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Estimating the risk of traffic incidents using causal analysis
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Abstract

Traffic management centres aim to keep the traffic flowing regardless of traffic disturbances. This paper presents
a new method for quantitative incident analysis via causality and observations. It is applied to estimate the risk of
vehicular traffic tunnel closures in the city of Tampere, Finland, where the tunnel on a national main road bypasses
the city centre. A tunnel closure rapidly causes traffic jams on alternative routes in the city. Also, traffic incidents
near the tunnel may propagate and cause tunnel closures. We restrict our analyses to the westbound direction of
the traffic on the main road. We combine various open data sources providing information about traffic and driving
conditions. The analysis is based on a probabilistic and statistical framework augmented with causal reasoning.
We have identified several event paths from congestion after the tunnel to the tunnel closing, as well as
approximate capacity limits near selected critical locations.

Keywords: Traffic Management Centre (TMC); big data; analysis of causality, traffic incident detection, traffic
tunnels, congestion.
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1. Introduction

An urban Traffic Management Centre (TMC) aims to keep the traffic in the city fluent. Many different sensors in
the city – such as loop detectors at traffic lights, permanent traffic counters in main arterials, floating car data from
different fleets, and traffic cameras – provide information that can be used to detect traffic incidents. Traffic
incidents at critical locations, e.g. a major crossing or arterial, cause congestions that may spread rapidly
throughout the city.

Tampere, with 230 000 inhabitants, is the largest inland city in the Nordic countries. It is located on the isthmus
between two large lakes. A 2.4 km long tunnel (Rantatunneli) on the Rantaväylä (Road 12) along the isthmus
bypasses the city centre. The national authorities manage the tunnel and the Road 12, whereas the urban TMC
manages the traffic in the city. If there is a considerable risk of traffic jams in the tunnel, national authority restricts
access to the tunnel, which may cause congestion in alternative routes in the city centre of Tampere. Also, incidents
on the part of Road 12 between Vaitinaro and the tunnel’s end easily cause the closing of the tunnel in the
Westbound direction.

Fig. 1 The tunnel (dashed yellow) and Road 12 (orange) in Tampere

The EU-funded TransformingTransport (TT) project studied how big data and related methods can benefit
transport sector. The Integrated Urban Mobility pilot of the project demonstrated the potential of automated
processing of big data sources to improve situational awareness and to provide information to travellers. In the
framework of the TT project, a model was developed to estimate the risk of tunnel closures in Tampere.

2. Methods

In this paper, we restrict our analyses to the westbound direction of the traffic on Rantaväylä (Road 12) and focus
on the Vaitinaro intersection illustrated in Fig. 1 and in Fig. 3 as a black circle with label tre802. In the analyses,
we adopt a probabilistic and statistical framework augmented with causal reasoning following  Pearl, (2000).

We assume that, to some extent, it is possible to predict an increased risk of a tunnel closing event if the possible
causes of such events are either i) observable before the event or ii) the causes are distinguishable and coexist with
the event. Distinguishable means that the cause need not be directly observable but it is possible to distinguish it
with data and sufficient background information. The sufficiency of the background information requires human
knowledge and comprehension. A methodology to accommodate the background information is presented in
Section 2.1.

The time granularity of the measured data is limited and it can contain both systematic and random errors as well
as outliers. Therefore, it is an open question whether it is possible to deduce the causes of tunnel closing events
from the observed data. Even in the positive case, one can ask whether it is possible to model and quantify the risk
of the tunnel closing event. This depends on what kind of data is observed and what can be deduced from it. The
available data is described in Section 2.2.
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2.1. Background information

Fig. 2 Assumed causal relationships

Fig. 2 illustrates two causal graphs related to the problem. A causal graph is a directed acyclic graph (DAG), i.e.
a directed graph without cycles, in which a directed arrow illustrates a causal relationship. The upper graph is
between the variables that are measured (purple) and some given factors (black). The lower graph is between the
events that are observed. The variable traffic density is used to determine congestion, so the two graphs are closely
related.

For example, the graph’s slippery road is influenced by weather, whereas driving conditions are influenced by
slippery road and visibility. Driving conditions influence traffic speed. In the lower graph, congestion at
Uittotunneli may propagate backwards against the traffic flow and finally lead to tunnel closing. The upper graph
of Fig. 2 represents one of the DAGs to be considered between the variables and it is assumed to be valid before a
congestion causes problems. For example, if traffic density exceeds some threshold level, there can be feedback
to the traffic speed and this situation may require a more specific DAG model. The accidents node is included
without arrows on purpose, indicating that accidents are noticed in the data analysis process.

Our research task is to determine if congestion at or near Vaitinaro intersection is causing (via congestion at road
Rantaväylä) the closing of the tunnel in the westbound direction. The causal graph indicates that there are
confounding variables, i.e., variables that influence on the congestion at Vaitinaro and the tunnel closing event. If
we fail to control for the confounders, the association between the congestion at Vaitinaro and tunnel closing is
distorted, resulting to biased data analysis results. The variables in black and purple in  Fig. 2 are confounding, but
the influence on the observed congestion (large traffic density) takes place via driving conditions and speed, traffic
flow and short-term traffic arrangements, unless there is an accident that immediately requires closing the tunnel.
We need to control for these confounding variables and detect such accident events.

Drawing simple graphs like Fig. 2 is valuable in many ways. First, it communicates our assumptions and
background information on the variables under which the data analysis part is performed. Second, the graph brings
up the confounding variables. But most importantly, the graph allows applying a back-door criterion that
determines what variables need to be controlled (Pearl, 2000). Third, the graph determines if the available data is
sufficient to estimate the targeted causal relation. Thus, one should study the causal graphs and ask if there needs
to be additional variables or arrows indicating causal relationship, or if variables or arrows can be removed. If the
causal graphs become more complicated, one needs to assess if the amount of data is still sufficient.



Kilpi, Scholliers, Koskinen & Kuusela / TRA2020, Helsinki, Finland, April 27-30, 2020

4

2.2. Description of data

Fig. 3 The locations of the data measurement points

2.2.1. LAM data from the road 12

The acronym LAM means an automated traffic measurement point that is maintained by national authorities. There
are several LAMs on the road 12 (from West to East): Lielahti, Uittotunneli, Tunneli and Petsamo. Petsamo is
located near the east entry of the tunnel. The main advantage is that LAM data contains estimates for the average
traffic speed (km/h). Also, traffic flow values (vehicles/h) are available. The traffic flow divided by the traffic speed
gives an estimate of traffic density (vehicles/km) that we consider very useful for this research problem. All these
values are provided over 5–15 min intervals.

2.2.2. Traffic light data at Vaitinaro intersction (tre802)

The traffic light data is in the traffic flow format (vehicles/h), including also a daily profile. Since the LAM data
covers the Road 65 direction towards west from Vaitinaro intersection, we use traffic light data of this intersection
mainly for the southwest direction of Road 12. In this direction, we can divide the traffic flow value by the speed
limit in order to obtain a traffic density estimate. This represents the traffic density immediately after the
intersection.

2.2.3. Traffic camera data

There are about ten traffic cameras in the vicinity of the tunnel, depending on how far from the tunnel the traffic
situation is being studied. Snapshot images retrieved every two minutes from these cameras were automatically
processed by a neural network based classifier  developed at VTT, see Kilpi, Koskinen, & Scholliers, (2019). It
classifies traffic camera images into three categories: congested, fluent, or empty. The main purpose of the
classifier is to support human operators in a TMC, suggesting high-priority camera feeds to follow. However, even
if intended for operator support, the classification can produce additional information also for statistical analysis.

The accuracy for classifying single images may temporarily drop due to e.g. lighting conditions, and therefore the
output cannot be trusted in the same way as other sensor data. The classification accuracy is approximately 95%
in the current development phase. However, consecutive detections of congestion from the same camera give a
strong indication on problems near the tunnel – or tunnel closure. Additionally, the tool enables saving snapshots
showing congestion for visual inspection of the actual situation near the tunnel.

We combine LAM data based traffic density estimates and the camera-based congestion data. The origin of these
two data sets are completely disjoint types of sensors, hence their information content is complementary of each
other. Since they measure the same quantity, i.e., a momentary amount of vehicles on the portion of the road, their
joint outcome is more informative than either of the data sources is alone.
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2.2.4. Weather data

There  is  a  road  weather  station  (Tiesääasema in  Fig.  3)  very  close  to  the Vaitinaro intersection. Its location is
optimal and, therefore, the weather data is considered reliable and representative. It provides information about air
temperature, road temperature, road condition (wet, dry, snowy, icy, …) and rain type (light, heavy, snow,
sunshine,  …).  During  the  late  springtime  after  March  18th, 2019, and until August 11th,  2019,  the  weather
conditions have not caused too poor driving conditions although both the air and the road temperatures have been
fluctuating around 0o Celsius and the road surface has been wet and icy.

2.3. Related work

Detection of congestion propagation patterns from data has been an active research subject during the recent years.
The terminology is not fixed and sometimes the phrase cascading pattern is used with the same meaning. Usually,
the congestion under the study is propagating in the backward direction, against the traffic flow, and the pattern
has spatiotemporal dimensions both as a phenomenon and as a property of the data that is used for the analyses.
Causal reasoning is naturally present in these studies.

The work of Nguyen et al. (2016) uses travel time data and introduces some explicit terminology, especially the
concept of causal congestion tree (CCT), that they use to describe the propagation pattern of a congestion. In our
study case the CCT is very simple, nevertheless we plan to use the CCT concept more explicitly in a further study
of our traffic tunnel case. In Xiong et al. (2018) the term propagation graph is used, but it seems to be essentially
the same concept as the CCT. The work of He et al. (2018) is data mining oriented and  it introduces useful
spatiotemporal definitions.  The work of Liang et al. (2017) reminds that while the observed traffic congestion is
a continuous phenomenon, the data is discrete. This is a serious problem in our task since we would like to detect
signs of serious congestion before the tunnel closing event occurs. The recent work of Di et al. (2019) is done in a
much larger spatial scale in comparison to this work. Cascade effects caused by physical incidents is a topic in
Basak et al. (2019). The approach to enumerate traffic congestion patterns in Inoue et al. (2016) is also data-mining
oriented.

Methodologically relevant studies are the book of Pearl (2000), and the ways to apply it in the context of traffic
related problems Queen and Albers (2009) and Blondel et al. (2017). In a further study, we aim to understand the
most frequent reasons and root causes of the tunnel closing events and, if successful, study interventions and
counterfactuals in these cases.

3. Case studies of tunnel-closing events

The data collection period for this research started on March 18th, 2019, and until August 11th, 2019, over 50
tunnel-closing events have occurred. Of these events, over 40 times the tunnel was closed towards the westbound
direction.  Time series views provide fast insights to the cases, as a possible direct cause must precede the closing
event in quite a short time window in the data.

3.1. Sunday March 24th, 2019

One of the two lanes towards Lielahti at Paasikiventie road, near Uittotunneli, was temporarily out-of-use due to
construction and measurement work. This apparently caused three short closings at 14:16, 15:12 and 15:31. The
cause was reported at the local newspaper (https://www.aamulehti.fi/a/d2731b43-7d27-4dcc-b9f8-5ea1da5c1f05). Since
we know the cause of this event, it is reasonable to look at the possible signs in the data before the event.

https://www.aamulehti.fi/a/d2731b43-7d27-4dcc-b9f8-5ea1da5c1f05
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a b

Fig. 4 (a) Traffic speeds during the case in March; (b) Traffic densities during the case in March

In  the  average  speeds,  shown in  Fig.  4  (a),  there  is  practically  no  signs  of  any problems prior  to  the  event  nor
during the events. In Fig. 4 (b) there may be some prior signs in Lielahti, if one knows and takes into account the
closed lane on Paasikiventie. Such a knowledge is not included in the LAM data. Traffic camera data from May,
shown in Fig. 5 (a) shows that some of the cameras have captured congestion slightly before the first event time.
The coding of the camera-based classes in Fig. 5 is 2 = congested, 1 = fluent, and 0 = empty.

a b

Fig. 5 (a) Traffic camera snapshot from March; (b) Traffic camera snapshot from May

3.2. Tuesday May 7th, 2019

On May 7th, the tunnel was closed twice: at 15:53 for 6 minutes and at 16:15 for 7 minutes. We consider these as
the same event since it is reasonable to assume that they had the same root cause.

In this case, there were prior signs visible both in the LAM data and in the traffic camera data. The westbound
traffic speed drops clearly before the first event at Lielahti and at Uittotunneli, see Fig. 6 (a). At Lielahti, there are
some drops in the traffic speed also at other times. Traffic density increases also, Fig. 6 (b). However, the next two
days have similar signs at the same time in the afternoon without a closing event.

a b

Fig. 6 (a) Average speeds during the two cases in May; (b) Traffic densities during the two cases in May
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3.3. Thursday May 9th, 2019

According to the local newspaper (https://www.aamulehti.fi/a/4dafb2a6-4d1c-4dfa-b14d-cd62d67edf3a) the tunnel was
closed on Thursday, May 9th, at 11:06 for 33 minutes due to an accident in the tunnel. The rightmost red vertical
line in the plots of Fig. 6 and in Fig. 5 (b) indicate this event. Accidents are non-predictable events. The few speed
drops of the Tunneli data (black dots) indicate that the accident occurred first and the tunnel was closed after the
accident. If there is a delay between an accident and the tunnel-closing decision due to the accident, then signs of
the closing event may be visible in the data before the event.

3.4. Conclusions from the case studies

We conclude the following from the visual detection of the time series of traffic speeds and densities:
1. In the case 1, prior signs were not visible in the LAM data although we expected that there would be prior

signs. If the additional knowledge of the out-of-use lane were used, for example, by proper scaling of
traffic density then the signs may become visible. Traffic camera image based classification indicated
congestion and this shows the value of combining data from disjoint type of sensors.

2. In the case 2, prior signs were clearly present before the event. However, equal signs occur also other
times without an associated closing event.

3. In the case 3, prior signs were not truly prior signs but the tunnel-closing event occurred after the accident.
The accident may have caused some signs of congestion before the tunnel closing occurred.

These cases provide examples of different paths to the tunnel closing and hence issues that need to be considered
in the statistical analysis of the data.
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4. Capacity of Rantaväylä (Road 12) towards west and south-west

In this section we visualize and quantify the capacity of the westbound direction between the tunnel and Vaitinaro
intersection or Lielahti. The amount of closing events captured so far is still too small for statistical analysis.
Luckily, the amount of all data so far is sufficient to estimate capacity constraints at Road 12 after the tunnel.

4.1. Scatter plots of traffic intensities vs. the average speeds

In order to correctly interpret traffic densities, i.e, the ratio of traffic flow/average speed, it is feasible to look at
the fundamental diagrams, in this case scatter plots of traffic speed vs traffic flow, to see their mutual dependence.
The same value of the ratio can occur with different value pairs.

a b

c d

Fig. 7 Four fundamental diagrams of traffic speed vs. traffic flow. (a) Lielahti; (b) Uittotunneli; (c) Tunneli; (d) Petsamo;

The scatter plots of traffic intensity against the average speeds are shown in Fig. 7. The tunnel closing is a pre-
emptive action, which can be confirmed when comparing the scatter plots of Tunneli and Petsamo against the two
other data, Uittotunneli and Lielahti. The traffic must flow in and out of the tunnel steadily. On the other hand, the
scatter plots of Uittotunneli and Lielahti have a shape that suggest that large traffic intensities at these locations
indicate slower average speeds. The Petsamo should be almost identical with Tunneli, since practically the same
vehicles  are  observed  just  before  and  right  after  the  tunnel.  The  driving  in  the  tunnel  may  have  the  effect  of
increasing the driving speeds.

In Fig. 7 (b), Uittotunneli, there are three diagonal lines where the traffic density is constant (the same lines apply
to the other figures as well).  The data suggests that if the traffic density at that measurement point is below 50
vehicles/km, there are hardly any problems. If the traffic density exceeds 75 vehicles/km, there is almost surely a
congestion. Visual inspection of the traffic camera images and counting the vehicles in them gives similar numbers.
The maximum observed traffic flow value at Uittotunneli was 4 140 vehicles/hour which is likely an outlier, all
other values are smaller than 3 792 vehicles/hour.

The drops in the average speed of westbound traffic observed at Lielahti,  see  Fig.  6  (a),  may  be  caused  by
congestion and, furthermore, the congestion may be due to insufficient capacity. Moreover, the drops in the traffic
speed at Lielahti propagate backwards to Rantaväylä, since many such drops occur simultaneously at Uittotunneli.
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Several, but not all, of the individual observations that are visible in Fig. 7 (b) and (d) that are associated with low
traffic speed are related to some of the closing events. Usually afterwards, that is, the prior signs of the closing
events are much harder to find from the observed data.

4.2. LAM traffic density vs. traffic camera congestion classes

Since traffic camera image classification uses an ordinal level scale, it is important to consider different ways to
combine it with LAM traffic density. First, correlation in time is visualized in Fig. 8 by setting the camera image
classification empty to mean 5 vehicles/km, fluent to mean 30 vehicles/km and congested to mean 50 vehicles/km.
This non-linear choice of scale is adopted from the information of Fig. 7 (b).

Traffic camera analysis output has a coarser scale than LAM data, but it is obtained more frequently. The number
of vehicles in a single image is more random since it represents an instant of time, while LAM data represents a
time interval. It could happen, that several vehicles occur in the same image even if the traffic density is low or
moderate, or the number of vehicles in a snapshot can be low even if the traffic density is moderate over a longer
period. It seems therefore reasonable to combine a few consecutive images together with a simple majority rule:
If most of the images from a single camera show congestion during a time interval,  detect a congestion at that
interval. This is the content of Fig. 8: camera-based information is collected over 10-minute intervals and this
information is compared with the LAM traffic density averaged over the same 10-minute intervals.

Fig. 8 Comparison of traffic density metrics

There is also a possibility of spatial combination of traffic image classifications: if two or more cameras represent
the same view, from different angles of view, detect congestion, if more than one camera indicates congestion. It
seems usual that camera views overlap somewhat and utilization of this overlap is feasible.

5. Results

The data collection period for this research started on March 18th, 2019, and lasted until August 11th, 2019. Over
50 tunnel-closing events had occurred. Of these events, over 40 times the tunnel was closed towards the westbound
direction. From case studies we have identified several event paths from congestion to the tunnel closing. Three
case studies was shown Section 3. Using the assumptions in Fig. 2 we have observed, for example, the path

Short-term traffic arrangements → Congestion at Rantatie → Congestion at Santalahden puisto → Closing of the
westbound tunnel,

and the path

Congestion at Lielahti → Congestion at Uittotunneli → Congestion at Tunneli → Closing of the westbound tunnel.

The DAGs of Fig. 2 have evolved during the case studies indicating that we have learned and understood more
during the case analysis. It is expected that the DAGs will still change when the analysis continues and our
understanding of the possible cause’s increases.
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Data analysis has identified approximate capacity limits at Lielahti and at Uittotunneli. Early threshold levels for
congestion at Lielahti and Uittotunneli can be estimated from the LAM data. Congestion alone may not cause
closing of the tunnel, but some features of congestion may be used as indicators of increased risk, or probability,
of a tunnel closing event. It is important to have enough data from non-closing and closing events given congestion.

We have studied methods to make image analysis comparable with the LAM data. Estimates of traffic density can
be obtained from both data sources. Combining the image classification data with the traffic density estimates
obtained from LAM data turned out to be a very fruitful approach. They offer two complementary ways to measure
the congestion and, therefore, combining their information can be expected to detect early signs of congestion and
quantify the risk of a tunnel closing due to congestion.
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