate whether it exists. The frequent item sets 

discovered from evolving data are naturally probabilistic, in 

order to reflect the confidence placed on the mining results. 

Fig. 2 shows a probabilistic frequent item set (pfi) extracted 

from fig. 1. A pfi is a set of attribute values that occurs 

frequently with a sufficiently high probability. In fig. 2, the 

support probability mass function (s-pmf) for the pfi {video} 

is shown. This is the pmf for the number of tuples (or support 

count) that contain an item set  Under PWS, a database 

induces a set of possible worlds, each giving a support count 

for a given item set. Hence, the support of a frequent item set 

is described by a pmf. In Fig. 2, consider all possible worlds 

where item set {video} occurs twice, the corresponding 

probability is 1/6. The important problem is maintaining 

mining results for changing or evolving databases. The type of 

evolving data that we address here is about the appending, or 

insertion of a batch of tuples to the database. Tuple insertion is 

common in the many applications. For example, a GPS system 

may have to handle location values due to the registration of a 

new user.                 

 

Figure 1:  Illustrating an uncertain database. 

 

To summarize, a model-based algorithm, this can reduce 

the amount of effort of scanning the database for mining 

threshold-based PFIs. We also develop incremental mining 

algorithms, for extracting approximate PFIs. Both these 

algorithms can support attribute and tuple uncertainty models. 

 
Figure 2:  s-pmf of PFI {video}  

 

II. RELATED WORK 

Traditional mining algorithms work well for databases 

with precise values; it is not clear how they can be used to 

mine probabilistic data. Here algorithms are developed for 

extracting frequent item sets from evolving databases. Mining 

frequent itemsets is an important problem in data mining, and 

is the first step of deriving association rules. Hence, many 

Customer  Purchase Items  

Jack (Video:1/2), (food:1 ) 

Mary (Clothing:1),(video:1/3), (book:2/3) 
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efficient frequent itemset mining algorithms have been 

proposed.  

Although these algorithms are developed based on the 

apriori framework, they can be considered for supporting other 

algorithms for handling uncertain data. For uncertain databases, 

Aggarwal et al. and Chui et al.[2] developed efficient frequent 

pattern mining algorithms based on the expected support counts 

of the patterns. Bernecker et al, Sun et al [4], and Yiu et al. [5] 

found that the use of expected support may render important 

patterns missing. Hence, they proposed to compute the 

probability that a pattern is frequent, and introduced the notion 

of PFI. S. Nirmala Devi [6] and B. Prathema discussed 

dynamic-programming based solutions to retrieve PFIs from 

attribute-uncertain databases. However, these algorithms 

compute exact probabilities, and verify that an item set is a PFI 

in O (n2) time. 

 Dynamic programming is not used in model-based 

algorithms and model-based algorithms are able to verify a PFI 

much faster (in O (n) time). Approximate algorithms for 

deriving threshold-based PFIs from tuple-uncertain data 

streams were developed. While Zhang et al. [5] only considered 

the extraction of singletons; these  solution discovers patterns 

with more than one item. Recently, Sun et al. developed an 

exact threshold-based PFI mining algorithm. However, it does 

not support attribute-uncertain data. Proposed work examines a 

model-based approach for mining PFIs. Here, study how these 

algorithms can be extended to support the mining of evolving 

data. 

Incremental mining framework is inspired by Fast UPdate 

algorithm (FUP). ZIGZAG [7] also examines the efficient 

maintenance of maximal frequent itemsets for databases that 

are constantly changing. CATS Tree [8], was introduced to 

maintain frequent item sets in evolving databases. Another 

structure, called CanTree [9], arranges tree nodes in an order 

that is not affected by changes in item frequency. The data 

structure is used to support mining on a changing database. 

This work proposes novel incremental mining algorithms for 

approximate PFI discovery. These algorithms can support 

attribute and tuple uncertainty models. 

 

III. IMPLEMENTATION DETAILS 

A. Problem Definition  

Let V be a set of items. [1] In the attribute uncertainty 

model, each attribute value carries some uncertain information. 

Here, adopt the following variant: a database D contains n 

tuples, or transactions. Each transaction, tj is associated with a 

set of items taken from V. Each item v Є V exists in tj with an 

existential probability Pr (v Є tj) Є (0, 1], which denotes the 

chance that v belongs to tj. In Fig. 1, for instance, the existential 

probability of video in tJack  is Pr(videoJack) = 1/2.  

In the tuple uncertainty model, each tuple or transaction is 

associated with a probability value. The following variants are 

assumed: each transaction tj Є D is associated with a set of 

items and an existential probability Pr(tj) Є (0,1]; which 

indicates that tj exists in D with probability Pr(tj). The number 

of possible worlds for tuple uncertainty model is exponentially 

large. 

For Probabilistic Frequent Itemset, let I is subset of the V 

be a set of items, or an itemset. The support of I, denoted by s 

(I), is the number of transactions in which I appears in a 

transaction database. For precise databases, s (I) is a single 

value. Let S (wj;I)  be the support count of I in possible world 

wj. Then, the probability that s (I) has a value of i, denoted by 

PrI (i), is: 

 

Pr
I 
(i) = Σ wj Є W, S(wj, I)=i Pr(wj)            (1)  

 

Hence, PrI (i) (i=1, n) form a probability mass function 

(pmf) of s(I), where n is the size of D.  Pr
I
 is the support pmf 

(or s-pmf) of I. For evolving databases, the frequentness 

probability of I, denoted by Prfreq (I), is the probability that an 

item set is frequent. Pr freq (I) can be expressed as: 

 

Pr freq (I) = Σ i≥ msc (D) Pr
I 
(i)             (2) 

 

In Fig. 2, if minsup= 1, then msc (D) =2. Thus, Prfreq 

({video}) = Pr {video} (1) + Pr {video} (2) = 2/3. 

TABLE I   SUMMARY OF NOTATIONS 

Notation Description 

D An Uncertain Database of n tuples 

V The set of items that appear in d 

V An item, where v Є V 

 

tj jth tuple in D 
 

W The set of all  possible worlds 

 

wj A possible world wj Є W 
 

I An itemset, where I is subset of V 

 

minsup A real value between (0,1] 

 

msc(D) The minimal support count in D 

 

s(I) The support count of I in D 

 

minprob A real value between (0,1] 

 

d Delta database with n’ tuples 

 

D+ A new database with n+ tuples, D+ = D U d 

 

 

Using frequentness probabilities, it is possible to determine 

whether an item set I is frequent. This proposed work, adopt 

the definition in I is a Threshold-based PFI if its frequentness 

probability is larger than some user-defined threshold. Given a 

real value minprob Є (0,1], I is a threshold-based PFI, if 
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Prfreq(I)>=minprob. Call minprob the frequentness probability 

threshold. Here, would like to mention the following theorem,  

Theorem 1 (Antimonotonicity) - Let S and I be two 

itemsets. If S is subset of  I, then Prfreq(S) >= Prfreq(I).  

Incremental mining algorithms, which enable Probabilistic 

Frequent Itemset (PFI) results to be refreshed. This reduces the 

need of re-executing the whole mining algorithm on the new 

database, which is often more expensive and unnecessary. 

Table I summarizes the symbols used in this paper. 

B. Mathematical Model  

Set Theory Analysis 

A] Identify the set of data for Input  

D= {d1, d2, d3….} 

Where ‘D’ is main set of data like d1, d2, d3… dn 

 

B] Identify the probability  

P= {p1, p2, p3….} 

Where ‘P’ is main set of probability like p1, p2, p3… p n 

 

C] Identify the probability of FIS 

PF= {pf1, pf2, pf3….} 

Where ‘PF’ is main set of probability Frequent Item Set         

like pf1, pf2, pf3… pf n 

 

D] Identify the s-pmf 

SF= {sf1, sf2, sf3….} 

Where ‘SF’ is main set of support probability mass 

function like sf1, sf2, sf3… sf n 

 

E] Identify the Process of Generating Probability                  

Frequent Item Set. Probability Frequent item sets 

Generation Steps uses minsup and minprob, 

 L is the main set of layer 

 L= {l1, l2, l3,…} 

 Incount is the main set of the input counts for layer 

 Incount= {Inc1, Inc2, Inc3, Inc4 …} 

 Outcount is the main set of the output counts for layer 

 Outcount = {Outc1, Outc2, Outc3, Outc4 …} 

 Check probability using following formula 

 
 DetectionRate is the main set of detection rate. 

 DetectionRate= {DR1, DR2, DR3…} 

CandidateSet is the main set for candidateSet which      helps 

for creating                                                                                                                                                      

CandidateSet= {cs1, cs2, cs3…} 

Probabilistic frequent itemset is the main set for the detection 

of packets 

 Rule = {r1, r2, r3 …} 

 

D] Identify the Process of Generate approximate 

incremental mining 

In this algorithm dataset will update. 

P= {Set of processes}  

P = {P1, P2, P3,P4……} 

 

 If (dataset not updated ) then 

        P1 = {e1, e2, e3,e4} 

                  Where 

                     {e1=i| i is to Generate Frequent Item Set}    

                      {e2=j| j is to Check Probability} 

If (dataset update) then 

        P1 = {e1, e2, e3} 

                  Where 

                     {e1=i| i is to Generate Frequent Item Set }    

                      {e2=j| j is to Check Probability} 

                      {e3=k|k is Update Result of updated Data 

Set}    

 

G] Identify failure cases as FL 

Failure occurs when – 

FL= {F1, F2, F3…} 

a) F1= {f| ’f’ If no Data set is not formatted} 

   H] Identify success case SS:- 

Success is defined as- 

SS= {S1, S2, S3, S4} 

b) S1={s| ’s’ If Data set is not formatted } 

c) S2= {s| ’s’ if  all operation done}  

C. Proposed System  

The  proposed system architecture of mining evolving data 

is illustrated in Fig. 3. It consists of three phases as candidate 

generation, candidate pruning and PFI testing.  

 Candidate generation- In the first iteration, size-1 item 

sets that can be 1-PFIs are obtained, using the  PFIs 

discovered from D, as well as the delta database d. In 

subsequent iterations, this module produces size (k+1) 

candidate item sets, based on the k-PFIs found in the 

previous iteration. If no candidates are found, it  halts. 

 Candidate pruning- With the aid of d and the PFIs 

found from D, this module filters the candidate item sets 

that must not be a PFI. 

 PFI testing- For item sets that cannot be pruned, they 

are tested to see whether they are the true PFIs. This 

involves the use of database D
+
, as well as the s-pmfs of 

PFIs on D. A simple method of testing whether I is a 

threshold-based PFI, without computing its frequentness 

probability. Given the values of minsup and minprob, 

can test whether I is a threshold-based PFI, in three 

steps.  
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Step 1-Find a real number µm satisfying the   

equation: 

  Minprob= 1- F (msc(D)-1,µm)                                         (3) 

Above equation can be solved efficiently by   

employing numerical methods, Theorem 2. 

Step 2-Use µ
I
 = Σ j=1….n  p

I
j  to compute µ

I
 . Notice that 

the database D has to be scanned once. 

Step 3-If µ
I
 ≥ µm, conclude that I is a PFI. Otherwise, 

I must not be a PFI. In order to verify whether I is a 

PFI, once µm is found, do not have to evaluate Prfreq 

(I). Instead, compute µ
I 
in Step 2, which can be done 

in O (n) time. 

Notice that in phases 1 and 2, only d and the PFIs of D are 

needed. Since these pieces of information are relatively small 

in size, they are usually not very expensive to evaluate. Phase 

3 involves deriving the s-pmfs of item sets, with the use of D
+
, 

and is thus more expensive than other phases. If phase 2 

successfully removes a lot of candidates from consideration, 

the cost of executing phase 3 can be reduced. 

The FP-Growth Algorithm is an alternative way to find 

frequent item sets without using candidate generations, thus 

improving performance. For so much it uses a divide-and-

conquer strategy. The core of this method is the usage of a 

special data structure named frequent-pattern tree (FP-tree), 

which retains the item set association information. 

In simple words, this algorithm works as follows: first it 

compresses the input database creating an FP-tree instance to 

represent frequent items. After this first step it divides the 

compressed database into a set of conditional databases, each 

one associated with one frequent pattern. Finally, each such 

database is mined separately. Using this strategy, the FP-

Growth reduces the search costs looking for short patterns 

recursively and then concatenating them in the long frequent 

patterns, offering good selectivity. 

Figure 3: The System Architecture of mining uncertain data 

D. Apriori-based probabilistic frequent itemset Mining 

Algorithm 

The PFI testing techniques mentioned here are not 

associated with any specific threshold-based PFI mining 

algorithms. To incorporate these techniques to enhance the 

apriori algorithm, an important PFI mining algorithm is used. 

The Algorithm 1 uses the “bottom up” framework of the 

apriori: starting from k = 1, size-k PFIs are first generated.  

Using Theorem 1, size-(k+1) candidate item sets are derived 

from the k-PFIs, based on which the (k+1)-PFIs are found. 

The process goes on with larger k, until no larger candidate 

item sets can be discovered. The main difference of Algorithm 

1 compared with that of traditional apriori is that all steps that 

require frequentness probability computation are replaced by 

PFI testing methods. Table 3 summarizes the symbols used in 

this paper. 

Algorithm 1. Apriori-based probabilistic frequent itemset 

Mining Algorithm  

Input: Uncertain database D, minsup, minprob 

Output: All PFI: F={ F1, F2,…….., Fm} // Fk is set k-PFI 

1  begin 

       2 µm= MinExpSup (minsup, minprob, D);  

3 C1.GenerateSingleItemCandidates (D); 

4 k=1; j=0; 

5 while |Ck| ≠ 0 do 

6 foreach I Є Ck do 

7 I.µ=0; 

8 while (++j) ≤ n and |Ck| ≠ 0 do 

9 foreach I Є Ck do 

10 I.µ = I.µ+ Pr(I is subset of tj); 

11 if I.µ ≥ µm  then 

12 Fk.push(I); 

13 Ck.remove(I); 

14 else if j ≥ n - µm then 

15 if  pruning(I, µm, j, n) = = true then 

16 Ck.remove(I); 

17 Ck+1.GenerateCandidate(Fk); 

18 18     k=k+1;   j=0 

19 return F; 

20 end  

In particular, Algorithm 1 first computes µm (Line 2). For 

each candidate item set I generated on Lines 3 and 17 scan D 

and compute its µ
I
i (Line 10). If Lemma 1 is satisfied, then I  

put to the result (Lines 11-13). If Corollary 1 is satisfied, I 

pruned from the candidate item sets (Lines 14-16). This 

process goes on until no more candidates’ item sets are found. 

Complexity- In Algorithm 1, each candidate item needs O (n) 

time to test whether it is a PFI. This is much faster than the 

Apriori, which verifies a PFI in O(n
2
) time. Moreover, since D 

is scanned once for all k-PFI candidates Ck, at most a total of 

n tuples is retrieved for each Ck. 

E. Approximate Incremental Mining Algorithm 

To efficiently maintain a set of PFIs in an evolving 

database, where new tuples, or  transactions, are constantly 

appended to it, approximate incremental mining algorithm is 
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used. Assume that every tuple has a timestamp attribute, which 

indicates the time that it is created. This timestamp is not used 

for mining; it is only used to differentiate new tuples from 

existing ones. Let D be the old database that contains n tuples, 

and d be a delta database of n’ tuples, whose timestamps are 

larger than those of tuples in D. Let D
+
 be a new  database, 

which is a concatenation of the tuples in D and d, and D
+
 has a 

size of n
+
  = n+n’. Given the set of PFIs and their s-pmfs in D, 

goal is to discover PFIs on D
+
, under the same minsup and 

minprob values used to mine the PFIs of D. 

A simple way of obtaining PFIs from D+ is to simply rerun 

a PFI-mining algorithm on it. Hover, this approach is not very 

economical, since 1) running a PFI mining algorithm on a 

large database is not trivial; and 2) the same algorithm has to 

be frequently executed if a lot of update activities occur. If 

only a few tuples in d are appended to D, it may not be 

necessary to compute all PFIs on D
+
 from scratch. This is 

because the PFIs found in D
+
 should not be very different from 

those discovered in D. Based on this intuition, design an 

incremental mining algorithm that finds PFIs in D
+
, without 

rerunning a complete PFI algorithm. This algorithm works 

well when the size of d is very small compared with that of D; 

nevertheless, it works with any size of d. Next discussed 

framework of solution, which discovers exact PFIs in D
+
, 

based on the PFIs found in D.  

As discussed before, model-based algorithm enables PFIs 

to be accurately and quickly discovered. Now investigate how 

to extend it to retrieve PFIs from evolving data. This extension 

is also called as approximate uncertain Fast UPdate algorithm 

(uFUPapp). Algorithm 2 describes the details. In Line 3, the 

candidates in C
+

1 are generated (Phase 1). In Lines 5-7, the 

parameter values used for pruning are computed. In the k
th 

iteration (Lines 8-15), some candidates in the set C
+

k   are 

pruned (Phase 2; Line 9), while the remaining ones are tested 

(Phase 3; Line 11). In Line 14, size-(k+1) candidates are 

generated by using the k-PFIs found. When no more 

candidates are left (Line 8), the algorithm outputs F
+
, which 

contains PFIs of different sizes (Line 16).  

Since the model-based approach supports both tuple and 

attribute uncertainty, the uFUPapp algorithm, which adopts the 

model-based approach, can also be used in both data models. 

Also remark that uFUPapp is generally faster, since less time 

is needed to test approximate PFIs than exact PFIs. uFUPapp 

is highly efficient and accurate. 

Algorithm 2. Approximate uncertain Fast UPdate 

algorithm (uFUPapp) 

Input: Uncertain database D, d, F
D
, minsup, minprob 

Output: Approximate PFIs in D: F
+ 

={ F1
+
, F2

+
,…….., Fm

+
} 

1   begin 

2   F
+ 

= Ø  

3   C1
+
.GenerateSingleton (d, F1

D
); 

4   k=1; 

5   µm( D
+
 ) = MinExpSup(minsup,minprob,D

+
); 

6   µm( D ) = MinExpSup(minsup,minprob,D); 

7   µm
¯  

= µm( D
+
 ) - µm( D )  

8   while |Ck| ≠ 0 do 

9    Ck
+
.prune( d , Fk

D
, µm

¯
 );  

10 if Ck
+
 ≠ 0 then  

11 Fk
+

 ← Ck
+
.Test(D, d, Fk

D
, µm(D

+ 
) ); 

12 else 

13    break; 

14 Ck+1
+
.GenerateCandidate(Fk

+
); 

15 k=k+1; 

16 return F
+ 

={ F1
+
, F2

+
,…….., Fk-1

+
}; 

17 end 

Phase 1: Candidate Generation 

Considered two cases of generating size-k candidate item 

sets in this phase: 1) k = 1 and  2) k > 1. 

Case 1: k = 1. Invoke Generate Singleton, in Line 3 of 

Algorithm 2. This subroutine simply returns the union of all 

single items in d and the 1-PFIs of D (i.e., F1
D
 ), as the set of 

size-1 candidate item sets (C1
+
). To understand why Generate 

Singleton covers all possible size-1 candidates, first notice that 

if an item set is a 1-PFI in D, it should naturally be considered 

as a candidate itemset in D+. Then claim that it suffices to 

include all single items of d to C1
+
 , using the  Lemma 3.  

Case 2: k > 1. Uses typical Apriori-gen method to generate 

size-k candidates from (k-1)PFIs. Subroutine 

GenerateCandidate (Line 10 in Algorithm 2) performs the 

following: for any two (k -1) PFIs, I and I', if there is only one 

item that differentiates I from I', a candidate item set I U I' is 

produced. Using Lemma 1 (antimonotonicity), can easily show 

that GenerateCandidate produces all size-k candidates.  

Next, examine how some of the candidates generated in this 

phase can be pruned. 

Phase 2: Candidate Pruning 

 Let µ
I
 (DB) be the expected value of random variable X

I
 

in DB, where DB is any of the databases D, d, or D
+
. Also, let 

µm (DB) be a real value that satisfies (3) in DB. The theorem 3 

is used by Phase 2. In Algorithm 2, lines 5-7 compute the 

value of µm
¯ 
. Then, in Line 9, subroutine Prune uses Theorem 

3 to remove candidates that are not PFIs in D, and whose µ
I
 

(d) values do not exceed µm
¯
. Since Prune needs to scan d once 

to obtain µ
I
 (d ), the cost of pruning an item set is O (n' ). 

Phase 3: PFI Testing 

The objective of this phase is to verify whether an item set 

in Ck+ is a true k-PFI.  Subroutine Test (Line 11, Algorithm 2) 

is invoked to perform this task: for each item set I, it first 

computes µI ( D+ ). If this value is not less than µm( D+ ), I is 

judged to be a PFI of D+. 

A simple way of computing µI (D
+
) is to scan the tuples in 

D+ once. This can be costly, if many candidates need to be 

tested. Suppose known the µI ( D ) value of an item set I, 

which is a PFI of D. First evaluate µI ( d ), by scanning d once. 
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The value of µI (D
+
 ) can be then obtained by adding these two 

values together. If d is small, scanning tuples in d is fast, and 

so computing µI (D
+)

 can be more efficient. In uFUPapp, it 

saves the µI (D) values of all the PFIs discovered in D, so that 

they can later be used to derive PFIs for D
+
. 

 

F. CATS Tree Algorithm 

CATS tree is a prefix tree. In CATS tree path from the root 

to the leaves represent set of transactions. After constructing 

CATS tree from database, it enables frequent pattern mining 

with different minimum supports without rebuild the whole 

tree structure 

An extension [7] of FP-Tree is CATS Tree. Table 2 

illustrates the construction of a CATS Tree. Initially, the 

CATS Tree is empty. Transaction 1 (F, A, C, D, G, I, M, P) is 

added as it is. Transaction 2 (A, B, C, F, L, M, and O) is 

added, As shown in Fig 4, common items, F, A, C, are 

extracted from Transaction 2 and are merged with the existing 

tree. Item D is not contained in Transaction 2, common items 

could be found underneath node D. Item M is common. 

However, Transaction 2 cannot be merged directly at node M 

because it would violate the structure of CATS tree that the 

frequency of a parent node must be greater than the sum of its 

children’s frequencies. As shown in Fig 4 Node M of CATS 

Tree is swapped in front of node D. And it is merged with the 

transaction. After that, there is no more common item. The 

remaining portion of Transaction 2 is added to node M. 

TABLE 2: SAMPLE  DATABASE 

 

Transaction 3 (B, F, H, J, O) is added in Fig. 4. Item F of 

Transaction 3 is merged. Since the frequency of node A is the 

same as that of node F, the search for other possible merge 

nodes continues along the branch. It passes through node A, C, 

and M and finally, reaches node B. Even though Transaction 3 

also contains an item B, but the frequency of node B is smaller 

than that of node M, the remaining of the transaction is 

inserted as a new branch at node F. 

When Transaction 4 (B, C, K, S, P) is added, there is no 

common item. Transaction 5 (A, F, C, E, L, P, M, N) is added; 

In Figure.5, F, A, C, and M are merged. The search for 

common items continues along the path. Item P is common in 

both the tree path and Transaction 5. This triggers swapping of 

node P to the front of [7 ] node D. Item P is merged, there is 

no more common item. The remainders of Transaction 5 are 

inserted as a new branch at node P. 

 

Figure 4: Insertion of Transaction 1, 2 & 3 

 

 

Figure 5: Insertion of Transaction 5 

 

Construction of CATS Tree [7] requires only a single data 

scan. Thus, it is not optimal since there is no preliminary 

analysis before this single data scans. At the root level new 

transactions are added. At each level, items of the transaction 

are compared with those of children nodes. If the same items 

exist in both the new transaction and that of the children 

nodes, the transaction is merged with the node at the highest 

frequency. The frequency of the node is incremented. The 

remainder of the transaction is added to the merged nodes and 

the process is repeated recursively until all common items are 

found. Any remaining items of the transaction are added as a 

new branch to the last merged node. CATS Tree Builder has to 

consider not only the immediate items of that level, but also all 

possible descendants. Once the frequency of the new 

transaction is added, the frequency of a descendant node can 

become larger than that of its ancestor. If the frequency 

becomes larger, the descendant has to swap in front of its 

previous ancestor to maintain the structural integrity of CATS 

Tree.  

 

Algorithm: CATS Tree Builder 

Input: set of transactions 

Output: CATS Tree 
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1 PROCEDURE CATSTreeBuilder(input set S) 

2 for all transactions t S  

3 for all i t 

4 i.(frequency in header)++; 

5 root.add (t); 

6 PROCEDURE add(transaction t) 

 if (this.children t

8 child node. Merge(t); 

9 else if (this. Descendant t )) 

10 swap descendant node and split child 

11 Node if necessary; 

12 Descendant. Merge(t); 

13 else 

14 this. children t; 

15 Reposition the merged node if necessary; 

16 PROCEDURE merge(transaction t) 

17 this. Frequency++; 

18 remove this.item from t; 

19 18. node.add(t); 

IV.  RESULT 

The data set contains any user defined numerical data, 

Attributes in one tuple are separated by comma the default 

value of minsup is 20 percent. To test the incremental mining 

algorithm, original database is used as the old database D, and 

the new added tuples are considered as the delta database d.  

By comparing the performance of apriori algorithm, 

approximate incremental mining algorithm and CATS tree 

algorithm. Notice that CATS tree is faster than approximate 

incremental mining algorithm and approximate incremental 

mining algorithm  is faster than apriori algorithm. Fig. 6 shows 

the Frequent Itemsets vs. Execution time. 

 

 
     

Figure 6: Frequent Itemsets vs Execution time 

 

Fig. 7 shows the execution time of apriori, approximate 

incremental mining and CATS tree algorithm. 

 
 

Figure 7: Efficiency of apriori, approximate incremental mining  and CATS 

tree algorithm 

V. CONCLUSION 

Now a day’s many applications contain uncertain data that 

is changing data. By considering high demands of user on 

uncertain data, mining uncertain databases becomes a popular 

task in data mining. In this proposed work apriori-based PFI 

mining algorithm and approximate incremental mining 

algorithm are developed. 

The model-based approach to extract threshold-based PFIs 

from large evolving databases is used. Its main idea is to 

approximate the s-pmf of a PFI by some common probability 

model, so that a PFI can be verified quickly. Approximate 

incremental mining algorithm for retrieving PFIs from 

evolving databases is highly efficient and accurate than exact 

incremental mining algorithm. Apriori based PFI mining and 

approximate incremental mining algorithms support both 

attribute and tuple uncertain data model.  

Since an uncertain database contains an exponential 

number of possible worlds, this issue is technically 

challenging.  Also remark that approximate incremental 

mining algorithm is generally faster, since less time is needed 

to test approximate PFIs than exact PFIs. 
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