
Advanced Machine Learning Algorithms for
Discrete Datasets

Sameen Mansha

Master of Computer System Engineering

A thesis submitted for the degree of Master of Philosophy at

The University of Queensland in 2019

School of Information Technology and Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/328926387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Despite recent works in the area of machine learning, there remains the need for robust, yet easily

usable, methods. In this thesis, we focus on the design, performance, and improvement of well-known

clustering and classification algorithms for discrete datasets with application in different domains.

In the first section of the thesis, we formulate an optimization problem for clustering interesting

itemsets to extract a sparse representation of itemsets and show that their discrete nature makes it

NP-hard. An efficient approximation algorithm is presented which greedily solves maximum set cover

to reduce overall compression loss. Furthermore, we incorporate our sparse representation algorithm

into a layered convolutional model to learn nonredundant dictionary items. Following the intuition of

deep learning, our convolutional dictionary learning approach convolves learned dictionary items and

discovers statistically dependent patterns using chi-square in a hierarchical fashion; each layer having

a more abstract and compressed dictionary than the previous. In the second section for fairness aware

classification, we utilize reject option in different classifiers, a general decision-theoretic framework for

handling instances whose labels are uncertain, for modelling and controlling discriminatory decisions.

Specifically, this framework permits a formal treatment of the intuition that instances close to the

decision boundary are more likely to be discriminated in a dataset. We propose three different solutions

for discrimination-aware classification problems. The first solution invokes probabilistic rejection in

single or multiple probabilistic classifiers while the second solution relies upon ensemble rejection in

classifier ensembles. The third solution integrates one of the first two solutions with situation testing

which is a procedure commonly used in the court of law. We evaluate our proposed clustering and

discrimination-aware classification solutions on relevant benchmark real-world datasets and compare

their performance with previously proposed state of the art approaches. The results demonstrate the

superiority of our solutions in terms of performance and flexibility of applicability.
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Chapter 1

Introduction and Motivation

1.1 Introduction

With the growth in data generation, the effective arrangement and recovery of massive data has

become progressively troublesome. The prime purpose behind the systematic arrangement, is to

discover knowledge from generated data for future planning and directives. Massive research has

been conducted and also in progress to devise more promising solutions for efficient data arrangement.

Till now, significant advancements have been made in the field of data mining and machine learning

that provide promising ways to process such large datasets [8]. Specifically, two learning tasks

(classification and clustering) have become dominant ways to perform knowledge discovery and

pattern mining. In clustering, the objective is to divide the data into groups (clusters) on the basis

of calculated similarity or minimal distance among data instances. While classification refers to the

assignment of a category (from previously defined categories) to newly generated instances, on the

basis of identified patterns in previously categorized data.

In data mining operations, we use to represent a discrete dataset as a two dimensional array, as a

combination of m data instances/records/rows D = {R1,R2,R3, · · · ,Rm}. It can also be represented as

a combination of n attributes/features/columns R = {A1,A2,A3, · · · ,An}. Clustering segregate groups

of similar instances R considering A attributes to place them in a cluster. In this way, dissimilar

instances are separated. While in classification operations, a data instance contains values from n

non-class attributes that provide a base to get a value for class attribute C (values from predefined

classes/categories), where C = {c1,c2,c3, · · ·}. Each data instance gets a category label (class label)

from predefined categories. There are two types of datasets that have been defined to perform

classification tasks (1) Existing dataset (termed as Training data) contains value of class attribute (class

label) for each data instance (2) Unseen dataset (termed as Testing data) does not contain value for

class attribute. In classification task, we build a classifier on training data (which contains predefined

classes) and predict the class values for testing data. Clustering algorithms do not require class labels

C while classification does. Selecting appropriate number of clusters and understanding unlabelled

data is also a challenging task.
1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Motivation

In what follows, we provide a brief overview of motivation, contribution and related work in Interesting

Itemset Mining (clustering) and Social Discrimination Control (classification) fields.

1.2.1 Interesting Itemset Mining

Itemset mining deals with clustering for a compact set of itemsets to summarize a given transaction

dataset in the most effective and efficient way. For example, in market basket analysis, a dataset

contains a number of items and transactions. Each transaction is a list of items a customer has

purchased. We can examine which items are sold together to analyze user behavior, increase sales and

make predictions. Early works in this domain focus on finding frequent items that satisfy minimum

support thresholds for the analysis of datasets. Apriori is the first work introduced for finding frequent

itemsets whose minimum support is above a user-specified threshold [9] and it has been applied

extensively in numerous applications since then. Apriori and many similar algorithms, e.g., Eclat [10]

and FPGrowth [11] suffer from the pattern explosion, i.e., high minsup thresholds lead to return a

small number of well-known patterns. Additionally, these methods return an incredibly large number

of patterns for small values of minimum support threshold, many of which are only variations of the

same theme. For example, if we learn from the transactions that bread and butter are often purchased

together and many people buy milk, then it is entailed by redundancy to inspect if these three items are

purchased together [12]. A few other works tried to solve this problem [13–15] but they do not fully

resolve the problem of pattern explosion [16].

This field is introduced as ‘Interesting Itemset Mining’ by advanced itemset mining community

which focus on finding the non-redundant and self-sufficient summary of data [6, 7, 12, 17–21]. These

works have achieved comparatively interesting and nonredundant patterns than the frequent itemset

mining works. We summarize a few recent works who mine small, high quality and non-redundant

patterns that yield the best lossless compression of the database. Interesting itemset mining is already

proved NP-hard [22]. A few clustering based approaches are used to create frequent feature value

pairs belonging to a specific cluster. The compression ratios are dependent on the number of clusters.

Outliers detection and compaction gain are bottlenecks in this work [23]. MTV [24] uses Minimum

Description Length (MDL) principle together with the maximum entropy distribution to directly

calculate the expected frequencies of itemsets and identify interesting contents. KRIMP [21] applies

MDL principle to create a simple two column translation based code table that optimally describes the

data. The candidate itemset is selected w.r.t. the standard candidate order. It uses a cover algorithm

to select a smaller compressed sized encoding. KRIMP candidate generation technique requires

high running time and selecting right threshold values for larger databases or candidate collections

is challenging. SLIM [25] addressed this issue by directly mining descriptive patterns from the data.

It uses MDL along with an accurate heuristic to greedily construct patterns in a bottom-up fashion.

OPUS Miner [26] is a branch and bound approach which deploys two pruning mechanisms considering

itemset values and statistical significance levels. It finds top k productive and nonredundant itemsets to
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identify small sets of key associations ultimately leading to self-sufficient itemsets. Interesting Itemset

Miner (IIM) [6] uses a generative model over itemsets in the form of Bayesian networks. The greedy

approximation based weighted set cover approach infers interesting itemsets. These approaches help

to intelligently analyze the data-driven problems from the domain of finance, graph search [27–29],

recommendation systems [30–33] and data engineering [34–37] etc. however, existing works do not

consider sparsity constraints of the encoding. In some applications, e.g., compression of transaction

databases, sparsity constraint might be preferred to limit the maximum size of each selected itemset.

Additionally, these works do not learn a convolutional hierarchical representation of data. In Chapter

2, we propose Layered Convolutional Dictionary Learning for Sparse Coding of Itemsets (CDSI) that

draws inspiration from the field of sparse dictionary learning and convolutional sparse coding for

clustering interesting itemsets. A concise description of related work in these fields is given as follows:

Sparse Dictionary Learning: Sparse coding is an unsupervised algorithm which is widely used

in signal and image processing to compress images or signals using a compact set of basis learned from

data. It discovers basis functions called dictionary to adapt it to specific data, an approach that has

recently proven to be very effective for signal reconstruction and classification in the audio and image

processing domain [38, 39]. A dictionary consisting of image edges can give a better representation

of images than the pixel intensity values. Sparsity constraint is enforced to restrict the size of the

basis for sparse coding image hence the dictionary is overcomplete. Sparse dictionary learning mainly

deals with the continuous data while in practice many datasets are discrete. Continuing this highly

promising line of work, we explore how to represent itemsets under sparsity constraint and learn

dictionary. Though the idea of coding binary data is not new, handling of discrete data for the sparse

coding problem is still challenging. It is in high demand to study sparse coding techniques for discrete

data.

Layered Convolutional Sparse Dictionary Learning: A sparse feature vector is computed

to reconstruct the original input vector by minimizing an energy function. A highly redundant

representation of an image is produced if patches are processed independently, as these features can be

correlated. The sparse coding algorithm cannot capture dependencies alone. To address this problem,

a variety of convolutional sparse coding methods have been introduced in the image processing

domain [40, 41]. These techniques are based on the convolutional decomposition of input data to learn

dictionary under a sparsity constraint. It is a top-down approach seeking to generate the input signal by

summing up the convolutions of the feature maps with learned filters. Sparsity limits the representation

by imposing size restriction at each layer, which facilitates assembling parsimonious features into

more complex structures. A convolutional sparse coded dictionary contains rich information which

many existing feature detectors cannot detect.

1.2.2 Social Discrimination Control

Social discrimination is said to occur when a decision in favor of or against a person is made based

on the group, class, or category to which that person belongs to rather than on merit. Discriminatory
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practices suppress opportunities for members of deprived groups in employment, income, education,

finance, and other benefits/services on the basis of their age, gender, skin color, religion, race, language,

culture, marital status, economic condition, and other non-merit factors. Today, discrimination

is considered unacceptable from social, ethical, and legal perspectives. Many anti-discrimination

laws [42–45] have been enacted and many anti-discrimination organizations (e.g., ENAR [46]) are

working for the eradication of discrimination. The consequences of discriminatory practices can range

from legal prosecution to a variety of social problems like high unemployment rate, frustration, low

productivity, and social unrest.

Data mining can help control discrimination arising from discriminatory or biased historical data.

In particular, discrimination-aware classification problem studies the construction and application of

classifiers learned from discriminatory or biased data. The do-nothing approach of simply using a

classifier learned from discriminatory data will propagate, if not exacerbate, discriminatory decisions,

which is undesirable for decision makers at financial institutions, hiring agencies, and social service

providers. Thus, this do-nothing approach can lead to litigations and penalties.

In recent years, several methods have been proposed for discrimination-aware classification.

However, these methods have one or both of the following shortcomings. First, they require that either

the discriminatory data is processed to remove discriminatory patterns before learning a classifier or

a specific classifier’s learning algorithm is modified to make it discrimination-aware. Second, they

are usually ‘brute force’ techniques with limited control over overall and illegitimate (unexplainable)

discrimination removal.

These shortcomings of existing methods have hindered their adoption by practitioners. A direct

consequence of the first shortcoming is that whenever discrimination w.r.t. a different sensitive attribute

needs to be addressed, the historical data or classifier needs to be processed again. Experiments reported

with the Dutch Research and Documentation Center (WODC) associated with the Ministry of Security

and Justice and Statistics Netherlands, the national census body, confirm the importance of tackling

discrimination w.r.t. multiple factors including age, gender, and race [47]. Being restricted to a specific

discrimination-aware classifier (e.g., naive Bayes [2], decision tree [3]) is also an issue because that

classifier may not be the best performing classifier for a given dataset. The second shortcoming can

lead to reverse discrimination whereby deprived group individuals are favored without a legitimate

or plausible explanation. This issue has been studied by the authors of [48]. They split overall

discrimination into legal and illegal parts and claim that if the discrimination (e.g., high income of

male employees as compared to female employees) can be explained by some reasonable factors (e.g.,

longer working hours of males), then it is acceptable and legitimate ‘discrimination’ rather than illegal

discrimination. (i.e., higher salary of males can be explained by the higher work hours of males). On

the other hand, it would be illegal to discriminate on the basis of sensitive factors (e.g., gender, race)

without any plausible explanation. The current state-of-the-art methods either deal with the overall

discrimination or illegal discrimination and are not flexible enough to prevent both overall and illegal

discrimination simultaneously.

In Chapter 3, we develop and evaluate a methodology for making single and ensembles of classifiers
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discrimination-aware w.r.t. overall and illegal discrimination. This methodology is based on the

decision theoretic notion of reject option where instances with highly uncertain labels are not given

one in classification (i.e., they are given the reject label). Previously, it has been hypothesized that

discriminatory decisions are often made close to the decision boundary because of decision maker’s

bias [1]. Our proposed methodology formalizes this into practically usable solutions for discrimination-

aware classification. Furthermore, the rejected instances represent potentially discriminated or favored

instances in the biased dataset. Thus, our methodology also serves as a model-based discrimination

discoverer in biased datasets.

Related Work

Discriminating against individuals based on their membership to specific segments of society is ethi-

cally and legally undesirable. Data mining techniques can assist with the discovery of discriminatory

patterns from data and with preventing discriminatory decisions based on biased data. The topic

of social discrimination in data mining was introduced by Pedreschi et al. in 2008 [49], and was

further explored in [50–52]. They focused on discovering discriminatory classification rules from

biased datasets following a frequent itemset mining approach coupled with a measure of discrimina-

tion. Since then many researchers have focused on discrimination detection and prevention in data

mining [1, 4, 53–60]. A multidisciplinary survey of discrimination analysis methods is given by [61]

while an edited book provides a summary of the research works for discrimination discovery and

prevention [62]. The book also deals with the legal and ethical issues of discrimination and profiling.

Proposed methods for discrimination prevention are either based on data preprocessing or algo-

rithm/model tweaking. Data preprocessing methods modify the biased data to remove discriminatory

patterns from it before learning a prediction model from it. In works on discriminatory rule pro-

tection [53–55], data transformations are performed for making discriminatory classification rules

discrimination-free according to a discrimination measure. The key limitation of these methods is their

applicability to classification rules only which may not be the best classifier for a given problem. The

authors of [57] propose a method of finding an intermediate representation of the given biased data

that best encodes the data while obfuscating the membership of instances to the protected group. In [1],

data sampling and [1, 63, 64] massaging techniques are presented for removing discrimination w.r.t. a

single sensitive attribute. Although these methods can support the learning of any classifier, they are

restricted to a single sensitive attribute at a time. In general, data preprocessing methods require that

the data (preprocessed or original) is made available which may not be appropriate for privacy reasons

or the released data need to be transformed to suppress the private informations.

Proposed methods for discrimination prevention requiring learning model adaptation include those

for decision trees [3], naive Bayes classifiers [2], logistic regression [56], and support vector machines

(SVM) [59]. All these methods require that the learning model or algorithm is tweaked, and these

methods are specific to their respective classifiers. For example, in [3], the authors propose a strategy

for relabeling the leaf nodes of a decision tree to make it discrimination-free while in [59] fairness

constraints are introduced to control discrimination in discriminative classifiers like SVM.
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Direct discrimination arises when sensitive attributes are utilized in learning and prediction.

Nonetheless, it has been shown that discrimination is not removed by simply removing these attributes

from the dataset [1]. That is, discriminatory decisions can still be made due to correlation of sensitive

attributes with other attributes (indirect discrimination or redlining1. This issue has been studied

in greater detail in [48]. The authors of [48] also present the concept of explainable and illegal

discrimination and propose a variant of data preprocessing approaches of [1] to prevent the illegal

discrimination only. However, their method is unable to handle multiple explanatory attributes and

both explainable and illegal discrimination simultaneously. More recently, propensity score modeling

has been introduced by [65] to filter out illegal discrimination from data. Subsequently, they develop

analytical solutions for discrimination-aware linear regression that controls the illegal effect of an

attribute on the outcome.

A technical approach that tackles both privacy in disclosing data mining models and discrimination

in applying such models is discussed by Hajian et al. (2012). The work considers classification rule

models and measures privacy by k-anonymity and discrimination by the number of PD rules. [66]

propose a model of fairness of classifiers and relate it to differential privacy in databases. The model

imposes that the predictions over two similar cases are also similar. The similarity of cases is formalized

by a distance measure between tuples. The similarity of predictions is formalized by the distance

between the distributions of probability assigned to class values

[67] presented two strategies for making standard classifiers and classifier ensembles discrimination-

aware at run-time. Based on decision theory, these strategies provided stronger control and inter-

pretability of the decisions. A similar approach of shifting the decision boundary has been shown

by [60] to produce good accuracy-discrimination trade-off performance. In Chapter 3, we generalize

our strategies to a model of discrimination based on reject option in classification. This model leads

to a methodology for discrimination control in predictions. Following this methodology, we present

three solutions for discrimination control, including a new solution incorporating situation testing,

and evaluate them extensively for both illegal and overall discrimination prevention. These solutions

require neither data preprocessing nor algorithm tweaking, and can be utilized with a variety of

classifiers with ease.

1http://en.wikipedia.org/wiki/Redlining, October. 12, 2019



Chapter 2

Interesting Itemset Mining

2.1 Introduction and Motivation

In this chapter, we propose a convolutional sparse coding-based approach for interesting itemset

mining that is essentially different from the tasks in image processing domain with real values. We

propose a matching pursuit greedy approach which performs dictionary learning from transaction data

to reduce data loss compression under sparsity constraint. To further enhance its performance, we

embed our sparse coding algorithm into a convolutional neural network based architecture such that

each layer learns a complex discrete representation from the transformed database. This resembles

state-of-the-art convolutional sparse coding in the image processing domain [40, 68]. Adding sparse

representation of images and signals into training instances helps to improve the classification accuracy

[69]. Nevertheless, leveraging the sparse representation of itemsets to enhance the performance

of classifiers (e.g., Naive Bayes, Decision Trees, Random Forest etc) is still an open question. To

summarize, we make the following contributions:

• Sparse coding of itemsets is first time addressed and formulated as an optimization problem. We

prove it NP-hard by reducing it to set cover problem. We propose approximation based sparse

coding algorithm, Dictionary Learning for Sparse Coding of Itemsets (DSI) to efficiently learn

nonredundant dictionary elements for lossless compression. It provides a bottom-up mapping

from transaction to dictionary items, efficiently giving a reconstruction close to the original

transactions.

• We propose a new approach Layered Convolutional Dictionary Learning for Sparse Coding

of Itemsets (CDSI) to deploy sparse coding within a convolutional resembling model to learn

grouping representation at each level. The dictionary itemsets are interfused in the database to

learn a meaningful representation.

• An extensive empirical validation on thirteen datasets shows the superiority of our proposed

methods as compared to the recent works. A text dataset (JMLR) is used to evaluate the pattern

meaningfulness just by eyeballing. Transactions of nine UCI [70] and three SIPO [18] datasets
7
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(Sec. 2.5.3) are sparse coded, to determine its impact on the prediction accuracy of different

classifiers.

Our targeted problem is formally defined and proved NP-hard in Section 2.2. Greedy approach

for sparse representing itemsets is presented in Section 2.3. In Section 2.4, we explain a layered

convolutional process for transforming database and dictionary learning. Section 2.5 describes our

extensive empirical validation in detail. We conclude our work with future directions in Section 2.6.

2.2 Problem Definition and Proof of NP-Hardness

For ease of presentation, we first introduce some preliminary concepts and notations. Let D =

{T1,T2, · · · ,Tn} be a database of n transactions where each transaction belongs to a set of items

I={ip|1 = 1, ....., p}. The cardinality of a transaction is the number of items in it. When a set of

items called itemset, contains p items, it is referred as p-itemset. We aim to learn a dictionary

B = {I1, I2, · · · , Im} of m basis (itemsets), from which discrete sparse code of the database can be

inferred. A sparse code of transaction T is the union of k itemsets U(b): ∪k
i=1Bi from B such that

U(b) ⊆ T and k is less than the cardinality of T . With these notations, we formulate the following

research problems:

Problem 1. [Finding sparse representation of transaction T] Given a dictionary B and sparsity

constraint (k: the maximum number of basis to choose from B), a sparse code of T is denoted as B(T ):

B(T ) = argminb⊂B,|b|≤k|T −U(b)| (2.1)

where U(b) represents a set of items in T that are covered by b.

Example 1. Given T = qrvwx, B = {qr,vw,vy,yz} when k is set to 1. The basis are B(T ) = {qr}, and

when k = 2, U(B) = {qrvw}.

Sparse coding over the whole database D with the basis B incurs a loss function defined as

LB(D) = Σn
j=1|Tj−U(B(Tj))|. In Example 1, the loss for B(T ) = {qr} to encode T = qrvwx is 3

while the loss for B(T ) = {qr,vw} is 1. Since vy is not a subset of qrvwx, it cannot be added into B.

To better preserve the original information contained in a transaction database, a beneficial dictionary

with less encoding loss is expected to be learned.

Problem 2. [Dictionary learning from candidates] Given a database of transactions D= {T1,T2, · · · ,Tn},
the maximum number of basis allowed in a sparse code (sparsity constraint) k, and a set of candidate

itemsets C, find a dictionary B∗ ⊂C with maximum m basis, such that B∗ = argminB⊂CLB(D).

To solve Problem 2, people may solve the following problem first:

Problem 3. [Candidate set Construction from database] The encoding loss function in Problem 2

requires a candidate set C for inclusion in the dictionary. How to construct a high-quality candidate
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Algorithm 1 Dictionary Learning for Sparse Coding of Itemsets (DSI)

1: Input: A database D = {T1,T2, · · · ,Tn}, a candidate itemset C, parameters m,k
2: Output: Learned Dictionary B
3: B = /0
4: for itr = 1 to m do
5: minloss = ∞

6: for I in C do
7: B+ = B∪{I}
8: OB+ = |B∩{I}—
9: LB+ = ∑

n
j=1MaxSetCover(Tj,B+,k)

10: if minloss > LB+ then
11: B∗ = B+

12: minloss = LB+

13: else if (minloss = LB+)AND(OB+ < OB∗) then
14: B∗ = B+

15: Subtract B∗ from C: C =C \{B∗}
16: B = B∗

17: return B

set C from the database D is another challenging and important problem, as the C contents determine

the quality of the learned dictionary and the encoding loss of the database to some extent.

Theorem 1. Problem 1 is NP-hard.

Proof We prove the NP-hard nature of problem by reduction to the set-cover problem. Let

S = {1,2, · · · ,n} and H = {s1,s2, · · · ,sm}, where si ⊂ S. Set cover problem asks whether we can

construct a set x ⊂ H such that |x| = k and ∪k
i=1si = S. Let T = S and B = H, then solving Eq. 2.1

will result in sparse representation of T , that is b∗ ⊂ B such that |T −U(b)| is minimized. Let b∗

be the solution to Problem 1. If |T −U(b)| = 0 then it is easy to see that b∗ is the set cover of S

otherwise if the size is more than zero then no set-cover of size k exists. Hence solving Eq. 2.1 will

solve the set-cover problem. Problem 1 has been reduced to the set cover problem and this reduction is

polynomial in the problem input size. Hence, the theorem is proved.

2.3 Dictionary Learning for Sparse Coding Itemsets (DSI)

In this section, we present our proposed algorithmic framework (DSI) to learn sparse code dictionary in

detail, and the pseudocode is given in Algorithm 1. It iteratively selects m basis from a set of candidate

itemsets C. In each iteration, a single itemset I from C is chosen to form a transitory dictionary B+ with

already selected itemsets, and then the encoding loss for the database based on B+ is computed(lines

7-9). In addition, it also calculates the number of overlapping items between the newly selected itemset

I and learned dictionary B. The new itemset I is added to the dictionary if the loss and overlaps with

selected basis are less than other candidates so far (lines 10-14). We present Example 2 for the better

understanding of DSI:
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Example 2. Assume that we have a database D = {T1 = qrvwx,T2 = qrvyz,T3 = qrvwyz}, C =

{qr,vw,vy,yz}, m = 3 and k = 2. We explain Table 2.1 to show how Algorithm 1 works:

• Step 1: Initially B is empty. In each iteration (lines 6 -14), we look for an itemset I such that

when we add it to B, the database D can be encoded with minimum loss and overlaps. Step

1 shows loss of encoding each transaction in D using candidates I from C. As observed, the

overall loss is minimum when I = qr with the loss equal to 10. Therefore qr is added to B = {qr}
and deleted from C.

• Step 2: The next itemset that works together with B to minimize the overall loss is I = vw with

the overall loss equal to 6. We update B to {qr,vw} and remove vw from C accordingly.

• Step 3: We calculate the encoding loss for each remaining candidate in C considering the learned

dictionary B. We can see that {vy} and {yz} lead to the same loss value of 4. Nonetheless, item

v in vy intersects with the dictionary element vw, making the overlap Ovy to be 1. On the other

hand, yz has no overlap with itemsets in dictionary B, i.e., Oyz=0. Ultimately, we update B to

{qr,vw,yz} and stop the algorithm after selecting m = 3 basis.

Table 2.1: The illustration of running Algorithm 1 in Example 2. Selected items are emphasized in
bold.

Step 1: qr is added into B.

Transactions
I qrvwx qrvyz qrvwyz LBI+ OBI+

q r 3 3 4 10 0
v w 3 5 4 12 0
v y 5 3 4 12 0
y z 5 3 4 12 0

Step 2: vw is added into B.

Transactions
I qrvwx qrvyz qrvwyz LBI+ OBI+

v w 1 3 2 6 0
v y 3 1 2 6 0
y z 3 1 2 6 0

Step 3: yz is added into B.

Transactions
I qrvwx qrvyz qrvwyz LBI+ OBI+

v y 1 1 2 4 1
y z 1 1 2 4 0

DSI uses a greedy method (MaxSetCover) to calculate the encoding loss, pseudocode is given in

Algorithm 2. Our loss calculation method greedily encodes every transaction Ti ∈ D with the basis of

B+. Algorithm 2 follows the standard procedure to solve the max set cover problem which guarantees
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Algorithm 2 MaxSetCover(T , C, k)
1: Input: A transaction T , a set of potential basis itemsets C, parameter k
2: Output: The encoding loss
3: G = /0
4: for i = 1 to k do
5: I∗ = argMAXI∈C,I⊂T |U(G∪{I})|
6: Remove I∗ from C: C =C \{I∗}
7: Add I∗ to G: G = G∪{I∗}
8: Return |T −U(G)|

an approximation factor of 1− 1
e to the optimal solution [22]. The algorithm inputs a transaction T , a

set of potential candidates C and a sparsity parameter k. It performs a greedy strategy to solve the max

set cover problem by selecting up to k basis that curtail the encoding loss simultaneously. It returns the

encoding loss, i.e., the number of items in T that have not been covered by the selected basis from B+.

Example 3 explains the working of matching pursuit greedy approach given in Algorithm 2.

Example 3. Assume that T = qrvwyz, C = {qr,vw,vy,yz} and k = 2, Algorithm 2 performs following

steps to calculate encoding loss used in Table 2.1:

• Step 1: Initially G is empty.

• Step 2: The itemset I ∈C that maximizes the coverage of T is qr, so qr is added to G and deleted

from C. (G = {qr} , C = {vw,vy,yz}).

• Step 3: The next itemset I ∈C that together with selected itemsets in G maximizes the overall

coverage of T is vw so R = {qr,vw}. The algorithm stops when sparsity limit approaches, i.e.,

k = 2. The encoding loss is two (|T −U(G)|= 6−4 = 2), as two items in T are not covered by

G.

2.4 Layered Convolutional Dictionary Learning for Sparse Cod-

ing of Itemsets (CDSI)

In this section, we introduce a novel convolutional sparse coding mechanism (CDSI) to learn statisti-

cally dependent sparse dictionary in a hierarchical fashion. Dictionary items are convolved in each

layer to transform the database; allowing next layer to learn more complicated patterns. This is similar

to the idea of the deep learning technique: Convolutional Neural Networks (CNNs) [68], where learned

filters are convolved with the input image and next layer of convolutional filters work on the output

of the previous layer, allowing CNN to capture features at different levels of abstractness [71]. The

convolution process has an advantage that the itemsets are learned in a hierarchical way, and various

dictionaries with different-granularity abstractions can be achieved for different applications. We

provide an overview of our layered convolutional dictionary learning algorithm below, and outline

how it works:
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Algorithm 3 Transform Database(T , B )

1: Input: Database D = {T1,T2, · · · ,Tn}, learned dictionary B.
2: Output: Transformed database D′ = {T1,T2, · · · ,Tn}
3: for I in B do
4: Generate a new symbol for I
5: for j = 1 to n do
6: if I in Tj then
7: Replace I in Tj with the corresponding new symbol

8: Return transformed database D′

1. Construct a candidate set C using chi-square (see Section 2.4.1 for a discussion of how to

construct a meaningful candidate set).

2. Run Algorithm 1 to learn a dictionary from C that sparse-codes the database D well.

3. Run Algorithm 3 to transform the database D using the learned dictionary in the second step

(see Section 2.4.2).

4. To learn patterns in the next layer, return to step 1.

2.4.1 Candidate Set Construction

Quality of sparse dictionary learning (Algorithm 1) is highly dependent upon the contents of candidate

set C. To build up C, a possible solution is to use frequent pattern mining algorithm such as the Apriori

algorithm [9] which is subject to explosion (see Chapter 2 of [16]). In this section, we propose a

refined approach to find statistically dependent itemsets. Intuitively, a pattern is only admissible if

there is a strong dependency and correlation. Therefore, in order to compose the candidate set C, we

use chi-square test [72]. Let q and r be two items and we define:

• Fqr = |{Ti ∈ D|qr ∈ Ti}|, i.e., the frequency of the itemset qr.

• Fqr̄ = |{Ti ∈ D|q ∈ Ti,r /∈ Ti}|, i.e., the number of transactions that contain q but not r.

• Fq̄r = |{Ti ∈ D|q /∈ Ti,r ∈ Ti}|, i.e., the number of transactions that contain r but not q.

• Fq̄r̄ = |{Ti ∈ D|q /∈ Ti,r /∈ Ti}|, i.e., the number of transactions that neither contain q nor r.

• Eqr =
F2

qr
N , i.e., the expected frequency of qr given the assumption that q is independent from r.

• Eqr̄ =
F2

qr̄
N , i.e., the expected number of transactions that contain q but not r.

• Eq̄r =
F2

q̄r
N , i.e., the expected number of transactions that contain r but not q.

• Eq̄r̄ =
F2

q̄r̄
N , i.e., the expected number of transactions that neither contain q nor r.
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The chi-square statistics is defined as follows:

chi− square =
(Fqr−Eqr)

2

Eqr
+

(Fq̄r−Eq̄r)
2

Eq̄r
+

(Fqr̄−Eqr̄)
2

Eqr̄
+

(Fq̄r̄−Eq̄r̄)
2

Eq̄r̄
(2.2)

If q and r are statistically independent then it follows a chi-square distribution with one degree of

freedom. Based on this observation, we can test for our null hypothesis: q and r are statistically

independent. The test can be performed for any pair of items in the database and only pair that

passes the test (when null hypothesis is rejected at a significant level of 0.05) will be scrutinized as

potential itemsets in the candidate set C. Adding statistically dependent item pairs into the candidate

set, ultimately leads to the dictionary learning by running Algorithm 1.

Table 2.2: CDSI: Dictionary learning from convolved and transformed database at second layer. Items placed
in B = { αβ ,γx,αv} are highlighted in bold.

Step 1:αβ is added into B.

Transactions
I αβx αvγ αβγ LB+ OB+

αβ 1 2 1 4 0
αv 2 1 2 5 0
βx 1 3 2 6 0
γx 2 2 2 6 0

Step 2: γx is added into B.

Transactions
I αβx αvγ αβγ LB+ OB+

αv 1 1 1 3 1
βx 0 2 1 3 1
γx 0 1 0 1 0

Step 3: αv is added into B.

Transactions
I αβx αvγ αβγ LB+ OB+

αv 0 0 0 0 1
βx 0 1 0 1 2

2.4.2 Database Transformation and Convolution

We elucidate database transformation process with the toy database described in Example 2. Given a

dictionary B = {qr,vw,yz}, Algorithm 3 transforms the database D into an advanced database with

refined items where each item corresponds to an itemset in the dictionary B. Let us re-write the basis

itemsets in B as B = {α = qr,β = vw,γ = yz}, where each basis itemset in B is now represented by a

new item (symbol) that is not present in the current alphabet. Algorithm 3 transforms the database

D = {T1 = qrvwx,T2 = qrvyz,T3 = qrvwyz} into D′ = {T1 = αβx,T2 = αvγ,T3 = αβγ}. The new

database D′ contains transactions with dependent itemsets {α,β ,γ,v,x}, while the original itemsets
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Table 2.3: Summary of datasets

Dataset Transactions Items Labels

asl-gt-thad 3464 47 40
breast 699 18 2
congress 435 34 2
context 240 56 5
ecoli 336 26 8
glass 214 41 7
hepatitis 155 54 2
iris 150 16 3
jmlr 788 4976 NA
mushroom 8124 88 2
skating 530 41 6
soybean 683 99 19
zoo 101 35 7

were {q,r,v,w,x,y,z}. Table 2.2 shows the process of dictionary learning for the transformed database

D′ at second layer. Note that the candidate set C in this example is constructed by randomly selecting

item pairs from the transaction database, as there are only three transactions, making it impossible for

chi-square to find any dependent patterns.

2.5 Experiments

In interesting itemset mining, a powerful representation of data has higher values of (i) pattern

interpretability, and (ii) classification accuracy. Our extensive empirical validation also considers these

criteria to evaluate the effectiveness of proposed algorithmic framework. We compare our proposed

sparse coding techniques with the IIM [6] and MTV [7], because they represent the state-of-the-art

techniques for itemset mining and significantly outperform existing approaches developed in [18,20,21]

on similar standard datasets as adopted in our experiment.

2.5.1 Dataset Description

We use discretized version of Semi Interval Partial Order (SIPO) datasets (introduced in [18]) and UCI

datasets [70] for classification. Table 2.3 summarizes the characteristics of datasets used. It is always a

challenging task to measure the meaningfulness of discovered patterns as a potential solution, thus text

datasets are used to informally evaluate the quality by comparing pattern interpretability and relevance.

We use the JMLR abstract text dataset from Journal of Machine Learning website 1 which is easy to

interpret.

1http://jmlr.csail.mit.edu/



2.5. EXPERIMENTS 15

Table 2.4: Top 10 non-singleton patterns selected from the JMLR abstracts dataset to compare pattern
interpretability for CDSI (Sec. 2.4), IIM [6] and MTV [7].

CDSI IIM MTV

select featur associ rule experiment result
machin learn support vector machin svm synthetic real
exact approxim parameter parameters real datasets
graphic variabl anomali detect pattern discov
data set synthetic real life associ rule mine
problem solv sequenc sequential frequent pattern mine algorithm
error bound background knowledg train classifi
probabl distribut semi supervised address problem
lower bound local global classifi class
independ compon analysi linear discriminant analysi machin learn

2.5.2 Interpretability of Sparse Representation

Table 2.4 shows MTV returns interrelated and less diverse frequent patterns, e.g., “synthetic real”,

“real datasets”, “train classifi”, “classifi class”, etc. IIM derives relevant patterns (e.g., “anomali

detect” and “semi supervised”, etc.), however, a few patterns (e.g., “parameter”, “parameters” and

“sequenc”, “sequential”) require stemming to remove redundant patterns. Patterns extracted by CDSI

at 4th layer of convolution dictionary with parameters (m = 10,k = 5) are also given. We can observe

that CDSI generates more revealing, diverse and comprehensive patterns, e.g., “machine learning”,

“graphic variable”, “probabl distribut”, etc. Besides, they do not require stemming. To conclude, CDSI

comparatively generates interpretable, heterogeneous and less redundant patterns.

Table 2.5: Data preparation for classification using CDSI (Sec. 2.4), IIM [6] and MTV [7] mined patterns as
binary features.

TID Patterns Transactions (Singletons) Extended Transactions Label

T1 q,r,v 1,1,1,0,0 1,1,1,0,0,1,0 A
T2 r,v 0,1,1,0,0 0,1,1,0,0,1,0 A
T3 q,v,x 1,0,1,0,1 1,0,1,0,1,0,0 L
T4 r,w,x 0,1,0,1,1 0,1,0,1,1,0,1 L
T5 q,r,v 1,1,1,0,0 1,1,1,0,0,1,0 L

2.5.3 Classification Accuracy

Classification accuracy inflates conceding that sparse representation techniques or interesting itemset

mining algorithms are employed on data [17, 73]. Table 2.5 presents a fictitious scenario to explain

our experimental setup with a database D containing 5 transactions: D = {T1,T2, · · · ,T5} and two
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class labels {A,L}. These transactions are illustrating the purchase of items {q,r,v,w,x} with the

proportionate input vector presentations, e.g., (T1) ={1,1,1,0,0}. Since 0 and 1 exhibit if any specific

item has been purchased, third element of T1 is set 1 to depict purchase of v. These labeled transactions

are feed to various classifiers. To evaluate if mined patterns are boosting the classification accuracy,

we wrap them as binary values within transactions. To do so, we increase the length of transactions

to append discovered patterns. Let us say if CDSI discovers two patterns (r,v) and (r,x) then 6th and

7th elements are added in each transaction to demonstrate the presence of distinct pattern (given in

the extended transaction column of Table 2.5). Now the vector representations of T1 will become

{1,1,1,0,0,1,0} while preserving record of purchase of remaining items q,r,v.

Table 2.6 presents the accuracy of different classifiers (e.g., Naive Bayes, J48, Random Forest, and

IBk) for SIPO and UCI datasets described in Table 2.3. To be unbiased, the number of mined patterns

is set to minimum patterns returned by any of the algorithms. These patterns are incorporated in the

transactions (singletons) following the way extended input vectors are created in Table 2.5. We run

our experiments using WEKA [74] over 5 fold cross-validation with parameters set to default values.

Patterns are extracted using CDSI (with parameters layers = 10,k = 10), IIM [6] and MTV [7] (default

parameter values adjusted in online available codes are used for existing approaches). Each cell of

Table 2.6 shows the accuracies of different methods for respective classifiers. The highest prediction

accuracy for any input vector type is emphasized in bold. The last column (Best) shows the highest

accuracy for all types of input data and highlights the topmost value in bold. The prediction accuracy

of all datasets increases when extended transactions are fed in comparison to when the classifier is

only trained on the transactions themselves (singletons). Generally, CDSI significantly improves the

prediction accuracy certifying our assumption about convolutional sparse coded dictionary carrying

influential objective information.

2.6 Conclusion

Convolutional sparse model dictionary learning has been used before in the image processing domain

[40, 41], it is still not studied for the itemset mining so far. In this chapter, we present approximation

based algorithms to find the sparse representation of itemsets, which is discrete in nature. We

propose an optimization technique to learn dictionary under the sparsity constraint from the transaction

dataset. Based on this mechanism, a convolutional dictionary learning method is presented that allows

extracting dictionaries at different levels of abstractness. Chi-square test is performed to extract

statistically dependent patterns from the transaction data and input it to the layered dictionary learning

algorithm; generating increasingly complex and statistically dependent patterns in each layer. We

conduct extensive experiments on various datasets showing that sparse representation forms a succinct

input representation and when combined with different classifiers, their efficacy is increased.
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Table 2.6: CDSI (Sec. 2.4) improves the prediction accuracy of IIM [6] and MTV [7]. For a fair
comparison, identical number of patterns returned from each method are used.

Naive Bayes J48 Random Forest IBk Best
asl-gt-thad Singletons 5.79 8.73 12.94 9.00 12.94

CDSI 4.79 9.35 13.26 9.05 13.26
IIM 4.82 8.52 12.97 9.02 12.97

MTV 5.14 9.00 13.08 8.82 13.08
breast Singletons 94.13 93.56 94.42 93.99 94.42

CDSI 93.07 94.13 94.42 94.13 94.42
IIM 94.13 93.56 94.42 93.99 94.42

MTV 92.56 94.13 94.42 94.13 94.42
congres Singletons 91.49 94.71 95.86 92.64 95.86

CDSI 91.49 94.94 96.09 92.18 96.09
IIM 91.95 94.71 95.86 93.56 95.86

MTV 91.49 94.71 95.40 93.79 95.40
context Singletons 77.89 70.00 74.21 72.10 77.89

CDSI 78.42 71.05 73.15 72.63 78.42
IIM 77.89 70.00 73.15 69.47 77.89

MTV 76.84 68.42 72.10 69.47 76.84
ecoli Singletons 80.95 82.14 81.54 83.63 83.63

CDSI 81.85 81.25 82.44 83.92 83.92
IIM 79.76 81.54 81.54 83.63 83.63

MTV 81.25 82.14 82.14 84.22 84.22
glass Singletons 72.42 69.15 72.89 68.69 72.89

CDSI 72.90 70.56 72.89 72.42 72.90
IIM 71.96 69.15 74.29 69.15 74.29

MTV 71.49 69.15 73.36 68.69 73.36
hepatitis Singletons 83.71 78.06 80.64 81.93 83.71

CDSI 83.87 76.77 82.58 85.16 85.16
IIM 83.87 78.06 78.70 81.93 83.87

MTV 83.22 80.00 81.93 81.93 83.22
iris Singletons 94.00 94.00 94.00 94.00 94.00

CDSI 94.66 94.00 94.66 94.00 94.66
IIM 94.00 94.00 94.00 94.00 94.00

MTV 94.00 94.00 94.00 94.00 94.00
mushroom Singletons 97.84 100.00 100.00 100.00 100.00

CDSI 98.65 100.00 100.00 100.00 100.00
IIM 97.80 100.00 100.00 100.00 100.00

MTV 97.83 100.00 100.00 100.00 100.00
skating Singletons 67.45 58.82 65.09 52.74 67.45

CDSI 64.31 61.76 62.74 53.52 64.31
IIM 67.25 58.82 63.72 52.74 67.25

MTV 63.52 58.62 63.33 51.17 63.52
soybean Singletons 92.97 93.70 92.97 91.80 93.70

CDSI 92.82 93.55 93.55 91.80 93.55
IIM 92.53 93.41 93.11 91.65 93.41

MTV 93.41 93.11 93.55 91.80 93.55
zoo Singletons 96.03 93.06 96.03 96.03 96.03

CDSI 94.05 93.06 97.02 97.02 97.02
IIM 96.03 93.06 96.03 97.02 97.02

MTV 96.03 93.06 98.01 96.03 98.01





Chapter 3

Reject Option in Classification for Social
Discrimination Control

In this chapter, we present three rejection strategies and corresponding rules for discrimination control

in predictions. The first solution called Probabilistic Rejection (PR), rejects instances with uncertain

posterior probabilities, thus enabling it to be used with any probabilistic classifier or ensemble of

classifiers. Our second rejection strategy, called Ensemble Rejection (ER), identifies instances that are

not unanimously labeled by an ensemble of classifiers, thus emulating the natural decision making

process by a group of experts. Our third rejection strategy, called Situational Rejection (SR), combines

probabilistic rejection or ensemble rejection with situation testing to identify discriminated instances.

Situation testing is a legally admissible procedure for verifying discrimination cases by comparing

them with other similar cases. All strategies/solutions include relabeling rules with parametric

control over the resulting discrimination. We perform extensive experiments to verify the superior

performance of our methodology. In particular, we also demonstrate that our methodology prefers

removing illegal discrimination over explainable discrimination while reducing overall discrimination.

Thus, it addresses a common criticism that discrimination prevention methods disregard explainable

discrimination while removing overall discrimination.

We use this third approach to show that our proposed solutions are the most appropriate ones for

discrimination prevention. The rest of the chapter is organized as follows. Section 3.1 defines the

problem setting and measures for overall and illegal discrimination. We present our reject option based

methodology and specific solutions in Section 3.2. Section 3.3 presents experimental evaluations and

discussions of our solutions. We summarize and conclude our contribution in Section 3.4.

3.1 Background and Notation

This section defines the problem setting and introduces the measures used in this work.
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3.1.1 Problem Definition

We consider a two-class classification problem with label C ∈ {C+,C−} defined over instances X ∈X

described by a fixed number of attributes. A discriminatory dataset D = {Xi,Ci}N
i=1 is available in

which the labels Ci are biased w.r.t. one or more sensitive or discriminatory attributes S, e.g., Gender or

Race. We assume that C+ is the desirable label. The instances in X can be distinguished between those

belonging to a deprived group X d or a favored group X f , where X d∩X f = /0 and X f =X \X d .

This dichotomous grouping of the instances is based on the values of the sensitive attributes. Besides

the sensitive attributes there are some attributes that represent the plausible reasons for preferential

treatment on the basis of sensitive attributes. We refer to these attributes as explanatory attributes and

denote them by E.

To illustrate the notations, consider a university where women have been denied admission in

comparison to men. Here gender is a sensitive attribute (S), males belong to the favored group

(X f ), females are the deprived group (X d), and the acceptance or rejection decision of the selection

committee defines the class label (C). Every applicant (X) who has ever applied for admission is

taken as an instance of database (D). Part of the discriminatory behavior towards women can be

explained by attributes like program preference that are correlated with both the sensitive attribute and

the decision. Thus, program preference is an explanatory attribute (e ∈ E) that is correlated with the

sensitive attribute (S), and gives some objective information about the class label C. While selection of

explanatory attributes is often debatable, we assume that they are nominated by the domain experts

externally. We restrict this work to nominal explanatory attributes only.

The task is to learn a classifier F : X → {C+,C−} from the given discriminatory data D that

does not make discriminatory decisions w.r.t. sensitive attribute(s) while predicting future instances.

As the convention for this problem setting, the performance of the discrimination-aware classification

methods is determined by reporting their accuracy and discrimination. Ideally, accuracy should suffer

the least as discrimination is reduced to zero.

3.1.2 Measuring Discrimination

Several measures of discrimination have been proposed in the discrimination-aware classification

research. In this work, we distinguish between two types of discrimination: overall and illegal

discrimination. We use the definitions of [1–3, 48] for overall discrimination. Overall discrimination

quantifies the difference in treatment (i.e., labelings) between deprived and favored groups on the basis

of sensitive attributes only, ignoring all other explanations for the differential treatment.

Definition 1. (Overall Discrimination, Dall): Given a labeled dataset D = {Xi,Ci}N
i=1, sensitive

attributes S and their respective domains describing instances in deprived and favored groups (X d

and X f ), the discrimination in dataset D w.r.t. sensitive attributes S, denoted by Dall(D ,S), is defined
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as:

Dall(D ,S) :=
|{X ∈X f ,C =C+}|
|{X ∈X f }|

− |{X ∈X d,C =C+}|
|{X ∈X d}|

.

In probabilities, this is equivalent to pD(C+|X f )− pD(C+|X d).

When clear from the context, we will omit the subscript and parameters in the notation, and more

often, refer to this measure as overall discrimination. It is equal to the difference of the probability of

acceptance for the favored community pD(C+|X f ) and the deprived community pD(C+|X d).

Overall discrimination disregards other plausible reasons for the differential treatment between

the two groups. As such, this measure is appropriate when discrimination w.r.t. sensitive attribute

alone needs to be controlled (e.g., when stipulated by law). For instance, recently a ruling of European

Court of Justice declared that varied insurance premiums on the basis of gender of drivers would be

considered discrimination and violation of law [75]. Thus, despite knowing from historical records

that male drives have riskier driving habits and are more likely to be involved in accidents 1, insurance

companies are not allowed to use this information and are bound by law to treat both male and female

drivers equally. The measure of overall discrimination applies to such scenarios.

In other scenarios, part of the differential treatment between deprived and favored groups can be

explained by other attributes. For instance, low acceptance rate of female applicants to a university can

be explained by their preference for more competitive disciplines (e.g., medicine). In such a scenario,

discrimination that cannot be explained is called illegal discrimination. It quantifies preferential

treatment on the basis of sensitive attributes without any plausible reason. We use the definition of [48]

to measure illegal discrimination.

Definition 2. (Illegal Discrimination, Dillegal): Given a discriminatory labeled dataset D , sensitive

attributes S distinguishing between instances in deprived and favored groups (X d and X f ), and

explanatory attributes E. Let dom(E) = {1, . . . ,k} be the domain of E. The explainable discrimination

Dexpl(D ,S,E) in dataset D w.r.t. the sensitive attributes S and the explanatory attributes E is calculated

as follows:

Dexpl(D ,S,E) :=
k

∑
i=1

(
p(Ei|X f )− p(Ei|X d)

)
p?(C+|Ei)

where

p?(C+|Ei) :=
P(C+|Ei,X f )+ p(C+|Ei,X d)

2
.

Then, the illegal discrimination Dillegal(D ,S,E) in dataset D w.r.t. the sensitive attributes S and

the explanatory attributes E is given by:

Dillegal(D ,S,E) := Dall(D ,S)−Dexpl(D ,S,E)

Here, Dall(·) is the overall discrimination in D as defined in Definition 1. [48].
1http://www.insurance.com/auto-insurance/safety/are-men-better-drivers-than-women.aspx

http://www.insurance.com/auto-insurance/safety/are-men-better-drivers-than-women.aspx
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When clear from the context, we will omit the subscript and the parameters in the notation, and

more often, refer to this measure as illegal discrimination.

The above measures calculate the discrimination in any given labeled dataset. We can use the

same discrimination measures to calculate the discrimination of a classifier by assuming the given

dataset to be a test dataset labeled by the classifier. In many practical applications, the number

of instances in X d is less than the number of instances in X f in the biased training dataset, i.e.,

|X d|< |X f |. Consequently, due to sample imbalance and classifier over-fitting it is often the case

that Dall(F ,S) > Dall(D ,S) where Dall(F ,S) represents the discrimination in the predictions of a

classifier F learnt over biased data. This fact highlights the inadequacy of discrimination prevention

by just modifying the training data as proposed by some earlier discrimination-aware methods.

3.2 Methodology for Discrimination Control

In this section, we present a methodology for social discrimination control that exploits the reject

option in classification. The reject option in classification discards a predicted label when it is found to

be highly uncertain or ambiguous. This rejection provides an opportunity for relabeling the instance in

a manner that reduces discrimination while maintaining prediction accuracy over the biased dataset.

We present three reject option based solutions for discrimination control: Probabilistic Rejection (PR),

Ensemble Rejection (ER), and Situatinal Rejection (SR). We start by defining our discrimination model

underlying the methodology.

3.2.1 Discrimination Model: Reject Option in Classification

Recently, a discrimination model has been presented that describes the process leading to biased

labeling of instances during classification [48]. According to this model, a decision maker obtains a

preliminary score m quantifying the worthiness of an individual X without relying upon the sensitive

attributes describing X . Thus, this score is evaluated objectively and on merit. Then, the discrimination

bias b ≥ 0 is introduced by looking at the sensitive attributes and their values for the individual. A

uniform bias is either added (positive bias) or subtracted (negative bias) from the merit-based score

m, to yield the overall score m∗ = m± b. In general, the bias can vary for different individuals,

however, in this study we assume a uniform bias b is added/subtracted to favor/discriminate the

unprotected/protected group instances. In the social sciences, this bias is referred to as an unconscious

bias [76]. The final decision of individual X is made by using score m∗.

This discriminatory decision making process impacts the decision of instances that are close to the

decision boundary according to their score m. It is quite intuitive that the addition or subtraction of the

bias b will not affect the decision of instances with very high or low merit-based scores m.

In our setting, we already have a discriminatory dataset D that captures information about the

decision making process. We know key attributes of the classification problem including the sensitive

attributes S, the explanatory attributes E, and the class label C. However, we do not have a clear
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distinction between objective or merit-based and biased contributions in the labeling process. As

is required by law, the sensitive attributes cannot be used in learning and prediction. Nonetheless,

because of correlation between sensitive and explanatory attributes the classifier learns the bias through

the explanatory attributes. This phenomenon has been demonstrated in previous works [77].

Given the above observations, we propose the following discrimination model. Let F be a classifier

(or a classifier ensemble) learned over the discriminatory dataset D without considering the sensitive

attributes S, and let 0≤F (X ,C+)≤ 1 be the score (e.g., posterior probability or confidence) for label

C+ of instance X produced by F and F (X ,C−) = 1−F (X ,C+). Then, instance X ∈X d with label

C− is likely to be discriminated when F (X ,C+) ≥ 0.5−η where 0 < η ≤ 0.5 is a parameter that

specifies the bias in the dataset. Similarly, instance X ∈X f with label C+ is likely to be favored when

F (X ,C+) ≤ 0.5+η . Otherwise, instance X is neither discriminated nor favored according to this

model.

The classifier’s score F (X ,C+) and the parameter η correspond roughly to m∗ and b, respectively,

in the basic discrimination model outlined earlier. The value of η controls the region on both sides

of the classifier’s decision boundary within which classification scores are considered ambiguous;

instances whose scores lie in this region are not assigned a label by the classifier (i.e., their labels are

rejected) and are considered likely to be the result of discriminatory practices captured in the dataset.

The parameter η can be estimated automatically when a non-discriminatory dataset is available.

Alternatively, a domain expert can analyze potentially discriminated/favored instances close to the

decision boundary to fix an appropriate value for η .

Definition 3. (Discrimination and Favoritism Potential): The Discrimination Potential of an instance

X ∈X d with label C− in a discriminatory dataset D is defined as

DP(X ∈X d) = F (X ,C+)− (0.5−η)≥ 0

Similarly, the Favoritism Potential of an instance X ∈X f with label C+ in a discriminatory dataset

D is defined as

FP(X ∈X f ) = (0.5+η)−F (X ,C+)≥ 0

Here, F (X ,C+) is the score for label C+ for instance X produced by classifier F learned over the

discriminatory dataset D .

DP(·) and FP(·) range from 0 to 0.5 with higher values signifying greater potential of being

discriminated or favored in the dataset. The expressions for computing DP and FP can return a

negative value which implies that no discrimination or favoritism exists.

This discrimination model can be used for both discrimination discovery and discrimination

prevention. The Discrimination and Favoritism Potentials described above allow easy identification

and ranking of instances that have potentially biased decisions in a dataset. In the following sections,

we present our discrimination control solutions based on our discrimination model.

Decision theory tells us that when we utilize the region of low prediction confidence to relabel

instances for reduced discrimination, the impact on accuracy will be minimum. This idea is adopted in

our solution for discrimination-aware classification.
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Similarly, we know from decision theory that disagreement among an ensemble of classifiers

identifies a region of low prediction confidence. This idea is exploited in our second solution for

discrimination-aware classification.

3.2.2 Probabilistic Rejection (PR)

Our first reject option based solution for discrimination control, called Probabilistic Rejection(PR),

utilizes posterior probabilities produced by one or more probabilistic classifiers to identify instances

with high label uncertainty. These instances are then labeled in a manner that neutralizes the effect of

discrimination. Based on the discrimination model introduced in the previous section, PR embodies

strong theoretical concepts to provide excellent control over the accuracy-discrimination trade-off for

future classifications.

Before proceeding further, it is worth re-emphasizing that effective discrimination control in our

setting (only discriminatory dataset available) is possible only when group membership of individuals

is known. Knowledge of this information is also necessary for litigation processing and affirmative

action.

Labeling Strategy

Traditionally, a learned classifier assigns an instance to the class with the highest posterior probability.

PR deviates from this traditional decision rule and gives the idea of a critical region in which instances

belonging to deprived and favored groups are labeled with desirable and undesirable labels, respectively.

We first present PR for single and multiple classifiers and then relate PR with decision theory for

interpretation and control.

Consider a single classifier, and let p(C+|X) be the posterior probability for instance X produced

by this classifier. When p(C+|X) is close to 1 or 0 then the label for instance X is specified with a

high degree of certainty. On the other hand, when p(C+|X) is close to 0.5 then the label for instance

X is more uncertain. Probabilistic rejection is adopted for all instances for which max[p(C+|X),1−
p(C+|X)] ≤ θ where (0.5 < θ < 1). These instances, which lie within the critical region, are not

assigned labels (or are labeled as ‘reject’). The labels for instances in the critical region (rejected

instances) are considered to be ambiguous and influenced by biases. Note that η = θ −0.5 relates the

parameter θ with the parameter η introduced in the discrimination model.

To reduce discrimination, these rejected instances are labeled as follows; if the instance is from the

deprived group (X d) then label it as C+ otherwise label it as C−.

The instances outside the critical region are classified according to the standard decision rule, i.e.,

if p(C+|X) > p(C−|X) then C+ will be assigned to instance X ; otherwise, C− will be assigned to

instance X .

Probabilistic rejection is not restricted to work with a single classifier; it can also be used for an

ensemble of probabilistic classifiers. In our problem setting of discrimination-aware classification,
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a classifier ensemble can be thought of as a pool of experts with varying characteristics and biases –

their combined output is expected to be more reliable w.r.t. both accuracy and discrimination.

Let Fk (k = 1, . . . ,K) denote the kth classifier in an ensemble of K > 1 classifiers, and p(C,Fk|X)

be the posterior probability of classification of instance X produced by classifier Fk. The posterior

probability of classification of the ensemble p(C|X) is given by

p(C|X) =
K

∑
k=1

p(C|X ,Fk)p(Fk) (3.1)

The prior probability of a classifier, p(Fk), can be taken to be proportional to the accuracy of that

classifier on the data. Or, if such information is considered uninformative, the prior probability

distribution can be taken to be uniform, in which case, the posterior probability of the ensemble is

simply the average of the posterior probabilities of each classifier in the ensemble.

Given the posterior probability of an ensemble p(C|X), PR proceeds in the manner as discussed

for a single classifier above. This labeling strategy will ensure that only higher risk instances are

rejected and thus its impact on accuracy of the classifier is a minimum. PR’s methodology is illustrated

in Figure 3.1. PR algorithm is shown in Algorithm 4. The inputs required for PR are one or more

probabilistic classifiers trained on discriminatory dataset, information for identifying deprived group

instances, and parameter θ . It outputs discrimination-aware labels for new instances. Instance labeling

is distinguished between two regions. In the critical region, instances are labeled in a manner to

neutralize discrimination (lines 6 to 10), while instances outside the critical region are labeled using

the standard decision rule (lines 11 to 16).

Figure 3.1: Framework of Probabilistic Rejections (PR)

Decision Theoretic Interpretation

In this section, we develop a decision theoretic understanding of PR. The expected loss of a sin-

gle classifier or an ensemble of classifiers (F ) that produces posterior probabilities p(C+|X) and

p(C−|X) = 1− p(C+|X) for instance X is given by

E [L] = ∑
{X∈X |F (X)=C+}

L−,+p(C−|X)p(X)

+ ∑
{X∈X |F (X)=C−}

L+,−p(C+|X)p(X). (3.2)
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Algorithm 4 Probabilistic Rejections (PR)

1: Input: {Fk}K
k=1 (K ≥ 1 probabilistic classifiers trained on D), X (test set), X d (deprived group),

θ

2: Output: {Ci}M
i=1 (labels for instances in X )

3: for i = 1→M do
4: p(C+|Xi)← posterior probability for C+ produced by classifier(s)
5: if max(p(C+|Xi),1− p(C+|Xi))≤ θ then
6: ** Critical region **
7: if Xi ∈X d then
8: Ci←C+

9: else
10: Ci←C−

11: else
12: ** Standard decision rule **
13: if p(C+|Xi)≥ p(C−|Xi) then
14: Ci←C+

15: else
16: Ci←C−

Here, L+,− quantifies the loss incurred in classifying a positive instance as negative. These quantities

are typically given in a loss matrix, with rows representing actual labels and columns giving predicted

labels (Table 3.1). There is no loss when the predicted and actual labels match; hence, L+,+ = L−,−= 0

while L+,−,L−,+ > 0.

The best label for each instance X , that ensures the minimum expected loss of classification

(Equation 3.2), is given by the j ∈ {+,−} that minimizes [78]:

L+, j p(C+|X)+L−, j(1− p(C+|X)). (3.3)

When all classification errors incur a constant loss (e.g., L+,− = L−,+, then the above decision rule

assigns each instance X to the label whose posterior probability is the largest. This is the standard

decision rule that ensures the lowest loss in the accuracy of classification.

Table 3.1: Loss matrix

Actual↓, Predicted→ C+ C− Cr

C+ L+,+ L+,− L+,r
C− L−,+ L−,− L−,r

The reject option in classification is invoked when max[p(C+|X),1− p(C+|X)]< θ . From Equa-

tion 3.2, it is clear that even when all rejected instances (say R instances) are misclassified the increase

in expected loss is a minimum as compared to any other set of R misclassified instances from a

given dataset. This is because the rejected instances have a low maximum posterior probability. The

labeling strategy of Probabilistic Rejection (PR), however, only relabels deprived group instances with

negative labels and favored group instances with positive labels. This strategy reduces discrimination

by decreasing the dependence of the sensitive attributes on the class attribute without impacting the
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dependence of other attributes on the class attributes. Thus, PR reduces illegal discrimination first

while maintaining the explainable discrimination.

In PR, the trade-off between accuracy and discrimination is controlled by θ ; in general the larger

the value of θ the greater the reduction in classifier discrimination, as more deprived and favored group

instances are likely to be labeled with C+ and C−, respectively. For any given value of θ , the expected

reduction in accuracy is the minimum possible as pointed out in the preceding paragraph. To achieve a

specified discrimination level, the value of θ can be determined by using a validation dataset.

Typically in classification, a uniform cost or loss is associated with all errors, irrespective of them

being false positives or false negatives. That is, L+,− = L−,+ (see Table 3.1), and conveniently this

loss can be taken to be 1 unit. The reject option can be invoked by considering a third prediction label

(Cr for reject) and taking L+,r = L−,r = 1−θ . Thus, the loss for rejecting an instance depends upon

the value of θ – the larger its value is, the smaller the loss for rejection.

The PR labeling strategy can be interpreted via loss matrices. Consider a separate 2×2 (no Cr

label) loss matrix for deprived and favored group instances (Table 3.2). The discrimination reducing

and accuracy preserving classification is achieved when Ld
+,− = L f

−,+ = θ/(1− θ), with the other

values remaining unchanged from the usual loss matrix (Table 3.1).

Table 3.2: Loss matrices for probabilistic rejection (PR). The left matrix is for deprived instances and
the right is for favored instances.

Deprived Insts Favored Insts
Actual↓, Predicted→ C+ C− C+ C−

C+ 0 θ

1−θ
0 1

C− 1 0 θ

1−θ
0

Thus, PR can be interpreted as a cost-based prediction method in which the cost or loss of

misclassifying a deprived group instance as negative is θ/(1−θ) times that of misclassifying it as

positive. A similar statement can be made for favored group instances. For example, when θ = 0.6

then a 50% higher loss is associated with one type of error as compared to the other.

3.2.3 Ensemble Rejection (ER)

Our second reject option based solution for discrimination-aware classification, called Ensemble

Rejection (ER), relabels instances on which an ensemble of classifiers disagrees significantly. Unlike

PR, ER is not restricted to probabilistic classifiers only; an ensemble comprising of any type of

classifier can be used in this solution. As pointed out earlier, classifier ensembles often produce robust

classifications by taking advantage of the diversity of member classifiers. Furthermore, a classifier

ensemble mimics practical decision making where a panel of experts converge on an outcome (e.g.,

acceptance or rejection) for an individual. For discrimination prevention and control, ER provides

additional flexibility in the choice of a classification system.
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Labeling Strategy

Typically, a classifier ensemble labels a new instance with the majority class label (majority-vote rule).

Ensemble Rejection (ER) deviates from this standard rule to neutralize the effect of discrimination.

Specifically, it labels instances on which member classifiers disagree significantly in a manner that

reduces discrimination.

Formally, let K ≥ 2 be the number of classifiers in an ensemble F , and 0≤ K+ ≤ K be the number

of classifiers in the ensemble predicting label C+ for an instance X . Then, the confidence of the C+

label produced by the classifier ensemble F is defined as

conf (F ,X ,C+) = K+/K.

Likewise, the confidence of the C− label is given by conf (F ,X ,C−) = 1− conf (F ,X ,C+). Given

these confidence values, ER labels instance X using the following decision rule: if max[conf (F ,X ,C+),

conf (F ,X ,C−)) ≤ θ then instance X) is assigned the desired label (C+) if it belongs to the de-

prived group and the undesired label (C−) if it belongs to the favored group. Otherwise (i.e., when

max[conf (F ,X ,C+), conf (F ,X ,C−))> θ ), the standard majority-vote label is assigned to instance

X .

As in PR the parameter θ , which varies from 0.5 to 1, controls the critical region in input space

where the standard decision rule (majority-vote) is rejected in favor of the discrimination-aware rule to

reduce discrimination. A value of θ = 0.5 means that the standard majority-vote rule is utilized for all

instances, while a value of θ = 1 means that the majority-vote label is rejected for all instances. Thus,

θ controls the trade-off between discrimination and accuracy of a specific classifier ensemble.

A special case of the ER labeling strategy is when θ is just less than one (e.g., θ = 0.99). In this

case, when all member classifiers predict the same label for a given instance, the agreed class label is

assigned to it; otherwise, if the instance belongs to the deprived group it is assigned the C+ label and

if the instance belongs to the favored group it is given the C− label. In other words, all instances for

which the member classifiers disagree are rejected and labeled to reduce discrimination.

Based on our discrimination model, the ER labeling strategy considers that instances on which more

member classifiers disagree are closer to the decision boundary and are more likely to be discriminated.

We can draw a parallel between an ensemble and an admission committee: assume that some members

of the committee are biased against female applicants and try to reject their applications. Hence, it is

very likely that these members will only be able to affect the applicants close to the decision boundary

because the highly qualified female applicants cannot be rejected due to their overall high score. If

we consider member classifiers of an ensemble as admission committee members, then having more

classifiers in the ensemble or increasing the acceptance confidence may neutralize the discriminatory

effect of ensemble due to the fair classifiers. Thus, using classifier ensembles is a natural fit to the

solution of discrimination-aware classification problem.
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Figure 3.2: Framework of Discrimination-Aware Ensemble (DAE).

Controlling Discrimination

There are two approaches towards controlling discrimination with ER. The first approach assumes

a fixed classifier ensemble. In this approach, the trade-off between discrimination and accuracy is

controlled by varying the value of θ . This approach and the corresponding discrimination-accuracy

behavior is similar to that for PR.

The second approach assumes that an instance is rejected for discrimination-aware labeling

whenever a given classifier ensemble disagrees on its label. In this approach, the trade-off between

accuracy and discrimination is controlled by varying the composition of the ensemble. The question

now is: which members should we choose and how does this impact discrimination? The accuracy-

discrimination performance of a given ensemble with ER depends upon the disagreement among the

member classifiers, which is defined as:

Definition 4. (Disagreement of a Classifier Ensemble): Given a classifier ensemble {Fk}K
k=1 (K > 1)

trained on discriminatory dataset D = {Xi,Ci}N
i=1, the disagreement of the ensemble w.r.t. dataset D ,

denoted as disagrD , is defined as:

disagrD =
|{Xi|∃ j,k F j(Xi) 6= Fk(Xi)}|

|{Xi}|

When clear from the context, we will drop the subscript or simply use disagreement while referring

to this measure.

Equivalently, disagrD = d/N, where d is the number of instances on which the ensemble disagrees.

If a is the number of instances on which the ensemble agrees, then a+d = N. However, it is worth

noticing that not all instances in a are correctly classified; the ensemble can agree on an incorrect label

for an instance. ER’s methodology is illustrated in Figure 3.2 and algorithm is shown in Algorithm 5.

In general, the higher the disagreement of an ensemble on a given dataset, the lower will be the

discrimination produced by this ensemble with ER on new instances since the ensemble will disagree

on more instances and all such instances belonging to the deprived group are labeled with C+ and

the rest are labeled with C−. Disagreement, as defined above, can be considered to be a measure

of ensemble diversity as well. Ensemble diversity has been shown to be positively correlated with

ensemble accuracy determined via majority vote [79]. Another measure of ensemble diversity is

average pairwise correlation between member classifiers. In [80], error bounds have been developed

for classifier ensemble under reject option as a function of correlation. Therefore, a key thumb rule to
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remember while selecting member classifiers of an ensemble for ER is: the more diverse the member

classifiers are, the higher will be the disagreement (or lower will be the correlation) among them, and

the greater will be the reduction in discrimination. This means that we can control the discrimination

of an ensemble with ER by changing the diversity of member classifiers. To select an ensemble with

ER having a specific discrimination level, a validation dataset can be used.

The trade-off between accuracy and discrimination will depend upon both disagreement and the

number of instances in a that are incorrectly classified.

Algorithm 5 Discrimination-Aware Ensemble (DAE)

1: Input: {Fk}K
k=1 (K > 1 classifiers trained on D), X (test set), X d (deprived group)

2: Output: {Ci}M
i=1 (labels for instances in X )

3: for i = 1→M do
4: if F j(Xi) = Fk(Xi) ∀ j,k then
5: ** Agreement **
6: Ci←F1(Xi)
7: else
8: ** Disagreement **
9: if Xi ∈X d then

10: Ci←C+

11: else
12: Ci←C−

3.2.4 Situational Rejection (SR)

Our third solution for discrimination control, called Situational Rejection (SR), combines PR or ER

with a legally-grounded procedure of situation testing. SR includes an additional check, based on a

local model of classification, for instances that are rejected and relabeled in PR or ER. As such, SR

is more careful in relabeling and hence less ‘brute force’ in its labeling strategy. Furthermore, SR

provides additional insights into the prevalence of discrimination and its control in future predictions.

Labeling Strategy

Situational rejection’s labeling strategy for discrimination control deviates from that for PR and ER

with the addition of situation testing. Situation testing or situational judgement test is a systematic

procedure employed in the legal domain for determining the response of a decision maker towards an

applicant’s suitability for a benefit or service under different settings. In this procedure, a hypothetical

situation is assumed where a pair of applicants with similar qualifications (e.g., education, experience)

but from different sensitive groups (e.g., race)apply for certain benefits (e.g., job) simultaneously. The

different outcomes of such a controlled experiment can assist victims of discrimination to establish

the evidence against the discriminatory practices w.r.t. certain sensitive characteristics [52, 81, 82].

Specifically, if it is found that the victim was denied the benefits while his pair was awarded the

benefits then this provides evidence for the discriminatory practice.
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Figure 3.3: Framework of Situation Testing.

We model situation testing via a k-nearest neighbor (k-NN) classifier [83]. This local model of

classification is applied to each instance that is rejected by a probabilistic classifier or a classifier

ensemble learned on the discriminatory data (i.e., the instances in the critical region produced in PR

and ER). A rejected instance is compared with its neighbors and is labeled w.r.t. the majority class

of its neighbors from the opposite group of sensitive attribute. For instance, a rejected female will

be labeled according to majority class of the k-nearest male neighbors of this rejected female. The

intuition of this method is to relabel only those rejected instances that have been treated differently as

compared to their peers rather than relabeling all the rejected instances.

Figure 3.3 represents the situation testing framework. SR changes the labels of selected deprived

and favored group instances in the critical region it is less ‘forceful’ in reducing discrimination. As

such, in general, to achieve the same level of discrimination a larger critical region may be required. It

is also worth noting that SR can be applied to all instances and not just to those in the critical region.

In the legal domain, situation testing is a systematic research procedure for creating controlled

experiments analyzing decision maker’s candid responses to applicant’s personal characteristics. In

situation testing, pairs of research assistants undergo the same kind of selection, for example they

apply for the same job, they present themselves at the same night club, and so on. Within each

pair, applicant characteristics likely to be related to the situation (characteristics related to a worker’s

productivity on the job in the first case, look, age and the like in the second case) are made equal by

selecting, training, and credentialing testers to appear equally qualified for the activity. Simultaneously,

membership to a protected group is experimentally manipulated by pairing testers who differ in

membership for example, a black and a white, a male and a female, and so on. Situation testing is

being experimented worldwide as one of the tools that can assist victims to establish that discrimination

may have occurred [52, 81, 82].

3.2.5 Summary of Rejection Option Classifiers

Our discrimination control methodology is outlined in Algorithm 6. The algorithm takes as input

a classifier or classifier ensemble (F ) trained on a discriminatory dataset (D), test instances to be

classified (Xi), knowledge of the sensitive attribute in the training and test datasets, parameter θ , name

of the solution to be used (Solution), and neighborhood size (k, for SR only). The algorithm outputs
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discrimination-aware labels (Ci ∈ {C+,C−}) to test instances. For ER with disagreement θ is set close

to 1. An instance is rejected when its predicted label score (confidence or posterior probability) is low

according to the threshold θ . For PR and ER, rejected deprived group instances are given label C+ and

rejected favored group instances are given label C−. In SR, rejected instances are given the majority

label of the opposite group instances within the k neighbors of the instances. Instances that are not

rejected are given standard classifier labels.

Our methodology is computationally efficient. Besides training, which is done once and prior to

the application of our methodology, the processing time and space complexity is linear in the number

of test instances.

Algorithm 6 Summary of Rejection Option Based Classifiers– PR, ER, and SR

1: Input: F (classifier or classifier ensemble trained on D), X (test set), X d,X f (deprived and
favored groups), θ , Solution (PR, ER, or SR), k (neighborhood size, for SR only)

2: Output: {Ci}M
i=1 (labels for instances in X )

3: for i = 1→M do
4: Score←F (Xi,C+)
5: if max(Score,1−Score)≤ θ then
6: if Solution = PR∨ER then
7: if Xi ∈X d then
8: Ci←C+

9: else
10: Ci←C−

11: else
12: Ci← majority label of opposite group in k-NN of Xi

13: else
14: if Score≥ 1−Score then
15: Ci←C+

16: else
17: Ci←C−

3.3 Experimental Evaluation

In this section, we discuss the evaluation of our methodology for discrimination control on four real-

world datasets. We compare the performance of our solutions with previously proposed discrimination-

aware classification methods. Since our solutions are not restricted to any specific classifier, we consider

several standard classifiers for discrimination-aware classification (identifying label of each classifier

is given in parenthesis): naive Bayes (NBS), logistic regression (Logistic), k-nearest neighbor (IBK),

and decision tree (J48). The first and second classifiers are generative and discriminative probabilistic

classifiers, respectively, while the third is an instance-based classifier with well-defined probabilistic

interpretation. We also show results with decision trees, which is an information theoretic classifier,

since they have been used popularly in previous discrimination-aware classification research. Besides

the above classifiers, we tried many other classifiers as well, including support vector machines (SVM),

but do not report all results for ease of understanding.
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In summary, we present and discuss the results of the following experiments for preventing overall

and illegal discrimination:

1. PR: Probabilistic Rejections using single and multiple probabilistic classifiers, identified as PR
(classifier) and PR (1st classifier+2nd classifier+. . . ), respectively.

2. ER: Ensemble Rejection with two or more classifiers, identified as ER (1st classifier+2nd
classifier+. . . ).

3. SR: Situational Rejection using single and multiple probabilistic classifiers, identified as SR
(classifier) and SR (1st classifier+2nd classifier+. . . ), respectively.

4. Comparison of our solutions’ results with those of current state-of-the-art discrimination-aware

classification methods, identified as Prev Methods.

5. Performance of our solutions (PR, ER, and SR) for illegal discrimination prevention.

6. Evaluation of PR w.r.t. different and multiple sensitive attributes.

7. Evaluation of PR on test dataset with less discrimination.

Datasets: We conduct our experiments on four real-world datasets: Adult [84], Communities

and Crime [84], and Dutch Census of 1971 and 2001 [85] datasets. Table 3.3 gives the important

characteristics of these datasets such as number of instances, number of instances belonging to

deprived group (X d), number of attributes in the dataset, class attribute defining the desirable and

undesirable labels, sensitive attribute (SA), and overall discrimination (calculated using Equation 1).

For experiments on less discriminatory test sets (reported in Figure 3.10), we change some settings in

the Dutch Census datasets as follows: use the attribute economic status as class attribute rather than

occupation as class attribute of the Dutch Census of 2001 dataset and by removing some attributes

like current economic activity and occupation from these experiments to make both datasets (Dutch

1971 and 2001) consistent w.r.t. codings. The discrimination in the Dutch Census of 2001 dataset w.r.t.

economic status as class attribute is 28.23%.

Table 3.3: Key characteristics of datasets.

Dataset Inst. |X d | Attr. Class SA disc%
Adult 16 281 5 421 14 Income sex 19.45

Communities 1 994 1 024 122 violent criminal race 43.14
Dutch 71 99 772 51 658 9 economic status sex 58.66
Dutch 01 15 150 7 603 12 occupation sex 29.85

All results reported in the chapter (excluding those reported in Figure 3.10) are obtained using

10-fold cross-validation and each point in the figures represents the result of an independent experiment.

The datasets with detailed description and source code of implementations used in this chapter are

available at 2.
2https://sites.google.com/site/discriminationcode/

https://sites.google.com/site/discriminationcode/
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3.3.1 Removing the Sensitive Attribute

First we report the results of the experiments to show that the straight forward solution of just removing

the sensitive attributes does not work as the classifier tends to pick the indirect discrimination from the

other correlated attributes of sensitive attributes. Table 3.4 shows the result of experiments to validate

this claim. We learn a decision tree classifier over the above mentioned three real world datasets with

and without using the sensitive attribute. We can observe from the results given in Table 3.4 that the

removal of sensitive attribute has a little impact on the reduction of discrimination. However the Dutch

2001 Census data is one exception where the removal of sensitive attribute has relatively more impact

due to the weak correlation of the sensitive attribute with the other attributes. The results shown in this

section demonstrate that this straight forward solution does not work and clearly motivate to use more

sophisticated discrimination-aware techniques to ensure discrimination-free classification as we do

next.

Table 3.4: Removing the sensitive attribute from classification does not ensure discrimination-free
classification.

Dataset With S Without S
Adult 16.48% 16.65%

Communities and Crime 40.14% 38.07%
Dutch 2001 Census 34.91% 17.92%
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Figure 3.4: Discrimination-accuracy trade-off of ER (disagreement based) on three datasets. For each
dataset, several classifier ensembles are shown with their accuracy and discrimination.

3.3.2 Overall Discrimination Control

In this section, we show that our proposed solutions prevent effectively overall discrimination in future

predictions. We also show that our proposed solutions outperform the current state-of-the-art methods

over three real-world datasets (the Dutch 71 dataset is only used in Section 3.3.5).
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Results of PR and SR

Figure 3.5 shows the results of our experiments with PR and SR (PR combined situation testing) on

three datasets (labeled (a), (b), (c)). The x- and y-axis of these plots represent classifiers’ discrimination

and accuracy respectively, and each point is for a specific value of θ which is varied from 0.5 to

a maximum value (usually around 0.9). It is observed that as the value of θ is increased, the

discrimination reduces to zero. Furthermore, the reduction in discrimination with the increase in θ is

generally smooth and consistent across datasets and classifier(s). Thus, the discrimination level of PR

and SR can be controlled easily by varying the value of θ . The generally small decrease in accuracy for

specific values of θ makes PR and SR robust solutions appropriate for practical discrimination-aware

classification.

We know that the performance of classifiers varies over different datasets; the best performing

classifier over one dataset can give poor performance on another one. Figure 3.5 demonstrates this fact

and shows that PR and SR can be used with a selected single classifier or classifier ensemble to ensure

the best performances. For instance, both PR and SR give better performance with single classifiers

over the Communities and Crime dataset (Figure 3.5 (a)). However, PR with an ensemble of logistic

regression and J48 outperforms the other tested methods over the Adult dataset (Figure 3.5 (c)). This

fact shows that the flexibility in choice of classifier(s) is really important to achieve the best results and

it makes our solutions widely applicable to different domains and datasets. We can simply use the best

performing classifier (single or an ensemble of multiple classifiers) on any given dataset. In general, it

is seen that the classifier(s) that produces the highest accuracy at θ = 0.5 for a given dataset also gives

low discrimination scores by maintaining the high accuracy, making the choice of classifier(s) easier

for decision makers.

We observe in Figure 3.5 that both PR and SR give comparable performance. However, SR has the

advantage that it can be used to establish an evidence of discriminatory practices in the court of law.

This advantage of SR makes it a better choice for practitioners.

Results of ER

Figure 3.6 shows the results of our experiments with ER over three real world datasets ((a), (b), (c)).

In these plots, member classifiers of different ensembles are listed on the lower x-axis, ensemble

disagreement is given on the upper x-axis, ER discrimination is shown on left y-axis, and ER accuracy

is given on right y-axis. These results demonstrate that discrimination can be controlled by varying the

disagreement of the ensemble. For a given dataset, the higher disagreement the ensemble has, the lower

is its discrimination with ER. The disagreement of an ensemble, which also measures the diversity of

its member classifiers, can be increased by adding more classifiers. Alternatively, the disagreement

can be increased by including diverse classifiers in an ensemble. For example, Figure 3.6 (a) shows

that it is not always necessary to add more classifiers to reduce discrimination to 0%; just selecting

an ensemble with high diversity (e.g., an ensemble comprising of naive Bayes (NBS) and nearest

neighbor classifier with k = 7 neighbors (IBK7) in this case) is enough to ensure discrimination-free
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Figure 3.5: Discrimination-accuracy trade-off of PR and SR on three datasets. For each dataset, θ is
increased from 0.5 (top right points representing standard decision boundaries) to a maximum value
around 0.9 (bottom left points) which reduces the discrimination to 0%.

classification.

Accuracy and discrimination generally decreases with increase in disagreement. Nonetheless,

accuracy remains robust since it is based on agreement of member classifiers of an ensemble. ER

has an advantage that it can be used in collaboration with non-probabilistic classifiers; however, its

execution time can be higher than that for PR since multiple classifiers need to be learned and applied.

Similarly, SR provides a better solution for legal purposes but its execution time is the highest due

to the neighborhood search step. The execution times of sample PR, ER, and SR solutions on all

datasets are given in Table 3.5. In practice, however, execution time is not a critical deciding factor as

real-world predictions do not involve stringent time constraints.

Table 3.5: Average execution time of PR, ER, and SR (in seconds)

Method↓, Dataset→ Crime Dutch Adult
PR (Logistic) 0.58 7.86 14.23

ER (Logistic + J48) 0.76 9.33 18.54
SR (Logistic) 3.2 78 54.55
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Figure 3.6: Discrimination-accuracy trade-off of ER (disagreement based) on three datasets. For each
dataset, several classifier ensembles are shown with their accuracy and discrimination.

Comparison with Previous Methods

We compare the performance of our solutions (PR, ER, and SR) with that of previous methods of

discrimination-aware classification. Figure 3.7 provides a detailed comparison of results on three

real-world datasets. It is clear from the figure that our solutions outperform the previously proposed

discrimination-aware classification methods of [1–5] w.r.t. accuracy-discrimination trade-off. For

each dataset, the accuracy-discrimination curve of our methods lies above all previously reported

results, confirming the performance superiority of our solutions. More importantly, our solutions

significantly outperform previous methods on the left side of the plots where discrimination is low

but accuracy is high. To further discuss the less discriminatory results, we report highest accuracies

of our proposed and previous solutions when discrimination is kept only 5%. For communities and

crime dataset, our solutions find the highest value of accuracy (77%), while the highest accuracy of

previous methods is 67% only (Figure 3.7(a)). A similar trend is observed for Dutch Census of 2001

dataset, where the highest reported accuracy of our solutions is 79.2% and of previous solutions is

78.1 % (Figure 3.7(b)). However, the minimum difference in highest reported accuracies is discovered

for the Adult dataset, i.e., the previous methods return 84.5% and our solutions return 84.8% (Figure
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Figure 3.7: Comparison of our solutions with the existing state-of-the-art methods [1–5] on three
datasets.

3.7(c)). With the increase in discrimination, the difference in the highest accuracies of our solutions

and other state-of-the-arts keep decreasing, which is not justified as eventually discrimination is not

prevented. These results, coupled with ease-of-use and flexible control, of our solutions make them a

major step forward in practical discrimination-aware classification.

3.3.3 Illegal Discrimination Prevention

In this section, we empirically show that our solutions not only prevent overall discrimination but also

ensure illegal discrimination prevention w.r.t. given explanatory attributes. For this purpose we present

results of our experiments on two real world datasets: Adult and Dutch Census. The Communities and

Crime dataset is not very appropriate for these experiments because of its small size and all numerical

attributes. Although we discretize the numerical attributes in Adult and Dutch Census datasets as well

but discretization of numerical attributes in Communities and Crime dataset produces very small data

bins that can generate misleading results for overall and illegal discrimination.

The selection of reasonable explanatory attributes is an important step for illegal discrimination

calculation and prevention. In the Adult dataset a number of attributes are very weak candidates for

being explanatory attributes and thus cannot be presented as an explanation for the low income of

females. For instance, we know from biology that race and gender are independent. Thus, race cannot

explain the discrimination w.r.t. gender; any such discrimination is either illegal or due to some other
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attributes. Similarly, the relationship attribute with values wife and husband clearly captures the gender

information (i.e., is a proxy for gender) and thus cannot be used as an explanation for the low income

of females. On the other hand, the attributes age and working hours per week can be considered

reasonable for explaining different incomes of males and females. Therefore, it is appropriate to treat

them as explanatory attributes. For Dutch Census dataset, attributes education level, age and economic

activity are good candidates for explanatory attribute.
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Figure 3.8: Performance comparison of our solutions (PR, ER and SR) with the state-of-the-art
methods of illegal discrimination prevention.

Selection of explanatory attributes is often difficult and may lead to controversies. Our solutions

assume that the explanatory attributes are externally nominated (e.g., by domain experts) and in our

experiments we present results by considering each attribute in the dataset as explanatory attribute.

Figure 3.8 shows the performance of our proposed solutions w.r.t. illegal discrimination. In

the plots, the x-axis shows different explanatory attributes and the y-axis shows the resultant illegal

discrimination (plots on the top) and accuracy (plot in the bottom). Plots on the top of Figure 3.8

present the comparison of illegal discrimination in the actual data (Data), in the predictions of a

discrimination ignorant classifier, e.g., decision tree in this figure (J48), and results of previously

proposed methods of [48] (Prev-Method) with the illegal discrimination in the predictions of our

proposed solutions (PR, ER, SR). We observe that our solutions reduce the illegal discrimination

to almost 0% for all reasonable explanatory attributes. In general, our reject option based solutions

remove the illegal discrimination with similar magnitude for all explanatory attributes as shown in

Figure 3.8. The strange performance observed for the relationship and marital status attributes in the
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Adult dataset is due to the fact that these attributes are almost duplicates of the sensitive attribute

(gender) and thus are not reasonable explanatory attributes, respectively.

The top two plots of Figure 3.8 also compare the performance of our proposed solutions with

the best performing results of [48] where one specialized and independent classifier was learnt for

each explanatory attribute separately. It is also very important to mention that our solutions do not

require this laborious work of learning a different model for each explanatory attribute. We just learn

one model to remove the illegal discrimination w.r.t. all explanatory attributes. We observe that our

solutions give comparable performance with the specialized models of [48]. Our solutions are capable

of reducing the discrimination to any desired level by changing the value of parameter θ . We observe

even the best performing results of previous methods are not able to reduce the illegal discrimination

to 0% in the Dutch Census dataset while our solutions reduce the discrimination very close to 0%.

The bottom plots of Figure 3.8 also give the accuracy comparison of our proposed solutions with

the best performing and specialized methods of [48]. We observe that our proposed solutions give a

comparable accuracy to the previous methods over the Adult dataset. However, in the Dutch Census

dataset, PR and SR are a little less accurate as they reduce the illegal discrimination to 0% as compared

to the 10% range of specialized methods of [48].

3.3.4 Multiple Sensitive Attributes
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Figure 3.9: PR’s flexibility to handle discrimination w.r.t. multiple sensitive attributes without training
of classification model again.

A key shortcoming of previous methods is the difficulty of handling multiple sensitive attributes

which typically requires processing the data or classifier again. On the other hand, our solutions make

standard classifier(s) discrimination-aware w.r.t. sensitive attribute(s) at run-time. Thus, our solutions

are easy to apply to multiple sensitive attributes or different definitions of deprived groups. We

demonstrate this in Figure 3.9(a), which shows the accuracy-discrimination trade-off of PR w.r.t. three

sensitive attributes (gender, education, race) on Adult dataset. We observe that discrimination decreases
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towards zero for all sensitive attributes without repeating the learning procedure by simply increasing

the value of θ from 0.5. This flexibility of PR makes it a superior discrimination-aware method as

it requires very little computing resources to handle the multiple sensitive attributes as compared to

other state-of-the-art methods. Figure 3.9(b) demonstrates this fact by comparing the computing time

of PR with a standard decision tree (J48) and a previously proposed discrimination-aware method,

i.e., Massaging [1] (Prev Method) on the Adult dataset. We can observe that PR’s computing time

to handle discrimination w.r.t. multiple sensitive attributes is comparable to the computing time of

a standard decision tree. However, the computing time of previous method becomes k times that of

a single sensitive attribute when k new sensitive attributes are added, as the method has to re-run

the learning process for each sensitive attribute separately. Figure 3.9(b) clearly points out that this

drawback of previous discrimination-aware methods would become worse over large datasets.

3.3.5 Performance on Less Discriminatory Test Set
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Figure 3.10: Performance of PR on less discriminatory test data.

Ideally, discrimination-aware classification methods trained on discriminatory data should be

evaluated on discrimination-free or less discriminatory test sets. However, such evaluation scenarios are

not currently available, and in state-of-the-art discrimination-aware classification research, performance

is measured via accuracy-discrimination trade-off on discriminatory test sets, as reported in the previous

subsections. It is expected that a discrimination-aware classifier that produces high accuracy and low

discrimination on discriminatory data will perform with a higher accuracy on less discriminatory test

sets. To validate this hypothesis, we construct an experiment in which PR is trained on Dutch Census

of 1971 and tested on Dutch Census of 2001 datasets. The former dataset has a discrimination of

58.66% while the latter has a discrimination of 24.23%. As discussed while describing the datasets

(Section 3.3), the Dutch Census of 2001 dataset is modified to make it compatible with the Dutch

Census of 1971 dataset for this experiment, and hence, the Dutch Census of 2001 dataset used in

previous subsections is not identical to the one used in this section.

Figure 3.10 shows the performance of PR using single and multiple classifiers when tested on

the 2001 version after training on the 1971 version of the Dutch Census datasets. Unlike the results

reported earlier, where both accuracy and discrimination decreases with an increase in the value

of θ , here accuracy actually increases with an increase in θ from 0.5. This trend continues until

discrimination is reduced to about 20%, and then accuracy starts decreasing due to the fact that the
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test set is not entirely discrimination free. We can expect that accuracy will continue to increase

as discrimination reduces to zero if the test set is not entirely discrimination-free. This behavior of

PR verifies the hypothesis and confirms its applicability to an ideal scenario where test set is less

discriminatory or discrimination-free.

3.3.6 Summary and Discussion

Our experimental evaluations have highlighted several benefits of our proposed solutions for discrimination-

aware classification. Table 3.6 summarizes the main advantages, relationships, and differences among

the reject option based solutions. We compare our proposed solutions w.r.t. execution time, type of

classifiers, and authenticity in the court of law. PR is restricted to single or multiple probabilistic

classifiers, while ER and SR can use any type of classifiers. Situational Rejection (SR) is consid-

ered highly reliable for justification in the court of law, as it compares the decision of a potentially

discriminated/favored instance with its neighbors to establish a case of discrimination or favoritism.

Table 3.6: Main features of proposed methods

Solution↓, Feature→ Non-Prob Classifier Legal Authenticity Run Time
PR No Medium Low
ER Yes Medium Medium
SR Yes High High

The most significant benefit of our proposed solutions, specifically PR, is prevention of both overall

and illegal discrimination simultaneously. Actually when we increase the value of θ for PR and SR

(using PR), it first removes the illegal part of discrimination and further increase of θ removes the rest

of the difference in labeling between the sensitive groups to reduce the overall discrimination to zero.

This benefit of our solution makes it superior to previously proposed discrimination-aware classification

methods as they either reduce illegal discrimination or overall discrimination and not both. Moreover

in previous illegal discrimination-aware methods, we have to learn a separate classifier for each

explanatory attribute; on the other hand, our reject option based solutions prevent the discrimination

w.r.t. all explanatory attributes in a single learning.

Another significant advantage of our solutions is the control over discrimination resulting from

the strong correlation between θ (in PR and SR with PR) or disagreement (in ER and SR with

ER) and discrimination. This kind of control is not available in the existing discrimination-aware

classification methods. We have presented results for different values of θ and disagreement to

establish its relationship with discrimination. In practice, if a specific discrimination level is desired,

then these parameters can be fixed by using a validation dataset.

3.4 Summary

In this chapter, we present three different solutions for the discrimination-aware classification problem.

These easy-to-use and flexible solutions exploit the reject option in classification to identify instances
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to label in a manner that reduces discrimination without impacting classification accuracy significantly.

The reject option in classification provides a theoretical framework for handling instances close to

the decision boundary instances that are more likely to be discriminated. Our solutions employ

probabilistic rejection (PR) in probabilistic classifiers, ensemble rejection in classifier ensembles (ER),

and PR or ER combined with situation testing (SR). A desirable characteristic of these solutions is

their interpretability, i.e., stronger justifications for the decisions as evidence against discriminatory

practices in the court of law.

Our experimental evaluations on four real-world datasets confirm the benefits of our solutions and

demonstrate our solutions’ superior performance when compared to existing state-of-the-art methods.

The results also show that our solutions prevent both overall and illegal discrimination simultaneously

with minimal loss in accuracy. Stronger justifications, flexibility in practical application, ease-of-

use, and overall and illegal discrimination control; these signify a major step forward in practical

discrimination-aware classification.





Chapter 4

Future Work

Layered convolutional dictionary learning for sparse coding has been successfully used in different

domains, however, has never been employed for the discrete datasets. After using it for interesting

itemset mining, we plan to design layered convolutional sparse dictionary learning techniques to tackle

sequential, streaming and uncertain discrete data mining problems [17, 86–90]. Discrimination-aware

classification is an exciting area of research with many directions for future research. Since decisions

impact humans, a broader and less abstract notion of risk needs to be considered in discrimination-

aware classifiers: decisions should satisfy safety requirements rather than maximizing accuracy or

optimizing accuracy-discrimination trade-off [91]. Furthermore, the learned decision boundary can

be quite arbitrary in low density regions thus making the use of distance from decision boundary

for risk assessment more uncertain and suggesting greater human oversight in decision making [91].

We believe this direction holds much promise for future research with practical benefits. Another

aspect that needs attention in discrimination-aware classification is that of causal inference where the

effects of observed and unobserved explainable factors can be controlled in a systematic manner while

estimating overall and illegal discrimination (e.g., [92]). In future, we would like to investigate the

influence of the critical region on discrimination reduction under different distributions of deprived and

favored group instances. Layered convolutional dictionary algorithms for summarizing discriminatory

or biased data from financial institutions, hiring agencies, and social service providers can also be

designed. This study can yield additional interpretability of deep discrimination-aware classification

for decision makers. Detecting and removing illegal or overall discrimination from deep learning

based approaches remains an open area for further research.

45
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[60] B. Fish, J. Kun, and Á. D. Lelkes. A confidence-based approach for balancing fairness and

accuracy. 2015.

[61] A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. The Knowledge

Engineering Review, pages 1–57.

[62] B. Custers, T. Calders, T. Zarsky, and B. Schermer. In Discrimination and Privacy in the

Information Society, volume 3 of Studies in Applied Philosophy, Epistemology and Rational

Ethics, pages 341–357. Springer Berlin Heidelberg, 2013.

[63] T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints.

In Proc. of IEEE 9th International Conference on Data Mining Workshops, pages 13–18, 2009.

[64] F. Kamiran and T. Calders. Classification with no discrimination by preferential sampling. In

Proc. of the 19th Ann. Machine Learning Conf. of Belgium and the Netherlands, pages 1–6, 2010.

[65] T. Calders, A. Karim, F. Kamiran, W. Ali, and X. Zhang. Controlling attribute effect in linear

regression. In Proc. of IEEE 13th International Conference on Data Mining, pages 71–80, 2013.

[66] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proc.

of the 3rd ACM Innovations in Theoretical Computer Science Conference, pages 214–226, 2012.

[67] F. Kamiran, A. Karim, and X. Zhang. Decision theory for discrimination-aware classification. In

Proc. of IEEE 12th International Conference on Data Mining, 2012.

[68] Y. LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun. com/exdb/lenet,

2015.



52 BIBLIOGRAPHY

[69] Y.-l. Boureau, Y. L. Cun, et al. Sparse feature learning for deep belief networks. In Proceedings

of Advances in Neural Information Processing Systems, pages 1185–1192, 2008.

[70] F. Coenen. The lucs-kdd discretised/normalised arm and carm data library. URL:

http://www.csc.liv.ac.uk/ frans/KDD/Software/ LUCS-KDD-DN/DataSets/dataSets.html.

[71] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proceed-

ings of European Conference on Computer Vision, pages 818–833. Springer, 2014.

[72] E. W. Weisstein. Chi-squared test. From MathWorld–A Wolfram Web Resource, 1999.

[73] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse

representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210–227,

2009.

[74] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data

mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[75] ECJ. The european court of justice ruling., 2011. via:

http://ec.europa.eu/ireland/press_office/news_of_the_day/

ecj-ruling-sex-discrimination-in-insurance-contracts_en.htm.

[76] M. Hart. Subjective decisionmaking and unconscious discrimination. Alabama Law Review,

56:741, 2005.

[77] I. Zliobaite, F. Kamiran, and T. Calders. Handling conditional discrimination. Technical report,

Eindhoven University of Technology, 2011.

[78] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[79] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy. Machine Learning, 51:181–207, 2003.

[80] K. R. Varshney, R. J. Prenger, T. L. Marlatt, B. Y. Chen, and W. G. Hanley. Practical ensemble

classification error bounds for different operating points. IEEE Transactions on Knowledge and

Data Engineering, 25(11):2590–2601, 2013.

[81] M. Bendick. Situation testing for employment discrimination in the united states of america.

Horizons stratégiques, (3):17–39, 2007.

[82] I. Rorive. Proving discrimination cases: The role of situation testing. 2009.

[83] A. W. David, D. Kibler, and K. M. Albert. Instance-based learning algorithms. Machine learning,

6(1):37–66, 1991.

[84] A. Asuncion and D. J. Newman. UCI machine learning repository. Online

http://archive.ics.uci.edu/ml/, 2007.

http://ec.europa.eu/ireland/press_office/news_of_the_day/ecj-ruling-sex-discrimination-in-insurance-contracts_en.htm
http://ec.europa.eu/ireland/press_office/news_of_the_day/ecj-ruling-sex-discrimination-in-insurance-contracts_en.htm


BIBLIOGRAPHY 53

[85] Dutch Central Bureau for Statistics. Volkstelling, 2001.

[86] W. Wang, H. Yin, S. Sadiq, L. Chen, M. Xie, and X. Zhou. Spore: A sequential personalized spa-

tial item recommender system. In Proceedings of International Conference on Data Engineering,

pages 954–965, May 2016.

[87] S. Mansha, Z. Babar, F. Kamiran, and A. Karim. Neural network based association rule mining

from uncertain data. In Proceedings of Neural Information Processing, pages 129–136. Springer,

2016.

[88] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Stochastic skyline route planning under

time-varying uncertainty. In Proceedings of IEEE International Conference on Data Engineering,

pages 136–147, March 2014.

[89] A. Zhang, W. Shi, and G. I. Webb. Mining significant association rules from uncertain data. Data

Mining and Knowledge Discovery, 30(4):928–963, 2016.

[90] Q. Xie, S. Shang, B. Yuan, C. Pang, and X. Zhang. Local correlation detection with linear-

ity enhancement in streaming data. In Proceedings of ACM International on Conference on

Information and Knowledge Management, CIKM, pages 309–318, 2013.

[91] K. R. Varshney. Engineering safety in machine learning. arXiv preprint arXiv:1601.04126, 2016.

[92] F. D. Johansson, U. Shalit, and D. Sontag. Learning representations for counterfactual inference.

arXiv preprint arXiv:1605.03661, 2016.


	Abstract
	Contents
	List of figures
	List of tables
	Introduction and Motivation
	Introduction
	Motivation
	Interesting Itemset Mining
	Social Discrimination Control


	Interesting Itemset Mining
	Introduction and Motivation
	Problem Definition and Proof of NP-Hardness
	Dictionary Learning for Sparse Coding Itemsets (DSI)
	Layered Convolutional Dictionary Learning for Sparse Coding of Itemsets (CDSI) 
	Candidate Set Construction
	Database Transformation and Convolution

	Experiments
	Dataset Description
	Interpretability of Sparse Representation
	Classification Accuracy

	Conclusion

	Reject Option in Classification for Social Discrimination Control
	Background and Notation
	Problem Definition
	Measuring Discrimination

	Methodology for Discrimination Control
	Discrimination Model: Reject Option in Classification
	Probabilistic Rejection (PR)
	Ensemble Rejection (ER)
	Situational Rejection (SR)
	Summary of Rejection Option Classifiers

	Experimental Evaluation
	Removing the Sensitive Attribute
	Overall Discrimination Control
	 Illegal Discrimination Prevention
	Multiple Sensitive Attributes
	Performance on Less Discriminatory Test Set
	Summary and Discussion

	Summary

	Future Work
	Bibliography

