1,175 research outputs found

    Adapted K-Nearest Neighbors for Detecting Anomalies on Spatio–Temporal Traffic Flow

    Get PDF
    Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    Estimating the risk of traffic incidents using causal analysis

    Get PDF

    Estimating the risk of traffic incidents using causal analysis

    Get PDF

    Patterns of mobility in a smart city

    Get PDF
    Transportation data in smart cities is becoming increasingly available. This data allows building meaningful, intelligent solutions for city residents and city management authorities, the so-called Intelligent Transportation Systems. Our research focused on Lisbon mobility data, provided by Lisbon municipality. The main research objective was to address mobility problems, interdependence, and cascading effects solutions for the city of Lisbon. We developed a data-driven approach based on historical data with a strong focus on visualization methods and dashboard creation. Also, we applied a method based on time series to do prediction based on the traffic congestion data provided. A CRISP-DM approach was applied, integrating different data sources, using Python. Hence, understand traffic patterns, and help the city authorities in the decision-making process, namely more preparedness, adaptability, responsiveness to events.Os dados de transporte, no âmbito das cidades inteligentes, estão cada vez mais disponíveis. Estes dados permitem a construção de soluções inteligentes com impacto significativo na vida dos residentes e nos mecanismos das autoridades de gestão da cidade, os chamados Sistemas de Transporte Inteligentes. A nossa investigação incidiu sobre os dados de mobilidade urbana da cidade de Lisboa, disponibilizados pelo município. O principal objetivo da pesquisa foi abordar os problemas de mobilidade, interdependência e soluções de efeitos em cascata para a cidade de Lisboa. Para alcançar este objetivo foi desenvolvida uma metodologia baseada nos dados históricos do transito no centro urbano da cidade e principais acessos, com uma forte componente de visualização. Foi também aplicado um método baseado em series temporais para fazer a previsão das ocorrências de transito na cidade de Lisboa. Foi aplicada uma abordagem CRISP-DM, integrando diferentes fontes de dados, utilizando Python. Esta tese tem como objetivo identificar padrões de mobilidade urbana com análise e visualização de dados, de forma a auxiliar as autoridades municipais no processo de tomada de decisão, nomeadamente estar mais preparada, adaptada e responsiva

    Spatio-temporal traffic anomaly detection for urban networks

    Get PDF
    Urban road networks are often affected by disruptions such as accidents and roadworks, giving rise to congestion and delays, which can, in turn, create a wide range of negative impacts to the economy, environment, safety and security. Accurate detection of the onset of traffic anomalies, specifically Recurrent Congestion (RC) and Nonrecurrent Congestion (NRC) in the traffic networks, is an important ITS function to facilitate proactive intervention measures to reduce the level of severity of congestion. A substantial body of literature is dedicated to models with varying levels of complexity that attempt to identify such anomalies. Given the complexity of the problem, however, very less effort is dedicated to the development of methods that attempt to detect traffic anomalies using spatio-temporal features. Driven both by the recent advances in deep learning techniques and the development of Traffic Incident Management Systems (TIMS), the aim of this research is to develop novel traffic anomaly detection models that can incorporate both spatial and temporal traffic information to detect traffic anomalies at a network level. This thesis first reviews the state of the art in traffic anomaly detection techniques, including the existing methods and emerging machine learning and deep learning methods, before identifying the gaps in the current understanding of traffic anomaly and its detection. One of the problems in terms of adapting the deep learning models to traffic anomaly detection is the translation of time series traffic data from multiple locations to the format necessary for the deep learning model to learn the spatial and temporal features effectively. To address this challenging problem and build a systematic traffic anomaly detection method at a network level, this thesis proposes a methodological framework consisting of (a) the translation layer (which is designed to translate the time series traffic data from multiple locations over the road network into a desired format with spatial and temporal features), (b) detection methods and (c) localisation. This methodological framework is subsequently tested for early RC detection and NRC detection. Three translation layers including connectivity matrix, geographical grid translation and spatial temporal translation are presented and evaluated for both RC and NRC detection. The early RC detection approach is a deep learning based method that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). The NRC detection, on the other hand, involves only the application of the CNN. The performance of the proposed approach is compared against other conventional congestion detection methods, using a comprehensive evaluation framework that includes metrics such as detection rates and false positive rates, and the sensitivity analysis of time windows as well as prediction horizons. The conventional congestion detection methods used for the comparison include Multilayer Perceptron, Random Forest and Gradient Boost Classifier, all of which are commonly used in the literature. Real-world traffic data from the City of Bath are used for the comparative analysis of RC, while traffic data in conjunction with incident data extracted from Central London are used for NRC detection. The results show that while the connectivity matrix may be capable of extracting features of a small network, the increased sparsity in the matrix in a large network reduces its effectiveness in feature learning compared to geographical grid translation. The results also indicate that the proposed deep learning method demonstrates superior detection accuracy compared to alternative methods and that it can detect recurrent congestion as early as one hour ahead with acceptable accuracy. The proposed method is capable of being implemented within a real-world ITS system making use of traffic sensor data, thereby providing a practically useful tool for road network managers to manage traffic proactively. In addition, the results demonstrate that a deep learning-based approach may improve the accuracy of incident detection and locate traffic anomalies precisely, especially in a large urban network. Finally, the framework is further tested for robustness in terms of network topology, sensor faults and missing data. The robustness analysis demonstrates that the proposed traffic anomaly detection approaches are transferable to different sizes of road networks, and that they are robust in the presence of sensor faults and missing data.Open Acces

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Towards better traffic volume estimation: Tackling both underdetermined and non-equilibrium problems via a correlation-adaptive graph convolution network

    Full text link
    Traffic volume is an indispensable ingredient to provide fine-grained information for traffic management and control. However, due to limited deployment of traffic sensors, obtaining full-scale volume information is far from easy. Existing works on this topic primarily focus on improving the overall estimation accuracy of a particular method and ignore the underlying challenges of volume estimation, thereby having inferior performances on some critical tasks. This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation. Here we demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues and perform accurate network-wide traffic volume estimation. Particularly, in order to quantify the dynamic and nonlinear relationships between traffic speed and volume for the estimation of underdetermined flows, a speed patternadaptive adjacent matrix based on graph attention is developed and integrated into the graph convolution process, to capture non-local correlations between sensors. To measure the impacts of non-equilibrium flows, a temporal masked and clipped attention combined with a gated temporal convolution layer is customized to capture time-asynchronous correlations between upstream and downstream sensors. We then evaluate our model on a real-world highway traffic volume dataset and compare it with several benchmark models. It is demonstrated that the proposed model achieves high estimation accuracy even under 20% sensor coverage rate and outperforms other baselines significantly, especially on underdetermined and non-equilibrium flow locations. Furthermore, comprehensive quantitative model analysis are also carried out to justify the model designs
    • …
    corecore