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A B S T R A C T

In recent years, online ride-hailing services have emerged as an important component of urban transportation
system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior
and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based meth-
odologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-
temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing
research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent
transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns,
including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order
matching and vehicle dispatching strategies, which are among the most important components of on-line ride-
hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-
hailing services are discussed.
1. Introduction

Due to the expansion of the sharing economy, especially the increase
in travel demand for shared mobility among residents, the global ride-
hailing market is witnessing rapid growth, with industry reports
expecting a compound annual growth rate of over 8.75% from 2021 to
2026, reaching USD 230 billion (Research and Markets, 2022). On-line
ride-hailing services are constantly generating a huge amount of
location-based data every day, including on-line orders data, trajectory
information, map query data, and geo-tagged check-in data. By learning
and understanding these multi-source data, further development of
on-line taxi services is expected to reduce traffic congestion and improve
the level of service for urban transportation. Fortunately, machine
learning and deep learning methods provide a potential solution, as they
are adept at mining latent patterns in data, and have been trailed by
ride-hailing service providers like DiDi Chuxing in an attempt to improve
passenger satisfaction and reduce vehicle idle time (Qin et al., 2020).

This paper focuses on how machine learning informs on-line taxi
services. The accurate prediction of future traffic spatio-temporal dy-
namics is one of the machine learning application topics related to on-
line ride-hailing services. The ride-hailing services discussed in this
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study basically consists of two aspects. The first aspect is the user-based
demand problem which is called “on-demand ride-hailing services” is
this paper. Based on an accurate estimation of urban ride-hailing de-
mand, the platforms can produce precise and timely recommendations
for matching and allocating idle vehicles and routing the ride-sharing
vehicles in the fleet (Agarwal et al., 2022). And the second aspect is
the system-based supply problem including order matching and dis-
patching problem which is called “on-line ride-hailing services” in this
paper. And when a passenger submits a ride request, the order matching
system assigns it to an available driver and follows specific assignment
policies such as maximizing the driver's revenue or minimizing the pas-
senger's waiting time (Yan et al., 2020). Most related research focused on
macroscopic traffic prediction tasks, such as ride-hailing demand pre-
diction (Tang et al., 2021; Huang et al., 2021) and travel time estimation
(Mao et al., 2021; Sun et al., 2021). On-line ride-hailing services can not
only provide convenience for the travel activities of residents, but also
shape new travel behavior and emerging urban mobility patterns
(Acheampong et al., 2020). Apart from the macroscopic level, another
line of research focused on the microscopic level, at which individual
mobility patterns can be identified. There have been many studies on the
travelers' personalized travel behavior analysis, such as carpooling
ers University of Technology, Gothenburg, Sweden.
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behavior (Qin et al., 2021; Al-Abbasi et al., 2019), and modal choice
behavior (Tong et al., 2018; M€aenp€a€a et al., 2017). In this review, we
assess the literature related to on-line ride-hailing services from both
perspectives of spatio-temporal dynamics and individual mobility pat-
terns, covering both macro and micro-level studies.

The remainder of this survey is organized as follows: Section 2 re-
views the literature on on-line ride-hailing services from the perspective
of spatio-temporal dynamics. Section 3 presents the micro-level study,
i.e., individual mobility patterns. Section 4 collects and summarizes
existing approaches involving two of the most critical parts of on-line
ride-hailing systems, i.e., order matching and vehicle dispatching.
Finally, Section 5 discusses promising future research directions in ride-
hailing services.

2. The spatio-temporal dynamics of traffic

To tackle the difficulties of mobility and sustainability in megacities,
understanding the spatio-temporal dynamics of traffic is critical for
guiding the design, planning, operation, and control of urban trans-
portation systems (He et al., 2020).
2.1. Ride-hailing demand prediction

Based on an accurate short-term estimate of urban ride-hailing de-
mand, the platforms can produce precise and timely recommendations
for matching and allocating idle vehicles and routing the ride-sharing
vehicles in the fleet (Agarwal et al., 2022).

Early traffic demand prediction studies focused on time series
modeling by discretizing time and then using historical data to forecast
future demand. The most widely studied model is the autoregressive
integrated moving average model (ARIMA) and its variants (Smith et al.,
2002; Lippi et al., 2013). In addition to the classic ARIMA-family model,
many other data-driven models have been proposed, such as the support
vector machine (Castro-Neto et al., 2009), k-nearest neighbor (Cai et al.,
2016), linear regression (Tong et al., 2017), and a Gaussian process
(Gammelli et al., 2020). Tong et al. (2017) proposed a unified linear
regression model with 200 million multidimensional features, and a set
of optimization strategies for model training and updating efficiency.
Ride-hailing demand is highly dependent on supply, and the observed
ride-hailing demand from historical data does not exceed supply, so the
existing demand is only a subset of the true demand. Gammelli et al.
(2020) explored this issue and proposed a Gaussian process model to
estimate the latent demand of ride-hailing services.

In recent years, innovations at the algorithm level and rapid devel-
opment of computing ability have brought about the rise of deep learning
techniques. Urban ride-hailing demand data usually contains spatial and
temporal attributes, and this type of data is also referred to as spatio-
Fig. 1. Illustration of sem
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temporal data. The spatio-temporal correlation of traffic dynamics has
been the focus of many studies on traffic demand prediction using deep
learning. Emerging deep learning techniques, such as the convolution
neural network (CNN), graph convolution neural network (GCN), and
recurrent neural network (RNN), have been widely used for prediction of
traffic demands.

There are two common structures for representing spatio-temporal
traffic data. The first one is in the form of a picture where each pixel
point in the picture represents an area of the city. Researchers have
focused on how to employ CNNs to capture both spatial and temporal
patterns from traffic data as computer vision technology has progressed,
particularly after the creation of the fully convolutional network (FCN)
(Long et al., 2015). FCN first emerged for the task of semantic segmen-
tation of images in computer vision. Unlike the classical CNN, which uses
a fully-connected layer after the convolution layer to obtain a
fixed-length feature vector for classification, FCN takes any size input
image and utilizes a deconvolution layer to up-sample the final convo-
lution layer's feature map, which is restored to the input size, thus
generating pixel-wise predictions. Fig. 1(a) is an original remote sensing
image, and Fig. 1(b) demonstrates the result of semantic segmentation,
which classifies each pixel in Fig. 1(a) into four categories: buildings,
farmlands, roads, and water networks. In the study of traffic demand
prediction, the study area is often partitioned into an m � n traffic grid
map, using FCN, the sizes of model inputs and outputs can both be
complete traffic grid maps. Fig. 2 displays two different sizes of traffic
grid maps. Fig. 2(a) illustrates a coarse-grained division with a traffic grid
map of length and width 20 (Liu et al., 2019), and in Fig. 2(b), the city is
partitioned into a traffic grid map of 436 � 495, representing a
fine-grained division (Liu et al., 2021).

The first deep learning-based spatio-temporal data prediction model
(DeepST) proposed by Zhang et al. (2016) can capture both temporal and
spatial dependencies and use an FCN architecture where the output of the
model is a full-size image. To improve performance, Ke et al. (2017)
merged the long short-term memory (LSTM) with CNN, which becomes a
landmark approach in spatio-temporal traffic data prediction. In contrast
to previous works, Yao et al. (2018) suggested a deep multi-view
spatio-temporal network that included semantic views is better to
represent the correlation between regions with similar temporal patterns.
Guo et al. (2019) introduced a 3D convolution to model the correlation of
traffic data in both spatial and temporal dimensions automatically and
proposed a new recalibration block to allow for the differences in spatial
correlation contributions in explicit terms. Almost all studies so far have
divided urban areas into square grids. Ke et al. (2018) designed a novel
segmentation model by dividing the study area into regular hexagonal
grids, taking full advantage of the fact that this segmentation has
well-defined neighborhoods, smaller edge area ratios and isotropy, and
further proposed a hexagonal-based CNN. Ensemble learning can
antic segmentation.



Fig. 2. Illustration of traffic grid map division.
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integrate the results of multiple basic models and thus enhancing the
accuracy of the models. Liu et al. (2019) designed a CNN based ensemble
method for spatio-temporal data prediction, where the output of different
basic models is used as a channel of the image and then integrated
adaptively using convolutional networks. Based on the attention mech-
anism in computer vision, Liu et al. (2020) established a personalized
ride-hailing demand prediction model, where personalized implies that
the model learns a set of weights specifically for different regions and
time periods, and they further evaluated the effects of network structure
on the demand prediction accuracy. Understanding the propagation of
traffic states helps to tailor deep learning network architectures. Liu et al.
(2021) studied the propagation process of traffic states in both temporal
and spatial dimensions and designed the corresponding neural network
structure for experimental validation. The backbone network was
designed based on U-net (Ronneberger et al., 2015), which can signifi-
cantly relief the computational effort and increase the receptive field of
the convolutional kernel.

Another approach for representing spatio-temporal traffic data is to
visualize the traffic network as a graph, where nodes indicate in-
tersections and edges indicate road segments. Non-Euclidean pairwise
correlations between regions are encoded into several graphs by Geng
et al. (2019), who modeled the explicit correlations using static
multi-graph convolutions. To overcome the inability of static maps to
model the real-time dynamic correlation of passenger flows between
regions over time, Chen et al. (2021) constructed a spatial-temporal
dynamic multi-graph attention network, where the feature similarities
between regions and passenger flows are encoded into multiple static and
dynamic graphs. Graph neural networks (GNNs) are often used in fusion
with other neural networks. Jin et al. (2020) proposed multiple
spatio-temporal information fusion networks, which integrate the
structures of graph CNNs, variational autoencoder, and
sequence-to-sequence learning models to capture the spatio-temporal
dynamics of traffic flows. On-line ride-hailing platforms usually pro-
vide multiple service modes (e.g., solo ride or carpooling services). When
predicting demand for multiple service modes, Ke et al. (2021b)
employed many multi-graph convolutional networks and created a
multi-task learning module for inter-network knowledge transfer. Some
researchers have also studied the problem of origin-destination (OD)
demand prediction based on GNNs (Feng et al., 2022). Zhang et al.
(2021a) established a joint learning framework called a dynamic auto-
matic structured GNN to tackle the OD demand prediction problem. In
their later work, Zhang et al. (2021b) created a dynamic OD graph to
describe taxi demand data and constructed a dynamic node-edge atten-
tion network to deal with the nuances of OD demand prediction from the
perspective of demand creation and attraction.
3

RNNs have a wide range of applications in language modeling, text
generation, and machine translation, and specialize in capturing the
hidden patterns in sequential data (e.g., text sequences). More refined
origin-destination ride-sourcing demand prediction is more valuable, but
also more complex. The existing study region partitioning methods
usually partition the whole city into several square grids. Niu et al.
(2019) examined the effects of various regional partitioning approaches
on the model and developed a regional partition assisted LSTM neural
network for predicting ride-hailing service demand. To overcome this
challenge, Ke et al. (2021a) designed a residual multigraph convolutional
model to encode spatial dependencies, and an LSTM network to encode
temporal dependencies. There is heterogeneity in ride-hailing demand
between different regions. Zhang et al. (2021) used zone clustering as
well as inter-regional heterogeneity to improve the prediction. They
designed a taxi zone clustering algorithm and extracted intra-cluster and
inter-cluster features separately as the input of multi-level RNNs. Deep
learning approximates a black box, and there are many scholars who aim
to design interpretable neural network models. Kim et al. (2020) pro-
posed a step-wise interpretable deep learning framework combining
linear regression (LR) and RNNs for predicting the demand for taxis in
New York City.
2.2. Estimated time of arrival

Estimated time of arrival (ETA) refers to the travel time inferred from
the origin to the destination along a given route (Fig. 3). Calculating ETA
is one of the most critical modules of ride-hailing services. Given billion-
level number of requests every day on ride-hailing platforms, an accurate
and efficient ETA module provides greater decision-making system effi-
ciency, a positive customer experience, and significant operational cost
savings (Fang et al., 2020).

Most road segments may not have been traversed by any Global
Positioning System (GPS)-equipped car during the current time period, as
the trajectory data are sparse. To address this problem, Wang et al.
(2014) used a three-dimensional tensor to represent the journey times of
each driver on each road segment at each time periods, and then used
tensor decomposition to fill in the missing values. Tang et al. (2018)
similarly used a tensor-based approach to overcome the sparsity of tra-
jectory data and designed a tensor-based Bayesian probabilistic model for
city-wide travel time estimation. Lin et al. (2019) proposed
attribute-related hybrid trajectory networks to address this data sparsity
problem, which uses multi-source hybrid trajectory datasets that include
other types of vehicle trajectories for travel time estimation. There are
also some variants of the ETA task, such as in the parcel delivery problem,
where a trip contains multiple destinations and the order of dispatch,



Fig. 3. Illustration of ETA.
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delivery mode, inter alia exert a significant influence on travel time. Wu
and Wu (2019) developed a spatio-temporal sequential neural network
model (DeepETA) to overcome such effects.

The vast majority of travel time estimation research used deep
learning to learn trajectory information. Wang et al. (2018) defined ETA
learning and combined the benefits of linear models, deep neural net-
works, and RNNs to create a wide-deep-recurrent model for calculating
travel time. Many studies have focused on travel time estimation of in-
dividual road segments and the accumulation of them, which can lead to
accumulated local errors. Wang et al. (2018) presented an end-to-end
deep learning framework (DeepTTE) which introduces a
geo-convolution that can directly predict the travel time of the entire
path. The ETA task is mainly to mine the trajectory data, which is a time
series of GPS coordinates, so there are many studies based on RNNs. A
few researchers have utilized CNN to extract features from
trajectory-transformed images. For instance, Fu and Lee (2019) mapped
paths as a sequence of ‘generalized images’ containing information like
sub-paths, traffic states, road networks, and traffic signals. The hetero-
geneity of traffic networks was considered in the ETA task by Hong et al.
(2020). They transformed the road map into a multi-relational network,
where traffic behavior patterns are incorporated based on trajectories.
Sun et al. (2022) pioneered the introduction of an auxiliary task in the
ETA task, i.e., learning not only the ETA but also the driver's personalized
driving behavior in a multi-task learning framework, which in turn
improved the accuracy of the model. The temporal complexity of trip
time inference is extremely important to the on-line ride-hailing plat-
form. In most ETA tasks, researchers concentrate solely on data such as
origin, destination, departure time, and traffic conditions, neglecting the
driver's own behavior. Fu et al. (2020) focused on the representation of
the data by encoding the higher-order spatial and temporal dependencies
of the road network through graph attention networks and then using a
simple multilayer perceptron model to accelerate the inference time.
Most studies on travel time estimation rely on GPS trajectories, but the
trajectory data are not accurate enough to reflect the details of individual
driving behavior, such as sharp turns, frequent lane changes, and over-
taking. To address this problem, Gao et al. (2022) combined GPS tra-
jectories, inertial data from smartphones, and road networks to design a
deep RNN.

3. Individual mobility patterns

Patterns of human mobility provide information about urban func-
tions. Understanding individual mobility patterns are important for
4

solving many urban problems, such as urban planning and traffic man-
agement (J. Zhang et al., 2021).

3.1. Understanding carpooling behavior

Carpooling, also known as ride-pooling, allows travelers to share a car
to their destination (as shown in Fig. 4), which has a positive effect on
relieving traffic congestion, which is helpful in saving travel time for
ride-hailing users and other travelers on the road (Ke et al., 2020a).

To minimize both the trip delay and waiting time of carpooling pas-
sengers, Yu and Shen (2019) proposed a spatial and temporal decom-
position heuristic method, which can dynamically dispatch idle drivers to
passengers and provide routes for pick-up and drop-off. Trip fares, fleet
size, and acceptable detour time are three determinant factors of car-
pooling service efficiency in an online ride-hailing system. Ke et al.
(2020b) managed to model the complex relationships between various
variables and decisions in carpooling markets, which guided the devel-
opment of ride-hailing services. Ma and Koutsopoulos (2022) introduced
an advance-request operating model for carpooling, in which users can
request a ride before their desired departure time and developed a
platform with request matching, vehicle routing, and other features.
Carpooling can provide flexible and personalized transportation services
and greatly reduces the number of vehicle-kilometers travelled (VKT).
Zhu and Mo (2022) used real data from the DiDi Chuxing platform to
simulate the carpooling process of travelers, and quantified the contri-
bution of carpooling to VKT reduction and carbon emission reduction.
Existing solutions to the real-time carpooling problem are short-sighted
as only the objective of the current time step is optimized without
considering the impact on the allocation of future time steps. Shah et al.
(2020) proposed an approximate dynamic programming approach and
built a neural network to handle the complexity of passenger request
combinations. Carpooling has numerous advantages, but it increases the
uncertainty of the system. Kucharski et al. (2021) analyzed theoretically
and experimentally how late passengers affect the performance of
ride-hailing services. In a carpooling scenario, an en-route driver who is
providing service to a passenger may be notified to pick up a passenger
wanting to travel in the same direction. Li and Liu (2021) formulated this
en-route order matching as a multi-stage integer planning model. To
encourage carpooling, discounted fees are used to motivate users.

3.2. Understanding modal choice behavior

Smart phones and mobile Internet have fundamentally changed
Fig. 4. Illustration of carpooling.
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modern life, including people's travel preferences and modal choice. A
large amount of travel data helps researchers understand the real travel
choice behavior of users, thus providing more intelligent travel decision
services (Chen et al., 2017; Ge et al., 2019). As shown in Fig. 5, in
intelligent transportation systems, typical travel decision services include
route planning, travel mode recommendation, destination recommen-
dation, etc.

The route planning algorithm gives the best travel route and trans-
portation mode between known origins and destinations (Li et al., 2012).
Yuan et al. (2011) proposed a clustering algorithm based on variance
entropy to estimate the distribution of travel time of two landmarks in
different time periods and designed a routing algorithm to provide
travelers with the actual fastest routes and customized routes. Yousaf
et al. (2014) formalized the ride-sharing problem into a
multi-source-destination route planning problem, used social media to
obtain users' preferences and then modeled them. The model not only
generates optimal routes, but also generates sub-optimal paths for drivers
to choose according to demand. Most routing recommendations still
provide only the shortest distance or shortest travel time routes, ignoring
individual preferences and current conditions. With the help of naviga-
tion software, a more logical and reliable route plan is provided ac-
cording to real-time traffic information like congestion status.
Campigotto et al. (2016) proposed a context-aware route recommenda-
tion solution, which leverages current traffic conditions and personal
preferences. Huang et al. (2018) considered both public transportation
and carpooling in multi-modal route planning, and the proposed method
can integrate static network and dynamic network while maintaining the
flexibility of the carpooling network (static network). Yuen et al. (2019)
proposed an algorithm to predict the route with the highest probability of
finding compatible customers. By reducing the search space, the dynamic
programming method is used to determine the best route. Jia et al.
(2020) combined the weighted shortest path problem with deep learning
for route recommendation. They used deep neural networks to learn
weights from drivers’ historical choices to minimize the total weighted
cost of historical routes and maximize the cost of unselected routes.
Multi-request assignment and multi-point planning are key challenges in
the design and operation of ride-sharing services. Zuo et al. (2021) pro-
posed a clustering algorithm for vehicle matching and route planning,
which combines ride-sharing candidates through a single clustering
process.

Recommending a combination of multiple travel modes for users
(e.g., a recommended travel plan that includes more than one travel
mode, e.g., recommending travelers take the subway before transferring
Fig. 5. Illustration of intelligent travel decision services.
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to a bus) is an emerging feature in navigation applications. Zou et al.
(2016) built an agent-based passenger travel mode and departure time
selection method to accumulate experience and update their spatial and
temporal knowledge through the use of a Bayesian learning process. Liu
et al. (2019a) extracted a graph containing multiple travel modes out of
large-scale Baidu Maps queries to discover the relationship between
users, OD pairs, and travel modes. Liu et al. (2019b) then proposed a
multi-modal recommendation system of travel modes (also known as
Hydra), and deployed it on Baidu Maps. Liu et al. (2021a) et al. explored
the large-scale multi-modal transportation recommendation problem;
they modeled it from multiple perspectives such as user, travel mode,
location, and time. OD pairs, user-OD pairs are modeled by a bipartite
graph such that their co-occurrence can be better learned from the data.
They also proposed a post-processing algorithm to address the inconsis-
tency between the objective function and evaluation metrics. Liu et al.
(2021b) further proposed a method of embedding the user's personalized
travel behavior into a vector, and applied it to the case scenario of travel
mode selection.

Inferring the destination of the traveler is a fundamental problem in
location-based services, such as personalized service recommendations
(Xue et al., 2013), and public transport dispatching (Besse et al., 2017).
Neto et al. (2018) combined Markov models and partial matching pre-
diction techniques to build a route and destination prediction model and
avoided congestion by suggesting users deviate from the route where
appropriate. Khezerlou et al. (2019) predicted future gathering events
through trajectory destination prediction, and they fused historical tra-
jectories with recent sparse trajectories to build a dynamicmixturemodel
to predict future gathering events on a continuous basis. Zhu et al. (2021)
proposed a tensor factorization model to classify travel choice based on
Bayesian supervised learning, which was evaluated on a real ride-hailing
dataset. Jiang et al. (2022) proposed the concept of virtual docks based
on POI and designed a probabilistic trip-based destination prediction
method to solve the resource rebalancing problem for the dock-less bi-
cycle system, and the model was unaffected by data sparsity. Although
destination prediction is the basis of location-based services, it will
infringe on users’ location privacy. Faced with the privacy-preserving
problem in the destination prediction problem, Jiang et al. (2021) spe-
cifically designed a data-driven privacy-preserving model to achieve the
trade-off between privacy preservation and accuracy of prediction results
by controlling the addition of noise. Modeling the behavior of taxi drivers
based on the initial partial trajectory plays an important role in
location-based services. Rossi et al. (2019) proposed an RNN approach to
estimate the precise location of the next destination. This approach
models the behavior of taxi drivers using geographic information from
social networks and semantically encodes their visited locations. Song
et al. (2020) designed a taxi destination prediction model based on an
echo state network, in which RNN is modified as an echo state network
by forming the hidden layer of the network by randomly deploying
massively and sparsely connected neurons. Ebel et al. (2020) discretized
GPS locations based on k-d trees, then trained a RNN to predict desti-
nations based on partial trajectory sequences, and finally computed the
route to the most likely destination.

4. On-line ride-hailing services

In on-line ride-hailing services, passengers are matched with a driver
through a mobile application. A typical on-line ride-hailing system con-
sists of the two most important modules: order matching and vehicle
dispatching (Yan et al., 2020).

4.1. Order matching

When a passenger submits a ride request, the order matching system
assigns it to an available driver and follows specific assignment policies
(Fig. 6), such as maximizing the driver's revenue or minimizing the
passenger's waiting time (Yang and Lai, 2021). Specifically, after



Fig. 6. Illustration of order matching.

Fig. 7. Illustration of vehicle dispatching.
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observing spatial-temporal patterns and the inherently hierarchical
structure of the data, the order matching models help to separately
predict the matching probabilities of passengers' trip requests between
the order list and driver list.

In some classic order matching work, static matching strategies are
used, e.g., Bailey and Clark (1987) matched the nearest driver to order.
Meanwhile, the combinatorial optimization methods also play a key role
in order matching tasks. €Ozkan and Ward (2020) studied dynamic order
matching by assuming time-varying driver and order arrival rates and
proposed a continuous linear programmodel. For driver-order matching,
Xu et al. (2018) characterized the problem as a large-scale sequential
decision task and employed a combinatorial optimization strategy. Hal-
iem et al. (2021) proposed a dynamic order matching and route planning
model, which considers (in real time) the on-line demand for
ride-hailing, pricing, and the location of the vehicle to generate planned
routes. During the decision-making process, drivers can also propose
different prices based on the expected return of one specific trip and
future trip destinations. Gao et al. (2021) demonstrated an order
matching method that combines an active guidance strategy with batch
matching optimization to increase the matching rate and decrease pas-
senger waiting time. Order matching (i.e., driver-customer matching)
and vehicle scheduling are two critical components of a ride-hailing
company's operation. Most of previous research considers these two
components separately, and the performance of the vehicle dispatching
model depends on the accuracy of future demand forecasts. Guo et al.
(2021) incorporated order matching into the vehicle dispatching prob-
lem to stipulate better dispatching strategies.

The general trend of sequence matching research is the transition
from combinatorial optimization methods to DRL methods. Qin et al.
(2020) explored how to progress from a combinatorial optimization
method to a semi-Markovian decision process model and a deep rein-
forcement learning (DRL) method. For large-scale ride-sharing platforms,
it is a challenge to handle highly concurrent order matching, where
thousands of ride requests need to be matched with drivers each second.
For the large-scale order matching problem, using multi-agent rein-
forcement learning, Zou et al. (2016) proposed a decentralized imple-
mentation of the order matching algorithm. Jin et al. (2019) studied the
joint decision challenge of order matching and vehicle scheduling by
formulating a ride-hailing service as the problem of large-scale parallel
sorting. They proposed a multi-agent reinforcement learning model,
which regards each region as one single agent. Hierarchical reinforce-
ment learning based on the geographical hierarchy of regions was used to
coordinate agents from various regions for long-term gains. The match-
ing efficiency was significantly improved by adaptively adjusting the
order matching interval significantly for delay matching. Qin et al.
(2021) designed a reinforcement learning framework to determine the
best delayed matching strategy and overcome the dimensional explosion
6

and sparse reward problems.
The order matching process relies on the user's location, which may

lead to the privacy breach of the user's personal data Huang et al., 2021).
How to protect users' privacy in the process of order matching has
become a focus of much recent research. Yu et al. (2019, 2020) proposed
a cryptographic distance calculation method that matches the nearest
driver and passenger without revealing the privacy of the passenger and
driver locations. Instead of directly using the physical locations of pas-
sengers and drivers, Luo et al. (2018) developed a strategy to estimate the
shortest distance between passengers and drivers in a road network using
road network embedding techniques and cryptographic concepts.

4.2. Vehicle dispatching

Vehicle dispatching, also called vehicle repositioning, is an algorithm
through which on-line taxi platforms can adjust their operation and
management strategies according to the dynamic changes in demand and
supply, and reallocate idle vehicles in advance to areas with large de-
mand gaps, so as to achieve the balance between supply and demand (Lei
et al., 2020). Real-world on-line ride-hailing service providers (e.g., DiDi
Chuxing) divide their operating area into several hexagonal dispatch
units; Fig. 7 shows an illustration of the vehicle dispatching process.

To increase the expected acceptance rate of future requests and
minimize the travel time during dispatch, Pouls et al. (2022) designed a
demand prediction-driven mixed integer programming model that uses
the demand forecast and the current fleet configuration as inputs to
provide suitable dispatch destinations for idle vehicles. Ma et al. (2019)
proposed a travel strategy that integrates ride-hailing with public trans-
portation service, in which the ride-hailing service is used to solve the
last-mile problem. They designed a vehicle dispatching and idle vehicle
relocation algorithm based on queuing theory. More trips can be satisfied
by optimizing the vehicle dispatching process in the case of limited ve-
hicles. Xu et al. (2022) developed a network flow-based vehicle dis-
patching algorithm to search for the optimal dispatch sequence of
vehicles to requests by establishing the minimum cost flow.

In the on-line ride-hailing market, supply and demand are the two
most critical factors, and the relationship between demand and supply is
complex and dynamic. Reinforcement learning is suitable when solving
the continuous dynamic decision-making challenges in vehicle dis-
patching tasks. Both model-based and model-free reinforcement learning
methods are widely used for vehicle dispatching tasks. Research using
model-based approaches usually relies on value iterations to solve a
Markov Decision Process (MDP). Rong et al. (2016) modeled the taxicab
dispatching task as an MDP and then learned the MDP parameters in
different time periods in the data to find the optimal action in terms of
improving driver revenue.

Model-free approach to solving problems related to on-line ride-
hailing services is the prevailing line of research. Transportation
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electrification is a major trend nowadays and electric vehicles will
occupy a higher share of the future on-line vehicle market. Shi et al.
(2019) evaluated fleet management problems when using electric vehi-
cles and investigated a reinforcement learning -based algorithm to
operate a fleet of electric vehicles with the overall goal of reducing
customer waiting time, electricity cost, and vehicle operating cost. Holler
et al. (2019) proposed a DRL approach to jointly solve the problems of
fleet management and vehicle dispatching. In addition to modeling
drivers as independent agents, a central fleet management agent was
used in charge for the drivers’ decisions. Instead of simply partitioning
the study area into a grid map, Liu et al. (2022a) proposed a clustering
algorithm that divides the road network map into regions, incorporating
the road topology. Through accurate taxi demand prediction and
frequent updates of driver status, a full study of taxi demand and supply
at the regional level was performed in order to improved DRL modeling.
Liang et al. (2021) proposed a hybrid structure involving reinforcement
learning and centralized programming to solve order matching and
vehicle dispatching tasks. Intelligent transportation systems are closely
related to other disciplines: Liu et al. (2022b) designed a single-agent
DRL model by analogizing the vehicle dispatching problem in a
real-world on-line ride-hailing platform to a load balancing problem in a
computer network and validated it on real data.

5. Summary and discussion

The literature survey shows that various machine-learning method-
ological approaches are framed to develop on-demand and on-line ride-
hailing systems.

5.1. Joint optimization of multiple functional modules in an integrated
system

The on-line taxi platform integrates several functional modules
involving supply and demand prediction, ETA, travel plan recommen-
dation, carpooling, order matching, vehicle dispatching, dynamic pric-
ing, and other underlying algorithms. Each functional module has its own
set of evaluation metrics and independent optimization procedures.
However, even if each module reaches its optimal state, the overall
performance may not be optimal after being stitched into an integrated
system. The joint optimization of multiple functional modules is a po-
tential solution to ensure the overall optimality of the integrated system
(Qin et al., 2021).

5.2. Designing and explaining machine-learning-based travel decision
models inspired by discrete choice models

Given that ride-hailing services have accumulated a massive amount
of trip data, the travel decision models reviewed in this paper are data-
driven models based on machine learning, however, in transportation
engineering, travel decisions are usually modeled using discrete choice
models, which are also widely applied in both economics and sociology
(Leong and Hensher, 2012). Researchers have gained a wealth of
knowledge and expertise in the application of discrete choice models,
which can help to understand the operation mechanism of
machine-learning-based travel recommendation models and improve
model interpretability; however, related studies are scarce and these
warrants further investigation.

5.3. Establishing model-controlled traffic prediction so that prediction and
control become a closed-loop

This paper reviews the research on the spatio-temporal dynamics in
traffic data. Existing traffic prediction algorithms rely on previous data to
extract potential patterns. However, in intelligent transportation system
scenarios, they are vulnerable to the influences of external control fac-
tors, such as signal control strategy and train timetables, which can
7

invalidate the patterns learned based on historical data. Model predictive
control is a well-known model that considers both prediction and control
in modeling, which greatly improves the performance of optimal control
(Li et al., 2022). Nevertheless, model predictive control is limited to
dealing with control problems, rather than problems in intelligent
transportation systems such as traffic prediction, which are extensively
required to serve traffic operation, design, management, and planning.
Therefore, it is necessary to introduce control factors into the traffic
prediction task so that the two form a closed loop for model-controlled
traffic prediction.
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